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Abstract— Repair locality is important to recover from failed
nodes in distributed computing especially when communicating
all the data to a master node is expensive. Here, building on
recent work on coded matrix multiplication, we provide locally
recoverable coded matrix multiplication strategies. Leveraging
constructions of optimal matrix multiplication codes and opti-
mal locally recoverable (LRC) codes, we provide constructions
of LRC Polynomial codes (minimal communication) and LRC
MatDot codes (minimal storage).

I. INTRODUCTION

Coded computing is an emerging advance on classical
fault-tolerant computing, and has been shown to address
stragglers, faults, and errors in distributed computing prob-
lems. Of particular interest has been coded matrix multipli-
cation [1]-[8], which is an immensely important problem as
it is a basic building block of most algorithms in machine
learning and scientific computing.

This paper focuses on introducing locally recoverable
property to matrix multiplication codes. Locally recoverable
(LRC) codes have been extensively studied for distributed
storage as they can reduce the number of node access to
repair a failed storage node [9]-[17]. In particular, Gopalan
et al. [10] proved that the minimum distance of an (n, k,7)-
LRC must satisfy the Singleton-type bound:

|2

which reduces to the classical Singleton bound d < n —k +
1 when r = k. Codes satisfying this bound with equality
are called optimal LRC codes. Among the constructions of
optimal LRC codes, we utilize the celebrated results of [15]
where codes are constructed over alphabets growing linearly
in the block length.

Having repair locality can be useful in distributed com-
puting for several scenarios:

k

dén—k—{
,

« When we want to perform consecutive matrix multipli-
cations, e.g., computing the product D = ABC, we
can repair a failed node locally after computing the
first product D’ = AB. Then, we carry on the next
computation D = D’C without all the nodes sending
their intermediate results to the master node.

In the fully distributed setting, which does not have a
powerful master node, we can use a systematic code
with locality. Assuming that the fault rate is low and
single node failure is the most common scenario, we
can recover a failed systematic node by contacting only
a few other nodes.
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Fig. 1: A master-worker system: a master node first distributes
computational inputs to P worker nodes. Worker nodes perform the
pre-defined computation on the given inputs then return the com-
putation output back to the master node. The master node performs
post-processing if necessary and produces the final computation
output.

To the best of our knowledge, this is the first work that pro-
poses locally recoverable matrix multiplication codes. Sec-
tion II introduces our system model, preliminaries on matrix
multiplication codes and LRC codes, and problem statement.
Section III provides our main results, which include LRC
Polynomial codes, LRC MatDot codes, and the systematic
construction of LRC MatDot codes. Here, we leverage
novel matrix multiplication codes [1], [3] and optimal LRC
codes [15] to obtain locally-recoverable Polynomial codes
(which require minimal communication from workers to
master node) and locally-recoverable MatDot codes (which
are storage optimal). We conclude by discussing potential
directions of future work.

II. SYSTEM MODEL, PRELIMINARIES, AND PROBLEM
STATEMENT

A. System Model

Master-worker system: Our system model and problem
formulation follows previous works [1], [3], [18]. The system
has a master node and P worker nodes; a master node
initially has computational inputs and distribute the inputs
to worker nodes after some preprocessing if needed (e.g.,
encoding). Worker nodes receive computation input, perform
the given computation, and send the output of the compu-
tation back to a master node. We assume that all P worker
nodes have the same computational power and storage. A
master node, upon receiving the output from all the workers,
performs post-processing (e.g., decoding), and obtains the
final output of the computation.

Computation Goal: The computation we want to carry
out here is matrix multiplication:

C=AB



where A, B, C are real number matrices of dimension N x
N, ie, A,B,CeRV*N,

Storage-constrained worker nodes: We assume that the
computation must be distributed due to storage constraints
at worker nodes. Specifically, we assume that each worker
can only store 1/m-th fraction of the input matrices, A and
B. In other words, a worker node receives N2/m symbols
of A and N?2/m symbols of B.

Erasure model: We assume that when a worker node fails,
we lose the entire output of the failed node. A node failure
can be either a straggler or a node shutdown due to random
faults. It is assumed that the node failure is always detected,
and thus these failures are modeled as erasures.

Recovery threshold and recovery bandwidth: The
recovery threshold is the minimum number of successful
workers required by the master node to recover the computa-
tion output. We will denote the recovery threshold by K. The
recovery bandwidth is the minimum number of symbols to be
communicated to the master node to recover the computation
output.

B. Coded Matrix Multiplication: Polynomial codes and Mat-
Dot codes

For the system model given in Section II-A where a
worker node has storage constraint that limits the node to
store only 1/m-th fraction of matrices A and B, several
coding strategies were proposed recently. In this work, we
consider two strategies: Polynomial codes which achieve the
best recovery bandwidth and MatDot codes which achieve
the best recovery threshold. Let us first describe Polynomial
codes.

Construction 1. Polynomial codes
The matrix A is split horizontally into m row-blocks and B
is split vertically into m column-blocks as follows:

A,
. B = [Bl B2 s B’m]7 (1)

A’Vﬂ
where A;,B; (i=1,---,m)are N/m x N and N x N/m
dimensional submatrices, respectively.

Then, we encode matrix A and B using the following
polynomials:

= i Azt x) = i Bz,
i=1 j=1

A master node distributes encoded matrices, pa («;), p(;)
to the ¢-th worker node (¢ = 1, - - - , P). The i-th worker node
then computes the following product at x = «;:

2

m m

) = Z Z AiBjxi—l-&-m(j—l),

i=1j=1

pc(z 3)

and send the result to the master node.
Note that the coefficient of zi~1*™U~1) is A;B,. Since
the degree of the polynomial pc(z) is m? — 1, once the
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master node receives the evaluation of pc(x) at any m?
distinct points, it can recover the coefficients of pc(z).

Hence, the recovery threshold K = m?2. [

Now, we describe MatDot codes.

Construction 2. MatDot Codes
The matrix A is split vertically into m column-blocks and
B is split horizontally into m row blocks as follows:

B,
B,
A:[AlAgAm], B: . (4)

B
where A;,B; (i=1,---,m)are N x N/m and N/m x N
dimensional submatrices, respectively.

Then we encode matrix A and B using the following
polynomials:

_ iAiIi_17 i e _] (5)
i=1 j=1

A master node distributes encoded matrices, pa (c;) and
pB(;) to the i-th worker node (i = 1,---, P). Then the
i-th worker node computes the following product at x = «;:

and returns the result to the master node. Note that he coef-
ficient of ™! in the equation pc(z) is C = Y\, A;B;.
Since the degree of the polynomial pc(x) is 2m — 2, once
the master node receives the evaluation of pc(x) at any
2m — 1 distinct points, it can recover the coefficients of
pc(x). Hence, the recovery threshold K = 2m — 1. This
was proven to be the optimal recovery threshold for the given
storage constraint — a worker node can store 1/m-th fraction
of each input matrix [4]. O

™ 1+(i— j)

||M§

(6)

C. Locally Recoverable Codes

We say that a code C has locality r if every symbol of the
codeword can be recovered from a subset of r other symbols.
In [10], a Singleton-type bound was derived on the maximum
distance of LRC codes with locality 7.

Theorem 1. Let C be an (n,k,r) LRC code. Then the
minimum distance of C satisfies:

)

Comparing this with the (n, k) MDS code without locality
which has d = n — k + 1, we can see that the overhead of
having locality is at least [£] — 1. In this work, we use a
family of optimal LRC codes presented in [15] that achieves
the equality in (7).

Construction 3. Optimal (n,k,r) LRC code [15]
Let a € ]FZ be a message vector and let us re-index a as
%) For simplicity, we will

a=(ag,i=1,--,rj=1,-



assume that r divides k here. Then, the encoding polynomial
is defined as:

k

fa(z) = Z a,;jziflg(:r)jfl. (8)

i=1j=1
Let A= {a,---,y,} be asubset of F, (¢ = n). The code-
word is the evaluation of the polynomial f, at ay, -, ay:

¢ = (fo(a),a € A). A core of this construction is choosing
a good polynomial g(x) which satisfies the following:
i) deg(g) =7+ L.
ii) There exists a partition of A, A = A - UAT%’
where |A;| = r + 1 such that g is constant on each set
A;. In other words, for all a, o’ € A;, g(a) = g(a’).

First, note that by choosing g with degree r + 1, the degree
of fgq becomes (r+1)-(k/r—1)+r—1=k+r/k—2.
Hence, the distance d = n — k — % + 2. This satisfies the
equality in (7).

Now, let us see how choosing such a g guarantees locality
r. Let us denote A; = {ai, - ,,41}. Without loss of
generality, let us assume that fg(aq) is lost. We want to
recover fq () using r other symbols. Note that, by the

second condition, g(ay) = g(ag) = -+ = glays1) = 7.
Then, fq(z) at aq,--- , .41 can be represented as:
k
r r . .
fa,(al> = Z aija;*l,yjfl
i=1j=1
k
T r ) )
= > (D ayy’ e
i=1 j=1
r .
=D o) (I=1,-- 7 +1)

Since this is degree-(r — 1) polynomial in «;, the coeffi-
cients, 1;’s can be recovered from evaluation at r points:
fala2), -+, fa(ar4+1). Then, we can recover fq(ay) by
computing:

falon) = > iai™t,
i=1

D. Problem Statement

Under the system model given in Section II-A, we want to
give a coding strategy for computing C = AB with locality
r. More specifically, we want to construct locally recoverable
Polynomial codes with locality r and locally recoverable
MatDot codes with locality r.

III. LOCALLY RECOVERABLE MATRIX MULTIPLICATION
CODES

In this section, we demonstrate how we can make Poly-
nomial codes and MatDot codes locally recoverable by
applying the ideas of optimal LRC codes [15]. In each
subsection, we will start by giving a simple example of the
construction to provide a better understanding.
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Fig. 2: In Example 1, we have to find a degree-5 polynomial and
Y1, -+ ,7s which satisfies g(A;) = ;. The plot shows one possible

choice of g(z) and 71, - -+ ,~s. After choosing g(z) and v;’s (i =
1,---,5), a;’s are automatically decided (j = 1,---,25). For
instance, A; = {a1,---, a5} are shown on the plot.

A. Locally Recoverable Polynomial Codes

We first give an example of locally recoverable Polynomial
codes for m = 4 and » = 4 with P = 25 worker nodes.
Example 1. (m =4,r = 4, P = 25)
We first split the matrices A and B into 4 blocks as follows:

A,

A,
A= A 3 B= [Bl B2 B3 B4]7 (9)

3

Ay
where A;’s and B;’s are N/4 x N and N x N/4 dimen-
sional submatrices, respectively. Let A = {aq, -, a5}
be a set of 25 distinct real numbers and let A; =
{Oél, v 70[5}7 s ,A5 = {0121, e 70525} be subsets of ./4

that form a partition of A.
Then, we encode the matrices A and B with the following
polynomials:

pA(fL') =A; + Asx + A3$2 + A4:I,‘3
pe(z) = B1 + Bog(z) + Bag(x)? + Bag(x)?
where g(z) is a polynomial of degree 5 that satisfies g(A;) =
~i- An example choice of g(x) and ~;’s is shown in Fig 2.
The ¢-th worker gets the encoded matrices, which are the

evaluations of the polynomials pa (x) and pg(z) at z = «;.
The i-th worker then computes the following product:

4 4
pelx) = 3 >, ABjz'lg(z) !

i=1j=1

(10)

at x = «; and returns the result to the master node.

The degree of polynomial pc(z) is 3-5+ 3 = 18, so
the master node can recover the coefficients of pc(z) from
its evaluation at any 19 distinct points. Hence, the recovery
threshold K = 19.

To see that locality r = 4, let us assume that node 3
is erased, and notice that g(-) satisfies g(ay) = g(ao)
g(az) = g(aa) = g(as) = 1. Now, pc(z) at a1, «
can be rewritten as:

pc(z) = Z (

5

4

(1)



Notice that this is a polynomial of degree 3 which can be
recovered from evaluation at any four distinct points, and in
this case, aq, a9, ay, as. ]

We now provide a general construction of LRC Polyno-
mial codes. Note that our construction is limited to the case
when r = m.

Construction 4. LRC Polynomial code with r = m
Splitting of the matrices A and B follows Construction 1:

Ay

Ay
A=| |, B=[B: B, ...B,]. (2

Ay,
Let A = {al, -ap} be a set of P distinct real numbers
and let {A4;,---, A v } be subsets of A with size (r + 1)

which form a partmon of A. For simplicity, we assume that
(r 4+ 1) divides P.

We encode matrix A and B using the following polyno-
mials:

1—1
)

(13)

= > A = Y Big(x)
i=1 i=1

where ¢(z) is a polynomial of degree (r + 1) which is

constant on each set A;. The i-th worker gets the evaluation

of pa(z) and pp(z) at x «;. Then a worker node

computes the following product:

m m
() =), > AiBjz' gy, (14)
i=1j=1
and return the result to a master node. O

Before proving the recovery threshold and locality prop-
erty of LRC Polynomial code, we want to make an important
remark on choosing g(z) and A.

Remark 1 (Finding a good polynomial g(z) and a set .A).
In [15], a major challenge was to find a suitable polynomial
g over IF, while keeping ¢ small. However, in this work we
consider real numbers. In R, as long as g(z) = 0 has r + 1
distinct real roots (sufficient but not necessary condition),

we can always find ~q,--- V2 and Ay, --- ,A% that
satisfies g(A;) = i =1,--- Tfl).

However, choosing evaluation points («;’s) that satisfy the
above condition can create numerical stability issues. The
numerical stability issue is a persistent problem in coded
computing when trying to extend the coding technique from
finite field to R [19], [20]. This is because decoding MDS
codes close to capacity often leads to matrices that have
poor condition number [21]. Adding locality could worsen
the problem. As the degree of g becomes large (i.e., large r),
the slope of the polynomial g(-) becomes steep very quickly.
This will force us to choose «;’s that are very close to each
other which can make the resulting Vandermonde matrix
close to singular. How much locality effect the stability issue
and how to choose a good polynomial g(-) and ~;’s to make

718

the decoding as numerically stable as possible needs to be
studied further. O

The following theorem shows the recovery threshold and
locality property of the proposed LRC Polynomial code
construction.

Theorem 2. LRC Polynomial code given in Construction 4
achieves locality v = m and recovery threshold K = m? +
m—1. Hence, this is an optimal LRC code for locality r = m.

Proof. The degree of the polynomial pc is (m — 1) + (m +
1)(m — 1) m? + m — 2. Hence, we can obtain the
coefficients of pc from evaluation at any m? +m — 1 distinct
points. Because '~ 1g(x)7~1 all have distinct degrees, we
can decode A;B; sequentially from the coefﬁc1ents First,
recover A,,B,, from the coefficient of 2™ m— 2. then
recover A,,B,,_1 from the coefficient of x™ *+m=2 and
A,,B,, that was already decoded, and so on. Thus, the
recovery threshold K = m? + m — 1.

Locality » = m is guaranteed as (14) follows the form
of (8) in Construction 3 by setting r = m and k/r
The overhead of having locality » = m is m — 1 which is
m?/m—1 = k/r — 1. This shows the optimality of the LRC
Polynomial code. O

B. Locally Recoverable MatDot Codes

Before giving a general construction of locally recoverable
MatDot codes, we want to give a simple example of LRC
MatDot codes for m = 6 and r = 3.

Example 2. (LRC MatDot with m = 6,7 = 3)
First, we split the matrices A and B as follows:

B,

B,

A=[A; A ... Ag], B= )

Bg
Let A= {aj,---,ap} be a set of P distinct real numbers
and let .Al = {a17~ . 044} AP {aP g, aP}

be subsets of A of size 4 that form a partition of A. Let
g(z) be a polynomial with degree 4 that is constant on
each subset A;. We encode matrix A and B as follows:
pa(z) = (A1 + Agz) + (As + Ayx)g(x) + (As + Agz)g(x)?,
pe(2) = (Bg + Bsz) + (By + Bsx)g(z) + (By + Biz)g(x)%

The i-th worker node receives the encoded matrices, pa («;)
and pg(«;), and then computes the following product:
:(Al + Agx)(BG + B5l‘) +

+ (A1B1 + -+ AgBg)zg(2) +

+ (A5 + Agz)(By + Biz)g(x)*

pc(r)

5)

at © = ;. Notice that the coefficient of xg(x)? in (15) is
C = A;B; + --- A¢Bg. The degree of polynomial pc is
4 -4+ 2 = 18, so we can recover the coefficients of the
polynomial with evaluation at any 19 distinct points. After
obtaining the coefficients of pc, the coefficients of x'g(z)’



fori=0,1,2,5 =0,---,4 can be obtained as they all have
distinct degrees. Hence, the recovery threshold K = 19.

To see the locality property, let us assume that node 3 is
erased, and let us denote g(A1) =, i.e., glaq) = g(aa) =
g(as) = g(as) = 7. Then pc(z) at aq, -, can be
rewritten as:

=(A1 + A.Q.T)(Bﬁ + B5[L') +
+ (A1B1 + - AgBg)ay? + - -
+ (A5 + A6J))(B2 + Bll‘)’y4

pc(z)

Now, notice that this is a polynomial of degree 2, which can
be recovered from evaluation at any three points, and in this
case, oy, (g, Q4. L]

We now give a construction of LRC MatDot codes with
general m and r. Unlike LRC Polynomial codes, in the LRC
MatDot code construction, r can take any value between 1
and 2m — 1.

Construction 5. LRC MatDot Codes
Splitting of the matrices A and B follows Construction 2:

B,
A=[A1 Ay . A,], B=| (16)

B.m
Let A= {1, --ap} be a set of P distinct real numbers
andlet Ay, -+, A p_ e be subsets of A with size (r+1) which

form a partition of .A For simplicity, we assume that r + 1
divides both P and m. Let g(x) be a polynomial of degree
r + 1 which is constant on each subset 4;. The encoding
polynomials of the matrices A and B are as follows:

+ (A g+

+(A,,

r—1
r—1
AT g(e) 4

+ AR g ()

7“42r1+1+... [

b

A7)

pB(z) = (Bm +---+B,,
+(B,,_

+ (Brg +-

T+1 +1$ 2

41+ -+ Bpopx =
2

)
glw) +

+B1x%)g(x) (18)

The i-th worker gets the evaluation of pa (z) and pg(z) at
r=q; (1t =1,---,P). Then a worker node computes the
following product:

pc(z) = pa(z)ps(x)
r+1 r+1
Ajl'j71 Z Bm_j+1(L'J71 + .-
j=1 j=1
(A B+ -+A Bm)z%lg(x)frlil +o
7‘ +1 I+1
£ A 2 B2/ lg(z)" 72, (19)

j=1

and return the result to a master node. O
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The following theorem shows the locality and recovery
threshold of the proposed LRC MatDot code construction.

Theorem 3. The LRC MatDot code given in Construction 5
achieves locality r and recovery threshold K = 4m —r — 2.

Proof. The degree of the polynomial pc in (19) is (r —
1) + (ffl —2)(r+ 1) = 4m — r — 3, so with evaluation at
any 4m — r — 2 distinct points, the coefﬁcwnts 0f pc can be
recovered. Also, notice that the coefficient of = = g( )T+1 1
isC=AB;+---+A,B,,. As x'g( )7 all have distinct
degrees fori =0, - - - Tgl,j =0,---, 7"+1 —2, we can obtain
the coefficient of x’g(x)? from the coefficients of pc(z).
Hence, the recovery threshold is K = 4m —r — 2.

Now, let us show that the locality of the construction is 7.

The polynomial pc(z) can be rewritten as:

l+1

ZAx] 1Z}Bm ijJ 1

r+1

+

7+1

2
Azl 123

J=1

+ e

g+l

Nt

Il
—

J
7‘+1

+ Z Ar+1+jx] ! Z By, i1 1)9(37)

j=1
r+1 41
2 2 ) 4
+- 2 A, ﬁlxjfl Z Bj:c]*l)g(:v) +1 72
j=1 j=1
am
= [i(@) + fo(x)g(x) + - + fam  (2)g(x) 71 ’.
Notice that fy,---, f%fl are all polynomials of degree

r — 1. Let pc(«) be the lost matrix and let a € A;. For all
Be A,
4m

pc(B) = f1(B) + f2(B)yi 4+ (B)Vlr-%—l

because g(A;) = ;. This is a degree-(r — 1) polynomial
in 3, so the coefficients of pc can be recovered from its
evaluation at the r points in 4;\{a}. Then the lost matrix
can be recovered by evaluating pc(8) given in (20) at 5 =
o. O

+ fam , 0)

By comparing the recovery threshold given in Theorem 3
and the recovery threshold of MatDot codes without locality
(Construction 2), we can see that the overhead of having
locality r is 2m — r — 1. However, the optimal overhead
suggested by Theorem 1 is [22=1] — 1. Thus, there is a gap
between the proposed LRC MatDot codes and the optimal
LRC codes; while the optimal overhead of having locality r
decreases in the order of 1/r, the overhead of LRC MatDot
codes decreases linearly in 7 (see Fig 3). Whether this sub-
optimality is inevitable due to the structure of MatDot codes
is an open question.

C. Locally Recoverable Systematic MatDot Codes

In this section, we consider the systematic encoding of
LRC MatDot codes. Although we assume a master-worker
system in this paper, LRC matrix multiplication nodes will



Overhead
in K

2m — 2 |-

«— LRC MatDot

Fig. 3: This plot shows the gap between the optimal LRC codes
and the proposed LRC MatDot construction. In the optimal LRC
codes, the overhead of having locality 7 in K is [22=1] — 1, while
in the LRC MatDot codes, the overhead is 2m — 1 — r.

be also valuable in a fully-distributed system that does
not have a master node. Systematic encoding would be
particularly useful in this setting because we can obtain the
final computation output by only repairing failed systematic
nodes. Assuming that failure rate is low, locality will let us
repair a failed systematic node by communicating with only
a few other nodes instead of communicating with all the
other nodes.

We will follow the definition of systematic MatDot codes
given in [2]. For the matrix multiplication problem stated
in Section II-A and when the matrices A and B are split
as in (4), we say a code C is systematic when there are m
systematic nodes whose outputs are A;B; fori =1,--- ,m.
Namely, there is a set Ays = {B1, - ,0Bm} < A such
that pc(8;) = A;B;. In [2], systematic MatDot codes were
constructed by exploiting Lagrange’s interpolation. For more
details, we refer to [2, Section 1V].

We will first give an example of systematic LRC MatDot
codes for m = 4,r = 3 with P = 16 worker nodes.

MatDot Codes

Example 3. (Systematic LRC with
m=4,r =3, P =16)

We first split matrices A and B into 4 blocks as follows:

A=[A; A A; Ay, B= Q1)

where A;’s and B;’s are N x N/4 and N/4 x N dimen-
sional submatrices, respectively. Let A = {aq, -, a6}
be a set of 16 distinct real numbers and let A; =
{a1, - ,aq}, -, Ay = {13, -+ , 14} be disjoint subsets
of A that form a partition of A. Let g(x) be a polynomial
of degree 4 which satisfies: g(A;) = ~; for i = 1,--- ,4.
Then, we encode the matrices A and B with the following
polynomials:

r— T —
pA(I):( 1042—0411 +A2a2—a )fl( )
r—«
+ (As S A ()
a5 — Qg g — Q5

T — Q1 T — Qg
= (B +B
pB(z) = ( — 2T )fl()
T —« Tr—
+ (Bg 6 + B4 5 )fg(z)
a5 — Qg Qg — Qs

where fl(x) = A1 + )\129(56) and fQ(:Z?) = Ao1 + )\Qgg(l’).
The coefficients \;;’s are chosen so that f;(A;) = d;; for
1,7 = 1,2. They can be obtained by solving:

A1 A2 1 1 _ 1 0
Aot A2 | M1 e 0 1|°

The i-th worker node receives the encoded matrices, pa ()
and pg(c;), and then computes the following product:

pe(z) = pa(2)ps(z)
:(Alx—a1+A a:—al)(Bl:c—al
Qg — (1 g — (1 Qg —
r — Q2 2
+Bo——=)fi(z)® + (- ) fi(@) f2(2)
a1 — Qg
Tr— T — Qs T —
+ (As 0 4 ) (B3 0
045—066 Qg — Q5 Qs — Qg
+B4 )fz( )?

at x = o. First, note that the following holds:
pe(a1) = A1B1, pe(az) = AsBo,
Pe(as) = AzB3, pelag) = AyBy.

Hence, this is a systematic code. The degree of pc(-) is
2-4+ 2 =10, so with evaluation at any 11 points, we can
recover the coefficients on pc(x). The recovery threshold
K =11.

Now, to examine the locality property, let as assume that
node 3 is erased. Because f1 and f, are linear combinations
of constant and g(z), they are also constant on each subset
A;. For i = 1,---,4, pc(a;) becomes a polynomial of
degree 2 in «; as f1(«;), f2(«;) are constant for a, -« -, .
Hence, the coefficients of pc can be recovered from three
evaluations, pc(@1),pc(as), and pc(ay), and thus the lost
matrix pc(as) can be recovered. O

We now give a construction of systematic LRC MatDot
codes for general m and r.

Construction 6. Systematic LRC MatDot Codes
The key idea is to replace g(z)'~! in pa(x) given in (17)
with f;(x) which satisﬁes fi(Aj) =645 (G, 5 =1,---

and to replace Z 21 Ar+1 g 2771 in (17) with Lagrange

’r+1)

i—1)+j
interpolation (¢ = 1,-- -, fml) We do similar replacements
for pg(z) in (18). Let us explain this in more detail.

First, we generate f;’s by hnearly combining
Lg(@), -, g(@)FT N i) = Z”l Aijg(z) 1
Let us denote g(A;) = ;. We obtain \;;’s by solving the
following equation:

1 1 e 1
m 72 Y 2m
r+1
A =1om,
: T+1
2m 2m 2m 1
S T+1 r+1
"1 2 T 2m

r+1



where A =
ffr”l = +1 It is easy to see télat by this choice of Ayj’s,
fi(Aj)_(SZj for 7’7]_17 ! 77«_’:11~

Let A; be a subset of .A; which has the first half of the ele-
ments, that iS, Ai = {a(r+1)(i—1)+17 s OK(T+1 Y(i—1)+ r+1}
and let A;(j) = ﬁi\{a(rﬂ)(i_l)ﬂ}. Now, let us define
¢i;(x) as follows:

[Aij] and I 2. is an identity matrix of dimension

r—«

[

aed; (5)

bij(z) =

Q(r4+1)(i—1)+j — o

Then, we encode A and B using the following polynomials:

pa(@) = > Ajbr () fi(e) + A ;62,(7) fa()
j=1 j=1
+ g 2 Am—¢+]¢ 2ml ,j( )fff‘l (m)
= Z Z Avsip gy 0i(@) fil2), (22)
=1 j=1
pB(2) = B'r‘+1(1 1)+]¢m( z) fi(z). (23)

—_
<.

~.
—

The i-th worker receives the evaluation of pa (z) and pg(z)
at z a;. A worker node then computes the following
product:

pa(z)ps(7)

2m r+1
T+1 T2

(22 Acpoyeis@fi@)

i=1j=1

pc(r)

2m  r+1
T+ 3

(X X o on @i @),

i=1j=1

and returns the result to the master node. O

The following theorem shows that the Construction 6 is
indeed systematic, and achieves the same locality and re-
covery threshold as the non-systematic version LRC MatDot
codes.

Theorem 4. The systematic LRC MatDot code given in
Construction 6 is systematic, and achieves locality r and
recovery threshold K = 4m —r — 2.

Proof. To show that the construction is systematic, we have
to show that there exists a subset Asys = {B1, -+, B} S A
such that pc(8;) = A;B;. Let Ay, = A U UA .

Now, notice that for ¢ = 1, -

"r+1andj g

= pA(Q(ri1)(i-1)+5)PB (A 41)(i-1)+5)
= A%( ) Br+1(

C(a(r+1)(i—1)+j)
—1)+j5°

and (,41)(i—1)+; € Asys. This proves that the code is
systematic.
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The degree of ¢; ;’s is 5= L and the degree of f;’s is (r +
1)(3?1 — 1) = 2m — r — 1. Thus, the degree of pc( ) is
2- (%2 +2m —r —1) = 4m — r — 3. This shows that the
recovery threshold K = 4m —r — 2.

Finally, let us show the locality property. Let pc () be the

lost symbol and let @ € A;. Then, for all 8 € A, fi(8) =
Z a

r+1

2m

1

Z 1/}7A7+1 1)+j)¢z,](ﬂ))'
1

+

pc(B)

= ;. Then, pc(B) can be rewritten as:
2m

(
(Z i wlBT“(z 1 +J)¢w(ﬁ>)

7'+1

Since ¢; ;’s are polynomials of degree %1, pc(B) is a
degree-(r — 1) polynomial in 5. Hence, from the evaluation
of pc(-) at the r points in A4;\{a}, we can recover the
coefficients of pc(-). The lost symbol pc(«) can then be
recovered by evaluating pc(8) at § = . O

IV. CONCLUSION AND FUTURE WORK

In this work, we proposed LRC Polynomial codes and
LRC MatDot codes. The proposed coding strategies have
a few limitations. First, LRC Polynomial codes are only
limited to the case when r» = m. Designing LRC Polynomial
codes with different r values can be studied in the future.
Also, we do not have the systematic version of LRC Poly-
nomial codes, which we believe to have the most practical
usage. For LRC MatDot codes, we can choose different r
values ranging from 1 to 2m — 1, but the recovery threshold
K has a gap from optimal LRC codes. Finding an improved
strategy or proving that this is optimal for MatDot codes is
an interesting open question.

As mentioned in Remark 1, in order to put the proposed
coding techniques into practice, numerical stability of the
constructions should be understood. While this issue is
present in any polynomial-based real-number codes, and not
just limited to LRC codes, understanding the effect of locality
on the numerical stability poses a different question. Lastly,
extending the proposed techniques to LRC codes with higher
availability is an intriguing future direction.
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