
Masterless Coded Computing:

A Fully-Distributed Coded FFT Algorithm

Haewon Jeong, Tze Meng Low, and Pulkit Grover

haewon@cmu.edu, lowt@andrew.cmu.edu, pulkit@cmu.edu

Abstract— We propose a coded computing strategy for the
Fast Fourier Transform (FFT) algorithm in a fully distributed
setting, which does not have a powerful master node orches-
trating worker nodes. The fully distributed setting requires
a large amount of data movements between nodes, and this
communication is often the bottleneck in parallel computing.
We identify communication cost of each step of the coded FFT
algorithm using the α-β model, which is commonly used in high-
performance computing literature to estimate communication
latency. We show that by using a pP,Kq systematic MDS
code, the communication overhead of coding is negligible in
comparison to the communication costs inherent in the uncoded
FFT implementation if P ´ K “ oplogKq.

I. INTRODUCTION

The Fast Fourier Transform (FFT) algorithm is the back-

bone of scientific computations which is used in a number of

applications, such as solving Poisson’s equations for particle

simulations [1], [2]. For solving differential equations with

high accuracy, FFTs of a very large size are often computed.

To speed up scientific simulations, a large-scale FFT is

often implemented over massively parallel processors [3]–

[5]. However, as we head into the era of exascale computing,

with more than 100,000 processing nodes, we expect to

see more frequent faults in the course of computation [6].

Traditionally, a “checkpointing” technique is used to mitigate

faults, where the state of the computation is stored offline at

regular intervals and the computation restarts at the most

recent checkpoint when an error is detected. Now, the error

rate of large parallel systems is projected to reach a point

where present checkpoint/restart methods will no longer

be viable [7], [8]. We thus need a more efficient way

to mitigate faults in large-scale numerical algorithms by

exploiting algorithm-specific features.

In this work, we propose a “coded computing” approach

to the large-scale parallel FFT algorithm. Coded comput-

ing, which combines computing and error correcting codes

(ECCs) to mitigate unreliable nodes in distributed computing,

has gained traction in recent years [9]–[15]. However, our

work differs from the existing literature in coded computing

as we consider a fully distributed setup which does not have

a single master node. A stream of works in coded computing

have assumed a “master-worker setup” where the system has

a powerful master node that distributes data to and aggregates

the result from worker nodes. This is not a reasonable model

for practitioners for several reasons. First, a master node

itself can fail, at which point, computation results cannot

be guaranteed. Secondly, this assumes that a master node

has a very large memory which can store the entire data. Let

us denote the number of workers as P , then the master node

must have P times more memory than the workers, which

is not realistic as P grows large. Lastly, like in the FFT

algorithm where a master node must intervene in the middle

of the computation, a master node can be the bottleneck of

the computation.

With the absence of a master node, all the nodes have to

communicate with each other to gather the required data. It

is well known in distributed computing that communication

is often the bottleneck, and not computation. This is because

communication bandwidth is not growing as fast as flop rates

of processors [16]. A recent work [17] has explored coded

computing approach to FFT under the master-worker setup.

If we plainly apply their technique to the fully distributed

setting, the communication overhead of encoding/decoding

might dominate and coded computing approach could end up

much slower than the uncoded FFT algorithm. We thus ask

a question on whether the coding approach using maximum

distance separable (MDS) codes [17] can be a feasible

option in the fully distributed setting. In this work, we

provide an efficient communication algorithm for encoding

and decoding, called “multi-reduce”, and show that as long

as the number of redundant nodes is oplogKq where K is the

number of systematic nodes, the communication overhead of

“coding” is amortized. We do not include computation cost

analysis in this work as it was thoroughly analyzed in [17].

To analyze the communication cost, we use α-β model

which is commonly used in high-performance computing

literature. In this model, the time spent to communicate a

message between two processors is approximated by a linear

function as follows:

α` β ˆ (message length).

This captures the latency of setting up a link (α) and the com-

munication bandwidth (β). In distributed storage literature,

communication cost was considered either in the network

bandwidth (regenerating codes) [18]–[20] or the number of

node accesses (locally repairable codes ) [21]–[24]. The α-β
model captures more fine details of communication latency

because it not only accounts for the number of nodes or the

number of bits, but also accounts for the number of commu-

nication rounds. For instance, let us think about two different

communication scenarios where P nodes are participating

in the communication. If the communication consists of a

set of disjoint pairwise communications that can be done

in parallel, it only requires one round of communication,

and hence communication latency will be low. On the other
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hand, if all the P nodes have to send a message to all the

other nodes, there must be more rounds of communication

since not every node can talk to each other simultaneously.

This difference due to different communication pattern can

be captured in the α-β model. While this is still a simple

approximation of communication cost, this captures more

realistic constraints especially when a system has comparable

α and β.

Using ECCs for fault-tolerant FFT computation has

been extensively studied in algorithm-based fault-tolerance

(ABFT) literature. The ABFT philosophy, first suggested by

Huang and Abraham in 1984 [25], is adding checksums in

the beginning of the computation and comparing it against

the checksum of outputs at the end of the computation in

order to detect errors that happened during the computation.

In essence, it uses the simplest error-detection code for

computations. The ABFT technique was first applied to FFT

by Jou and Abraham in 1986 [26] and since then substan-

tial research has been done to improve on hardware/time

overhead by designing new weighted checksums that can be

efficiently implemented on an FFT circuit [27]–[30]. None

of these works, however, have considered communication

overhead of their algorithms, because most of them were

focused on circuit-level fault tolerance where communication

is very cheap.

II. SYSTEM MODEL AND PRELIMINARIES

A. Distributed Computing Model

We will use “processor” and “node” interchangeably

in this paper. We assume that we have a total of P pro-

cessors that have the same computational capabilities and

memory. Among P processors, K of them are “systematic
processors” which store the original data and the remaining

P ´ K processors are “parity processors” which store

encoded parity symbols. We assume a massively parallel

setup where K is very big, but K does not grow faster than

ΘplogN{ log logNq1.

We assume a fully-distributed setting where no central

processor is present during the computation and the pro-

cessors do not have any shared memory. Data located at

different processors can be shared only through explicit

communication between two processors.

Using P processors, we want to compute N -point FFT:

Z “ FNx (1)

where x is a length-N input data vector, FN is an N -by-N
DFT matrix (ωN : the N -th root of unity) represented as

FN “

»
———–

ω0
N ω0

N ¨ ¨ ¨ ω0
N

ω0
N ω1

N ¨ ¨ ¨ ωN´1
N

...
...

. . .
...

ω0
N ωN´1

N ¨ ¨ ¨ ω
pN´1q2
N

fi
ffiffiffifl, (2)

and Z is a length-N vector of the Fourier transform of x.

We assume that N is very large, so that the data cannot be

stored in one processor. In the beginning, each processor has

1

a segment of consecutive values of the input vector x, e.g.,

Processor 1 has
“
x1 x2 ¨ ¨ ¨ xN{K

‰T
.

B. Fault Model

In this work, we consider an erasure model for faults

where we lose the entire output if a node fails. A node failure

can happen when a node dies after a random fault, or it is a

straggler that is unable to finish its computation.

C. Communication Model

We assume a fully-connected network of processors where

any processor can send and receive data from every other

processor directly. We also assume that a processor has one

duplex port, which means that at a given time, a processor

can send data to one processor and receive data from another

processor simultaneously.2 For example, Processor 1 can

send data to Processor 2 and receive data from Processor

3 at the same time, but it cannot send data to Processor 2

and 3 at the same time.

We use the α-β model to estimate the point-to-point

communication cost. In the α-β model, the time to send or

receive a message of s bytes is :

T “ α` s ¨ β (3)

Here, α is startup time to establish a connection between

two nodes, and β is the bandwidth cost required to transfer

one symbol. For an algorithm that requires multiple rounds of

message exchanges, total communication time can be written

as follows:

T “ C1α` C2β, (4)

where C1 is the number of communication rounds, C2 is

the number of symbols communicated in a sequence. To be

more precise, if we denote bi as the maximum number of

symbols communicated between two nodes at the i-th round,

C2 can be written as:

C2 “
C1ÿ
i“1

bi. (5)

This is because the next round does not start until the

previous round is completed, and the bandwidth latency for

each round is dominated by the largest message. Symbols

can have different units, such as bits or bytes, but in this

work we do not specify any units.

D. Distributed FFT algorithm

We want to explain the “transpose” algorithm that is

commonly used in high-performance FFT libraries [3]. It

uses the Cooley-Tukey technique to break down N -point

FFT into smaller FFTs of size N1 and N2 where N “ N1N2.

2We believe that this can be easily extended to k-port model where each
node has k duplex ports.
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Now, (1) can be rewritten as

Zk “
N´1ÿ
n“0

ωnk
N xn

“
N1´1ÿ
n1“0

ωn1k1

N1
tn1,k2

N2´1ÿ
n2“0

ωn2k2

N2
xn2N1`n1

where k “ k1N2 ` k2, k1 “ 0, ¨ ¨ ¨N1 ´ 1, and k2 “
0, ¨ ¨ ¨ , N2 ´ 1. The terms tn1,k2 ’s are called twiddle factor

which are equal to ωk2n1

N .

We can now compute N -point FFTs in two steps. In the

first step, each processor is assigned to compute N1{K FFTs

of length N2. Then the processors transpose the data (requir-

ing communication) and compute N2{K FFTs of size N1 in

the second step. Between the first and the second step, we

have to multiply twiddle factors. This complicates our coding

approach since multiplying twiddle factors is an element-

wise multiplication of two matrices (Hadamard product),

which does not commute with matrix-matrix multiplication

(See Remark 1). We now explain the algorithm in detail:

Algorithm 1. Uncoded Distributed FFT Algorithm (Trans-
pose Algorithm)

1) Rearrange the input data x into X:

X “
»
–

x1 xN1`1 ¨ ¨ ¨ xpN2´1qN1`1

...
...

. . .
...

xN1 x2N1 ¨ ¨ ¨ xN1N2

fi
fl

“
»
—–
X

prowq
1

...

X
prowq
K

fi
ffifl “ “

X
pcolq
1 ¨ ¨ ¨ X

pcolq
K

‰
.

We use X (row)
i ’s (X (col)

i ’s) to denote equal-sized subma-

trices of X divided horizontally (vertically). From our

system assumption, in the beginning, the i-th processor

has X (col)
i

3. To begin the distributed FFT computation,

we transpose the data distributed over K processors so

that the i-th processor can now have X (row)
i .

2) Compute N1{K row-wise FFTs of size N2 at each

processor.

Y (row)
i “ X (row)

i FN2

3) Transpose the data so that the i-th processor has Y (col)
i .

Y “
»
—–
Y (row)
1

...

Y (row)
K

fi
ffifl “ “

Y (col)
1 ¨ ¨ ¨ Y (col)

K

‰

4) Multiply twiddle factors at each processor.

Y (col)
i “ T (col)

N,i ˝ Y (col)
i

3This assumption is coming from that it is more natural for a processor
to store contiguous data without the knowledge that the next computation
is going to be FFT. If we assume that processors have row-wise data in the
beginning, we can avoid the first transpose step. This does not change the
result in Theorem 2 in scaling sense.

where ˝ represents Hadamard product and TN is a

matrix of twiddle factors

TN “

»
——–
ω0
N ω0

N ¨ ¨ ¨ ω0
N

ω0
N ω1

N ¨ ¨ ¨ ωN2´1
N

...
...

. . .
...

ω0
N ωN1´1

N ¨ ¨ ¨ ω
pN1´1qpN2´1q
N

fi
ffiffifl

“
”
T (col)
N,1 ¨ ¨ ¨ T (col)

N,K

ı
.

5) Compute N2{K column-wise FFTs of size N1 at each

processor.

Z (col)
i “ FN1

Y (col)
i . (6)

III. CODED DISTRIBUTED FFT

We will now explain our coding strategy for the distributed

FFT algorithm. The uncoded distributed algorithm described

in Algorithm 1 has transpose step in the middle which

requires all the nodes in the system to exchange data with

all the other nodes. If there is any failed node before the

transpose step, the computation will fail at the transpose step.

Hence, simply adding fault tolerance which recovers faults

at the end of the algorithm is not adequate for the distributed

FFT algorithm. We need to apply fault resilience technique

twice: once right before the transpose step, and once when

the entire computation is complete. This requires distributed
encoding and decoding in the middle of the computation
which poses unique challenges for coded FFT algorithm.

In our coding strategy, we utilize pP ´ Kq redundant

processors to encode the first and the second FFT steps

separately. In the first step, processors perform FFT on the

row-wise data X
prowq
i ’s. In order to protect from the lost

output at a failed node, we have to encode parity symbols

across columns (column-wise encoding). By doing this, at

the end of the first step, any successful K processors can

recover the output and proceed to the next step. In the second

step, each processor computes FFT on the column-wise

data, Y
pcolq
i ’s, so we encode row-wise parity symbols (row-

wise encoding). Our coded computing algorithm is described

below (*: additional steps that are not present in the uncoded

algorithm).

Algorithm 2. Coded Distributed FFT Algorithm
1) * Encode column-wise parity symbols at each proces-

sor.

X̃ “ GT
1 X “

»
——–
X̃

prowq
1

...

X̃
prowq
P

fi
ffiffifl (7)

G1 is an N1-by-N 1
1 encoding matrix for where N 1

1 “
P
KN1:

G1 “
“
IN1 P1

‰
(8)

2) Rearrange the encoded data. Now the i-th processor

has X̃
prowq
i .

3) Compute N1{K row-wise FFTs of size N2 at each

processor.
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Fig. 1: This diagram summarizes encoding and decoding steps in Algorithm 2 with an example of P “ 3,K “ 2.

4) Wait for the first successful K processors and transpose

the output within the successful K processors.

5) * If needed, decode to retrieve the uncoded output at

each processor.

6) Multiply twiddle factors.

7) * Encode row-wise parity symbols and send them to

the remaining P ´K processors.

Ỹ “ Y G2 “
”
Ỹ

pcolq
1 ¨ ¨ ¨ Ỹ

pcolq
P

ı
(9)

G2 is an N2-by-N 1
2 encoding matrix where N 1

2 “
P
KN2:

G2 “
“
IN2 P2

‰
(10)

8) Compute N2{K row-wise FFTs of size N1 at each

processor.

9) * Wait for the first successful K processors and halt

the remaining P ´K processors. Decode if needed.

For both encoding steps in Step 1 and Step 7, we use

a pP,Kq systematic MDS code. In the following theorem,

we show that using the proposed coded distributed FFT

algorithm, any K successful processors are enough to recover

the computed outputs at Step 5 and Step 9 4.

Theorem 1. In Algorithm 2 where we compute distributed
FFT of size N using P processors each of which can
store and process 1

K fraction of the input (P ą K), any
successful K processors can recover Y and Z at Step 5 and
9, respectively.

Proof. Let us first prove that we can recover Y with any

K successful processors at Step 5 and the similar argument

holds for recovering Z at step 9.

At Step 4, we will have the result from K successful

workers. Let us denote the indices of the successful K
workers as ti1, ¨ ¨ ¨ , iKu. Then the output from the successful

workers is:

Ysuc “

»
———–
X̃ (row)

i1
FN2

X̃ (row)
i2

FN2

...

X̃ (row)
iK

FN2

fi
ffiffiffifl “

”
Y (col)

suc,i1
¨ ¨ ¨Y (col)

suc,iK

ı
. (11)

4Note that we do not have any fault recovery for twiddle multiplication
step. However, computational complexity of twiddle factor multiplication is
OpNq compared to that of OpN logNq. Hence, it is less probable to have
faults during twiddle factor multiplication step

After transposing at Step 5, processors i1, ¨ ¨ ¨ , iK will have

column-wise output Y (col)
suc,i1

, ¨ ¨ ¨Y (col)
suc,iK

. Y (col)
suc,i can be written

as:

Y (col)
suc,i “ GT

1,sucXF (col)
N2,i

“ GT
1,sucY

(col)
i (12)

where GT
1,suc is a submatrix of GT

1 which only has rows

from successful nodes and hence has the size N1-by-N1.

As we assume the erasure model where we lose the entire

data from a failed node, we only code across nodes, not

within a node. Hence, our encoding matrix G1 has the

following structure:

G1 “ G1 b IN1{K (13)

where G1 is the encoding matrix for a systematic pP,Kq-
MDS code which has size K-by-P .

Now, G1,suc can be rewritten as:

GT
1,suc “ GT

1,suc b IN1{K (14)

where G1,suc is a submatrix of G that only has K columns

from the K successful nodes, i.e., i1-th to iK-th columns of

G. Because G1 is a pP,KqMDS code, G1,suc always has a full

rank. As rankpAbBq “ rankpAq ¨ rankpBq for any matrices

A and B, rankpG1,sucq “ N1. Hence, we can recover Y (col)
i

at every successful node at Step 5. Similar argument applies

to recovering Z at Step 9.

IV. COMMUNICATION COST OF CODED FFT ALGORITHM

In this section, we prove our main theorem which states

that as long as the number of parity processors is oplogKq,
communication overhead of encoding and decoding can be

amortized:

Theorem 2. In our proposed coded FFT algorithm, if
P ´K “ oplog2 Kq, communication overhead of coding is
negligible compared to the communication cost of uncoded
FFT.

To prove the theorem, we first identify the communication

cost of uncoded FFT algorithm. Then, we analyze communi-

cation cost of encoding and decoding and we compare them

to obtain the theorem.
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A. Communication cost of uncoded FFT algorithm

Let us begin with understanding the communication cost

of uncoded FFT algorithm. In Algorithm 1, steps that require

communication are Step 1 and 3. Both steps need communi-

cation to transpose the data stored in distributed processors.

For transposing the data, all processors have to exchange data

with all the other processors. This communication is known

as “all-to-all” communication. Bruck et al. showed lower

bounds and explicit algorithms that achieve lower bounds

for two special cases of all-to-all communication [31] – a

minimum-communication-rounds regime and a minimum-

bandwidth regime. Let us first formally define all-to-all

communication.

Definition 1 (All-to-all). In all-to-allpp, nq communication,
there are p nodes each of which stores n symbols. The data
stored in the i-th node can be broken down into p data blocks,
Mi,1, ¨ ¨ ¨Mi,p, where the size of each block is n{p symbols.
The goal of the communication is to transpose the data stored
in p processors so that at the end of the communication, the
i-th node has M1,i, ¨ ¨ ¨ ,Mp,i data blocks.

We will first give a simple lower bound of all-to-allpp, nq
communication.

Theorem 3 (Proposition 2.3 and 2.4 in [31]). For all-to-
allpp, nq communication, C1 and C2 are lower bounded by:

C1 ě rlog2 ps, C2 ě p´ 1

p
n (15)

However, Bruck et al. showed that the lower bounds on C1

and C2 cannot be achieved simultaneously which is stated

in the theorem below.

Theorem 4 (Theorem 2.5 and 2.6 in [31]). If all-to-allpp, nq
communication uses the minimum number of rounds, i.e.,
C1 “ rlog2 ps, C2 is lower bounded by:

C2 ě n

2
log2 p. (16)

If all-to-allpp, nq communication uses the minimum number
of symbols transferred in sequence, i.e., C2 “ p´1

p n symbols
in a sequence, then C1 is lower bounded by:

C1 ě p´ 1. (17)

Furthermore, both lower bounds are achievable.

Now, by using Theorem 4, we can give communication

cost lower bounds on the transpose step in the distributed

FFT algorithm.

Corollary 5. The transpose step of N -point FFT requires
the communication cost at least

rlog2 Ksα` 1

2

N

K
log2 Kβ (18)

when using the minimum communication rounds regime, and

pK ´ 1qα` pK ´ 1q
K

N

K
β (19)

when using the minimum communication bits regime.

Under our massively parallel system model where K is

very large, we have logK ăă ?
K. Hence, we should

always choose the minimum-communication-round regime

over the minimum-bandwidth regime. From now on, we will
only consider minimum communication round regime and use

its communication cost given in (18).

B. Communication overhead of coding

Now, let us identify additional communication cost due

to coding in Algorithm 2. In the first encoding step where

we compute column-wise parity symbols, we do not need

any communication since processors already have column-

wise data in the beginning. Also, for the first decoding

in Step 5, column-wise decoding can be done in local

processors as each processor has column-wise data after

the transpose step. In Step 7, it requires inter-processor

communication to encode row-wise parity symbols as one

row of the data is spread over all the processors. Also in

step 9, we have to perform row-wise decoding while every

node has column-wise data, and thus we need inter-processor

communication for decoding. Hence, in this section, we will
analyze the communication cost of the second encoding step
and decoding step. We will first show the communication

cost of the second encoding step where we compute:

Ỹ “ Y G2. (20)

Before we begin our communication cost analysis, we

want to make a few remarks.

Remark 1. [Why do we need distributed encoding?] If we
can do the second encoding, which is computing row-wise
parity symbols, at local processors before the transpose step,
we can avoid communication for distributed encoding at Step
7. However, there is no trivial way of doing this using a
linear code due to the twiddle factors. After Step 3, the i-th
processor has

Y (row)
i “ X̃ (row)

i FN1
“ G(row)

1,i XFN1
. (21)

If we do row-wise encoding at the i-th processor locally
before the transpose step, the i-th processor will have

Ỹ (row)
i “ G(row)

1,i XFN2
G2. (22)

We then perform the transpose of the output from the first K
successful nodes. The i-th node now has

Ỹ (col)
i “ G1,sucXFN2G

col
2,i. (23)

Column-wise decoding can be done locally by inverting
G1,suc:

Ŷ (col)
i “ G´1

1,sucG1,sucXFN2
Gcol

2,i “ XFN2
Gcol

2,i. (24)

We now have to multiply twiddle factors to Ŷ (col)
i :

Ŷ (col)
i “ TN ˝ Ŷ (col)

i “ TN ˝ pXFN2G
col
2,iq (25)

However, this will produce a different final output from what
we expect because of the nonlinearity of Hadamard product:

A ˝ pBCq ‰ pA ˝BqC. (26)
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Hence,

T
pcolq
N,i ˝ pXFN2G

col
2,iq ‰ pT pcolq

N,i ˝XFN2qGcol
2,i. (27)

From our modified coding strategy, our final output from
successful nodes will be FN1

TN ˝ pXFN2
G2,sucq and even

after decoding, we will have

FN1TN ˝ pXFN2G2,sucqG´1
2,suc ‰ FN1TN ˝ pXFN2q. (28)

This means that we have to perform twiddle factor multi-
plication before proceeding to the row-wise encoding step.
With the same argument, we can show that column-wise
decoding must be done before multiplying twiddle factors.
It concludes that because of the twiddle factors, the second-
step encoding must be done across the processors incurring
some communication cost.

We now want to analyze the communication cost of the

second encoding step. Let us first investigate the communi-

cation cost of a simple encoding scheme where we add one

parity node that stores the checksums of data, X1`¨ ¨ ¨`XK .

The encoding matrix G2 for this can be written as follows:

Gcks “
»
—–

1

IK
...
1

fi
ffifl (29)

G2 “ Gcks b IN2{K (30)

For this computation, all K nodes have to send its data to

one checksum node to compute the sum of all the data in

the network. This is a well-known communication operation

called “reduce(-to-one)”.

Definition 2 (Reduce). In reducepp, nq communication, there
are p data nodes which have data M1, ¨ ¨ ¨ ,Mp of size n and
one reduction node. The goal of the communication is to send
M1 ` ¨ ¨ ¨ `Mp to the reduction node.

A lower bound on the communication cost of reducepp, nq
operation is given in the following theorem.

Theorem 6. The communication cost of reducepp, nq is
lower bounded by

rlog2 psα` nβ. (31)

It was found that reduce operation can be done by revers-

ing any broadcasting algorithm, where one broadcasting node

sends its message to all the other processors in the network.

Traff and Ripke [32] proposed a near-optimal broadcasting

algorithm that achieves the lower bound (31) within a

factor of 2 . By reversing their broadcasting algorithm, we

can achieve the same communication cost for reducepp, nq
communication.

Theorem 7. Reducepp, nq can be done with the communi-
cation cost of at most

parlog2 psα`a
nβq2 ď 2prlog2 psα` nβq. (32)

Whether (32) is optimal or not is an open problem. We

will use this as a state-of-the-art communication algorithm

for reduce operation. By applying (32), we can obtain the

communication cost for encoding one checksum node.

Corollary 8. A pK ` 1,K, 2q systematic MDS code over K
systematic processors each of which hs N{K data symbols
can be encoded with the communication cost of

parlog2 Ksα`a
N{Kβq2 ď 2prlog2 Ksα`N{Kβq. (33)

We can now extend computing checksums to computing

parity symbols for a generic pP,K, d “ P ´ K ` 1q
systematic MDS code. Unlike checksum computation which

only requires a single reduce(-to-one) operation, here we

need multiple reductions to P ´K nodes.

From the intuition we got from reduce(-to-one) problem,

we will first establish bounds for multi-broadcasting problem

(will be defined below) and show that multi-reduce problem

for encoding a pP,K, d “ P ´K`1q systematic MDS code

can be solved by reversing the multi-broadcasting algorithm.

Definition 3 (Multi-broadcast). In multi-broadcastpp, r, nq
communication, there are r broadcasting nodes and p des-
tination nodes. Broadcasting nodes have distinct messages
M1, ¨ ¨ ¨ ,Mr of size n symbols. At the end of the communi-
cation, all p destination nodes should have all r messages,
M1, ¨ ¨ ¨ ,Mr.

We want to note that multi-message broadcasting has been

studied in the literature [33], [34]. However, their models

have one broadcasting node which sends multiple messages

in a sequence. This is fundamentally different from our

multi-broadcast which has multiple broadcasting nodes that

can send out their messages simultaneously. To the best of

our knowledge, communication cost analysis of this specific

problem has not been studied before.

We will first show a communication algorithm for multi-

broadcastpp, r, nq and then show that it achieves the lower

bound within a factor of 2.

Theorem 9. Multi-broadcastpp, r, nq can be done with the
communication cost at most

2prlog2 psα` rnβq (34)

Proof. First, divide p processors into r disjoint sets of size

p{r. Let us denote the sets as S1, S2, ¨ ¨ ¨ , Sr. The i-th
broadcasting node broadcasts its message to all the nodes

in Si. With the optimal broadcasting algorithm [32], it takes

communication cost of palog2
p
rα`

?
nβq2.

After the broadcasting step, the j-th nodes in Si’s pi “
1, ¨ ¨ ¨ , rq communicate with each other so that all of them

can share M1, ¨ ¨ ¨ ,Mr. This is all-gatherpr, nq communica-

tion which is defined as follows.

Definition 4 (All-gather). In all-gatherpp, nq communi-
cation, there are p nodes which have distinct messages
M1, ¨ ¨ ¨ ,Mp of size n symbols. At the end of the communi-
cation, all p nodes should have all p messages.

All-gatherpr, nq can be done with communication cost of

plog2 rqα`pr´1qnβ using the bidirectional algorithm [35].

892



The total communication cost of this two-step algorithm

is

p
c
log2

p

r
α`a

nβq2 ` log2 rα` pr ´ 1qnβ
ď rlog2 psα` rnβ ` plog2 p

r
α` nβq

ď 2prlog2 psα` rnβq.

We now show a lower bound for multi-broadcastpp, r, nq
communication.

Theorem 10. The communication cost of multi-
broadcastpp, r, nq is lower bounded by

rlog2 psα` rnβ (35)

Proof. Each broadcasting node must communicate to p des-

tination nodes which takes at least rlog2 ps communication

rounds. Each destination node has to receive messages

M1, ¨ ¨ ¨Mr which have n. Hence, mutlti-broadcastpp, r, nq
requires at least the bandwidth of rn.

By comparing (34) and (35), we can see that the algorithm

given in Theorem 9 achieves the lower bound within a factor

of 2.

Finally, we define multi-reduce operation which is the

communication required for encoding parity symbols, and

show that it can be done with the same communication cost

as multi-broadcast operation.

Definition 5 (Multi-reduce). In multi-broadcastpp, r, nq com-
munication, there are p data nodes and r reduction nodes
(r ă p). p data nodes have data M1, ¨ ¨ ¨ ,Mp each of which
consist of n symbols. At the end of communication, the i-th
reduction node will have ai,1M1`¨ ¨ ¨`ai,pMp where ai,j’s
(i “ 1, ¨ ¨ ¨ , r, j “ 1, ¨ ¨ ¨ , p) are chosen so that the data
from any p nodes are linearly independent combinations of
M1, ¨ ¨ ¨ ,Mp.

Theorem 11. Multi-reducepp, r, nq communication can be
done by reversing the multi-broadcast algorithm given
in Theorem 9. Hence, the communication cost of multi-
reducepp, r, nq is at most

2prlog2 psα` rnβq (36)

Proof. Let D1, D2, ¨ ¨ ¨ , Dp denote the data at p data pro-

cessors. Let us divide data processors into r disjoint sets of

size p{r and let Si denote the set of indices of the i-th set:

Si “ tpi ´ 1q ¨ p{r ` 1, ¨ ¨ ¨ , pi ´ 1q ¨ p{r ` p{ru. This is

all-gatherpr, nq communication.

First, the j-th nodes in Si’s pi “ 1, ¨ ¨ ¨ , nq perform all-

gather communication. All the j-th processors in Si’s will

have Dj , Dj`p{r, ¨ ¨ ¨ , Dj`pr´1qp{r after the communication.

In the second step, all the nodes in Si will carry out reduce

communication with the i-th reduction node. Each node in

Si will compute a corresponding linear combination of the

the data it has and send only n symbols of data to the i-
th reduction node. For instance, the j-th node in Si will

compute

ai,jDj ` ai,j`p{rDj`p{r ` ¨ ¨ ¨ ` ai,j`pr´1qp{rDj`pr´1qp{r.

This is reducepp{r, nq which can be done with the commu-

nication cost of palog2
p
rα`

?
nβq2. This completes multi-

reducepp, r, nq communication.

This gives an achievable communication scheme for en-

coding parity symbols and decoding systematic symbols of

a pP,K, dq systematic MDS code.

Corollary 12. A pP,K, d “ P ´ K ` 1q systematic MDS
code over K systematic processors each of which has N{K
data symbols can be encoded with the communication cost
of

2

ˆ
rlog2 Ksα` pP ´KqN

K
β

˙
. (37)

Proof. The encoding matrix of pP,K, P´K`1q MDS code

has the form

G “ “
IK | P‰

where IK is a K-by-K identity matrix and P is a parity

matrix of dimension K-by-P ´K whose entries are all non-

zero [36]. This means that every parity symbol is a linear

combination of all K symbols distributed in K nodes. Hence,

encoding parity symbols for a systematic pP,K, d “ P ´
K`1q MDS code is exactly multi-reducepK,P ´K,N{Kq
operation. Simply substituting this to (36) completes the

proof.

A similar argument can be applied to show that decoding

at Step 11 of Algorithm 2 can also be done with the same

communication cost.

Corollary 13. Reconstructing N{K data symbols in failed
systematic nodes of at Step 11 of Algorithm 2 can be done
with the communication cost at most:

2

ˆ
rlog2 Ksα` pP ´KqN

K
β

˙
. (38)

Proof. First, note that we only have to recover the data in

systematic nodes. The worst case is when there are P ´K
failed nodes among the systematic nodes. In this case, the

remaining K successful nodes have to send their data to

P ´ K systematic nodes. A failed node’s data symbol can

be represented as a linear combination of K output symbols

from successful nodes. Hence, this is multi-reducepK,P ´
K,N{Kq operation.

C. Proof of Theorem 2
Proof. By comparing the encoding communication overhead

given in (37) with the communication cost of uncoded FFT

algorithm given in (18), we can prove our main theorem.

Uncoded FFT algorithm requires two transpose operation,

one in the beginning and one before the second FFT step.

This requires communication cost of

2

ˆ
rlog2 Ksα` N

2K
rlog2 Ksβ

˙
(39)
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If we compare this against the communication cost of encod-

ing given in (37), the condition for the encoding cost to be

smaller than the all-to-all communication is given as follows:

4
`
rlog2 Ksα` pP ´KqN

K
β

˘ ă 2
`
rlog2 Ksα` N

2K
rlog2 Ksβ

˘

P ´K ă log2 K

4
.

Hence, as long as P ´K is smaller than
log2 K

4 in scaling

sense, communication overhead of coding is negligible

compared to the intrinsic communication cost of uncoded

distributed FFT algorithm.

V. CONCLUSION AND FUTURE WORK

Identifying the communication cost of the coded FFT

algorithm for specific network topologies commonly used in

HPC is an interesting future direction. Also, in the process

of examining the communication cost of encoding/decoding

in a given network topology, we believe that new innovative

coding schemes can be discovered which are more commu-

nication efficient for a given topology. Also, codes that have

sparse generator matrices, such as LT codes [37], [38], might

be able to reduce communication overhead for encoding.

Locally repairable codes with high availability [39] could

reduce communication overhead of decoding. More gener-

ally, expanding our understanding beyond MDS codes, and

establishing bounds on the trade-off between communication

cost and error correction capability would be interesting.
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