978-1-5386-4780-6/18/$31.00©2018 |IEEE

2018 IEEE International Symposium on Information Theory (ISIT)

A Unified Coded Deep Neural Network Training
Strategy based on Generalized PolyDot codes

Sanghamitra Dutta*!, Zigian Bai*?, Haewon Jeong!, Tze Meng Low!, Pulkit Grover

Abstract—This paper has two main contributions. First, we
propose a novel coding technique — Generalized PolyDot — for
matrix-vector products that advances on existing techniques
for coded matrix operations under storage and communication
constraints. Next, we use Generalized PolyDot for the problem
of training large Deep Neural Networks (DNNs) using unreliable
nodes that are prone to soft-errors, e.g., bit flips during compu-
tation that produce erroneous outputs. An additional difficulty
imposed by the problem of DNN training is that the parameter
values (weight matrices) are updated at every iteration, and thus
require a prohibitively large encoding cost at every iteration if
we naively extend existing coded computing techniques. Thus,
we propose a “unified” coded DNN training strategy where
we weave coding into the operations of DNN training itself, so
that the weight matrices, once initially encoded, remain encoded
during updates with negligible encoding/decoding overhead per
iteration. Moreover, our strategy can also allow for errors even
in the nonlinear step of training. Finally, our coded DNN
training strategy is completely decentralized: no assumptions
on the presence of a master node are made, which avoids
any single point of failure under soft-errors. Our strategy can
provide unboundedly better error tolerance than the competing
replication strategy and an MDS-code-based strategy [1].

I. INTRODUCTION

DNNs are immensely popular today, with applications such
as image processing in safety and time critical computations
(e.g. automated cars) and healthcare. Thus reliable training
of DNNs is becoming increasingly important. In this paper
(expanded version [2]), we propose a unified coded computing
technique for error-resilient training of model parallel' DNNs,
based on a new class of codes called Generalized PolyDot.

Our focus is on soft-errors that refer to undetected errors,
e.g. bit-flips or gate errors in computation, caused by several
factors, e.g., exposure of chips to cosmic rays from outer
space, manufacturing defects, and storage faults [4]. Ignoring
“soft-errors” entirely during the training of DNNs can severely
degrade the accuracy of training, as we experimentally observe
in [1]. In [1], we also provided some simple coding strategies
that leverage Maximum Distance Separable (MDS) codes for
model parallel training of DNNs.

Coded computing is a promising solution to the various
problems arising from unreliability of processing nodes in
parallel and distributed computing, such as straggling [5]. It is
a significant step in a long line of work on noisy computing

L Carnegie Mellon University, 2 Chinese University of Hong Kong

* Equal Contribution, Contact: sanghamd @andrew.cmu.edu.

'Data parallel and model parallel are two different architectures for
training. The former lets each node store and train a replica of the entire
DNN on different data and a central parameter server combines their inputs
to train a central replica of the DNN. In the latter, different parts of a single
DNN are parallelized across nodes. See [3] for coding in data parallel training.

1

started by von Neumann [6] in 1956, that has been followed

upon by Algorithm-Based Fault-Tolerance (ABFT) [7], the

predecessor of coded computing (see [2] for expanded survey).
This work proposes a novel coded compputing technique

Generalized PolyDot for matrix-vector products that gener-

alizes our prior work on PolyDot codes [8], proposed for the

problem of multiplying square matrices. In [8], we first demon-

strated that the recovery threshold of Polynomial codes [9]

can be reduced further using a novel code construction called

MatDot. Conceptually, PolyDot codes are a coded matrix-

multiplication approach that interpolates between the seminal

Polynomial codes [9] (for low communication costs) and

MatDot codes [8] (for highest error tolerance). Our proposed

Generalized PolyDot achieves the same erasure recovery

threshold (and hence error tolerance) for matrix-vector prod-

ucts as that obtained in a concurrent work on entangled-
polynomial codes [10], proposed for matrix-matrix products.
We utilize Generalized PolyDot to develop a unified coded

DNN technique (building on our recent work [1]). However,

the problem of DNN training imposes several additional

difficulties that we address here:

« Encoding overhead: Existing works on coded matrix-vector
products (e.g. for computing Wiy x vy x1) require encoding
of the matrix W which is as computationally expensive as
the matrix-vector product itself. Thus, these techniques [3],
[5], [11] are most useful if W is known in advance and
is fixed over a large number of computations so that the
encoding cost is amortized. However, when training DNNs,
because the parameters update at every iteration, a naive
extension of existing techniques would require encoding of
weight matrices at every iteration and thus introduce an
undesirable additional overhead of €2(N?) at every iteration.
To address this, we carefully weave coding into operations of
DNN training so that an initial encoding of the weight matri-
ces is maintained across the updates. Further, to maintain the
coded structure, we only need to encode vectors instead of
matrices at every iteration, thus adding negligible overhead.

« Master node acting as a single point of failure: Because
of our focus on soft-errors, unlike many coded computing
works, we also need to consider a completely decentralized
setting, with no master node. This is because a master node
can often become a “single point of failure”, an important
concept in parallel computing. Thus, we allow for even
encoding/decoding [12] to be error-prone.

« Nonlinear activation between layers: We code the linear
operations (matrix-vector products) at each layer separately
as they are the most critical and complexity-intensive steps in

1585

2018 IEEE International Symposium on Information Theory (ISIT)

the training of DNNs as compared to other operations such
as nonlinear activation or diagonal matrix post-multiplication
which are linear in vector length. Moreover, as our im-
plementation is decentralized, every node acts as a replica
of the master node, performing encoding/decoding/nonlinear
activation/diagonal matrix post-multiplication and helping us
detect (and if possible correct) errors in all the steps.
Finally we demonstrate scaling sense advantages of our pro-
posed unified coded DNN strategy over replication and MDS
code-based strategies [1] (see Theorem 2).
II. BACKGROUND AND PROBLEM FORMULATION

We first provide a brief background on DNN training to set
the notation. This description is limited; we refer the reader to
our full version [2, Appendix A] for a systematic introduction.
Background on DNN training: A DNN with L layers is
being trained using backpropagation with Stochastic Gradient
Descent with a “batch size” of 1 [2]. The DNN thus consists
of L weight matrices, one for each layer (see Fig. 1). At the
l-th layer, IV; denotes the number of neurons. Thus, the weight
matrix to be trained is of dimension N; x N;_1. For simplicity
of presentation, we assume that N;=N for all layers.

In every iteration, the DNN (i.e. the L weight matrices)
is trained based on a single data point and its true label
through three stages, namely, feedforward, backpropagation
and update, as shown in Fig. 1. At the beginning of every
iteration, the first layer accesses the data vector (input for
layer 1) from memory and starts the feedforward stage which
propagates from layer [=1 to L. For a layer, let us denote the
weight matrix, input for the layer and backpropagated error
for that layer by W, = and & respectively?. The operations
performed in layer [during feedforward stage (see Fig. la)
can be summarized as:

e [O1] Compute matrix-vector product s=W x.

e [C1] Compute input for layer (I+1) given by f(s) where
f(.) is a nonlinear activation function applied elementwise.

At the last layer (I=L), the backpropagated error vector is

generated by accessing the true label from memory and the

estimated label as output of last layer (see Fig. 1b). Then,
the backpropagated error propagates from layer L to 1 (see

Fig. 1c), also updating the weight matrices at every layer

alongside (see Fig. 1d). The operations for the backpropaga-

tion stage can be summarized as:

e [O2] Compute matrix-vector product ¢/'=7W.

« [C2] Compute backpropagated error vector for layer (I—1)
given by ¢’ D where D is a diagonal matrix whose i-th
diagonal element depends only on the i-th value of x.

Finally, the step in the Update stage is as follows:

o [O3] Update as: W+ W +ndx’ where 7 is the learning rate.
Desirable Parallelization Scheme: We are interested in fully
decentralized, model parallel architectures where each layer is
parallelized using P nodes for each layer (that can be reused
across layers) because the nodes cannot store the entire matrix
W for each layer. As the steps O1, O2 and O3 are the
most computationally intensive steps at each layer, we restrict

2Strictly speaking, we should use W, & and 8' where [is the index of
the layer. However, as the operations are same across layers, we omit the .

ourselves to schemes where these three steps for each layer
are parallelized across the P nodes. In such schemes, the steps
C1 and C2 thus become the steps requiring communication
as the partial computation outputs of steps O1 and O2 at one
layer are required to compute the input @ or backpropagated
error § for another layer, which is also parallelized across all
nodes. We introduce two possible error models here.
Definition 1 (Error Model 1). Any node can be affected by
errors but only during the steps O1, O2 and O3. There are
no errors in encoding/decoding/nonlinear activation/diagonal
matrix post-multiplication, as they are negligible in computa-
tional complexity®. No assumption is made on the distribution
of the errors but the number of errors at each step is bounded.
Definition 2 (Error Model 2). Any processing node can be
affected by soft-errors at any point during the computation (in-
cluding encoding/decoding/nonlinear activation/diagonal ma-
trix post-multiplication), and there is no upper bound on the
number of errors. For conceptual simplicity, the output of an
erroneous node is assumed to be the correct output corrupted
by an additive continuous valued random noise.

Remark 1. Error model 1 is a “worst-case” abstraction con-
sistent with finite precision as well as reals (infinite precision).
Error model 2 instead allows us to detect the occurrence
of errors (“garbage outputs”) in a coded computation with
probability 1 even if they are too many to be corrected. In prac-
tical implementations, our results that hold with probability 1
should be interpreted as holding with high probability (e.g. it
is unlikely, but possible, that two erroneous nodes produce the
same garbage output). Further, both replication and coding
strategies are also able to exploit Error model 2 alike.

Goal: Our goal is to design a unified coded DNN training
strategy, denoted by C(N,K,P), using P nodes such that
every node can effectively store only a % fraction of the
entries of W for every layer. Thus, each node has a total
storage constraint of LTNZ along with negligible additional
storage of O(LTNQ) for vectors that are significantly smaller
compared to matrices. Additionally it is desirable that all ad-
ditional communication complexities and encoding/decoding
overheads should be negligible in scaling sense compared to
the computational complexity of the steps O1, O2 and O3
parallelized across each node, at any layer*.

Essentially, we are required to perform coded “post” and
“pre” multiplication of the same matrix W with vectors x
and 67 respectively at each layer, along with all the other
operations mentioned in Section II including the update. As
outputs are communicated to other nodes at steps C'1 and C2,
we would like to be able to correct as many erroneous nodes
as possible at these two steps, before moving to another layer.

Definition 3 (Error Tolerances (ts,t)). For any layer I, the
error tolerances are (ty,ty) if at most ty and ty, erroneous
node outputs can be detected and corrected in steps Cy and

3The shorter the computation, the lower is the probability of soft-errors.
The occurrence of soft-errors is assumed to be a Poisson process in [13], i.e.,
the number of errors in an interval has mean proportional to its length.

4We are able to compare communication and computational complexities
in a scaling sense following [14], even though the constant factor might differ.

1586

2018 IEEE International Symposium on Information Theory (ISIT)

== Feedforward Stage Backpropagated Error Calculation

i Input to Input to Input
Estimated p
sl_l:l;:|e Layer 3 Layer 2 Data at last layer
l‘ @Welgh!s | sigh“) ‘eaawe'g“‘s H and I used to compulei
onlmear i J i d True Backpropagated

Label Label Error Vector

f() Activation f()

(a) Feedforward Stage (b) Transition at last layer

> Backpropagation Stage
Backpropagated Error Vector Error Vector
Error Vector for Layer 2 for Layer 1

(Transposed) (Trans| {)sed) (Transposed) Update Stage
d\lelghls mWﬁgh Weights Update each weight matrix as:

(e | e e | B
Diagonal Matrix Diagonal Matrix ; (Transposed)
Multiplication Error Vector

(d) Update Stage

nput Vector
Multiplication

(c) Backpropagation Stage

Fig. 1. DNN training: (From Left to Right) (a) Feedforward stage - The data vector is passed forward through all the layers (a matrix-vector product followed
by a nonlinear activation function f(.) at each layer) producing an estimate of the label vector. (b) Transition - The backpropagated error for the last layer
is calculated using the estimated and true label vectors. (c) Backpropagation stage of DNN training - The backpropagated error vector propagates backward
across the layers (a matrix-vector product followed by a multiplication with a diagonal matrix) to generate the backpropagated error vector for every layer.
(d) Update stage - Alongside, each layer also updates itself using its backpropagated error vector and its own input vector.

Cy respectively under both Error Models 1 and 2.

Matrix Partitioning Notations: We choose two integers m
and n such that K=mn, and block-partition the matrix W
both row-wise and column-wise into mxn blocks, each of
size % x N et W;; denote the block with row index ¢ and
column 1ndexy,wherez 0,1,...,m—1 and j=0,1,...,n—1. The
vectors « and &7 are also partitioned into n and m equal parts
respectively, denoted by o, Z1,...,z,_1 and 62,67 ... J,Tn_

respectively. E.g., for m=n=2, the partitioning for §7, W

and x is: - -
T_[ST 8T _[Wo, 0,1 A
o'=[8f o], W—[Wl,l] and x= {wJ)

Wi

We would also be partitioning the vectors s(=Wz) and

T(=6TW) into m and n parts respectively, denoted as
80,81,-,8m—1 and ¢t ecT_, respectively.

We also let a(u) (or A(u)) denote a vector (or matrix)

whose every element is a polynomial in scalar variable u, i.e.,

effectively a polynomial in u© whose coefficients are all vectors

(or matrices) of the same dimension as a (or A).
III. EXISTING STRATEGIES

Replication (C.,,(K,N,P)) For every layer, the matrix W is
block-partitioned across a grid of mxn nodes where K=mn,
and % replicas of this system is created using a total of
P nodes (assume mn divides P). For computing s=Wx,
the node with grid index (i,j) accesses «; and computes
Wi;jx;. Then, the first node in every row aggregates and
computes the sum Z] OW”:BJ—Sz for ¢=0,1,...,m—1. For
the example with m=n=2, observe the two sub-vectors of s
that are required to be reconstructed:

- {80} _ [Wo,o Wo,l] {SEO] - {W0,0580+W0,1$1
s (Wi Wigl x| |Wiozo+Wiizs
After these computations, all the replicas computing the same
sub-vector, i.e., say s;, exchange their computational outputs
for error correction. Under Error Model 1, any t=[£ |
errors can be tolerated in the worst case. However under Error
Model 2, the probability of two outputs having exactly same
error is 0. As long as an output occurs at least twice, it is
almost surely the correct output. Thus, any t———2 errors
can be detected and corrected. Then, the correct sub vectors
(s;’s) are communicated to the respective nodes that require
it for generating their input for the next layer, and the sub-
matrices stored in the erroneous nodes are regenerated by

accessing other nodes known to be correct.
Additional Steps: At regular intervals, the system also check-
points, i.e., sends the entire DNN to a disk for storage. This

disk-storage, although time-intensive to retrieve from, can be
assumed to be error-free. Under Error Model 2, if more than ¢
errors occur, then with probability 1 none of the outputs match.
The system detects the occurrence of errors even though it is
unable to correct them. So, it retrieves the DNN from the disk
and reverts the computation to the last checkpoint.

A similar technique is followed for backpropagation. The

the node with index (i,j) accesses 87 and computes 57 W;;.
Finally the last node in every column aggregates and computes
> oI W, =c] for j=0,1,...,n—1. Error check occurs sim-
ilarly. If errors can be corrected, then ch’s are communicated
to the respective nodes that require it to compute backprop-
agated error for the next layer, along with x;. Interestingly,
after these operations, the node with index (4,j) has x; and
67, and is thus able to update itself as Wi« W;;+nd;x]
respectively.
MDS-code based strategy (Cp.qs(K,N,P)): Another strategy
(details in [1]) is to use two systematic MDS codes to encode
the block-partitioned matrix W. A (m+2ts,m) systematic
MDS code is used to encode these blocks row-wise and a
(n+2tp,n) systematic MDS code is used to encode column-
wise, so as to correct any £y and t; errors in steps C'1 and C2
respectively. The total number of nodes is P=mn+2t;n+
2tyn for this strategy, of which only mn nodes are used in
both steps O1 and O2. In step O1, only Py=mn+2t;n nodes
corresponding to the (m+2t;,m) code are active and in step
02, only P,=mn+2t,m nodes are active.

IV. GENERALIZED POLYDOT CODES

Before introducing our coded DNN strategy, we first de-
scribe our Generalized PolyDot codes for matrix-vector prod-
ucts. Suppose we are required to perform the matrix-vector
product s=W x using P nodes, such that every node can only
store an %x% coded or uncoded submatrix (% fraction) of

W. Then, we have the following achievability result.

Theorem 1 (Achievability of Generalized PolyDot). The Gen-
eralized PolyDot codes for computing matrix-vector product
Wxyw«nxn using P nodes, each storing only an ﬂxﬁ
submatrix, can tolerate atmost P—mn—n-+1 erasures or

W errors under Error Models 1 and 2.

We let the p-th node (p=0,1,...,P—1) store an encoded

block of W which is a polynomial in u and v
m—1In—1

v)= Z Z‘Viju%j

i=0 j=0

(1)

1587

2018 IEEE International Symposium on Information Theory (ISIT)

evaluated at (u,v)=(ay,b,). Each node also block-partitions x
into n equal parts, and encodes them using the polynomial

Zaz o @)

evaluated at v=b,. Then, each node performs the matrix-
vector product W(ap, b,)&(b,) which effectively results in the

evaluation, at (v)=(ap,bp), of the following polynomial:
n—1lm—1In—1

(w)2()=>_ > Y Wimuo" 1 (3)

=0 1=0 5=0
even though the node is not explicitly evaluating it from all

its coefficients. Now, fixing [=j, observe that the coefﬁcient
of w*v™~ ! for i=0,1,...,m—1 turns out to be Z Wijw]
s;. Thus, these m coefficients constitute the m sub vectors of
s=Wx. Therefore, s can be recovered at any node if it can
reconstruct these m coefficients of the polynomial §(u,v) in
(3). Let us illustrate this for the case where m=n=2. Consider
the following polynomial:
$(u,w)=(Wp o+W1 gu+Wy 10+ W1 1uv)(zov+a1)
:Wo,oa)l+W1’OZB1U+WO,12B07}2+W1_’11130u1)2
+(Wo,0xo+Wo121)v+ (Wi ozo+ Wi 121)uv (4)
S1
We use the substltutlon u=v" to convert §(u,v) into a poly-
nomial in a single variable. Some of the unwanted coefficients
align with each other (e.g. v and v? in (4)), but the coefficients
of u'v™~1=p™*+"~1 stay the same, i.e., s; for i=0,1,...,m—1.
The resulting polynomial is of degree mn+n—2. Thus, all the
coefficients of this polynomial can be reconstructed from P
distinct evaluations of this polynomial at P nodes, if there are
atmost P—mmn—n-+1 erasures or W errors [2].

V. UNIFIED CODED DNN TRAINING STRATEGY
Here, we propose an initial encoding scheme for W at
each layer such that the same encoding allows us to perform
coded“post” and “pre” multiplication of W with vectors =
and &7 respectively at each layer in every iteration. The
key idea is that we encode W only for the first iteration.
For all subsequent iterations, we encode and decode vectors
(hence complexity o(N?z) as we show in Theorem 3) instead
of matrices. As we will show, the encoded weight matrix W

is able to update itself, maintaining its coded structure.
Initial Encoding of W: Every node receives an 2 x 2 sub-
matrix (or block) of W encoded using Generalized PolyDot.
For p=0,1,...,P—1, node p stores Wp::W(u,vMu:amv:bg
(recall (1)) at the beginning of the training which has -
entries. Encoding of matrix is done only in the first iteration.
Feedforward Stage: Assume that the entire input x to the
layer is available at every node at the beginning of step
O1 (this assumption is justified at the end of this section).
Also assume that the updated Wp of the previous iteration
is available at every node (this assumption will be justified
when we show that the encoded sub-matrices of W are able

to update themselves, preserving their coded structure).
For p=0,1,...,P—1, node p block partitions « and generates
the codeword Z,:=Z(v)|,—b, (see (2)). Next, each node
performs the matrix-vector product: §,=W, &, and sends this

S(uw)=W

product (polynomial evaluation) to every other node® where
some of these products may be erroneous. Now, if every node
can still decode the coefficients of u‘v™~! for i=0,1,...,m—1),
then it can successfully decode s.

We actually use one of the substitutions u=v" or v=u™
(elaborated in Section VI and [2, Appendix B]), to convert
3(u,v) into a polynomial in a single variable and then use
standard decoding techniques [2, Appendix B] to interpolate
the coefficients of a polynomial in one variable from its
evaluations at P arbitrary points when some evaluations have
an additive error. Once s is decoded, the nonlinear function
f(.) is applied element-wise to generate the input for the next
layer. This also makes x available at every node at the start
of the next feedforward layer, justifying our assumption.

Regeneration: Under both Error Models 1 and 2, each node
can not only correct ¢y erroneous nodes but also locate which
nodes were erroneous [2, Appendix B]. Thus, the encoded W
stored at those nodes are regenerated® by accessing some of
the nodes that are known to be correct.

Additional Steps: Similar to replication and MDS code
based strategy, the DNN is checkpointed at a disk at regular
intervals. If there are more errors than the error tolerance, the
nodes are unable to decode correctly. However under Error
Model 2, as the error is assumed to be additive and drawn
from real-valued, continuous distributions, the occurrence of
errors is still detectable [2] even though they cannot be located
or corrected, and thus the entire DNN can again be restored
from the last checkpoint.

To allow for decoding errors under Error Model 2, we
need to include one more verification step where all nodes
exchange their assessment of node outputs, i.e., a list of nodes
that they found erroneous and compare (additional overhead of
O(P?(logP)) [2, Appendix C]). If there is a disagreement at
one or more nodes during this process, we assume that there
has been errors during the decoding, and the entire neural
network is restored from the last checkpoint. Because the
complexity of this verification step is low in scaling sense
compared to encoding/decoding or communication (because it
does not depend on N), we assume that it is error-free since
the probability of soft-errors occurring within such a small
duration is negligible as compared to other computations of
longer durations.

Backpropagation Stage: The backpropagation stage is very
similar to the feedforward stage. The backpropagated error §7'
is available at every node. Each node partitions the row-vector
67 into m equal parts and encodes them using the polynomial:

=> 8 um7 (5)
=0

SPessimistically, we assume that every node first multi-casts its own output
to all P nodes in ©(logP) rounds, and then this is repeated for P nodes
allowing the communication overhead to be as high as 9(%PlogP). This
complexity might be reduced using other all-to-all communication protocols.

5The encoded matrix at any node is the evaluation of a polynomial whose
coefficients correspond to the original sub-matrices W;;. Thus, the number
of nodes required by an error-prone node is the degree of this polynomial 41.
Substituting u=v™ (alternatively, v=u""), this degree is mn—1, and thus an
error-prone node needs to access mn correct nodes to regenerate itself.

1588

2018 IEEE International Symposium on Information Theory (ISIT)

For p=0,1,...,P—1, the p-th node evaluates 6" (u) at u=a,,
yielding 6T 5T(ap) Next, it performs the computation cg—

5TW and sends the product to all the other nodes, of which
some products may be erroneous. Consider the polynomial:

m—1lm—1n—1
&" (u0)=6" (W

(u,v) ZZZ&I Wiju™™ b=
1=0 i=0 j=0

The products computed at eacﬁ~ nodé effectively result in the
evaluations of this polynomial ¢ (u,v) at (u,v)=(ap,b,). Sim-
ilar to feedforward stage, each node is required to decode the
coefficients of u™~'v7 in this polynomial for j=0,1,...,n—1
to reconstruct ¢’. The vector ¢’ is used to compute the
backpropagated error for the consecutive, i.e., (I—1)-th layer.
Update Stage: The key part is wupdating the coded W,,.
Observe that since x and 6 are both available at each node, it
can encode the vectors as 37" §;u’ and Z",Ol @ vl atu=a,
and v=b,, respectively, and then update 1tself as follows:

m—1 n—1
W, W, 41)(Zda ZwaJ
m—1n—1 - 0)
=D > (Witndie])a,b, (©)
=0 j=0

Update of W;;
The update step preserves the coded nature of the weight
matrix, with negligible additional overhead (see Theorem 3).
Errors occurring in the update stage corrupt the updated
submatrix without being immediately detected as there is no
output produced. The errors exhibit themselves only after step
O1 in the next iteration at that layer, when that particular
submatrix is used to produce an output again. Thus, they are
detected (and if possible corrected) at C'1 of next iteration.
VI. COMPARISON WITH EXISTING STRATEGIES

We compare the worst case error tolerance of Cqp (K,N,P)

with Cpas(K,N,P) and Cyep(K,N,P) in Theorem 2 below.

Theorem 2 (Error tolerances (ty,ty)). The error tolerances
(tf,tp) at each layer for the three strategies Cgp(K,N,P),
Cmas(K,N,P) and Cyep(K,N,P) are given by Table I.

TABLE I
ERROR TOLERANCES (i ¢,t;,) UNDER FIXED NUMBER OF NODES P

Error Tolerance in Error Tolerance in

Strategy Step C'1 (t5) in Step C2 ()
CGP(K7N7P) with P—mn—n+1 P—2mn+n
u=ov" 2 2

CGP(KvN’P) with P—2mn+4+m P—mn—m+1
v=umm 2 2

o i | “ta (<Pgee) | B (<Bpme)
Crop(K,N,P) 3)
Remark 2. Strictly speaking, we need a floor functton l.]

applied to all of the expressions and mn|P for replication.

Remark 3. One might prefer t;>ty, because at step C'1 all
errors from both steps O1 of the current iteration and O3
of the last iteration are corrected along with low-complexity
intermediate steps. However, at step C2, only errors at O2

are corrected along with low-complexity intermediate steps.

Corollary 1 (Scaling Sense Comparison). Consider the regime
m=n=v'K. Then the ratio of ty (orty) for Cap(K,N,P) with

(ts,tp) Achievability Curves

Generalized

PolyDot ‘\

Upper Bound on MDS
Replication

(t)

Error Tolerance

=]

o

20 40 0 80
Error Tolerance (tf%
Fig. 2. Error tolerance region: We choose P=180, K =36 and vary m and
n. For MDS-code based strategy, we plot an upper bounds on ty,t, using
Py,P,<P. Generalized PolyDot (with u=v") achieves the best (¢ ,t;) trade-
off. Choosing v=u"" also gives same curve only interchanging (t,t;).

Cunas(K,N,P) and Cyep, (K ,N,P) scales as ©(vVK) and ©(K)
respectively as P—o0.

All proofs are in [2, Appendix B]. In Fig. 2, we show
that Generalized PolyDot achieves the best (ty,t,) trade-off
compared to the other existing schemes. Now we formally
show that Cqp(K,N,P) satisfies the desired properties of
adding negligible overhead at each node in Theorem 3.

Theorem 3. For a Cqp(K,N,P) in feedforward (or backprop-
agation) stage at any layer, the ratio of the total complexity of
encoding/decoding and communication to the matrix-vector
product tends to 0 as K,N,P—oo if the number of nodes
satisfy P*=o(N).

The proof is provided in [2, Appendix C]. For this proof, we
assume a pessimistic bound (©(P?)) on the decoding of a code
of block length P under errors, based on sparse reconstruction
algorithms [15]. Reduction of decoding complexity using other

algorithms would also relax the condition of Theorem 3.
REFERENCES

[1] S. Dutta, Z. Bai, T. M. Low, and P. Grover, “Codenet: Training Large
Neural Networks in presence of Soft-Errors,” Submitted, 2018.

[2] “Full version.” [Online]. Auvailable: sites.google.com/site/
sanghamitraweb/academic-articles

[3] R. Tandon et al., “Gradient Coding: Avoiding Stragglers in Distributed
Learning,” in International Conference on Machine Learning, 2017.

[4] A. Geist, “Supercomputing’s monster in the closet,” IEEE Spectrum,
vol. 53, no. 3, pp. 30-35, 2016.

[5] K. Lee er al., “Speeding Up Distributed Machine Learning Using
Codes,” IEEE Trans. on Inf. Theory, vol. PP, no. 99, pp. 1-1, 2017.

[6] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, vol. 34, pp.
43-98, 1956.

[71 K. H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Trans. on Computers, vol. 100, no. 6, pp.
518-528, 1984.

[8] M. Fahim et al., “On the Optimal Recovery Threshold of Coded Matrix
Multiplication,” in Comm., Control, and Computing (Allerton), 2017.

[9]1 Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an

Optimal Design for High-Dimensional Coded Matrix Multiplication,” in

Advances In Neural Information Processing Systems (NIPS), 2017.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation

in distributed matrix multiplication: Fundamental limits and optimal

coding,” arXiv preprint arXiv:1801.07487, 2018.

S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large

Linear Transforms Distributedly Using Coded Short Dot Products,” in

Advances In Neural Information Processing Systems (NIPS), 2016.

M. G. Taylor, “Reliable Information Storage in Memories Designed from

Unreliable Components,” Bell Syst. Tech. J., vol. 47, no. 10, pp. 2299—

2337, 1968.

X. Li et al., “A memory soft error measurement on production systems.”

in USENIX Annual Technical Conference, 2007.

R. A. van de Geijn and J. Watts, “SUMMA: Scalable Universal Matrix

Multiplication Algorithm,” Austin, TX, USA, Tech. Rep., 1995.

[10]

(1]

[12]

[13]

[14]

1589

