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Abstract— We propose a coded computing strategy for the
Fast Fourier Transform (FFT) algorithm in a fully distributed
setting, which does not have a powerful master node orches-
trating worker nodes. The fully distributed setting requires
a large amount of data movements between nodes, and this
communication is often the bottleneck in parallel computing.
We identify communication cost of each step of the coded FFT
algorithm using the a-3 model, which is commonly used in high-
performance computing literature to estimate communication
latency. We show that by using a (P, K) systematic MDS
code, the communication overhead of coding is negligible in
comparison to the communication costs inherent in the uncoded
FFT implementation if P — K = o(log K).

I. INTRODUCTION

The Fast Fourier Transform (FFT) algorithm is the back-
bone of scientific computations which is used in a number of
applications, such as solving Poisson’s equations for particle
simulations [1], [2]. For solving differential equations with
high accuracy, FFTs of a very large size are often computed.
To speed up scientific simulations, a large-scale FFT is
often implemented over massively parallel processors [3]—
[5]. However, as we head into the era of exascale computing,
with more than 100,000 processing nodes, we expect to
see more frequent faults in the course of computation [6].
Traditionally, a “‘checkpointing” technique is used to mitigate
faults, where the state of the computation is stored offline at
regular intervals and the computation restarts at the most
recent checkpoint when an error is detected. Now, the error
rate of large parallel systems is projected to reach a point
where present checkpoint/restart methods will no longer
be viable [7], [8]. We thus need a more efficient way
to mitigate faults in large-scale numerical algorithms by
exploiting algorithm-specific features.

In this work, we propose a “coded computing” approach
to the large-scale parallel FFT algorithm. Coded comput-
ing, which combines computing and error correcting codes
(ECCs) to mitigate unreliable nodes in distributed computing,
has gained traction in recent years [9]-[15]. However, our
work differs from the existing literature in coded computing
as we consider a fully distributed setup which does not have
a single master node. A stream of works in coded computing
have assumed a “master-worker setup” where the system has
a powerful master node that distributes data to and aggregates
the result from worker nodes. This is not a reasonable model
for practitioners for several reasons. First, a master node
itself can fail, at which point, computation results cannot
be guaranteed. Secondly, this assumes that a master node
has a very large memory which can store the entire data. Let
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us denote the number of workers as P, then the master node
must have P times more memory than the workers, which
is not realistic as P grows large. Lastly, like in the FFT
algorithm where a master node must intervene in the middle
of the computation, a master node can be the bottleneck of
the computation.

With the absence of a master node, all the nodes have to
communicate with each other to gather the required data. It
is well known in distributed computing that communication
is often the bottleneck, and not computation. This is because
communication bandwidth is not growing as fast as flop rates
of processors [16]. A recent work [17] has explored coded
computing approach to FFT under the master-worker setup.
If we plainly apply their technique to the fully distributed
setting, the communication overhead of encoding/decoding
might dominate and coded computing approach could end up
much slower than the uncoded FFT algorithm. We thus ask
a question on whether the coding approach using maximum
distance separable (MDS) codes [17] can be a feasible
option in the fully distributed setting. In this work, we
provide an efficient communication algorithm for encoding
and decoding, called “multi-reduce”, and show that as long
as the number of redundant nodes is o(log K') where K is the
number of systematic nodes, the communication overhead of
“coding” is amortized. We do not include computation cost
analysis in this work as it was thoroughly analyzed in [17].

To analyze the communication cost, we use «- model
which is commonly used in high-performance computing
literature. In this model, the time spent to communicate a
message between two processors is approximated by a linear
function as follows:

«a + [ x (message length).

This captures the latency of setting up a link («) and the com-
munication bandwidth (). In distributed storage literature,
communication cost was considered either in the network
bandwidth (regenerating codes) [18]-[20] or the number of
node accesses (locally repairable codes ) [21]-[24]. The a-f3
model captures more fine details of communication latency
because it not only accounts for the number of nodes or the
number of bits, but also accounts for the number of commu-
nication rounds. For instance, let us think about two different
communication scenarios where P nodes are participating
in the communication. If the communication consists of a
set of disjoint pairwise communications that can be done
in parallel, it only requires one round of communication,
and hence communication latency will be low. On the other



hand, if all the P nodes have to send a message to all the
other nodes, there must be more rounds of communication
since not every node can talk to each other simultaneously.
This difference due to different communication pattern can
be captured in the «-5 model. While this is still a simple
approximation of communication cost, this captures more
realistic constraints especially when a system has comparable
« and f.

Using ECCs for fault-tolerant FFT computation has
been extensively studied in algorithm-based fault-tolerance
(ABFT) literature. The ABFT philosophy, first suggested by
Huang and Abraham in 1984 [25], is adding checksums in
the beginning of the computation and comparing it against
the checksum of outputs at the end of the computation in
order to detect errors that happened during the computation.
In essence, it uses the simplest error-detection code for
computations. The ABFT technique was first applied to FFT
by Jou and Abraham in 1986 [26] and since then substan-
tial research has been done to improve on hardware/time
overhead by designing new weighted checksums that can be
efficiently implemented on an FFT circuit [27]-[30]. None
of these works, however, have considered communication
overhead of their algorithms, because most of them were
focused on circuit-level fault tolerance where communication
is very cheap.

II. SYSTEM MODEL AND PRELIMINARIES
A. Distributed Computing Model

We will use “processor” and ‘“node” interchangeably
in this paper. We assume that we have a total of P pro-
cessors that have the same computational capabilities and
memory. Among P processors, K of them are “systematic
processors” which store the original data and the remaining
P — K processors are “parity processors” which store
encoded parity symbols. We assume a massively parallel
setup where K is very big, but K does not grow faster than
O(log N/loglog N)'.

We assume a fully-distributed setting where no central
processor is present during the computation and the pro-
cessors do not have any shared memory. Data located at
different processors can be shared only through explicit
communication between two processors.

Using P processors, we want to compute N-point FFT:

Z = Fyzx (D

where z is a length-N input data vector, Fy is an N-by-N
DFT matrix (wy: the N-th root of unity) represented as

wy W Wi
w?\, w}v wjj\\;fl
Fn = ) @)
0 N-1 (N—=1)2
WN  Wx W

and Z is a length-N vector of the Fourier transform of x.
We assume that N is very large, so that the data cannot be
stored in one processor. In the beginning, each processor has
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a segment of consecutive values of the

input vector x, e.g.,
T
Processor 1 has [z1 a2

rN/K]

B. Fault Model

In this work, we consider an erasure model for faults
where we lose the entire output if a node fails. A node failure
can happen when a node dies after a random fault, or it is a
straggler that is unable to finish its computation.

C. Communication Model

We assume a fully-connected network of processors where
any processor can send and receive data from every other
processor directly. We also assume that a processor has one
duplex port, which means that at a given time, a processor
can send data to one processor and receive data from another
processor simultaneously.” For example, Processor 1 can
send data to Processor 2 and receive data from Processor
3 at the same time, but it cannot send data to Processor 2
and 3 at the same time.

We use the - model to estimate the point-to-point
communication cost. In the -3 model, the time to send or
receive a message of s bytes is :

T'=a+s-0 (3)
Here, « is startup time to establish a connection between
two nodes, and [ is the bandwidth cost required to transfer
one symbol. For an algorithm that requires multiple rounds of
message exchanges, total communication time can be written
as follows:

T = Cra+ Cof8, 4)
where (7 is the number of communication rounds, Cy is
the number of symbols communicated in a sequence. To be
more precise, if we denote b; as the maximum number of
symbols communicated between two nodes at the i-th round,
(5 can be written as:

Cy
Cy= b 5)

i=1
This is because the next round does not start until the
previous round is completed, and the bandwidth latency for
each round is dominated by the largest message. Symbols
can have different units, such as bits or bytes, but in this
work we do not specify any units.

D. Distributed FFT algorithm

We want to explain the “transpose” algorithm that is
commonly used in high-performance FFT libraries [3]. It
uses the Cooley-Tukey technique to break down N-point
FFT into smaller FFTs of size Ny and Ny where N = N1 Ns.

2We believe that this can be easily extended to k-port model where each
node has k duplex ports.



Now, (1) can be rewritten as

7 = 2 wN T
Nl— Nay—1
k ko
= Z wnl 1tn17k2 2 wn2 TnyNi+ng
ny= 0
where k = kyNo + ko, k1 = 0,---Ny — 1, and ky =

Oa
which are equal to wyy
We can now compute N -point FFTs in two steps. In the
first step, each processor is assigned to compute Ny /K FFTs
of length N>. Then the processors transpose the data (requir-
ing communication) and compute No/K FFTs of size Ny in
the second step. Between the first and the second step, we
have to multiply twiddle factors. This complicates our coding
approach since multiplying twiddle factors is an element-
wise multiplication of two matrices (Hadamard product),
which does not commute with matrix-matrix multiplication
(See Remark 1). We now explain the algorithm in detail:

,No — 1. The terms t,,, 1,’s are called twiddle factor
kQ’nl

Algorithm 1. Uncoded Distributed FFT Algorithm (Trans-
pose Algorithm)

1) Rearrange the input data « into X:

[ 21 zN T(Ny—1)Ny+1
X = : :
LLNy T2N; TNyNo
_Xl(mw)
o s
X (o

We use X""s (X s) to denote equal-sized subma-
trices of X divided horizontally (vertically). From our
system assumption, in the beginning, the i-th processor
has XY 3. To begin the distributed FFT computation,
we transpose the data distributed over K processors so
that the i-th processor can now have X "%,

Compute Ny1/K row-wise FFTs of size Ny at each
Pprocessor.

2)

Y.(row) _

K2

(row)
X, Fn,
3) Transpose the data so that the i-th processor has Yi(COD.

Yl(mw)

Y _ [Yl(col) Y}(gol)]

Y}(éow)
4) Multiply twiddle factors at each processor.

(col) __ An(col)
Y = 13

(col)
VoY,

3This assumption is coming from that it is more natural for a processor
to store contiguous data without the knowledge that the next computation
is going to be FFT. If we assume that processors have row-wise data in the
beginning, we can avoid the first transpose step. This does not change the
result in Theorem 2 in scaling sense.
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where o represents Hadamard product and Ty is a
matrix of twiddle factors
0

0 0

WN WN WN
% wh wa !
Ty =
WON w%l—l wngl—l)(Nz—l)
_ (col) (col)
= [TN,l TN,K] :
5) Compute Ny/K column-wise FFTs of size N; at each
processor.
Z§COI) _ FN1 Y;-(COD. (6)

III. CODED DISTRIBUTED FFT

We will now explain our coding strategy for the distributed
FFT algorithm. The uncoded distributed algorithm described
in Algorithm 1 has transpose step in the middle which
requires all the nodes in the system to exchange data with
all the other nodes. If there is any failed node before the
transpose step, the computation will fail at the transpose step.
Hence, simply adding fault tolerance which recovers faults
at the end of the algorithm is not adequate for the distributed
FFT algorithm. We need to apply fault resilience technique
twice: once right before the transpose step, and once when
the entire computation is complete. This requires distributed
encoding and decoding in the middle of the computation
which poses unique challenges for coded FFT algorithm.

In our coding strategy, we utilize (P — K) redundant
processors to encode the first and the second FFT steps
separately. In the first step, processors perform FFT on the
row-wise data X (mw)’s In order to protect from the lost
output at a falled node, we have to encode parity symbols
across columns (column-wise encoding). By doing this, at
the end of the first step, any successful K processors can
recover the output and proceed to the next step. In the second
step, each processor computes FFT on the column-wise
data, Yi(wl)’s, so we encode row-wise parity symbols (row-
wise encoding). Our coded computing algorithm is described
below (*: additional steps that are not present in the uncoded
algorithm).

Algorithm 2. Coded Distributed FFT Algorithm

1) * Encode column-wise parity symbols at each proces-

SOr.
Xfrow)

: (N
Xg’ow)
G is an N;p-by-Nj encoding matrix for where N =
P

*Nli

K

Gi=[In, Pi] ®)

Rearrange the encoded data. Now the i-th processor
has X"

h .
Compute N;1/K row-wise FFTs of size Ny at each
processor.

2)

3)



Step 4-6) Transpose and column-wise decoding

Step 1) Column-wise encoding Step 2-3) Transpose and row-wise FFT

Processor 1| | Processor 2
Processor 1 Xl(row)
col col
XD || | xieoD
Processor 2 Xz(raw)
Encoding ‘ ‘ Encoding
Yo X0 processor3 [x77) 4 xToW)
+X31 +X52

Decodi

Processor 1| | Processor 2| | Processor 3

Step 7-9) Multiply twiddle factors then
row-wise encoding. Encoding requires

communication between all nodes.
Yiy Y,

Processor 1 | Processor 2 || Processor 3

p yeob) A y.cod
1 +r oD 2

‘ Decoding

A N o W

Encoding

Y. 2(col)

Fig. 1: This diagram summarizes encoding and decoding steps in Algorithm 2 with an example of P = 3, K = 2.

4) Wait for the first successful K processors and transpose
the output within the successful K processors.

* If needed, decode to retrieve the uncoded output at
each processor.

5)

6) Multiply twiddle factors.
7) * Encode row-wise parity symbols and send them to
the remaining P — K processors.
Y/ _ YG2 — [Yl(COl) }'}Igcol)] (9)
Go is an Ny-by-N/ encoding matrix where Nj =
%Ngi
Gy =[In, P2l (10)
8) Compute No/K row-wise FFTs of size N; at each
processor.
9) * Wait for the first successful K processors and halt

the remaining P — K processors. Decode if needed.

For both encoding steps in Step 1 and Step 7, we use
a (P, K) systematic MDS code. In the following theorem,
we show that using the proposed coded distributed FFT
algorithm, any K successful processors are enough to recover
the computed outputs at Step 5 and Step 9 *.

Theorem 1. In Algorithm 2 where we compute distributed
FFT of size N using P processors each of which can
store and process % fraction of the input (P > K), any
successful K processors can recover Y and Z at Step 5 and
9, respectively.

Proof. Let us first prove that we can recover Y with any
K successful processors at Step 5 and the similar argument
holds for recovering Z at step 9.

At Step 4, we will have the result from K successful
workers. Let us denote the indices of the successful K
workers as {41, - , ik }. Then the output from the successful
workers is:

v (row)
{(7&1 >FN2

Trow

XiQ FN2 _ [ o Y(Col)

suc,i i

Y(col)

suc,i1

Y;uc = (11)

Xz(ZW)FNQ

4Note that we do not have any fault recovery for twiddle multiplication
step. However, computational complexity of twiddle factor multiplication is
O(N) compared to that of O(N log N). Hence, it is less probable to have
faults during twiddle factor multiplication step
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After transposing at Step 5, processors i1, - - - , 1k Will have

column-wise output Yo} |- V) V) can be written
as:
(col) T (col) T (col)
Y;uc,i = Gl,schFNzﬂ’ = Gl,sucY; (12)

where GT . is a submatrix of G{ which only has rows
from successful nodes and hence has the size N;-by-V;.

As we assume the erasure model where we lose the entire
data from a failed node, we only code across nodes, not
within a node. Hence, our encoding matrix G has the
following structure:

G1=0G1®1In, /K (13)

where Gy is the encoding matrix for a systematic (P, K)-
MDS code which has size K-by-P.

Now, G ¢ can be rewritten as:

T
1,suc

G = gljjsuc®IN1/K (14)
where G g is a submatrix of G that only has K columns
from the K successful nodes, i.e., i1-th to 7 g-th columns of
G. Because Gy is a (P, K') MDS code, Gy . always has a full
rank. As rank(A® B) = rank(A) - rank(B) for any matrices
A and B, rank(G1 ) = Ni. Hence, we can recover Yi(“’l)
at every successful node at Step 5. Similar argument applies

to recovering Z at Step 9. O

IV. COMMUNICATION COST OF CODED FFT ALGORITHM

In this section, we prove our main theorem which states
that as long as the number of parity processors is o(log K),
communication overhead of encoding and decoding can be
amortized:

Theorem 2. In our proposed coded FFT algorithm, if
P — K = o(logy K), communication overhead of coding is
negligible compared to the communication cost of uncoded
FFT.

To prove the theorem, we first identify the communication
cost of uncoded FFT algorithm. Then, we analyze communi-
cation cost of encoding and decoding and we compare them
to obtain the theorem.



A. Communication cost of uncoded FFT algorithm

Let us begin with understanding the communication cost
of uncoded FFT algorithm. In Algorithm 1, steps that require
communication are Step 1 and 3. Both steps need communi-
cation to transpose the data stored in distributed processors.
For transposing the data, all processors have to exchange data
with all the other processors. This communication is known
as “all-to-all” communication. Bruck et al. showed lower
bounds and explicit algorithms that achieve lower bounds
for two special cases of all-to-all communication [31] — a
minimum-communication-rounds regime and a minimum-
bandwidth regime. Let us first formally define all-to-all
communication.

Definition 1 (All-to-all). In all-to-all(p,n) communication,
there are p nodes each of which stores n symbols. The data
stored in the i-th node can be broken down into p data blocks,
M; 1, - M;,p, where the size of each block is n/p symbols.
The goal of the communication is to transpose the data stored
in p processors so that at the end of the communication, the
i-th node has M, ;,--- , M, ; data blocks.

We will first give a simple lower bound of all-to-all(p, n)
communication.

Theorem 3 (Proposition 2.3 and 2.4 in [31]). For all-to-
all(p,n) communication, Cy and Cy are lower bounded by:
p—1
—n
p
However, Bruck et al. showed that the lower bounds on C';

and C5 cannot be achieved simultaneously which is stated
in the theorem below.

Theorem 4 (Theorem 2.5 and 2.6 in [31]). If all-to-all(p,n)
communication uses the minimum number of rounds, i.e.,
Cy = [logy p|, Cs is lower bounded by:

C1 = [logypl, C2= (15)

n
Cy > 510g2p- (16)

If all-to-all(p,n) communication uses the minimum number
of symbols transferred in sequence, i.e., Co = LB ) symbols
in a sequence, then Cy is lower bounded by:
Cizp-1 a7
Furthermore, both lower bounds are achievable.

Now, by using Theorem 4, we can give communication
cost lower bounds on the transpose step in the distributed
FFT algorithm.

Corollary 5. The transpose step of N-point FFT requires
the communication cost at least

1N
[logy Ko + 5?10g2 Kp (18)

when using the minimum communication rounds regime, and

(K—1)N
K ?5

when using the minimum communication bits regime.

(K — 1)+ (19)
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Under our massively parallel system model where K is
very large, we have log K << +/K. Hence, we should
always choose the minimum-communication-round regime
over the minimum-bandwidth regime. From now on, we will
only consider minimum communication round regime and use
its communication cost given in (18).

B. Communication overhead of coding

Now, let us identify additional communication cost due
to coding in Algorithm 2. In the first encoding step where
we compute column-wise parity symbols, we do not need
any communication since processors already have column-
wise data in the beginning. Also, for the first decoding
in Step 5, column-wise decoding can be done in local
processors as each processor has column-wise data after
the transpose step. In Step 7, it requires inter-processor
communication to encode row-wise parity symbols as one
row of the data is spread over all the processors. Also in
step 9, we have to perform row-wise decoding while every
node has column-wise data, and thus we need inter-processor
communication for decoding. Hence, in this section, we will
analyze the communication cost of the second encoding step
and decoding step. We will first show the communication
cost of the second encoding step where we compute:

Y = YGs. (20)

Before we begin our communication cost analysis, we
want to make a few remarks.

Remark 1. [Why do we need distributed encoding?] If we
can do the second encoding, which is computing row-wise
parity symbols, at local processors before the transpose step,
we can avoid communication for distributed encoding at Step
7. However, there is no trivial way of doing this using a
linear code due to the twiddle factors. After Step 3, the i-th
processor has

VI = X Fy, = G{7 X Fy, . 21)

If we do row-wise encoding at the i-th processor locally
before the transpose step, the i-th processor will have

Vi = G{% X Fy, Gs. (22)

K2

We then perform the transpose of the output from the first K

successful nodes. The i-th node now has
VI = Gy gue X F, G5 (23)

Column-wise decoding can be done locally by inverting
Gl,suc:

VeV = GrL L Grsue X Fn, G4 = XFn, G (24)
We now have to multiply twiddle factors to Yi(wl):
VED = Ty o VOV = Ty o (XFn, G (25)

However, this will produce a different final output from what
we expect because of the nonlinearity of Hadamard product:

Ao (BC) + (Ao B)C. (26)



Hence,

TG o (XFn,GE1) # (TN 0 XFy,)GSL. (27)

From our modified coding strategy, our final output from
successful nodes will be Fn,Tn o (X Fn,G2wc) and even
after decoding, we will have

Fn, Ty © (XFn,Ga50c) G e # Fny, T © (X F,). (28)

This means that we have to perform twiddle factor multi-
plication before proceeding to the row-wise encoding step.
With the same argument, we can show that column-wise
decoding must be done before multiplying twiddle factors.
It concludes that because of the twiddle factors, the second-
step encoding must be done across the processors incurring
some communication cost.

We now want to analyze the communication cost of the
second encoding step. Let us first investigate the communi-
cation cost of a simple encoding scheme where we add one
parity node that stores the checksums of data, X +-- -+ Xg.
The encoding matrix G5 for this can be written as follows:

1

gcks = Ik : (29)
1

G2 = Goks ® Iny i (30)

For this computation, all K nodes have to send its data to
one checksum node to compute the sum of all the data in
the network. This is a well-known communication operation
called “reduce(-to-one)”.

Definition 2 (Reduce). In reduce(p,n) communication, there
are p data nodes which have data M, - -- , M, of size n and
one reduction node. The goal of the communication is to send
My + -+ + M, to the reduction node.

A lower bound on the communication cost of reduce(p, n)
operation is given in the following theorem.

Theorem 6. The communication cost of reduce(p,n) is
lower bounded by

[logy plac + np. 31

It was found that reduce operation can be done by revers-
ing any broadcasting algorithm, where one broadcasting node
sends its message to all the other processors in the network.
Traff and Ripke [32] proposed a near-optimal broadcasting
algorithm that achieves the lower bound (31) within a
factor of 2 . By reversing their broadcasting algorithm, we
can achieve the same communication cost for reduce(p,n)
communication.

Theorem 7. Reduce(p,n) can be done with the communi-
cation cost of at most

(v/Tlog, plar + v/nB)* < 2([logy, pla + np).

Whether (32) is optimal or not is an open problem. We
will use this as a state-of-the-art communication algorithm

(32)
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for reduce operation. By applying (32), we can obtain the
communication cost for encoding one checksum node.

Corollary 8. A (K + 1, K, 2) systematic MDS code over K
systematic processors each of which hs N/K data symbols
can be encoded with the communication cost of

(V[logz Kla++/N/Kp)?* < 2([logy Kla+N/Kp). (33)

We can now extend computing checksums to computing
parity symbols for a generic (P, K,d P—-K+1)
systematic MDS code. Unlike checksum computation which
only requires a single reduce(-to-one) operation, here we
need multiple reductions to P — K nodes.

From the intuition we got from reduce(-to-one) problem,
we will first establish bounds for multi-broadcasting problem
(will be defined below) and show that multi-reduce problem
for encoding a (P, K,d = P— K +1) systematic MDS code
can be solved by reversing the multi-broadcasting algorithm.

Definition 3 (Multi-broadcast). In multi-broadcast(p,r,n)
communication, there are v broadcasting nodes and p des-
tination nodes. Broadcasting nodes have distinct messages
My, -+, M, of size n symbols. At the end of the communi-
cation, all p destination nodes should have all r messages,
Mla ) Mr-

We want to note that multi-message broadcasting has been
studied in the literature [33], [34]. However, their models
have one broadcasting node which sends multiple messages
in a sequence. This is fundamentally different from our
multi-broadcast which has multiple broadcasting nodes that
can send out their messages simultaneously. To the best of
our knowledge, communication cost analysis of this specific
problem has not been studied before.

We will first show a communication algorithm for multi-
broadcast(p, r,n) and then show that it achieves the lower
bound within a factor of 2.

Theorem 9. Multi-broadcast(p,r,n) can be done with the
communication cost at most

2([logy pla + rnf) (34)

Proof. First, divide p processors into r disjoint sets of size
p/r. Let us denote the sets as Si,S3,---,S,.. The i-th
broadcasting node broadcasts its message to all the nodes
in .S;. With the optimal broadcasting algorithm [32], it takes
communication cost of (1/log, Za + /nf8)%.

After the broadcasting step, the j-th nodes in S;’s (i
1,-++,r) communicate with each other so that all of them
can share M, --- , M,. This is all-gather(r,n) communica-
tion which is defined as follows.

Definition 4 (All-gather). In all-gather(p,n) communi-
cation, there are p nodes which have distinct messages
M, .-, M, of size n symbols. At the end of the communi-
cation, all p nodes should have all p messages.

All-gather(r,n) can be done with communication cost of
(logy r)ac+ (r —1)n/3 using the bidirectional algorithm [35].



The total communication cost of this two-step algorithm

is
(4 /log, 2;90[ + \/@)2 +logyra+ (r—1)ng

< [log, plae + rnB + (log, ga +np)
< 2([log, pla + rnf3).

O

We now show a lower bound for multi-broadcast(p, r, n)
communication.

Theorem 10. The communication cost of multi-
broadcast(p,r,n) is lower bounded by
[log, pla + rnf3 (35)

Proof. Each broadcasting node must communicate to p des-
tination nodes which takes at least [log, p] communication
rounds. Each destination node has to receive messages
My, --- M, which have n. Hence, mutlti-broadcast(p, r, n)
requires at least the bandwidth of rn. O

By comparing (34) and (35), we can see that the algorithm
given in Theorem 9 achieves the lower bound within a factor
of 2.

Finally, we define multi-reduce operation which is the
communication required for encoding parity symbols, and
show that it can be done with the same communication cost
as multi-broadcast operation.

Definition 5 (Multi-reduce). In multi-broadcast(p, r,n) com-
munication, there are p data nodes and r reduction nodes
(r < p). p data nodes have data My, --- , M, each of which
consist of n. symbols. At the end of communication, the i-th
reduction node will have a; 1 M + - - -+ a; , M, where a; ;’s
(¢ =1,---,r,5 = 1,---,p) are chosen so that the data
from any p nodes are linearly independent combinations of
My, -, M.

Theorem 11. Multi-reduce(p,r,n) communication can be
done by reversing the multi-broadcast algorithm given
in Theorem 9. Hence, the communication cost of multi-
reduce(p,r,n) is at most

2([logy pla + rnp) (36)

Proof. Let Dy, Dy,---, D, denote the data at p data pro-
cessors. Let us divide data processors into r disjoint sets of
size p/r and let S; denote the set of indices of the i-th set:
Si ={(t—=1)-p/r+1,---,(i—1)-p/r + p/r}. This is
all-gather(r, n) communication.

First, the j-th nodes in S;’s (i = 1,--- ,n) perform all-
gather communication. All the j-th processors in S;’s will
have Dj, Dy pry -+ 3 Djy(r—1)p)r after the communication.

In the second step, all the nodes in .S; will carry out reduce
communication with the ¢-th reduction node. Each node in
S; will compute a corresponding linear combination of the
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the data it has and send only n symbols of data to the -
th reduction node. For instance, the j-th node in S; will
compute

@i jDj + i jiprDjppr + -+ Qs r—1)p/r Djt (r—1)p/r-

This is reduce(p/r,n) which can be done with the commu-

. . p 2 . .
nication cost of (4 /logzl;a.—k v/nB)*. This completes multi-
reduce(p, r,n) communication. ]

This gives an achievable communication scheme for en-
coding parity symbols and decoding systematic symbols of
a (P, K,d) systematic MDS code.

Corollary 12. A (P, K,d = P — K + 1) systematic MDS
code over K systematic processors each of which has N /K
data symbols can be encoded with the communication cost
of
N

2 [logQK]a—i-(P—K)EB . 37)
Proof. The encoding matrix of (P, K, P— K +1) MDS code
has the form

G=[Ix | P]

where Ix is a K-by-K identity matrix and P is a parity
matrix of dimension K-by-P — K whose entries are all non-
zero [36]. This means that every parity symbol is a linear
combination of all K symbols distributed in & nodes. Hence,
encoding parity symbols for a systematic (P, K,d = P —
K +1) MDS code is exactly multi-reduce(K, P — K, N/K)
operation. Simply substituting this to (36) completes the
proof. O

A similar argument can be applied to show that decoding
at Step 11 of Algorithm 2 can also be done with the same
communication cost.

Corollary 13. Reconstructing N/K data symbols in failed
systematic nodes of at Step 11 of Algorithm 2 can be done
with the communication cost at most:

2 ([log2 Kla+ (P — K)NB> . (38)

K
Proof. First, note that we only have to recover the data in
systematic nodes. The worst case is when there are P — K
failed nodes among the systematic nodes. In this case, the
remaining K successful nodes have to send their data to
P — K systematic nodes. A failed node’s data symbol can
be represented as a linear combination of K output symbols
from successful nodes. Hence, this is multi-reduce(K, P —
K, N/K) operation. O

C. Proof of Theorem 2

Proof. By comparing the encoding communication overhead
given in (37) with the communication cost of uncoded FFT
algorithm given in (18), we can prove our main theorem.
Uncoded FFT algorithm requires two transpose operation,
one in the beginning and one before the second FFT step.
This requires communication cost of

N
2 <[log2 Kla + ﬁ[logQ K]ﬂ) (39)



If we compare this against the communication cost of encod-
ing given in (37), the condition for the encoding cost to be
smaller than the all-to-all communication is given as follows:

4(Jtogy Ko+ (P~ K)228) < 2([logy Kl + 512 [log K19)

P-K < logi K
Hence, as long as P — K is smaller than logj X in scaling

sense, communication overhead of coding is negligible
compared to the intrinsic communication cost of uncoded
distributed FFT algorithm. O

V. CONCLUSION AND FUTURE WORK

Identifying the communication cost of the coded FFT
algorithm for specific network topologies commonly used in
HPC is an interesting future direction. Also, in the process
of examining the communication cost of encoding/decoding
in a given network topology, we believe that new innovative
coding schemes can be discovered which are more commu-
nication efficient for a given topology. Also, codes that have
sparse generator matrices, such as LT codes [37], [38], might
be able to reduce communication overhead for encoding.
Locally repairable codes with high availability [39] could
reduce communication overhead of decoding. More gener-
ally, expanding our understanding beyond MDS codes, and
establishing bounds on the trade-off between communication
cost and error correction capability would be interesting.
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