
A Unified Coded Deep Neural Network Training
Strategy based on Generalized PolyDot codes

Sanghamitra Dutta⇤1, Ziqian Bai⇤2, Haewon Jeong1, Tze Meng Low1, Pulkit Grover1

Abstract—This paper has two main contributions. First, we
propose a novel coding technique – Generalized PolyDot – for
matrix-vector products that advances on existing techniques
for coded matrix operations under storage and communication
constraints. Next, we use Generalized PolyDot for the problem
of training large Deep Neural Networks (DNNs) using unreliable
nodes that are prone to soft-errors, e.g., bit flips during compu-
tation that produce erroneous outputs. An additional difficulty
imposed by the problem of DNN training is that the parameter
values (weight matrices) are updated at every iteration, and thus
require a prohibitively large encoding cost at every iteration if
we naively extend existing coded computing techniques. Thus,
we propose a “unified” coded DNN training strategy where
we weave coding into the operations of DNN training itself, so
that the weight matrices, once initially encoded, remain encoded
during updates with negligible encoding/decoding overhead per
iteration. Moreover, our strategy can also allow for errors even
in the nonlinear step of training. Finally, our coded DNN
training strategy is completely decentralized: no assumptions
on the presence of a master node are made, which avoids
any single point of failure under soft-errors. Our strategy can
provide unboundedly better error tolerance than the competing
replication strategy and an MDS-code-based strategy [1].

I. INTRODUCTION

DNNs are immensely popular today, with applications such
as image processing in safety and time critical computations
(e.g. automated cars) and healthcare. Thus reliable training
of DNNs is becoming increasingly important. In this paper
(expanded version [2]), we propose a unified coded computing
technique for error-resilient training of model parallel1 DNNs,
based on a new class of codes called Generalized PolyDot.

Our focus is on soft-errors that refer to undetected errors,
e.g. bit-flips or gate errors in computation, caused by several
factors, e.g., exposure of chips to cosmic rays from outer
space, manufacturing defects, and storage faults [4]. Ignoring
“soft-errors” entirely during the training of DNNs can severely
degrade the accuracy of training, as we experimentally observe
in [1]. In [1], we also provided some simple coding strategies
that leverage Maximum Distance Separable (MDS) codes for
model parallel training of DNNs.

Coded computing is a promising solution to the various
problems arising from unreliability of processing nodes in
parallel and distributed computing, such as straggling [5]. It is
a significant step in a long line of work on noisy computing

1 Carnegie Mellon University, 2 Chinese University of Hong Kong
⇤ Equal Contribution, Contact: sanghamd@andrew.cmu.edu.
1Data parallel and model parallel are two different architectures for

training. The former lets each node store and train a replica of the entire
DNN on different data and a central parameter server combines their inputs
to train a central replica of the DNN. In the latter, different parts of a single
DNN are parallelized across nodes. See [3] for coding in data parallel training.

started by von Neumann [6] in 1956, that has been followed
upon by Algorithm-Based Fault-Tolerance (ABFT) [7], the
predecessor of coded computing (see [2] for expanded survey).

This work proposes a novel coded compputing technique
Generalized PolyDot for matrix-vector products that gener-
alizes our prior work on PolyDot codes [8], proposed for the
problem of multiplying square matrices. In [8], we first demon-
strated that the recovery threshold of Polynomial codes [9]
can be reduced further using a novel code construction called
MatDot. Conceptually, PolyDot codes are a coded matrix-
multiplication approach that interpolates between the seminal
Polynomial codes [9] (for low communication costs) and
MatDot codes [8] (for highest error tolerance). Our proposed
Generalized PolyDot achieves the same erasure recovery
threshold (and hence error tolerance) for matrix-vector prod-
ucts as that obtained in a concurrent work on entangled-
polynomial codes [10], proposed for matrix-matrix products.

We utilize Generalized PolyDot to develop a unified coded
DNN technique (building on our recent work [1]). However,
the problem of DNN training imposes several additional
difficulties that we address here:
• Encoding overhead: Existing works on coded matrix-vector

products (e.g. for computing W

N⇥N

x

N⇥1) require encoding
of the matrix W which is as computationally expensive as
the matrix-vector product itself. Thus, these techniques [3],
[5], [11] are most useful if W is known in advance and
is fixed over a large number of computations so that the
encoding cost is amortized. However, when training DNNs,
because the parameters update at every iteration, a naive
extension of existing techniques would require encoding of
weight matrices at every iteration and thus introduce an
undesirable additional overhead of ⌦(N2

) at every iteration.
To address this, we carefully weave coding into operations of
DNN training so that an initial encoding of the weight matri-
ces is maintained across the updates. Further, to maintain the
coded structure, we only need to encode vectors instead of
matrices at every iteration, thus adding negligible overhead.

• Master node acting as a single point of failure: Because
of our focus on soft-errors, unlike many coded computing
works, we also need to consider a completely decentralized
setting, with no master node. This is because a master node
can often become a “single point of failure”, an important
concept in parallel computing. Thus, we allow for even
encoding/decoding [12] to be error-prone.

• Nonlinear activation between layers: We code the linear
operations (matrix-vector products) at each layer separately
as they are the most critical and complexity-intensive steps in

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 1585

the training of DNNs as compared to other operations such
as nonlinear activation or diagonal matrix post-multiplication
which are linear in vector length. Moreover, as our im-
plementation is decentralized, every node acts as a replica
of the master node, performing encoding/decoding/nonlinear
activation/diagonal matrix post-multiplication and helping us
detect (and if possible correct) errors in all the steps.

Finally we demonstrate scaling sense advantages of our pro-
posed unified coded DNN strategy over replication and MDS
code-based strategies [1] (see Theorem 2).

II. BACKGROUND AND PROBLEM FORMULATION

We first provide a brief background on DNN training to set
the notation. This description is limited; we refer the reader to
our full version [2, Appendix A] for a systematic introduction.
Background on DNN training: A DNN with L layers is
being trained using backpropagation with Stochastic Gradient
Descent with a “batch size” of 1 [2]. The DNN thus consists
of L weight matrices, one for each layer (see Fig. 1). At the
l-th layer, N

l

denotes the number of neurons. Thus, the weight
matrix to be trained is of dimension N

l

⇥N
l�1. For simplicity

of presentation, we assume that N
l

=N for all layers.
In every iteration, the DNN (i.e. the L weight matrices)

is trained based on a single data point and its true label
through three stages, namely, feedforward, backpropagation
and update, as shown in Fig. 1. At the beginning of every
iteration, the first layer accesses the data vector (input for
layer 1) from memory and starts the feedforward stage which
propagates from layer l=1 to L. For a layer, let us denote the
weight matrix, input for the layer and backpropagated error
for that layer by W , x and � respectively2. The operations
performed in layer l during feedforward stage (see Fig. 1a)
can be summarized as:
• [O1] Compute matrix-vector product s=Wx.
• [C1] Compute input for layer (l+1) given by f(s) where

f(.) is a nonlinear activation function applied elementwise.
At the last layer (l=L), the backpropagated error vector is
generated by accessing the true label from memory and the
estimated label as output of last layer (see Fig. 1b). Then,
the backpropagated error propagates from layer L to 1 (see
Fig. 1c), also updating the weight matrices at every layer
alongside (see Fig. 1d). The operations for the backpropaga-
tion stage can be summarized as:
• [O2] Compute matrix-vector product cT

=�

T

W .
• [C2] Compute backpropagated error vector for layer (l�1)

given by c

T

D where D is a diagonal matrix whose i-th
diagonal element depends only on the i-th value of x.

Finally, the step in the Update stage is as follows:
• [O3] Update as: W W+⌘�xT where ⌘ is the learning rate.
Desirable Parallelization Scheme: We are interested in fully
decentralized, model parallel architectures where each layer is
parallelized using P nodes for each layer (that can be reused
across layers) because the nodes cannot store the entire matrix
W for each layer. As the steps O1, O2 and O3 are the
most computationally intensive steps at each layer, we restrict

2Strictly speaking, we should use W

l, xl and �

l where l is the index of
the layer. However, as the operations are same across layers, we omit the l.

ourselves to schemes where these three steps for each layer
are parallelized across the P nodes. In such schemes, the steps
C1 and C2 thus become the steps requiring communication
as the partial computation outputs of steps O1 and O2 at one
layer are required to compute the input x or backpropagated
error � for another layer, which is also parallelized across all
nodes. We introduce two possible error models here.
Definition 1 (Error Model 1). Any node can be affected by
errors but only during the steps O1, O2 and O3. There are
no errors in encoding/decoding/nonlinear activation/diagonal
matrix post-multiplication, as they are negligible in computa-
tional complexity3. No assumption is made on the distribution
of the errors but the number of errors at each step is bounded.
Definition 2 (Error Model 2). Any processing node can be
affected by soft-errors at any point during the computation (in-
cluding encoding/decoding/nonlinear activation/diagonal ma-
trix post-multiplication), and there is no upper bound on the
number of errors. For conceptual simplicity, the output of an
erroneous node is assumed to be the correct output corrupted
by an additive continuous valued random noise.
Remark 1. Error model 1 is a “worst-case” abstraction con-
sistent with finite precision as well as reals (infinite precision).
Error model 2 instead allows us to detect the occurrence
of errors (“garbage outputs”) in a coded computation with
probability 1 even if they are too many to be corrected. In prac-
tical implementations, our results that hold with probability 1

should be interpreted as holding with high probability (e.g. it
is unlikely, but possible, that two erroneous nodes produce the
same garbage output). Further, both replication and coding
strategies are also able to exploit Error model 2 alike.
Goal: Our goal is to design a unified coded DNN training
strategy, denoted by C(N,K,P), using P nodes such that
every node can effectively store only a 1

K

fraction of the
entries of W for every layer. Thus, each node has a total
storage constraint of LN

2

K

along with negligible additional
storage of o(LN

2

K

) for vectors that are significantly smaller
compared to matrices. Additionally it is desirable that all ad-
ditional communication complexities and encoding/decoding
overheads should be negligible in scaling sense compared to
the computational complexity of the steps O1, O2 and O3

parallelized across each node, at any layer4.
Essentially, we are required to perform coded “post” and

“pre” multiplication of the same matrix W with vectors x

and �

T respectively at each layer, along with all the other
operations mentioned in Section II including the update. As
outputs are communicated to other nodes at steps C1 and C2,
we would like to be able to correct as many erroneous nodes
as possible at these two steps, before moving to another layer.
Definition 3 (Error Tolerances (t

f

,t
b

)). For any layer l, the
error tolerances are (t

f

,t
b

) if at most t
f

and t
b

erroneous
node outputs can be detected and corrected in steps C1 and

3The shorter the computation, the lower is the probability of soft-errors.
The occurrence of soft-errors is assumed to be a Poisson process in [13], i.e.,
the number of errors in an interval has mean proportional to its length.

4We are able to compare communication and computational complexities
in a scaling sense following [14], even though the constant factor might differ.

2018 IEEE International Symposium on Information Theory (ISIT)

1586

Input
Data

Weights
(Layer 1)

Nonlinear
Activation f(.)

Input to
Layer 2

Weights
(Layer 2)

Nonlinear
Activation f(.)

Nonlinear
Activation f(.)

Weights
(Layer 3)

Input to
Layer 3

Estimated
Label

Feedforward Stage

(a) Feedforward Stage

Backpropagated
Error Vector

Estimated
Label

True
Label

used to compute and e

Backpropagated Error Calculation
at last layer

(b) Transition at last layer

Backpropagated
Error Vector
(Transposed)

Weights
(Layer 1)

Weights
(Layer 2)

Weights
(Layer 3)

Error Vector
for Layer 2

(Transposed)

 Error Vector
for Layer 1

(Transposed)

Diagonal Matrix
Multiplication

Diagonal Matrix
Multiplication

t d
Backpropagation Stage

(c) Backpropagation Stage

Update each weight matrix as:

η

 Error Vector

Input Vector
(Transposed)

Update Stage

(d) Update Stage

Fig. 1. DNN training: (From Left to Right) (a) Feedforward stage - The data vector is passed forward through all the layers (a matrix-vector product followed
by a nonlinear activation function f(.) at each layer) producing an estimate of the label vector. (b) Transition - The backpropagated error for the last layer
is calculated using the estimated and true label vectors. (c) Backpropagation stage of DNN training - The backpropagated error vector propagates backward
across the layers (a matrix-vector product followed by a multiplication with a diagonal matrix) to generate the backpropagated error vector for every layer.
(d) Update stage - Alongside, each layer also updates itself using its backpropagated error vector and its own input vector.

C2 respectively under both Error Models 1 and 2.

Matrix Partitioning Notations: We choose two integers m
and n such that K=mn, and block-partition the matrix W
both row-wise and column-wise into m×n blocks, each of

size N
m×N

n . Let Wij denote the block with row index i and

column index j, where i=0,1,...,m−1 and j=0,1,...,n−1. The

vectors x and δT are also partitioned into n and m equal parts

respectively, denoted by x0,x1,...,xn−1 and δT0 ,δ
T
1 ,...,δ

T
m−1

respectively. E.g., for m=n=2, the partitioning for δT , W
and x is:

δT=
[
δT0 δT1

]
, W=

[
W0,0 W0,1

W1,0 W1,1

]
and x=

[
x0

x1

]
.

We would also be partitioning the vectors s(=Wx) and

cT (=δTW) into m and n parts respectively, denoted as

s0,s1,...,sm−1 and cT0 ,c
T
1 ,...,c

T
n−1 respectively.

We also let a(u) (or A(u)) denote a vector (or matrix)

whose every element is a polynomial in scalar variable u, i.e.,
effectively a polynomial in u whose coefficients are all vectors

(or matrices) of the same dimension as a (or A).

III. EXISTING STRATEGIES

Replication (Crep(K,N,P)) For every layer, the matrix W is

block-partitioned across a grid of m×n nodes where K=mn,

and P
mn replicas of this system is created using a total of

P nodes (assume mn divides P). For computing s=Wx,

the node with grid index (i,j) accesses xj and computes

Wijxj . Then, the first node in every row aggregates and

computes the sum
∑n−1

j=0Wijxj=si for i=0,1,...,m−1. For

the example with m=n=2, observe the two sub-vectors of s
that are required to be reconstructed:

s=

[
s0
s1

]
=

[
W0,0 W0,1

W1,0 W1,1

][
x0

x1

]
=

[
W0,0x0+W0,1x1

W1,0x0+W1,1x1

]
After these computations, all the replicas computing the same

sub-vector, i.e., say si, exchange their computational outputs

for error correction. Under Error Model 1, any t=�P−mn
2mn �

errors can be tolerated in the worst case. However under Error

Model 2, the probability of two outputs having exactly same

error is 0. As long as an output occurs at least twice, it is

almost surely the correct output. Thus, any t= P
mn−2 errors

can be detected and corrected. Then, the correct sub-vectors

(si’s) are communicated to the respective nodes that require

it for generating their input for the next layer, and the sub-

matrices stored in the erroneous nodes are regenerated by

accessing other nodes known to be correct.

Additional Steps: At regular intervals, the system also check-
points, i.e., sends the entire DNN to a disk for storage. This

disk-storage, although time-intensive to retrieve from, can be

assumed to be error-free. Under Error Model 2, if more than t
errors occur, then with probability 1 none of the outputs match.

The system detects the occurrence of errors even though it is

unable to correct them. So, it retrieves the DNN from the disk

and reverts the computation to the last checkpoint.

A similar technique is followed for backpropagation. The

the node with index (i,j) accesses δTi and computes δTi Wij .

Finally the last node in every column aggregates and computes∑m−1
i=0 δTi Wij=cTj for j=0,1,...,n−1. Error check occurs sim-

ilarly. If errors can be corrected, then cTj ’s are communicated

to the respective nodes that require it to compute backprop-

agated error for the next layer, along with xj . Interestingly,

after these operations, the node with index (i,j) has xj and

δTi , and is thus able to update itself as Wij←Wij+ηδix
T
j

respectively.

MDS-code based strategy (Cmds(K,N,P)): Another strategy

(details in [1]) is to use two systematic MDS codes to encode

the block-partitioned matrix W . A (m+2tf ,m) systematic

MDS code is used to encode these blocks row-wise and a

(n+2tb,n) systematic MDS code is used to encode column-

wise, so as to correct any tf and tb errors in steps C1 and C2
respectively. The total number of nodes is P=mn+2tfn+
2tbn for this strategy, of which only mn nodes are used in

both steps O1 and O2. In step O1, only Pf=mn+2tfn nodes

corresponding to the (m+2tf ,m) code are active and in step

O2, only Pb=mn+2tbm nodes are active.

IV. GENERALIZED POLYDOT CODES

Before introducing our coded DNN strategy, we first de-

scribe our Generalized PolyDot codes for matrix-vector prod-

ucts. Suppose we are required to perform the matrix-vector

product s=Wx using P nodes, such that every node can only

store an N
m×N

n coded or uncoded submatrix (1
K fraction) of

W . Then, we have the following achievability result.

Theorem 1 (Achievability of Generalized PolyDot). The Gen-
eralized PolyDot codes for computing matrix-vector product
WN×NxN using P nodes, each storing only an N

m×N
n

submatrix, can tolerate atmost P−mn−n+1 erasures or
P−mn−n+1

2 errors under Error Models 1 and 2.

We let the p-th node (p=0,1,...,P−1) store an encoded

block of W which is a polynomial in u and v

W̃ (u,v)=

m−1∑
i=0

n−1∑
j=0

Wiju
ivj (1)

2018 IEEE International Symposium on Information Theory (ISIT)

1587

evaluated at (u,v)=(a
p

,b
p

). Each node also block-partitions x
into n equal parts, and encodes them using the polynomial

˜

x(v)=

n�1X

l=0

x

l

vn�l�1. (2)

evaluated at v=b
p

. Then, each node performs the matrix-
vector product ˜

W (a
p

,b
p

)

˜

x(b
p

) which effectively results in the
evaluation, at (u,v)=(a

p

,b
p

), of the following polynomial:

˜

s(u,v)=

˜

W (u,v)

˜

x(v)=

n�1X

l=0

m�1X

i=0

n�1X

j=0

W

ij

x

l

uivn�l+j�1 (3)

even though the node is not explicitly evaluating it from all
its coefficients. Now, fixing l=j, observe that the coefficient
of uivn�1 for i=0,1,...,m�1 turns out to be

P
n�1
j=0Wij

x

j

=

s

i

. Thus, these m coefficients constitute the m sub-vectors of
s=Wx. Therefore, s can be recovered at any node if it can
reconstruct these m coefficients of the polynomial ˜

s(u,v) in
(3). Let us illustrate this for the case where m=n=2. Consider
the following polynomial:

˜

s(u,v)=(W0,0+W1,0u+W0,1v+W1,1uv)(x0v+x1)

=W0,0x1+W1,0x1u+W0,1x0v
2
+W1,1x0uv2

+(W0,0x0+W0,1x1)| {z }
s0

v+(W1,0x0+W1,1x1)| {z }
s1

uv (4)

We use the substitution u=vn to convert ˜

s(u,v) into a poly-
nomial in a single variable. Some of the unwanted coefficients
align with each other (e.g. u and v2 in (4)), but the coefficients
of uivn�1

=vni+n�1 stay the same, i.e., s
i

for i=0,1,...,m�1.
The resulting polynomial is of degree mn+n�2. Thus, all the
coefficients of this polynomial can be reconstructed from P
distinct evaluations of this polynomial at P nodes, if there are
atmost P�mn�n+1 erasures or P�mn�n+1

2 errors [2].
V. UNIFIED CODED DNN TRAINING STRATEGY

Here, we propose an initial encoding scheme for W at
each layer such that the same encoding allows us to perform
coded“post” and “pre” multiplication of W with vectors x

and �

T respectively at each layer in every iteration. The
key idea is that we encode W only for the first iteration.
For all subsequent iterations, we encode and decode vectors
(hence complexity o(N

2

K

) as we show in Theorem 3) instead
of matrices. As we will show, the encoded weight matrix W

is able to update itself, maintaining its coded structure.
Initial Encoding of W : Every node receives an N

m

⇥N

n

sub-
matrix (or block) of W encoded using Generalized PolyDot.
For p=0,1,...,P�1, node p stores ˜

W

p

:=

˜

W (u,v)|
u=ap,v=bp

(recall (1)) at the beginning of the training which has N

2

K

entries. Encoding of matrix is done only in the first iteration.
Feedforward Stage: Assume that the entire input x to the
layer is available at every node at the beginning of step
O1 (this assumption is justified at the end of this section).
Also assume that the updated ˜

W

p

of the previous iteration
is available at every node (this assumption will be justified
when we show that the encoded sub-matrices of W are able
to update themselves, preserving their coded structure).

For p=0,1,...,P�1, node p block partitions x and generates
the codeword ˜

x

p

:=

˜

x(v)|
v=bp (see (2)). Next, each node

performs the matrix-vector product: ˜

s

p

=

˜

W

p

˜

x

p

and sends this

product (polynomial evaluation) to every other node5 where
some of these products may be erroneous. Now, if every node
can still decode the coefficients of uivn�1 for i=0,1,...,m�1),
then it can successfully decode s.

We actually use one of the substitutions u=vn or v=um

(elaborated in Section VI and [2, Appendix B]), to convert
˜

s(u,v) into a polynomial in a single variable and then use
standard decoding techniques [2, Appendix B] to interpolate
the coefficients of a polynomial in one variable from its
evaluations at P arbitrary points when some evaluations have
an additive error. Once s is decoded, the nonlinear function
f(.) is applied element-wise to generate the input for the next
layer. This also makes x available at every node at the start
of the next feedforward layer, justifying our assumption.

Regeneration: Under both Error Models 1 and 2, each node
can not only correct t

f

erroneous nodes but also locate which
nodes were erroneous [2, Appendix B]. Thus, the encoded W

stored at those nodes are regenerated6 by accessing some of
the nodes that are known to be correct.

Additional Steps: Similar to replication and MDS code
based strategy, the DNN is checkpointed at a disk at regular
intervals. If there are more errors than the error tolerance, the
nodes are unable to decode correctly. However under Error
Model 2, as the error is assumed to be additive and drawn
from real-valued, continuous distributions, the occurrence of
errors is still detectable [2] even though they cannot be located
or corrected, and thus the entire DNN can again be restored
from the last checkpoint.

To allow for decoding errors under Error Model 2, we
need to include one more verification step where all nodes
exchange their assessment of node outputs, i.e., a list of nodes
that they found erroneous and compare (additional overhead of
⇥(P 2

(logP)) [2, Appendix C]). If there is a disagreement at
one or more nodes during this process, we assume that there
has been errors during the decoding, and the entire neural
network is restored from the last checkpoint. Because the
complexity of this verification step is low in scaling sense
compared to encoding/decoding or communication (because it
does not depend on N), we assume that it is error-free since
the probability of soft-errors occurring within such a small
duration is negligible as compared to other computations of
longer durations.
Backpropagation Stage: The backpropagation stage is very
similar to the feedforward stage. The backpropagated error �T

is available at every node. Each node partitions the row-vector
�

T into m equal parts and encodes them using the polynomial:

˜

�

T

(u)=

m�1X

l=0

�

T

l

um�l�1. (5)

5Pessimistically, we assume that every node first multi-casts its own output
to all P nodes in ⇥(logP) rounds, and then this is repeated for P nodes
allowing the communication overhead to be as high as ⇥(

N
mP logP). This

complexity might be reduced using other all-to-all communication protocols.
6The encoded matrix at any node is the evaluation of a polynomial whose

coefficients correspond to the original sub-matrices Wij . Thus, the number
of nodes required by an error-prone node is the degree of this polynomial +1.
Substituting u=vn (alternatively, v=um), this degree is mn�1, and thus an
error-prone node needs to access mn correct nodes to regenerate itself.

2018 IEEE International Symposium on Information Theory (ISIT)

1588

For p=0,1,...,P−1, the p-th node evaluates δ̃T (u) at u=ap,

yielding δ̃Tp =δ̃T (ap). Next, it performs the computation c̃Tp =

δ̃Tp W̃p and sends the product to all the other nodes, of which

some products may be erroneous. Consider the polynomial:

c̃T (u,v)=δ̃T (u)W̃ (u,v)=

m−1∑
l=0

m−1∑
i=0

n−1∑
j=0

δTl Wiju
m−l+i−1vj

The products computed at each node effectively result in the

evaluations of this polynomial c̃T (u,v) at (u,v)=(ap,bp). Sim-

ilar to feedforward stage, each node is required to decode the

coefficients of um−1vj in this polynomial for j=0,1,...,n−1
to reconstruct cT . The vector cT is used to compute the

backpropagated error for the consecutive, i.e., (l−1)-th layer.

Update Stage: The key part is updating the coded Wp.

Observe that since x and δ are both available at each node, it

can encode the vectors as
∑m−1

i=0 δiu
i and

∑n−1
j=0x

T
j v

j at u=ap
and v=bp respectively, and then update itself as follows:

W̃p←W̃p+η(

m−1∑
i=0

δia
i
p)(

n−1∑
j=0

xT
j b

j
p)

=
m−1∑
i=0

n−1∑
j=0

(Wij+ηδix
T
j)︸ ︷︷ ︸

Update of Wij

aipb
j
p (6)

The update step preserves the coded nature of the weight

matrix, with negligible additional overhead (see Theorem 3).

Errors occurring in the update stage corrupt the updated

submatrix without being immediately detected as there is no

output produced. The errors exhibit themselves only after step

O1 in the next iteration at that layer, when that particular

submatrix is used to produce an output again. Thus, they are

detected (and if possible corrected) at C1 of next iteration.
VI. COMPARISON WITH EXISTING STRATEGIES

We compare the worst case error tolerance of CGP(K,N,P)
with Cmds(K,N,P) and Crep(K,N,P) in Theorem 2 below.

Theorem 2 (Error tolerances (tf ,tb)). The error tolerances
(tf ,tb) at each layer for the three strategies CGP(K,N,P),
Cmds(K,N,P) and Crep(K,N,P) are given by Table I.

TABLE I
ERROR TOLERANCES (tf ,tb) UNDER FIXED NUMBER OF NODES P

Strategy
Error Tolerance in

Step C1 (tf)
Error Tolerance in

in Step C2 (tb)
CGP(K,N,P) with

u=vn
P−mn−n+1

2
P−2mn+n

2

CGP(K,N,P) with
v=um

P−2mn+m
2

P−mn−m+1
2

Cmds(K,N,P) where
P=Pf+Pb−mn

Pf−mn

2n

(≤P−mn
2n

) Pb−mn
2m

(≤P−mn
2m

)

Crep(K,N,P) P
mn

−2 P
mn

−2

Remark 2. Strictly speaking, we need a floor function �.�
applied to all of the expressions and mn|P for replication.
Remark 3. One might prefer tf>tb because at step C1 all
errors from both steps O1 of the current iteration and O3
of the last iteration are corrected along with low-complexity
intermediate steps. However, at step C2, only errors at O2
are corrected along with low-complexity intermediate steps.

Corollary 1 (Scaling Sense Comparison). Consider the regime
m=n=

√
K. Then the ratio of tf (or tb) for CGP(K,N,P) with

t
0 20 40 60 80
0

20

40

60

80
(tf , tb) Achievability Curves

Error Tolerance (tf)

g
E
rr
o
r
T
o
le
ra
n
ce

(t
b
)

Replication
Upper Bound on MDS

Generalized
PolyDot

zed

Fig. 2. Error tolerance region: We choose P=180, K=36 and vary m and
n. For MDS-code based strategy, we plot an upper bounds on tf ,tb using
Pf ,Pb≤P . Generalized PolyDot (with u=vn) achieves the best (tf ,tb) trade-
off. Choosing v=um also gives same curve only interchanging (tf ,tb).

Cmds(K,N,P) and Crep(K,N,P) scales as Θ(
√
K) and Θ(K)

respectively as P→∞.
All proofs are in [2, Appendix B]. In Fig. 2, we show

that Generalized PolyDot achieves the best (tf ,tb) trade-off

compared to the other existing schemes. Now we formally

show that CGP(K,N,P) satisfies the desired properties of

adding negligible overhead at each node in Theorem 3.

Theorem 3. For a CGP(K,N,P) in feedforward (or backprop-
agation) stage at any layer, the ratio of the total complexity of
encoding/decoding and communication to the matrix-vector
product tends to 0 as K,N,P→∞ if the number of nodes
satisfy P 4=o(N).

The proof is provided in [2, Appendix C]. For this proof, we

assume a pessimistic bound (Θ(P 3)) on the decoding of a code

of block length P under errors, based on sparse reconstruction

algorithms [15]. Reduction of decoding complexity using other

algorithms would also relax the condition of Theorem 3.
REFERENCES

[1] S. Dutta, Z. Bai, T. M. Low, and P. Grover, “Codenet: Training Large
Neural Networks in presence of Soft-Errors,” Submitted, 2018.

[2] “Full version.” [Online]. Available: sites.google.com/site/
sanghamitraweb/academic-articles

[3] R. Tandon et al., “Gradient Coding: Avoiding Stragglers in Distributed
Learning,” in International Conference on Machine Learning, 2017.

[4] A. Geist, “Supercomputing’s monster in the closet,” IEEE Spectrum,
vol. 53, no. 3, pp. 30–35, 2016.

[5] K. Lee et al., “Speeding Up Distributed Machine Learning Using
Codes,” IEEE Trans. on Inf. Theory, vol. PP, no. 99, pp. 1–1, 2017.

[6] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, vol. 34, pp.
43–98, 1956.

[7] K. H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Trans. on Computers, vol. 100, no. 6, pp.
518–528, 1984.

[8] M. Fahim et al., “On the Optimal Recovery Threshold of Coded Matrix
Multiplication,” in Comm., Control, and Computing (Allerton), 2017.

[9] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an
Optimal Design for High-Dimensional Coded Matrix Multiplication,” in
Advances In Neural Information Processing Systems (NIPS), 2017.

[10] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” arXiv preprint arXiv:1801.07487, 2018.

[11] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large
Linear Transforms Distributedly Using Coded Short Dot Products,” in
Advances In Neural Information Processing Systems (NIPS), 2016.

[12] M. G. Taylor, “Reliable Information Storage in Memories Designed from
Unreliable Components,” Bell Syst. Tech. J., vol. 47, no. 10, pp. 2299–
2337, 1968.

[13] X. Li et al., “A memory soft error measurement on production systems.”
in USENIX Annual Technical Conference, 2007.

[14] R. A. van de Geijn and J. Watts, “SUMMA: Scalable Universal Matrix
Multiplication Algorithm,” Austin, TX, USA, Tech. Rep., 1995.

2018 IEEE International Symposium on Information Theory (ISIT)

1589

