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1. Introduction

For a finite group G, a commutative G-ring spectrum has norm maps that are multiplicative versions
of the transfer maps. These maps are not seen in ordinary G-spectra. Moreover, we see the algebraic
shadows of these norm maps in the zeroeth stable homotopy groups of commutative G-ring spectra: m, of
a G-spectrum is a Mackey functor (see for example [8]), but if X is a commutative G-ring spectrum, then
7y(X) is a Tambara functor [2]. Thus, it is a Mackey functor with a ring structure (i.e. a Green functor)
and an extra class of norm maps that are the multiplicative analogues of the transfer maps.

In this paper we show that the relationship between Mackey functors and Tambara functors mirrors
the relationship between G-spectra and commutative G-ring spectra. We define an equivariant symmetric
monoidal structure on the category of Mackey functors under which Tambara functors are the commutative
monoid objects. The category of Mackey functors is symmetric monoidal, but the commutative ring objects
under the symmetric monoidal product are not Tambara functors. Notably, they do not have norm maps.

Hill and Hopkins have developed an appropriate notion of equivariant symmetric monoidal, calling it
G-symmetric monoidal [3]. They then call the commutative monoid objects under a G-symmetric monoidal
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structure the G-commutative monoids [3]. We provide formal definitions of these concepts in Section 5. Hill
and Hopkins [3], Ullman [12], and Hoyer [4] have independently defined G-symmetric monoidal structures
on the category Mackg of G-Mackey functors. In this paper, for G a cyclic p-group we define a very explicit
G-symmetric monoidal structure on Mackg. The key to this structure is new norm functors Ng : Macky —
Mackg for all subgroups H of G.

Main Theorem. Let G be a cyclic p-group. For all subgroups H of G there is an explicit construction of a
norm functor N§: Macky — Mackg that has the following properties.

a. Ng is isomorphic to the composition of functors NgN}}, whenever H < K < G.
b. Ng is strong symmetric monoidal.

The word “construction” is deliberate. Given an H-Mackey functor M we build a G-Mackey functor
NgM based only on the intrinsic properties of Mackey functors and Tambara functors. We then define the
functor N§ via the map M +— N§ M and use the collection of these norm functors {N§ for all H < G} to

prove the following theorem.

Theorem 1.1. Let G be a cyclic p-group. There is a G-symmetric monoidal structure on Mackg so that a
G-Mackey functor is a G-commutative monoid if and only if it has the structure of a G-Tambara functor.

Because we restrict the Main Theorem and Theorem 1.1 to cyclic p-groups we are able to explicitly
describe the G-symmetric monoidal structure defined on Mackq. Thus, we can work with this construction
to build intuition into how the structure operates.

In this regard our definition of the norm functors in the Main Theorem is analogous to the explicit
definition of the tensor product. Even though defining the tensor product via the universal property is more
elegant and at times easier to work with, the explicit definition helps us understand how the tensor product
combines two vector spaces. Similarly, the explicit construction of norm functors in this paper allows us to
understand what the G-symmetric monoidal structure actually does to the objects of Mackg. Moreover,
while we feel strongly that we can extend our results at least to all finite abelian groups, many aspects
would become so much more complicated that the results would no longer develop the reader’s intuition for
Mackey and Tambara functors.

Even before the emergence of Tambara functors in equivariant stable homotopy theory, there was interest
in developing a structure on Mackg that supported Tambara functors as ring objects. During an open
problem session at the 1996 Seattle Conference on Cohomology, Representations and Actions of Finite
Groups T. Yoshida posed the problem of defining a tensor induction for Mackey functors that preserves
tensor products of Mackey functors and satisfies Tambara’s axioms for multiplicative transfer [1]. The
G-symmetric monoidal structure that we create is such a tensor induction.

We organize this paper into the following sections. In Section 2 we provide two definitions of Tambara
functors. The first is Tambara’s original definition. The second is an axiomatic and constructive definition.
We base the construction of the norm functors in the Main Theorem on the second definition. In Section 3
we build the norm functors, and in Section 4 we prove that these functors satisfy the Main Theorem. Finally,

we prove Theorem 1.1 in Section 5.
2. Tambara functors

Let #et be the category of sets, and let yetgi" be the category of finite G-sets. Given morphisms
f: X =Y andp: A — X in Let5™ we define the dependent product Hf A by
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yey,
HA: (y,0)|0: f~(y) — A is a map of sets ,
f poo(z)=x forall x € f~1(y)

The group G acts on [[; A by ¥(y.0) = (vy,v0) where (yo)(z) = yo(y~tw).

Definition 2.1. [11] For all morphisms f: X — Y and p: A — X in .Yet5™ the canonical ezponential
diagram generated by f and p is the commutative diagram below, where h(y,o) = y, the map e is the
evaluation map e(z, (y,0)) = o(x) and f’ is the pullback of f by h.

X A XXnyA
f lf’
Y " I, A

We call a diagram in . etgi" that is isomorphic to a canonical exponential diagram an exponential diagram.
Definition 2.2. [11] A G-Tambara functor S is a triple (S, S«, Sx) consisting of two covariant functors

Syt Yetgm — Let
S, Yetgm — Let
and one contravariant functor
S*: Fethin — Fet
such that the following properties hold.
1. All functors have the same object function X — S(X), and each S(X) is a commutative ring.
2. For all morphisms f: X — Y in .ZetE™ the map S.(f) is a homomorphism of additive monoids, S, (f)
is a homomorphism of multiplicative monoids and S*(f) is a ring homomorphism.

3. The pair (S*,S,) is a G-Mackey functor and (S*, S,) is a semi-G-Mackey functor.
4. (Distributive Law) If

X A X'
fl lf’
Y h Y’

is an exponential diagram then the induced diagram below commutes.

P

5(X) 5(4)

.| E

S(Y) S(Y")
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Given a morphism f: X — Y in Zeth™, we call S.(f) a transfer map, S*(f) a restriction map and
S«(f) a norm map. In particular, if f: G/H — G/K is a morphism between orbits, we denote the norm
map S, (f) by NE, the transfer map S,(f) by tr¥, and the restriction map S*(f) by resk. Further, given
an element g € G there is also a morphism ¢,: G/H — G/gHg '. Thus, we have an induced map S, (c,)
(which is equal to Si(cg) and S*(cy-1)) that we will denote by c¢,.

The norm maps are not additive, but there is an explicit formula for the norm of a sum in a Tambara
functor. By Property 3 of Definition 2.2 Tambara functors convert disjoint unions of G-sets to direct products
of commutative rings. Since every finite G-set can be written as a disjoint union of orbits we only need this
formula for the norm maps N II{( for all subgroups H < K < G. Moreover, since the norm map N II_I( in
a G-Tambara functor S must agree with NX in the K-Tambara functor that results from applying the
forgetful functor i : Tambg — Tambk to S, it suffices to only state the formula for the norm Ng of a
sum for any subgroup H of G.

We will only use two cases of exponential diagrams, and for these it is helpful to use the following
construction. Let H be a subgroup of G and let X be a finite H-set. Then the G-set Mapy (G, X) is the
set of all H-equivariant maps ¢: G — X with G-action (g-q)(¢9’) = q(¢'g) for all ¢’ and g in G.

Proposition 2.3. Let f: G/H — G/G be the crush map, and let p: A — G/H be a morphism in S etEim.
Then the dependent product Hf A is canonically isomorphic to Mapr(G,p~*(eH)).

Proof. The category of finite G-sets over G/H is equivalent to .%et£™, and the pullback functor from the
category of finite G-sets over G/G to the category of finite G-sets over G/H is canonically isomorphic to
the restriction functor .Zetf” — Lethi™. Moreover, the functor (A 2> G/H) (II; A = G/G) is right
adjoint to the pullback functor [11]. And, the functor X — Mapy (G, X) is right adjoint to the restriction
functor. It follows that these two right adjoints are canonically isomorphic. Therefore, for all p: A — G/H,
the dependent product Hf A is canonically isomorphic to Mapg(G,p~t(eH)). O

Theorem 2.4 (Tambara reciprocity for sums). Let G be a finite group with subgroup H, and let S be a
G-Tambara functor.

1. If %1 I %5 is the disjoint union of two single point G-sets then the following diagram of rings commutes.

S(G/H) <—— S(G/H) ® S(G/H) ——= S(G/H x Maps (G, 1 I %))

Ngl l

S(G/@G) S(Mapp (G, *1 U *7))

2. For alla and b in S(G/H)
N§(a+0b) = N§(a) + NG (b) + T(-)

where T'(—) is a polynomial in transfers from proper subgroups, norms, and restrictions that is universally
determined by G in the sense that it depends only on G and not on S, a, or b. Moreover, T'(—) lands in
the ideal generated by the transfers.

Proof. To prove part 1, given the fold map v: G/H 1 G/H — G/H and the crush map f: G/H — G/G,
by Proposition 2.3, the dependent product [] f(G/ H I G/H) is canonically isomorphic to

Mapg (G, *1 1T %) = Map(G/H, 1 11 3).
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Therefore, the diagram below is an exponential diagram, and so the diagram in part 1 of the above theorem
commutes by the Distributive Law of Definition 2.2.

v e

G/H G/HUG/H G/H x Map(G/H, 1 I %3)
| h I
G/G Map(G/H, 1 1T %5)

Next, given a and b in S(G/H), by part 1, NGV.(a,b) = h.m.e*(a,b). Since NGV.(a,b) = NG (a + b),
we can develop the formula given in part 2 by determining h,m,e*(a,b).

We begin by examining the decomposition of Map(G/H, 1 11 %3) and G/H x Map(G/H,*; I xg) into
disjoint unions of G-orbits. We can rewrite this as

Map(G/H, % Mxp) = G/GNG/GT]] Z;

where each Z; is of the form G /H; for some proper subgroup H;. This union is difficult to determine, however
it suffices that it is universally determined by the group G, and none of the orbits Z; are isomorphic to G/G.
Further, G/H x Mapp(G, 1 I %) is isomorphic to G/H IO G/H I [],(G/H x Z;), and so the composition
hymee* is given below.

S(G/H) ® S(G/H)

e*

S(G/H) ® S(G/H) © @ S(G/H x Z;)

T

5(G/G) @ S(G/G) & P S(Z:)

lh*

S(G/G)

The map e* sends (a,b) to (a,b, ) where x is an element in €, S(G/H x Z;) that is universally determined
by G.

Next, we determine 7. First, S(G/H x Z;) is isomorphic to [ [ G/J; where G/J; is the largest orbit that
contains both G/H and Z;. Thus, let f;: S(G/H x Z;) — S(Z;) be the multiplication map composed with
the appropriate norm map, and let F: @@, S(G/H x Z;) = @, S(Z;) be @, fi.- Then 7, = NG & NG @ F,
and hence m.e*(a,b) = NG (a) ® N5 (b) @ F(z).

Finally, h, is the identity map on the first two summands and the appropriate transfer maps on the
remaining summands. Therefore, h,m,e*(a,b) is

Nfi(a) + Ni (b) + T(-)
where T'(—) is as given in the above theorem. 0O

We explicitly describe the Tambara reciprocity relations for sums in a Cj-Tambara functor in Exam-
ple 2.13. In fact, when G is a finite abelian group we can determine more details regarding the polynomial
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T(—). Thus, if G is finite abelian, we can state an even more explicit formula for the norm of a sum in a
G-Tambara functor.

Theorem 2.5 (Tambara reciprocity for sums when G is finite abelian). Let G be a finite abelian group and
let S be a G-Tambara functor. If H < G, then for all a and b in S(G/H)

Nfi(a+b) =

NG+ NEW+ S uf (z N ((a_b>£<)> + 0 (b))
H<K<G k=1

where g (a,b) is a polynomial in some of the Wq(H)-conjugates of a and b, and each (ab)¥ is a monomial
in some of the W (K)-conjugates of a and b. These polynomials are universally determined by the group G
in the sense that they depend only on G and not on S. Each integer iy is also universally determined by G.

Proof. Given a and b in S(G/H), by Theorem 2.4, NG(a + b) = N§(a) + N5 (b) + T(—), but since G is
finite abelian we can further determine T'(—) by developing a more concrete formula for the composition
hymee*(a,b).

The entire analysis hinges on the structure of the dependent product, which as we showed in Proposi-
tion 2.3, is the G-set Map(G/H, 1 Il x3). In order to make later formulae more transparent, we write the
set #1 I %9 as {a, b} in all that follows.

Because G is an abelian group, the stabilizer of any element f € Map(G/H,{a,b}) contains H. If H < K,
then composition with the quotient map

G/H - G/K
induces an isomorphism

Map(G/H,{a,b})* = Map(G/K, {a,b}).

Thus, since i g is the number of orbits of functions with stabilizer exactly K, the above isomorphism allows
us to identify i as the following cardinality:
ix = |Map(G/K {a,b}) = |J Map(G/K',{a.b})| /|G : K].

KCK'

This gives us our orbit decomposition

Map(G/H {a,b}) = G/GUG/GT ] ﬁG/K.

H<K<Gi=1
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Therefore, the composition h,m.e* is given below where S = S(G/H).

S®S

sose P [é(@s)}@é(@s)

H<K<G “k=1 |G/K] j=1 |G/H]|

T

S(G/G) @ S(G/C) @ By <c (DI, S(G/K)) © B2, S

s

5(G/G)

The map e* sends (a,b) to a sequence of a’s and b’s, the order of which is determined as follows. The
codomain of e* is grouped by the orbits of Mapr (G, {a,b}), and each grouping is indexed by the elements
of G/G, G/H, or G/K for H < K < G. For example, each @lc/Hl S corresponds to an orbit isomorphic
to G/H, and thus we can write /5 S as

Se ® Sgl ©---D SQ|G/H\—1

where the indexing elements e, g1, ..., gjg/m|-1 are representatives for the elements of G/H. To define

e*

, we choose a representative map f: G — {a,b} from each orbit. (The choice of representative does not
matter.) We then determine the image under f of each of the indexing elements. For every indexing element
gi, if f(g;) = a, then e*(a,b) = a on the corresponding summand, and if f(g;) = b, then e*(a,b) = b on the
summand. For example, the first summand corresponds to the constant function that sends all elements of
G to a. Hence, e*(a,b) = a on that summand. Similarly, e*(a,b) = b on the second summand.

Next, 7, is a combination of norm maps and maps that send a direct sum to a product over a Weyl

action. More specifically, let the map 7 : @g, 5 S(G/H) — S(G/H) be

(Se:Sg18gas--- SQ\G/H\—l) — 59189192595 " 9|G/H| 159G /51| -1-

The map 7x: D|g, 5 S(G/H) — S(G/H) is analogous. Then , is

iK ZAH
NfoNfo @ PN ok, ®Pru);,
H<K<G k=1 Jj=1

where N§ and NE are the norm maps.
Thus, if each (a_b)f is as defined in the theorem and (a_b)f is defined analogously, then 7.e*(a, b) equals

Nf@aonNio o @ (DN (@) e Plab).
H<K<G k=1 j=1

Finally, h.mee*(a,b) is

NE@ANG® S o (z NE <<a_b>5>) b gn(a.b)
H<K<G k=1
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where gy (a,b) = Z;il(@)f and thus is as defined in the above theorem. 0O
We use the following corollary frequently in the upcoming sections.

Corollary 2.6 (Tambara reciprocity for sums when G is a cyclic p-group). Let G = Cpn be a cyclic p-group,
let H = Cpr be a subgroup of G, and let S be a G-Tambara functor. Then for all a and b in S(G/H),

Nf(a+b) = Nf@+ NGO+ > el [ 3 N ((a)y) | +rfi(gn(a.b)),

H<C,; <G fez, /G
where
Z; = (Map(G/Cps,{a,b}) — Map(G/Cpi+1,{a,b})),
where
@)= J[ 9feCum),
gC,; €G/C,;
and where

gula,b)= Y (ab)y= Y IT 9rm)

fE€TL/G f€Iy/G \gHEG/H

We also have a formula for the norm of a transfer in a Tambara functor. As we did for the norm of a sum,
we first provide a general formula that holds for all finite groups. We then give a more detailed formula for
the norm of a transfer in a G-Tambara functor when G is finite abelian.

Theorem 2.7 (Tambara reciprocity for transfers). Let G be a finite group with subgroups H < H, and let S
be a G-Tambara functor.

1. The following diagram of rings commutes.

S(G/H) tria S(G/H') < S(G/H x Mapu (G, H/H"))
Nsl h l
S(G/G) - S(Mapu (G, H/H'"))

2. For all x in S(G/H"),
N§trl () = T(-)

where T(—) is an element in the subgroup of S(G/G) generated by all transfer terms. Moreover, it is

universally determined by G.

Proof. By Proposition 2.3, the dependent product of the composition G/H’ 2, G/H TN G/G is canonically
isomorphic to Mapy (G, H/H'). Tt follows that the diagram below is an exponential diagram.
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€

G/H G/H G/H x Mapy (G, H/H')
| h |
G/G Mapp(G,H/H')

Next we prove part 2 of the theorem. The G-set Mapy (G, H/H') has no G-fixed points. Thus, there are
no copies of G/G in its decomposition into G-orbits. This means that in the commutative diagram of rings
given in part 1, the map h, is a sum of various transfer maps. Hence, for all x in S(G/H'), hymee*(x) is
some element in the subgroup of S(G/G) generated by the transfer terms. 0O

Theorem 2.8 (Tambara reciprocity for transfers when G is finite abelian). Let G be a finite abelian group,
and let S be a G-Tambara functor. For all subgroups H' < H < G and all x in S(G/H')

qK
Nfjtrip (x) = trf (f(@) + Y | D trZN(z;)
KeQ \j=1

where Q is the set of all subgroups K of G such that H = H N K, f(x) is a polynomial in some of the
Wea(H')-conjugates of x, and each x; is a monomial in some of the Wg(H')-conjugates of x. Moreover,
(), z;, and the integers qx are universally determined by the group G.

Proof. Since GG is abelian we can create a more complete picture of the composition h.m.e*(z) given in
Theorem 2.7. In particular, we are now able to better describe the map .
First, as a G-set, Mapy (G, H/H') is isomorphic to

T qK

[T@/myn T (TI@/K);).

i=1 KeQ j=1

We do not need to know the exact values for r and each gk, since it suffices that they are universally
determined by G. So, G/H x Mapp(G,H/H’) is isomorphic to

" aK

[1( 11 o) 1 [T (110)

=1 |G/H| ' okealj=1m j
Wherem:%.

Thus, h.m.e* becomes the composition below where S = S(G/H').

S

*
e

i (Bio/m S) © Dren | DI (@D, 9)]

Ty

D15 © Brea | D11 S(G/K)]

s

5(G/G)
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To describe the map m, let

o EB S— S

|G/H|

be the map that sends (s, sg,,-- -, Sg\c/H|_1) to a specific product

Gt.SeGt,Sg " " gt|G/H‘,18‘q\G/H\*1

where g;,54, is a W (H')-conjugate of sy, While it is difficult to give further detail on this product of Weyl
conjugates, it suffices that it is universally determined by the group G. Define 7;: @,, S — S analogously.
Then 7, = @;_, m ® @5, (Nj o 7j).

The map e* is the diagonal map and h, is a composition of addition and transfer maps. Therefore,

qK
Nfjtrip(x) = homee® () = trf, (f(2) + Y | D triNf (z;)
KeQ \j=1

where f(z) is a polynomial in some of the W (H')-conjugates of z, and each z; is a monomial in some of
the Wg(H')-conjugates of z. O

When G is a cyclic p-group, since all subgroups are nested, H' = H N K if and only if K = H’. Thus, in

this case the Tambara reciprocity formula for transfers simplifies nicely.

Corollary 2.9 (Tambara reciprocity for transfers when G is a cyclic p-group). Let G = Cpn be a cyclic
p-group with chosen generator v, and let H' < H be subgroups of G. Then for all x in S(G/H'),

Nijtrip () = trig.(f(z))
where f(x) is a polynomial in some of the Weyl conjugates of x. More specifically,

r |G/H|-1

f@)y=% II e
s=1 =0

where each Y™z is a Wy (H')-conjugate of x and the integers r and m; s are universally determined
by G.

Fact 2.10. The following fact regarding Tambara reciprocity will allow us to create Tambara reciprocity-like
relations in the Mackey functor NgM that we define in the next section. Since we only use this fact when
G is a cyclic p-group we restrict our attention to this case. It appears however that this fact holds for all
finite abelian groups.

When G is a cyclic p-group the monomials of gi(a,b) and f(z) and the monomials (ab) s given in Corol-
laries 2.6 and 2.9 do not contain repeated factors. If v generates G, then for every 4™ the elements 7™a
and 7™b appear at most once in any monomial in the formula for the norm of a sum, and it is impossible
for both v™a and +™b to appear in the same monomial. Similarly, the element ™z appears at most once
in any monomial in the formula for the norm of a transfer. These facts follow from the formulas for the
maps 7, in the proofs of Theorems 2.5 and 2.8.

Let G be a finite group and let Og be the orbit category of G. Motivated by an analogous definition of
Mackey functors from [14], we also define G-Tambara functors as follows.
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Definition 2.11. Let G be a finite group. A G-Tambara functor S consists of a collection of commutative

rings
{8(G/H):G/H € Oc}
along with the following maps for all orbits G/H and G/K such that H < K and all g in G:

o the restriction map resk: S(G/K) — S(G/H),

e the transfer map tr: S(G/H) — S(G/K),

e the norm map NE: S(G/H) — S(G/K), and

o the conjugation map c,: S(G/H) — S(G/gHg™1).

These rings and maps satisfy the following conditions.

1. All restriction maps are ring homomorphisms, all transfer maps are homomorphisms of additive monoids,
and all norm maps are homomorphisms of multiplicative monoids.
2. (Transitivity) For all H' < H < K and all g and hin G

rest, = restrest
trg, = trﬁtrg,
Nj = NEN§,
CygCh = Cgh-

3. (Frobenius Reciprocity) If H < K, then for all z in S(G/H) and y in S(G/K)

ytriy () = trig (resiy (y)z).

4. If H < K and g € G, then

K _ . .gKg!
cqresy =resiy’ icq

K _ 4.9Kg™!
cglry = tTgHg_1Cg

K _ nr9Kg™!
cgNpy = NgHg_1 Cg.

5. For subgroups H' and H of K, let [H\K/H'] denote a set of representatives in G for the double cosets
H\K/H'. Then

K K _ H H'
resglry, = E U HngH g-1CgT€SgHg—1NH'
gE[H\K/H']
KK H "
resg Ny, = H Nungr g-1CgT€S g g—1nm-
ge[H\K/H']

6. (Tambara Reciprocity) S satisfies Theorems 2.4 and 2.7.

If G is a finite group, and S is a G-Tambara functor as defined in Definition 2.2, showing that S satisfies
Definition 2.11 is straightforward.
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(C2/C3)

S

S(Cz/e)

trC2
<

Fig. 1. S is a Cz-Tambara functor.

Remark 2.12 (Weyl actions). Every S(G/H) is equipped with actions of the Weyl groups Wi (H) for all
subgroups K such that H < K < G. Here we state a few properties of these actions that we subsequently
use to define the Mackey functor NG M. By Property 4 of Definition 2.11, for all g in Wi (H), all = in
S(G/H), and all y in S(G/K), gresE(z) = resk(x), trk(gz) = tr¥(z) and NX (9r) = NX (x). Moreover,
when G is abelian, by Property 5,

resStrf(z) = Z gz and resENE(z) = H gz.
geEWK (H) geEW K (H)

We collect the properties of Definition 2.11 into a lattice-like diagram. For example, a Cy-Tambara functor
is pictured in Fig. 1. We do not draw the Weyl action.

Example 2.13. We can find explicit Tambara reciprocity formulas. For example, let S be a Cy-Tambara
functor, let @ and b be elements in S(C4/e), and let y generate Cy. Then

NE*(a+b) = NEa) + NO0) + Gt (NE2 (b)) ) + trE*(g.(a,b)
where (ab)$? = avb and
ge(a,b) = ayay?ay®b + byby’by3a + ayby?byia.
Further, for 2 in S(Cy/e), Ng;trecz (z) = tr&(f(x)) where f(z) = zyz.
3. Constructing the norm functors

From here on, let G be a cyclic group of order p” with chosen generator v. In this section, for a subgroup
H = Cpr of G and H-Mackey functor M, we build a G-Mackey functor NgM that we will use to define the
norm functor N§: Macks — Mackg. Our Mackey functor norm will be built inductively, using the linear
order of the subgroups of a cyclic p-group. This allows for a clean, conceptual description of the norm.

Our definition of NgM is motivated by the explicit description of the symmetric monoidal product in the
category of G-Mackey functors. This product is called the bozx product O. The category theoretic definition
of the box product can be found in [5] or [13], and while this definition is central to the theory of Mackey
functors, it is difficult to actually compute the box product of two Mackey functors.

Lewis gives an explicit construction of the box product for C,-Mackey functors, and this description
immediately generalizes to other cyclic p-groups. Despite its constraint to C,-Mackey functors, this definition
allows us to visualize the box product of two Mackey functors. In a similar vain, even though we only define
NgM when G is a cyclic p-group, our construction provides insight into the norm functors that is otherwise
difficult to see.

Definition 3.1. [[9], [6]] Given Cp-Mackey functors M and L we define their box product M O L by the
diagram in Fig. 2.

The transfer map is the quotient map onto the second summand. The restriction map is induced from
Tesg" ®resec” on the first summand and by the trace of the Weyl action on the second summand. The Weyl
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Im(trCr)

[M(Cp/Cp) ® L(Cp/Cp) @ (M(Cp/e) ® L(Cp/€))/we,(e) |/ PR

resCr trCp

M(Cp/e) ® L(Cp/e)

Fig. 2. The box product of C,-Mackey functors.

action on M(Cp/e) ® L(Cp/e) is the diagonal action. Finally, FR is the Frobenius reciprocity submodule
and is generated by all elements of the form

m' @ trfe(l) — tr&v(resSr(m') @ 1)
and

trér(m) @1 — tr» (m @ resSr (1))
for all m’ in M(Cp/Cyp), ! in L(C,/Cp), m in M(Cp/e), and I in L(Cp/e).

If G is a cyclic p-group Cp» we can extend the above definition to the box product of G-Mackey functors as
follows. Because all subgroups of G' are nested, for any G-Mackey functor and any subgroups H < Cp,; < G,
C C C -
tr?’ = trcz’jiltr i+ ' Therefore, if M and L are G-Mackey functors, we can inductively build M 0O L so
P
that

(M3 L)(G/Cpi) = [M(G/Cpi) ® L(G/Cpi) & (M B L)G/Cpi-) [we_(,51) |/ Fr:

~

Im(trj-;l)
The restriction and transfer maps are identical to those given in Definition 3.1.
The above definition naturally extends to an m-fold box product for any positive integer m. It also
gives us another way to view the universal property of the box product. This is equivalent to the usual
description of the universal property; we find this a helpful reformulation. The proof is immediate from

Lewis’ description of the box product.

Proposition 3.2. [5,9] Let M, L, and N be G-Mackey functors. Maps M O L — N are in natural bijective
correspondence with the following data: A collection of Weyl equivariant maps

fit M(G/Cpi) @ L(G/Cps) — N(G/Cp)
for all 0 < 7 < n that satisfy the following compatibility conditions.
1. For all 5, we have
7”@3?,1 o fj = fjfl o (T€S§71 ® 7“68;71),
2. for all j, we have

fijo (tr§71 ®Id) = trj.;l ofj_10(Id® res;:fl),
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3. and for all j, we have
fjo (Id®trj )= 571 ofj—10 (7'65?71 ® Id).

Alternatively, we can define M O L as a quotient of Mackey functors. If we let TENSM L be the Mackey
functor with

(TENSML)(G/K) = [M(G/K) ® L(G/K)] ® Im(tr)

for all subgroups K of G, then the Frobenius reciprocity submodules form a subMackey functor FRM L of
TENSM L. We can then define M O L by

MOL:=TENSML/FRM L.

We play a similar game to define NGM. We start by building a “free” G-Mackey functor from an
H-Mackey functor M. Since we want N EM to look like a Tambara functor we will quotient the “free” Mackey
functor by a subMackey functor (analogous to FRM L) that creates Tambara reciprocity-like relations.

3.1. The “free” G-Mackey functor
Definition 3.3 (The “free” G-Mackey functor). Let H = Cpr be a subgroup of G and let M be an H-Mackey
functor. Define the G-Mackey functor FREE® M as follows.

For all subgroups H' of H define

(vrEEC M)(G/H') = MEIC/H) (7117,
and if H” < H' < H then resk, and trfl, are the box product restriction and transfer maps given in
Definition 3.1. The Weyl action is via tensor induction.
Now let K = C,; be a subgroup such that H < K < G. Define (FREE®M)(G/K) inductively by
(FREEC M)(G/K) := Z{Map(G/K, M(H/H))} ® Im(tr]_,),
where
Im(tr_,) = ((FREECM)(G/Cy1) ()
The transfer map trg_l is the canonical quotient map onto that summand. The Weyl action is via the action

on Map(G/K,M(H/H)) by precomposition and the induced action on the other summand.
The restriction on Im(trj ;) is defined by the universal formula

res;_ltr;_l(x) = Z gT

9€We ;(Cpi—1)
in a Mackey functor. On the “free” summand, when j > k + 1 we take
resz;I: Map(G/K,M(H/H)) = Map(G/Cpi-1, M(H/H))

to be the map induced by the quotient map
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G/ij—l — G/K

k+1

Finally, the restriction map res;” " on the free summand is given by the composite

Z{Map(G/Cprss, M(H/H))} — Z{Map(G/H,M(H/H))} = M(H/H)®'9" — MO (H/H),
where the latter maps are the canonical maps.
Remark 3.4. There is a map N: M(H/H) — (FREEC M )(G/G) defined by the composition
M(H/H) - Z{M(H/H)} — (FREE“M)(G/G)

that sends an element in M (H/H) to the corresponding generator in the free summand in (FREEC M) (G/G).
This map N will be the universal norm map, and in Section 5, we use it to define the internal norm maps
of a Tambara functor. The restriction map on this summand (and the other factors) is defined to mirror
the relation in a Tambara functor

J J —
res; N (z) = H gz.
9&€We ; (Cpim1)

Hence, with this idea in mind we will use the notation N(—) to denote generators of the free summand.

In order to make some computations more explicit, we need to introduce some notation. Since whenever
H' < H, (FREeCM)(G/H') = MPI“/HI(H/H"), we index (FREEC M )(G/H') by elements of G/H . Moreover,

MO Yy = (M(H/H)®9H) @ Im(tr)) /e,
and we denote a simple tensor in the M(H/H')®!I¢/H| summand of this module by

m@IG/HI — Me @My Q-+ @M,y lc/H[-1.

Similarly, Map(G/K, M(H/H)) in the free summand of (FREEYM)(G/K) is the product over G/K and
can be indexed by elements of G/K. We denote an element in Map(G/K, M(H/H)) by

m*IG/El =, x Moy X oo X Myl /K| -1.

Let N(m*IG/El) denote the corresponding generator of the free summand Z{Map(G/K, M(H/H))} in
(FREEY M) (G/K).

This gives us a universal property for FREE®M that follows immediately from the universal property of
the free abelian group functor.

Proposition 3.5. A map FREEC M — M’ is given by two pieces of data:

1. A map of Mackey functors MDlG/Hl — i3 M', where the source is the analogue of tensor induction in
Mackey functors, and for both sides, the Weyl action by Wg(H') comes equipped with an extension to
an action of Wq(H'),

2. for K = Cy; such that H < K < G, G/K-equivariant set maps

fi+ Map(G/K,M(H/H)) = M'(G/K)

that satisfy the following properties.
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(a) For each k < j—1 < n, we have
resi o fj=fi1oresi

(b) when j —1 =k we have

Sr+1

Map(G/Cpk+1,M(H/H)) —_— M/(G/Cpk+l)

l |

MOIC/H(H/H) — > M'(H/H).
3.2. The Tambara reciprocity subMackey functor TRE M

As discussed in Remark 3.4, in Section 5 we will use NG M to define the internal norm maps of a Tambara
functor, so NgM must reflect the Tambara reciprocity property of Definition 2.11. Hence, we will define
NEM by taking the quotient of FREEY M with a subMackey functor to produce relations that mimic the
Tambara reciprocity relations of a Tambara functor. Thus, we need to quotient FREEY M by a subMackey
functor in order to identify the analogues of “the norm of a sum” and “the norm of a transfer” in the free
summand with appropriate elements in the transfer summand. We will call this subMackey functor the
Tambara reciprocity subMackey functor TRE M.

We will define TR M inductively. We begin with a lemma identifying FREEY M.

Lemma 3.6. For any K = C); such that H < K < G we have a natural isomorphism

. alG/K
i3 FREEY M = (FREEX M) G/K],

Proof. We will use induction on the order of the group. First, by definition of FREEC M, for H' < H,
(i%FREEC M) (K /H') is isomorphic to (FREEX M)PI/KI(K/H'). Then by induction it remains to show that
(i%FREEC M) (K /K) is isomorphic to (FREEX M)PIG/KI(K/K). First, we have

(ixFREEC M)(K/K) = Z{Map(G/K,M(H/H))} ® Im(tr}_,),
and

)®IG/K|

(emes)1/ 15/ ) = (2 40gap( 5 M/ @ EmGerf_y) 0 1m0 ) e

Then by Frobenius reciprocity we identify all transfer terms of

. ®|G/K]
(Z{Map(K/K. M(H/H))} © Im(tr]_,))

with elements of ImD(trg_l). Thus, (FREEX)PIG/KI(K/K) is isomorphic to
Z{Map(K/K, M(H/H))}*|*/51 @ m®(tr]_,).

Then Z{Map(K/K,M(H/H))}®I¢/Kl is isomorphic to Z{Map(G/K, M(H/H))}, and by induction
Im"(tr]_,) is isomorphic to the I'm(tr]_,) summand of (i} FREE® M)(K/K). Therefore, (FREEF)VIG/EI (K
K) is isomorphic to (i%FREECM)(K/K). O
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Our definition of TR M uses a similar inductive description: we build TRE M so that for H < K < G we

have an isomorphism

i3 FREEC M /TR M = (FREE" M /TR M) ola/K].

We start by defining the elements that generate the submodule (TR M)(G/G) of (FREECM)(G/G).
These generators are of two types, one of which will create relations like Tambara reciprocity for sums in
NgM and the other will create relations like Tambara reciprocity for transfers.

To develop the first type of generators, recall by Corollary 2.6 that when G is a cyclic p-group, the
Tambara reciprocity formula for sums is given by

Cpi
Nfi(a+b) = Ni(@) + Nf(b)+ Y trg | D Ny ((ab)y) | +trii(gn(a.b)).
H<C ;<G f€T; /G

Thus, we will develop elements in (FREEYM)(G/G) that are analogous to these formulas. We have
grouped the various terms so that they match the summands which show up in FREE®M. Thus, for any a
and b in M (H/H) we need to start with the element

N(a+b) — N(a) — N(b)

in the free summand of (FREEY M )(G/G) and subtract elements in the transfer summand that are analogous
Chpi . .
to each tr& (N ((ab)f)) (which arise from the transfers of the other free summands) and to tr% (g (a, b))
pi

(which comes from the box powers of M).
We will first construct an element analogous to (ab) .

Definition 3.7. Let f € Z;/G, and let K = C);. The map {a,b} — M(H/H) then defines an element

(ab)f = [ fK)=Ff(eK)x - x f(y/9"I"' K) € Map(G/K, M(H/H)).
gKeG/K

Let N((ab)s) be the corresponding element in the free summand of (FREE® M)(G/K).
By Fact 2.10 we can define an element in (FREE® M )(G/H) that is analogous to gz (a,b).
Definition 3.8. Define gz (a,b) in M(H/H)®IG/Hl by
gn@b) = Y | @ floi)|= Y (fleH)o- (9T m).
feTr/G \gHEG/H FETL/CG

Thus, one type of generator of (TR M)(G/G) is of the form

N(a+b)-N@-N@) — > ol [ 3 N(ab)) | —trfign(a,b).
H<C ;<G feZ;/G

Hence, when we quotient by TR M to define NG M we have the following relation in (NGM)(G/G).
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N(a+b)=N(a)+Nb) + > trgpj > N((ab)y) | +trfi(gn(a, b))
H<C ;<G f€Z;/G

Similarly, we want to mimic the Tambara reciprocity formula for transfers given in Corollary 2.9;

Nitrip(z) = trip (f(x))

where
r |G/H|-1
fay=> II ~rmeea
s=1 =0

Definition 3.9. Define f(x) in M (H/H')®IG/H| by

r
f(a;) = Z,}/mo,sx ® fyml,sx R --- ®rym\G/H\*1vS;_p.

s=1

So, trt, (f(z)) is in the transfer summand of (FREE® M)(G/G).

Hence, the other type of generator of (TR M)(G/G) is of the form

N(tri(z)) — trip (f (@),

so that in (N§M)(G/G) we have the relation

N(trig (@) = trij (f(x))-

We now define the Tambara reciprocity sub-Mackey functor TR M. For now it is an abuse of terminology
to call TRE M a Mackey functor. However, we prove that it is in fact a Mackey functor in Theorem 3.12.

Definition 3.10 (The Tambara reciprocity sub-Mackey functor, TR M ). We define TRE M as follows.
For H' < H define (TREM)(G/H') = 0.
If H < K < G then we inductively define (TRCM)(G/K) by

|G/ K|
(trREM)(G/K) = > ((FREEKM)':'F1 orrEM O (FREEKM)mG/K'*i) (K/K)
i=1

If K = G, then let TR M (G/G) be the subgroup generated by

1. the “addition relations”:

N(a+b)—N(a) = N®b) - > tré | > N((ab)y) | —trii(gu(a,b))
H<C,; <G fez; /G

for all a,b € M(H/H),
2. the “transfer relations”:

N(trig(«)) = trip (f (=)

for all z € M(H/H'), and
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3. the transfer from smaller subgroups:
Im (trg/((TRGM)(G/G'))) ,
where G’ is the maximal subgroup of G.

Remark 3.11. The values of TR M (G/K) with K a proper subgroup are so that we have a copy of the
Tambara reciprocity relations for each box factors in i}FREEGM .

We now show that TR M is a Mackey functor.

Theorem 3.12. The collection of submodules TR M given in Definition 3.10 forms a subMackey functor of
G
FREE“ M .

Proof. We will use induction on the order of the group. The base case holds since for H' < H,
(TRCM)(G/H') is zero. Assume for induction that for all K such that H < K < G, TREM is a Mackey
functor. Since each TRE M is a Mackey functor for H < K < G, it follows that TR M is well-defined.
Further, by definition, TR® M is closed under the transfer maps and under the Weyl action, since this action
is just the permutation action. Thus, it remains to show that TREM is closed under the restriction maps.
In particular, let G’ be the maximal subgroup of G. We will show that resS, ((TRY M)(G/G)) is contained
in (TRCM)(G/G").
From the formula

resS,tré, (z) = E gz,
9G'€G/G"

we know that the restriction of the elements in the image of the transfer lands in the desired submodule.

We need only check the “addition” generators and the “transfer” generators. These are very similar, combi-

natorial arguments, the main difficulty of which is in good, consistent notation. We spell the argument out

carefully for the addition generators; the transfer case is similar enough that including it is unenlightening.
We now begin considering the “addition relations”

N(a+b)-N@-No)- > #& | Y N(ab)) | —trflgu(a,b)).
H<C,; <G f€L; /G

By definition,

N@+NO)+ Y g [ > N(ab)y) | +trf (gu(a.b))
H<C ;<G fez;/a

|G/Ks|-1

= > g, | & FOKp)
=0

fe€Map(G/H,{a,b})/c

where each K is the stabilizer of f. Thus, we need to show that

|G/Kfl—1 ‘
resS (N (a + b)) = res&, Z trlcéf ® F(V'Ky)
f€Map(G/H {a,b})/c =0
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|G/K¢|-1
el %
= E iy, ® F(v'Ky)
feMap(G/H {a,b})/ i=0
By definition of the restriction in FREE® M, we have

resG, (N (a +b)) = (N(a+ b))2I¢/¢,

and by our induction hypothesis, in (TRY M)(G/G") we have

N(a+b)=N(a)+Nb)+ > trg;j > N((ab)y) | +tr (9r(a,b))
H<C, ;<G fez; /G
|G'/Ky|-1

> i | Q) f(PKy)
=0

feMap(G’/H,{a,b})/G/

Combining these, we have

G /K g1 -1 ®IG/C
rescy(N(a+b)) = > k| ® ey
f€Map(G'/H {a,b})/qr =0
Therefore, we need to show the following equality.
o [1G/ K11 '
> i, | @ SOKp)
fe€EMap(G/H,{a,b})/ =0
6 /5|1 Bla/al

= > g ® sevEp (31)

feNIap(G//Hv{avb})/G’

We pause here to draw the reader’s attention to the apparent asymmetry in the exponents of v on the two
sides of the equation. This is because since 7 is a chosen generator of GG, the element 4? is then a chosen
generator for G'. The left-hand side is the restriction of a formula from G, and hence uses v; the right-hand
side is the corresponding formula for G’ and hence uses its generator 7.

Here the description in terms of the box product is most useful. The tensor product on the right-hand
side of Equation 3.1 distributes over the sum via the usual formula:

®|G/G’
G’ /K ;| —1 1G/G|

> i | Q) f(TKY)
=0

feMap(G,/Hv{avb})/G’

p—1 |G"/K¢;1-1

> R, | & LK), B2
=0

fe(Map(G'/H {a,b})/G")xp =0

where f; is the ith factor of f
Frobenius reciprocity allows us to rewrite the right-hand side of Equation 3.2. For each [ €
(Map(G'/H,{a,b})/G") P et K be the intersection of the stabilizers Ky,. Since the subgroups are nested
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and since we have only p terms, Ky = K, for some j, and without loss of generality, we may assume that
Ky = Ky, (otherwise, we simply make the obvious bookkeeping change). Frobenius reciprocity shows that
we have an equality

p—1 IG'/Ky;1-1
Gl .
i, QR HOTER) | | =
§=0 i=0
|G"/ Kol -1 p—1 [IG":Ky]-1 . IG"/Kg;|—1
G/ . : f
tri, X SOPE) | 0@ D resyy | @ LOTKELR) )] (33)
i=0 j=1 i=0 k=0
By construction,
IG"/Kg;|—1 |G /K 5|1
K; k - k
res | Q) HOMEL) | = @ fLiGME)),
k=0 k=0

and the action of 4?* simply rotates the tensor factors as tensor induction.

We can further simplify the right-hand side of Equation 3.3 by noticing that there is a coordinate-wise
action of G'*? on Map(G'/H, {a,b})*P. We see that in the ith factor of our formula, we are summing over
the orbit G'/Kj,. There is an apparent asymmetry here too, because the first factor appears in isolation.
However, if we remember that the transfer factors through the Weyl action then we notice that the sum

can be taken over the set

Gr= (H G'/Kfi> /G

Ifgeg g then let g; be the ith coordinate of the representative where the first coordinate is 1. We can then
rewrite the right-hand side of Equation 3.3 as

p=1 [ |G'/Ks|-1

Soug, g & fibPEy) . (3.4)
=0

geg’ =0

This gives us a refined version of what we need to show, so now we need to show

|G/Ks|—1

> i | QR f(Kp) | =
=0

fEMap(G/H7{a7b})/G’

bl |G’ /K s]—1 _
> 2R Q e & LOTE) | (35)
Fe(Map(G'/H,{a,b})/G")x» GEG’ =0 j=0

The argument now is combinatorial. It is helpful to think about the indexing set
Map(G/H,{a,b}),
both as a G-set and as a G’'-set. First, the cosets G/G’ partition G/H into p copies of G'/H, indexed as G'/H,

vG'/H, ..., ¥*~*G'/H. This partitioning is not G-equivariant, but since G is abelian, it is G’-equivariant,
and this gives us a G’-equivariant isomorphism
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G/H={0,....,p— 1} x G'/H.

Using this isomorphism, we have G’-equivariant isomorphisms

Map(G/H, {a,b}) = Map({0,...,p — 1} x G'/H,{a,b}) = (Map(G’'/H, {a,b}))"".

Thus, given a function f: G/H — {a, b}, these isomorphisms allows us to write f as

p—1
fellfi=Go o) =1
=0

where f; is the restriction of f to the coset 7'G'/H.
Although the isomorphisms used are not G-equivariant, we can still describe the action of v on this
product:

Y(Jor o s fom1) = (J15 o fp-1.7"fo)-

We can use this to determine the stabilizer of f. We know that the only G-fixed functions are the constant
ones, and here, that means that each f; is constant and they all agree. The G’'-fixed functions come from
those sequences f, where each f; is a constant function. Finally, for a non-constant function, the stabilizer
of f=(fo,..., fp—1) is just

p—1
Ky = Stab(f) = (| Ky,
i=0

where Ky, is the stabilizer of f;.
The stabilizer of fin (G")*P is

Kf: Kfo X e X Kfpfl'
This means that using the coordinate-wise action of G’, each (non-constant) p-tuple fcontributes
p—1
(GYy<r /KA = ]I6": Ky
i=0

distinct functions to Map(G/H,{a,b}). Putting this together, we see that the two sides of Equation 3.5 are
giving the two ways to express this sum over Map(G/H,{a,b}), completing the proof. O

Definition 3.13. Let M be an H-Mackey functor. Define NSM by
NﬁM = FREEGM/TRGM.
Lemma 3.14. For H < K < G, i} N§M is isomorphic to (N} M)ZIG/KI,

Proof. This result follows directly from Lemma 3.6 and from the fact that the box powers of a quotient is
the quotient of box powers. O
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4. Proof of the Main Theorem

In this section we verify that the construction N gM satisfies the Main Theorem. Recall that a morphism
¢: M — L of Mackey functors consists of a collection of homomorphisms {¢r: M(G/H) — L(G/H) : H <
G} that commute with the appropriate restriction and transfer maps.

Theorem 4.1. For all subgroups H of G, the map N : Macky — Mackg given by M +— N§ M is a functor.

Proof. Given a morphism ¢: M — L in Macky we define the associated morphism N§(¢): NGM — NSL
in Mackg as follows.

For all subgroups H' in H define N5 (¢)x- to be qbi,l,G/Hl. If K = C}; is a subgroup such that H < K < G,
then we inductively define Ng(gb) x so that it is compatible with the appropriate restriction and transfer

maps. More specifically, for all tr(z) in the Im(tr’_,) summand of (NGM)(G/K) we define NG (¢)k (tr(z))

Jj—1
to be

trj"fl(Ng(@Opj_l ().

If N(m*IG/Kl) is a generator in the image of the free summand in (NGM)(G/K), define
NEi ()1 (N (m>9/K1)) to be

N((bH(me) X gi)H(m,y) X X ¢H(Tn,y|c/1(|—1)).

Further, N§(¢) maps TR M to TREL since each (ab)s, gi(a,b) and f(x) are universally determined by
the group G. Then, by definition, the maps {N§(¢)x : K < G} form a natural transformation of G-Mackey
functors, and the assignment ¢ — N§(¢) is functorial. O

4.1. N§ is isomorphic to the composition N¢NE

We next prove that the norm functors satisty Property (a) of the Main Theorem. Thus, we will prove
that Ng: Macky — Mackg (given by M NEM) is isomorphic to the composition of functors NENII}
whenever H < K < G. By induction it suffices to show that for G’ maximal in G, Ng,NgIM is isomorphic
to NgM .

Theorem 4.2. Let H be a subgroup of G and let G' be the mazximal subgroup of G. Then Ng,Ng’M is
isomorphic to NgM.

Proof. First, we will show that (N$ NG M)(G/K) is isomorphic to (N§M)(G/K) for all K < G'. By
Lemma 3.14 (NICjM)(G/K) is isomorphic to (NI?M)E”G/K'(K/K). Further, by definition,

(NSNG M)(G/EK) = (N§ M)/ G K),

and by Lemma 3.14 (N§ M)(G'/K) is isomorphic to (N& M)PIG" /Kl Hence, (NG, NG M)(G/K) is isomor-
, ojG/G’|
phic to ((N;I(M)DlG /K|) (K/K), which is isomorphic to (N& M)°I¢/KI(K/K).
It remains to show that (Ng,Ng/M)(G/G) is isomorphic to (NG M)(G/G). By definition,

(NFM)(G/G) = (FrEECM) (G/G)/(TRM)(G/G)
= (Z{M(H/H)} ® (NFM)(G/G")wa(cr)) | e an)(c/c)-
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Then the module (NG NG M)(G/G) is

(Z{(NH M)(G'/G")} & (NSNS M)(G/G)wecr ) / (trE M) (G/G) s
which equals
(21240 H/H)} & Im(t) (ene any 6 jy} @ ImEE) ) [eaneana/c)-

Quotienting by (TREM)(G/G) identifies all elements in the transfer summand of (NG M)(G'/G’) with
elements in Im(tré,). Thus,

(NG NG M)(G/G) = (Z{Z{M(H/H)}} ® Im(tr))) / rrearyc/c):
Finally, since the Tambara reciprocity submodule identifies sums of generators in the free summand with
elements in the transfer summand, it follows that (NG NG M)(G/G) is isomorphic to (Z{M(H/H)} @
Im(tr&))/ zmean(c/c)- Since Im(tré,) is isomorphic to (NFM)(G/G')/we(cr. it follows that

(NG Nf M)(G/G) = (NFM)(G/G). D

Corollary 4.3. For all subgroups H and K of G such that H < K < G, the norm functor N§ : Macky —
Macke is isomorphic to the composition of functors N¢NK.

4.2. The norm functors are strong symmetric monoidal

We now show that for all subgroups H of G, NG : Macky — Mackg is strong symmetric monoidal, and
thus the norm functors satisfy Property (b) of the Main Theorem. By Corollary 4.3, it suffices to let H be
maximal in G. In this case NG M simplifies nicely. Indeed, if H’ is a subgroup of H, then (NGM)(G/H') =
MUISHI(H/H'). The only remaining module is (NGM)(G/G).
Fact 4.4. The module (NG M)(G/G) is (FREEY M)(G/G)/(TRE M)(G/G), which is

(z(aa(H/ )} © MO H ) i m) ) frn
where TR is the “Tambara reciprocity” submodule generated by elements of the forms
N(a+b) = N(a) = N(b) — tri;(9u(a,b))
and
N(trip(x)) — trig (f())

for all a and b in M(H/H), « in M(H/H') and H < H.

To show that Ng is strong symmetric monoidal, given H-Mackey functors M and L we will build an
isomorphism

U: NfMON{L— Nf(MOL)

by defining a collection of isomorphisms
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{Vx: (NFMON{L)(G/K) = Ni(M O L)(G/K) for all K < G}.

For H' < H the isomorphism ¥y will be induced from properties of the box product. So, the work lies in
defining ¥¢. Before we do so, we explicitly describe (NGM 0O NSL)(G/G) and NG(M 0O L)(G/G).

Lemma 4.5. Let H be maximal in G and let M and L be H-Mackey functors. The module (NEM a
NSL)(G/Q) is isomorphic to

(Z{M(H/H) x L(H/H)} ® Im(tr§})) / 7z

where Im(tr$) is (MEIG/HI o LDlG/Hl)(H/H)/WG(H). The submodule FR is generated by

N((a+b)xl)—N(axl)—N(bxl)—trH(gH (a.b)® X l)

|G/H|
N(m x (y+2) = N(m x y) = N(m x 2) = tr (( ) m) @ gn(w.2)).
|G/H|
N(trff(d) x 1) = tr, (f(d) @ @) resfi (1)),

|G/H|

and

N(m x trf, (z trH,( ® resi(m) ® f(x ))
|G/H|

for alla, b, and m in M(H/H), d in M(H/H'), y z, and | in L(H/H), = in L(H/H') and subgroups H’
of H.

Proof. First,
(NfiM ONfL)(G/G) = (NfM(G/G) ® Nf{L(G/G) & Im(tr)) / pr-

The submodule FR stems from combining the relations defined by the F'R submodule with the relations
from each TR submodule. For example, by the TR submodule of N§M(G/G) we have

N(a+b)® N(l) = N(a) @ N(I) = N(b) @ N(I) — tr$ (gu(a, b)) @ N(I).

But, now we use the F'R submodule and the fact that res$ (N (1)) = &/ L to identify tr$%(gu(a,b))@N (1)
with tr$ (gH(a, b) ® Q¢ /n| l). Finally, we use the fact that for any modules R and S, Z{R} ® Z{S} is

isomorphic to Z{R x S} to arrive at the module given in the lemma. O

We introduce some notation before describing N§(M 0O L). First, let g(a ® y,b ® 2) be a polynomial
similar to gg(a, b). Specifically, let

gala®yboz)= > Q) flgH)

fETL/G \yHeG/H

where now 7, = (Map(G/H,{a ® y,b® z}) — Map(G/G,{a ® y,b & z})).
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Further, we define f(d ® resk,(y)) similarly to f(z). So,
r |G/H|-1

fdoresi() =Y, Q) (" dwresin(y)).
s=1 =0

We define f(resi, (a) ® x) analogously.

Lemma 4.6. Let H be mazimal in G and let M and L be H-Mackey functors. The module N§(MOL)(G/G)
is isomorphic to

(Z{M(H/H) @ L(H/H)} ® Im(tr})) /75

where Im(tr$}) is (M OL)PIY/HI(H/H) /v, ), and TR is generated by the following elements for all a®y
andb® z in M(H/H)® L(H/H), d in M(H/H'),  in L(H/H'), and subgroups H' of H:

Na®y+b22)—Na®y) —NObO®z2)—tr(jnla @y, b® 2)),
N(trip(d) @ y) — trg. (f(d @ res (y))),
N(a® trfl () — tr5, (f(resth (a) ® @)

Proof. The module
Ni(MOL)G/G) = (Z{(MOL)(H/H)} & Im(tr})) /Tx,

and by Definition 3.1, (M OL)(H/H) = (M(H/H)® L(H/H) ®Im(tr))/rr. Thus, since we quotient by the
TR submodule in NG (M 0 L)(G/G), we can identify all elements in I'm(¢r) with the appropriate elements
in Im(tr$). If we then combine the Frobenius reciprocity submodule of (M O L)(H/H) with Tambara
reciprocity the resulting module is isomorphic to

(Z{M(H/H) ® L(H/H)} ® Im(tr§)) O

/7R

Theorem 4.7. For all subgroups H of G, the norm functor N§G: Macky — Mackg is a strong symmetric
monoidal functor.

Proof. By Corollary 4.3 it suffices to let H be maximal in G. We will build an isomorphism ¥: N§M O
NgL — NE(M O L) by defining a collection of isomorphisms

{Ug : (NGMONSGL)(G/K) — NG(MOL)(G/K) for all K < G}.

First, let H' be a subgroup of H. By definition, (NGM 0O NGL)(G/H') = (M™¢/Hl o LPIG/HIy (H/H')
and N§(M O L)(G/H') = (M 0O L)P'¢/HI(H/H'). Since O is symmetric monoidal we define ¥y to be the

natural isomorphism
(M= g LA H) — (M0 L)PIC (1 1Y),
It remains to define the isomorphism V. By Lemmas 4.5 and 4.6,
(NFM ONEL)(G/G) = (Z{M(H/H) x L(H/H)} & Im(tr(;)) / g,

and



5336 M.A. Hill, K. Mazur / Journal of Pure and Applied Algebra 223 (2019) 5310-5345

N{(MOL)(G/G) = (Z{M(H/H) ® L(H/H)} ® Im(tr§})) / 77
Thus, we define U to be the direct sum of the following two maps. First, let ¢¥g: Im(tr$) — Im(tr$)
be the isomorphism induced from Wy . Then define

Ve Z{M(H/H) x L(H/H)} — Z{M(H/H) ® L(H/H)}

by ¥ (N(a x y)) = N(a ® y), and so we define U to be 9 @ Yg. Because of the way 1 reindexes the
elements of Im(trg), the map ¥4 sends all elements in FR to elements in TR. Further, by construction,
\Ifctrg = tT‘IG{ Uy and resg\llg = \IlHresg. Finally, the relations defined by FR are analogous to those that
define a tensor product from a Cartesian product. It follows that ¥« is an isomorphism. 0O

We end this section with a proof of the Main Theorem.

Proof of the Main Theorem. For all subgroups H of G and H-Mackey functors M, let NGM be the
G-Mackey functor defined in Definition 3.13. Then define the norm functors Ng: Macky — Mackg by
M NgM . These maps satisfy all properties given in the Main Theorem by Theorem 4.1, Corollary 4.3,
and Theorem 4.7. O

5. Proof of Theorem 1.1

Finally, given a cyclic p-group G, we use the norm functors N§ : Macky — Mackg to define a
G-symmetric monoidal structure on the category of G-Mackey functors. We will then show that G-Tambara
functors are the G-commutative monoids under this structure, thus proving Theorem 1.1.

We begin with Hill and Hopkins’ definition of a G-symmetric monoidal structure [3].

Definition 5.1. Let yetgm’lso be the category whose objects are finite G-sets and whose morphisms are
isomorphisms of G-sets. Further, let (¢, X, e) be a symmetric monoidal category. A G-symmetric monoidal
structure on € consists of a functor

(1) ®(—): LetE™ " x ¢ - ¢
that satisfies the following properties.

1. (XII'Y) ® C is naturally isomorphic to (X ® C) K (Y ® C') and X ® (C'® D) is naturally isomorphic to
XeCO)R(X D).

2. When restricted to .Zetf ™59 x % this functor is the canonical exponentiation map given by X ® C' =
Cllel.

3. X ® (Y ® C) is naturally isomorphic to (X xY)® C.

Theorem 5.2. Let i3 : Mackg — Macky be the forgetful functor. For a cyclic p-group G the functor
(-)®(—): Yetgm’lso X Mackg — Mackg defined by

e D@ M := A, where A is the Burnside Mackey functor,
e« G/H® M := N§it; M for all orbits G/H of G, and
e (XIY)QM:=(X®M)O(Y ®M) forall X and Y in Lets ™"

is a G-symmetric monoidal structure on Mackg.
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Proof. Let M be a G-Mackey functor. The above functor (—) ® (—): Sets™"*" x Macka — Macke
satisfies Property 1 of Definition 5.1 because the norm functors NG are strong symmetric monoidal for all
subgroups H of G. Further, if X is a finite set, then we can regard it as a disjoint union of | X|-many copies
of the G-orbit G/G. Thus, (—) ® (—) satisfies Property 2 of Definition 5.1 since

X®M=(G/G o M)"X = moIX1
Finally, to show that Property 3 of Definition 5.1 holds it suffices to show that (G/K x G/H) @ M =
G/K ® (G/H ® M) for all orbits G/H and G/K of G. We first assume that H is a subgroup of K, so
G/K x G/H is isomorphic to g/ x|G/H. Then

(G/K x G/H)® M = (G/H & M)/ = Nfit (M),

On the other hand, G/K ® (G/H ® M) = Ni% N§i5, M, and using Lemma 3.14, i3 NGi% M is isomorphic
to (N5 M)PIG/KI Then via Theorem 4.7, (N it M)PIC/Kl is isomorphic to NXi%; (MDlG/Kl), and
therefore,

G/K ® (G/H x M)~ N¢NEi%, (Mmc/m) ~ NG, (Mm\o/m) '
Next, if K < H then (G/K x G/H)® M = N¢i% (MlillG/H|)' Moreover,

G/K ® (G/H ® M) = N{i3 Nfjiz M.
But, i3 NGty M = i% MY and so G/K ® (G/H @ M) = NZit (MPI7H]) as well. O

To define the commutative ring objects under a G-symmetric monoidal structure let € be a symmetric
monoidal category with a G-symmetric monoidal structure (=) ® (—). Every object C' in € defines a functor

() C: FLety™* = €.

Definition 5.3. [3] A G-commutative monoid is an object C' in € together with an extension of (=) ® C as
given below.

: —-)®C
yetg'm,,lso =) %

7
-
-
-
-

54 etgm

We will finish proving Theorem 1.1 by showing that if we endow Mackg with the G-symmetric monoidal
structure defined in Theorem 5.2, then a Mackey functor M is a Tambara functor if and only if it is a
G-commutative monoid. We start by proving the forward implication in Proposition 5.4 and leave the
reverse implication to Proposition 5.7.

Proposition 5.4. Let M be a G-Mackey functor and endow Mackg with the G-symmetric monoidal structure
of Theorem 5.2. If M has the structure of a Tambara functor, then M is a G-commutative monoid.

To prove Proposition 5.4 we need to show that if S is a Tambara functor, then a map X — Y of
G-sets induces a map X ® S — Y ® S of Mackey functors. Thus, we will extend the norm functors
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Ng: Mackyg — Mackg to functors Ng: Tambyg — Tambg on Tambara functors and show that Ng is
left adjoint to the forgetful functor i};: Tambg — Tambg. Then given a Tambara functor S we will use
the counit of the above adjunction along with properties of finite G-sets and the fact that the box product
is the coproduct in Tambe ([10]) to induce a map X ® S - Y ® S.

Lemma 5.5. For all subgroups H of G the functor NG: Macky — Mackg extends to a functor
NG : Tamby — Tambg.

Proof. We need to show that for all subgroups H of G, if S is an H-Tambara functor then Ng’ﬁ is a
G-Tambara functor. However, by Corollary 4.3 it suffices to let H be the maximal subgroup in G. Since
Ng is strong symmetric monoidal it naturally extends to a functor Greeny — Greeng where Greeng is the
category of G-Green functors. Hence, it remains to define the internal norm maps N%,: (N§S)(G/K') —
(NSS)(G/K) for all subgroups K’ < K in G.

Since the box product is the coproduct in Tamby [10, Prop 9.1], if both H' and H” are subgroups of
H with H"” < H’, then we define N#,, to be the |G/H|-fold box product of the norm map N, in S.
Lastly, we must define the norm N§ : SOIC/ANH/HY) — (N§S)(G/@). This norm is the composition of the
multiplication map of S with the map N: S(H/H) — (N$S)(G/G) defined in Remark 3.4. Thus, letting
e §D|G/H| — S be the multiplication map of S, we define Ng to be the composition

SCICM(H/HY 2 S(H/H) s (NGS)(G/G).

This composition satisfies Properties 1, 2, 4, and 5 of Definition 2.11 by construction of the functor
N§: Mackpy — Mackg. (Property 3 is Frobenius Reciprocity.) It remains to show that this norm map
satisfies Tambara Reciprocity (Property 6 of Definition 2.11).

First, we will show that Ng satisfies Tambara Reciprocity for sums (Corollary 2.6). Let @ a; = ag ®
e ®ag -1 and @ bj = by ® -+ ® bjg/m|—1 be simple tensors in ﬁmlG/Hl(H/H). We need to show that

NG a; + Q) bj) = N (R a;) + N (R by) + triz (gm(R) a;. Q) b))

where
G/H|-1 '
(@, Qb= > | II efem )= > | II +ro'm ],
fE€TLL/G \gHEG/H fE€TL/G i=0
and

Iy = (Map (G/H, {®aj,®bj}) — Map (G/G, {®aj,®bj}>> .
Now, in Ngﬁ,
Ng§ (®aj +®bj) = (Nopu) (@%‘ +®bj)
= N(aoa1---ajg/u|—1 + bob1 - - - b/ m|—1)-

Let aga1 - --ajq/m—1 = [1a; and bob1 - - - b -1 = []b;. Since we quotient by the Tambara reciprocity
submodule TR in (NGS)(G/G), it follows that

N(Haj—i—Hbj) :N(Haj) —I—N(Hbj) +t7‘IG{ (gH (Haj’Hbj))’
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and g ([ a;,I18;) = Zfezk/g (®£6H|71 f(’yiH)) where now

Ty = (Map (G/H, {Haj’Hbj}> — Map (G/G, {Haj’Hbj}>> .

Further, since in (NGM)(G/G), tr% (g (I1a;, [1b;) lies in MDlG/Hl(H/H)/WG(H), it follows that we
can write each ®ﬁéH‘7l f(y*H) as

FH)F(YH) - f(Y1/HI7 ) @ 1816/HI7,

Therefore, tr$ (g ([1a;j,[18;)) = % (9u(@ aj, @b;)), and so the norm map satisfies Tambara reci-
procity for sums.

If we employ a strategy analogous to the one above we can show that the norm Ng in NV, g S also satisfies
Tambara reciprocity for transfers (Corollary 2.9). Specifically, because we quotient by the TR submodule
in (V$S)(G/G) and by the appropriate Weyl action in the image of each transfer map, it follows that

Nitrip(x) = N(trip (u(x)) = trip (f (u(@)) = trip (£(2).
Therefore, NS is a Tambara functor. 0

Lemma 5.6. The functor NG: Tamby — Tambg is left adjoint to the restriction functor it : Tambg —
Tambyr.

Proof. Since we can compose adjunctions in a natural fashion [7], by Corollary 4.3, it suffices to let H be
maximal in G. Let R be in Tambg and S be in Tamby . Further, let Tamby (S, i3;R) be the set of morphisms
from S to i} R in Tambp. We will show that Tambg (S, i, R) is in natural bijective correspondence with
Tambg (NG S, R) by showing that every morphism in Tambg (NG S, R) determines and is determined by a
morphism in Tambg (S, i3 R).

A morphism Q in Tambe (NS S, R) consists of a collection of ring homomorphisms {Qp: (NGS)(G/P) —
R(G/P) for all P < G} that commute with the appropriate restriction, transfer, and norm maps. Further,
every element in (NGS)(G/G) is a sum consisting of elements in the image of the transfer map and sums
of elements in the image of the norm map. (Indeed, every generator N(s) in the image of the free summand
Z{S(H/H)} of (NGS)(G/G) is the norm of the element s ® 1®I¢/HI=1 in (N'GS)(G/H).) Thus, the ring
homomorphism Qg is completely determined by Qp, and since H is maximal in G, the morphism ) is
completed determined by the collection of ring homomorphisms

{Qp: SPIS/H(H/H") — R(G/H') for all H' < H}.

By Proposition 3.2, the above collection of maps determines and is determined by a collection of Weyl
equivariant maps

{0y« S(H/H®IC/Hl 5 R(G/H') for all H' < H}

that satisfies the compatibility conditions given in Proposition 3.2. But we can write every s®!G/Hl in
S(H/H')®IG/H] a5 a product over the Wg(H')-action. Thus, each 6z determines and is determined by a
We(H')-equivariant homomorphism A : S(H/H') — R(G/H') because we can write 07 (s®!¢/Hl) as the
following product.
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|'|G/H|71 ' '|
01 (sCIG/H) = 9y, [ H ~ (871, ® 1®\G/H|71>
i=0

|G/H|-1
= H ')/ZGH/ (S,yi [024] 1®|G/H‘71)
=0

|G/H|-1

= H 'yiAH/<S,yi).
i=0

Lastly, we show that € is well-defined by showing that Q¢ sends the TR submodule of (NGS)(G/G) to
zero. Consider the element N(a +b) — N(a) — N(b) — tr&%(gm(a,b)) in TR. Then Qg(N(a +b) — N(a) —
N(b) — tr$(gm(a,b))) equals

NEQy ((a 1 ® 1®|G/H|*1) -
NG (a©1919/8171) - NGog (b 1919/171) — 4Gy (gu(a,b)),
and we must show that this element is zero in R(G/G). First,
N§Qu ((a +bh)® 1®IG/HI*1) — N§(Ag(a+0b)) = N§ (Ag(a) + Ag(b)).
Then since R is a Tambara functor, by Tambara reciprocity for sums,
N (A(a) + A (b)) = N (An(a)) = Nij (A (D) = tri(9u(Au(a), A (b)) = 0.
Thus, it remains to show that
0 (Ut (911(a,8))) = trG (91 (Anr(a), Au(B)))

But, gu(a,b) = > ;cq, (®£{)H|_l f(’yiH)), and since NGS is a Tambara functor (and thus
(NS S)(G/H) has a multiplication), it follows that

G/H|-1 \G/H|—1
® raimy =TI o (re @161y,
1=0 i=0
Thus,
|G/H|-1
G (gn(a,b) =tron (S0 | [T o (forH) @189/
JETL/G i=0
\G/H| -1
=t D I +Au(r(y'm))
f€TL/CG i=0

= tr§; (g (A (a), Ar(b))).

Next we show that Q¢ (N (trf, (z)) — tr§, (f(z))) = 0. First,

Qa (N(trf (@) = 0 (F(@)) = N Qu (trff (2) @ 191975171) — 40600 (f (@),
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and
NGO (trg, () ® 1®|G/H|71> = NGAu(tril (2)) = NGtriL (Ag: (2)).
Since R is a Tambara functor it follows that
NGt (Ao (@)) — 55 (F (Ao () = 0,

and so we need to show that Qg (f(x)) = f(Am (2)).
As detailed in Corollary 2.9, f(Ap/(z)) =>._; (H'ﬁ{)H'*l 'yi'ymivSAH,(x)). Further,

T
Qo (f(®) =Y 0w (Y™ @Y™ @ - @ Y™ L)

s=1
r |G/H|-1

=S (T omen)

i—0

Since A g is Weyl equivariant it follows that Qg (f(x)) = f(Ag-(z)). Therefore, since Q¢ maps all elements
of the Tambara reciprocity submodule of (NGS)(G/G) to zero, Q is well defined. O

We now prove Proposition 5.4.

Proof of Proposition 5.4. Let S be a G-Tambara functor. To show that S is a G-commutative monoid
we first show that a map of orbits G/H — G/K induces a map G/H ® S — G/K ® S. Consider the
K-Tambara functor ¢}.S. By Lemma 5.6 there is an adjunction between N}f and %, and hence a counit
map NEXitit.S — i%S. To define G/H ® S — G/K ® S we apply N§ to the above counit map, which
yields a map N,?N,{fz;,z’;(g — Ngz}ﬁ Since NIC(;NI{I( is isomorphic to Ng and i71% is isomorphic to 73
it follows that the above map is a map NGi% S — NZi%.S.

If X — Y is a map of arbitrary G-sets we define the induced map X ® § — Y ® S as follows. First, we
write X and Y as disjoint unions of orbits, so X = [[, G/H; and Y = [[; G/K;. Thus, the map X — Y
consists of a combination of fold maps, automorphisms, and canonical maps G/H; — G/K; where H; is a
subgroup of K. Further,

x@s= (J]G/H:) ® 8= 0/G/H; @ S) = D:N§ i35,

and similarly, Y ® S is isomorphic to Dj./\/'lc(;j Z*K]§
Thus, because the box product is the coproduct in Tambg, the induced map X ® § - Y ® S is a map

0N, 17,8 — OGNE ik, S

that is a combination of multiplication maps, Weyl actions, and maps N, glz}}z S = N, gji}‘(j S induced from
the counit map. 0O

It remains to prove the following statement.

Proposition 5.7. If Mackg has the G-symmetric monoidal structure of Theorem 5.2 and M is a
G-commutative monoid in Mackg, then M is a G-Tambara functor.
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We show that if a Mackey functor M is a G-commutative monoid then it is a commutative Green functor
using the basic properties of the functor (—)® (—). Defining the internal norm maps N forall H < K < G
that make M into a Tambara functor takes more work. However, we will only define the norm map N§
since any norm map N& in a G-Tambara functor S must agree with the analogous norm map in }S.

To define the norm Ng we first recognize that the Mackey functor i7;M is an H-Mackey functor that
maintains the Weyl action defined on M. Hence, NGi% M should also remember this Weyl action, and
in particular, for all subgroups H' of H, (i5;M)(H/H') is isomorphic to M (G/H'). Then since M is a
G-commutative monoid the map of orbits G/H — G/G induces a map Ngz}M — M. Therefore, we define
the norm map Ng to be the composition below where N is the map from Remark 3.4.

M(G/H) %5 (NGiyM)(G/G) — M(G/G)

In the proof of Proposition 5.7 we show that this composition satisfies all of the properties of a norm
in a Tambara functor. But, in order to show that this composition specifically satisfies Property 6 of
Definition 2.11 we first need to redefine Ngz}{M with an alternate Weyl action and restriction map and
then show that this new Mackey functor is isomorphic to the original. Specifically, to show Property 6 of
Definition 2.11 we use the fact that 73, M maintains the Weyl action on M, and hence there is a Weyl action
on NEZ*HM that combines this action with the original action. Moreover, since the restriction must map
into the Weyl fixed points, using this alternate Weyl action requires us to tweak the restriction map as well.

Before stating this new Weyl action we provide further details regarding the original Weyl action and
restriction maps of NgM

Fact 5.8 (Explicit description of the Weyl action on NICjM) The Weyl action on NgM is as follows. When
H' < H, (NSM)(G/H') is MP'/HI(H/H"), and thus, the generator  of Wg(H') acts on a simple tensor
by

(m®IG/HIy — (W‘G/Hlmvxc/m—l) DMe @My @ -+ @ Mjaym-2,

where |G/ generates Wy (H').
For all subgroups K such that H < K < G, the generator v of W¢(K) acts on the generator N (m*|¢/K1)
in (NGM)(G/K) by cyclically permuting the factors of m*I¢/El in the following way:

yN (mle/Kl) = N(v(me X My X -+ - X Myjc/xi-1))

= N(m,y|G/K\71 X Me X My X --0 X m,y\G/K\72).

Fact 5.9 (Ezplicit description of the restriction maps of NIC{;M) Recall that H = Cpx, and let K = C); be a
subgroup of G. If j < k then resj;l is the box product restriction of Definition 3.1. If j > k then for ¢r(x)

in Im(trj_,),

res?_l(tr(x)) = Z 9,

gEWK(Cpj—1)
and for a generator N (m*!%/%l) in the image of the free summand in (N§M)(G/K),

N (T2 mA1S/RT) i =1 > &

1"68]: N m><|G/K| — ;
T (N ) &P} melo/K itj—1=kh
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where Hf;ol (m>IG/K1) is the p-fold Cartesian product of m*I¢/%l and ®f;01 m®IG/Kl is the analogous

tensor product.

Proposition 5.10. Let M be a G-Mackey functor. There is a Weyl action on Ngz}‘{M that combines the
Weyl action given in Fact 5.8 with the Weyl action defined on M.

Proof. We define the Weyl action on Ngz’;{M as follows.

o For all subgroups H' of H, the generator v of W (H') acts on a simple tensor of (NGi%M)(G/H') by
cyclically permuting the factors of the tensor product and by acting on each factor. Thus,

¥ (m®|G/H|) = Ym,ic/H-1 @ YMe @ YMy Q@ - -+ & VM |c/H| 2.

o Let r =|G/H|—|G/K|+ 1. For all subgroups K such that H < K < G the generator v of W (K) acts
on a generator N (mle/Kl) of the image of the free summand of (N§i%M)(G/K) by

YN (mle/K|> =N (’mi,y|G/K|—1 X YMe XYMy X - -+ X 'ym7|c/x|_2) .

Further, the restriction maps of Ngz}{M must remain compatible with the Weyl action. So, let

(gm)®|G/H| (or (gm)le/Kl) denote g acting on each factor of the product:

)®|G/H|

(gm =gme ® gmy ® -+ Q gmyjc/m|-1.

If K = C); is a subgroup such that H < K < G, then

p—1
| N(-Ho (Vzlc/Klm)X'G/K'> it5—1>k
resj_, (N (m*\%/1) = p—1 Z_. 2lG/K| -
& (v1¢/KIm) ifj—1=k
=0

Theorem 5.11. Let M be a G-Mackey functor. The G-Mackey functor Ng7*HM with the Weyl action from
Proposition 5.10 is isomorphic to NIC{;Z}‘{M with the original Weyl action described in Fact 5.8.

Proof. Let Uij; M denote the underlying H-Mackey functor of i7;M. So, Uiy M does not remember the
Weyl action from M. Hence, we can let NgUif{M denote NSZEM with the Weyl action as defined in
Definition 5.8. We will define an isomorphism x: NGUi% M — N§i% M by defining a collection of isomor-
phisms

{xp: (N§UiyM)(G/P) — (NGi};M)(G/P) for all P < G}.
First, if H' < H, then define
xa: (Ui )P H/H') — (i )™M G/ H)
tobe 1®~v® - ®~I¢/HI=1 on the tensor summand. On the image of the transfer map define x g so
that the appropriate diagram commutes. Similarly, for subgroups K such that H < K < G let xx be

1 x5 x---x~/¢/KI=1 on the image of the free summand and on the image of the transfer require that the
appropriate diagram commutes. O
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Finally, we complete the proof of Theorem 1.1 by proving Proposition 5.7.

Proof of Proposition 5.7. Since M is a G-commutative monoid, (—) ® M extends to a functor .#etEm —
Mackg. We will first show that M is a commutative G-Green functor by showing that M satisfies the
categorical definition of a Green functor as given in [5] or [13]. We will then show that the codomain of
(=) ® M is Greeng. We need the latter fact so that the internal norm maps that we will define to make M
into a Tambara functor are multiplicative.

Let * be the orbit G/G in ZetE™. The projection map p: * IIx* — * induces a multiplication map
MOM — M on M, and the inclusion map i: §) < * induces a unit map A — M. Applying (—) ® M to
the following three diagrams in .#et5™ results in the commutative diagrams in Mackg needed to make M
a G-Green functor.

idIlp
* T+ — 1T %
id
il
* 1T % *
0 I = iid * 1T iid 01T * I T * 1T

s N~

To show that the codomain of (=) ® M is Greeng we note that G/H ® M is a commutative Green functor for
all orbits of G because M is a commutative Green functor and both functors N and i%; are strong symmetric
monoidal. Then given a map f: G/H — G/K in .ZetE™ we show that the induced map G/H @ M —
G/K ® M is a morphism in Greene by applying (—) ® M to the diagrams below.

G/HUG/H ——~ G/H 0~ G/H
FILf Jf ; lf
G/KUG/K G/K G/K

It remains to define norm maps N5 : M(G/H) — M(G/K) for all subgroups H < K < G. However,
we need only construct the norm maps Ng since we can subsequently build every N II{( by applying the
process below to i M. Let m*: Ngz}{M — M be the map induced from 7: G/H — G/G. Since Ngz}{M
has the Weyl action described in Proposition 5.10, (i};M)(H/H) is isomorphic to M(G/H). Then let the
map N: M(G/H) — (N$i%M)(G/G) be as given in Remark 3.4, and define the norm map N§ by the

composition

M(G/H) Y5 (NGi% M) (G/G) 255 M(G/G).

Since the functor Ng : Mackpy — Mackg satisfies Property (a) of the Main Theorem, the above composition
satisfies Property 3 of Definition 2.11. The composition satisfies Tambara reciprocity by the construction of
the functor N§.

Next we show that the norm map 75N factors through the Weyl action (i.e. that 7§, N satisfies Property
5 of Definition 2.11). The Weyl action on G/H ® M is induced from automorphisms of G/H, which are
given by multiplication by 4/ for some 47 in Wg(H). Hence, the commutative diagram of G-sets on the left
below induces the commutative diagram of Mackey functors on the right.



M.A. Hill, K. Mazur / Journal of Pure and Applied Algebra 223 (2019) 5310-5345 5345

G/H —~G/H GHeM - aiHoM
G/G M

It follows that 7% (N (17x)) = 7&(N(x)) for all  in M(G/H).
Finally, we show that res&r%N(z) = ILewem 7z for all z in M(G/H). By Proposition 5.10 and
properties of morphisms of Mackey functors we have

resgﬂ'zvN(a) = ﬂ'}}resf]N(a) =7 (a QYR ® v|G'/H|*1a) )

Since the G-symmetric monoidal structure is compatible with the forgetful functor if: . etgi” - etﬂi",
it follows that 77, is induced from igm, which is the fold map [[ g, H/H — H/H. Therefore,

ﬂ-}‘{(a®r}/a®...®r}/|c/H|71>:a/‘ya...rylG/Hlfla' O
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