2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)

Allerton Park and Retreat Center
Monticello, IL, USA, October 2-5, 2018

Cross-Iteration Coded Computing

Farzin Haddadpour, Yaoqing Yang, Viveck Cadambe, Pulkit Grover

Abstract—We introduce the idea of cross-iteration coded
computing, an approach to reducing communication costs for a
large class of distributed iterative algorithms involving linear
operations, including gradient descent and accelerated gradi-
ent descent for quadratic loss functions. The state-of-the-art
approach for these iterative algorithms involves performing
one iteration of the algorithm per round of communication
among the nodes. In contrast, our approach performs multiple
iterations of the underlying algorithm in a single round of
communication by incorporating some redundancy storage
and computation. Our algorithm works in the master-worker
setting with the workers storing carefully constructed linear
transformations of input matrices and using these matrices
in an iterative algorithm, with the master node inverting the
effect of these linear transformations. In addition to reduced
communication costs, a trivial generalization of our algorithm
also includes resilience to stragglers and failures. The degree of
redundancy of our algorithm can be tuned based on the amount
of communication and straggler resilience required. Finally, we
also describe a variant of our algorithm that can flexibly recover
the results based on the degree of straggling in the worker nodes.
The variant allows for the performance to degrade gracefully as
the number of successful (non-straggling) workers is lowered.

I. INTRODUCTION

In this work, we design a novel coded computing tech-
nique called cross-iteration coded computing to reduce the
communication costs of state-of-the-art iterative computing
by carefully introducing redundancy to storage and com-
putation. Specifically, we focus on reducing the number
of communication rounds, which is often the bottleneck in
distributed computing [1]-[5]. Compared to existing coded
computing techniques, the proposed technique jointly codes
the computation of multiple iterations, instead of coding the
computation of each iteration separately (hence the name).
It shares an intellectual flavor to the attempt in [6] to break
the inherently serial nature of iterative computing and paral-
lelizing it, but through the use of coding techniques which
provide rigorous theoretical guarantees. Cross-iteration coded
computing can reduce several rounds of communications to
only one, thereby significantly reducing the communication
costs, with controlled increases in storage and computation
costs. Cross-iteration coded computing can also be readily
adapted to provide straggler mitigation in distributed algo-
rithms through trivial generalizations.

We summarize the main contributions of the paper as the
following:

Y. Yang and P. Grover are with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA-15213. F. Haddad-
pour and V. Cadambe are with the Department of Electrical Engineering,
Pennsylvania State University, University Park, PA 16802. The authors
can be contacted at (yyaoqing,pgrover) @andrew.cmu.edu, fxh18@psu.edu,
viveck@engr.psu.edu

978-1-5386-6596-1/18/$31.00 ©2018 IEEE

« We provide a coded computing technique that codes
jointly across several iterations of distributed computing,
thereby reducing the number of communication rounds
to only one by leveraging storage and computation re-
dundancy. We provide analytical insights which demon-
strate that the provided technique reduces the communi-
cation cost compared to a standard baseline algorithm.
We also describe a variant that can trade-off redundancy
in storage and computation, with communication cost.

We show that the proposed technique can also provide
tolerance to stragglers. A novel aspect of our technique
is that it can recover the results under a computation
deadline, by flexibly choosing the number of iterations
in a post-processing phase based on the number of
stragglers. As a consequence, the performance degrades
gracefully as the number of successful workers is low-
ered.

A. Motivation: Distributed Implementation of Iterative Algo-
rithms

The focus of our paper is a generic iterative algorithm,
whose inputs are a N x 1 vectors y,x(?) and output at the
n-th iteration is represented as the N x 1 vector x(") for
n = 1,2,.... The algorithms we consider are parametrized
by an V x N matrix A, a sequence of real-valued degree /¢
polynomials p)(z), ¢ (z), for £ = 1,2,.... The iterative
algorithms we consider are expressed as

x® = p(A)x 4 41 (A)y. (1)
We denote
p® (2) = Zagt)zz , g (2) = Zﬂl(t)zz7)
i=0 i=0
wherea B(t)eRf0r0<z<tt—12 ,. Several

important iterative optimization approaches, in partlcular for
quadratic cost functions, are specializations of the above
generic algorithm. Often times, these algorithms have the
following recursive structure,

t—1
+ > wax® 4oy

t—1
x = A 3% 46y
=0 =0

which results in the following recursive structure for the
polynomials:

t— t—1

=23 (W) +

i=0 1=0

—

P (2) <%(2p) 3)

196

¢V () = 2 (Z A4t

We provide two example of such algorithms,
gradient descent and accelerated gradient descent.

Example 1: Gradient Descent with a quadratic loss func-
tion: For a differentiable loss function f(x,b), consider
the iterative gradient descent algorithm that approximates
x* = argminy f(x,b) as follows:

| 5(t)) + Z ,y(t)q(z (t)

“4)

namely

(B — 5 (t=1) _

OV f(x"H,b),

where ¢ € R is the step size. For a quadratic loss function
f(x,b) = |[Mx — b||?, the above iterative algorithm spe-
cializes as x() = Ax(*=D 4y where A = I — 2¢M"M
and y = 2¢Mb. Note that this algorithm can be written in
the form (1),(3),(4), where p(®)(2) = zp(t=1(2),pM(2) =
L,¢M(2) =y, and ¢ (2) = 2¢""V(2) + ¢V (2).
Example 2: Accelerated Gradient Descent: Consider the
Nesterov Accelerated Gradient Descent algorithm:
vt = x _ g7 r(x®)
xHD = ytD (v (D) ()

The above can be simplified as

D) = (4 1)x® — px(tD

— (p+ DV F(x") — ppV f(x"1).

For a quadratic cost function as before, f(x,b) = ||Mx—
b||2, the above iterative algorithm specializes to

XD = (14) AxY — pAXY 4y, 5)

where A = I1—2¢M”TM and y = 2¢Mb. This is equivalent
to the recursion in (1), (3), (4) with p(+1) = (14p)2p®) (2)—
pzp=1 (2) and ¢ = (14 1) 2¢'" (2) = pzg" =D (2) +y.
We now consider distributed implementation of the iterative
algorithms of the form (1),(2), which is the setting of our
main contribution.

B. Contribution: Cross-Iteration Coded Computing

Consider a master-worker framework (see Fig. 1), where
the master node receives the input and distributes the input to
P workers. The standard baseline approach, BaselineParallel,
to distributed implementation of the above algorithm is to
perform n iterations in n rounds of communication between
the master and the workers, as described in Algorithm 1.

Ay
Ay

In BaselineParallel, we split matrices A = where

Ap
A; are N/P x N matrices, and worker node i stores
matrices A; for ¢ = 1,2,..., P. The iterative algorithm
(1),(2) is implemented in BaselineParallel with one round

of communication between the master and the workers per
iteration. Specifically, if the inputs x(?),y are sent in the

beginning to the workers, then worker i sends A;x(9), A,y
for i = 1,2,..., P; the master aggregates the results of P
workers to obtain Ax(?), Ay. In the second round of commu-
nication, the master node sends to the workers, Ax(®), Ay;
the workers multiply the received vectors with the matrices
they store and send them back to the master node which then
aggregates them to obtain A2x(?), A%y. Proceeding simi-
larly, the master node obtains A‘x("), Ay ¢ =0,1,2,...,n
after n rounds of communication, and then obtains the output
(1) by linearly combining the vectors based on (2).

Given that the baseline distributed approach requires n
rounds of communication to compute n iterations, our work
is motivated by the following question: Can we perform n
iterations of the iterative algorithm (1),(2) with fewer than n
rounds of communication?

A1
Ayst=b

The BaselineParallel algorithm in the master-worker architecture.

plE=1) glk—

Fig. 1.

Algorithm 1 BaselineParallel(A, n,x(©), y)

1: [A] Offline computations-Master node: Split matrices
A into P equal-dimension submatrices such that A =

(AT A%l * . Send submatrix A; to the ith worker
for1 <i<P.

2: [B] Online computations

3. Set r(o) =)((0)7 S(O) e y

4: For k=1 :n do

5. Send r*—1 s(k=1) to each worker node

6:

7. for each worker i € {1,2,..., P} do rgk) = A,;rh-1
and s(k) A;stk=1)

8: send x(k) and b(k) to the master node.

9: Master node aggregates r()3 and s()3 to form r(*) =

T
lr(lk) rgf) and s*) = [sgk) sgf)] .
C] Master Post-Processing: Output

P 0(Q; r()-i-ﬁ("s()))

10:

Our main contribution, cross-iteration coded computing,
answers the above question in affirmative through a non-
trivial distributed approach to performing (1),(2). Note that
a trivial approach to performing n iterations in only one
round of communication is a centralized approach, where
there is only one worker that stores A, Q, and performs the
iterations (1),(2). However, note that this centralized approach
would require each node storing A, Q entirely, whereas in

197

the distributed approach that uses n rounds of communi-
cation, each node only stores a fraction % of the matrices
A, Q. Cross-iteration coded computing can be viewed as
a trade-off between these two extremes. By incorporating
redundancy in storage and computation, cross-iteration coded
computing can perform several iterations of the algorithm
with only one round of computation. In particular, by tuning
the degree of storage/computation redundancy, cross-iteration
coded computing can control the number of communication

rounds performed.

C. Related Work

Most works on coded computing consider one-shot matrix
operations or data shuffling [7]-[23]. For coding iterative
algorithms, almost all existing work focuses on the op-
timization of a single iteration or weighted averaging in
a single communication round [24]-[34]. Exceptions are
[35], [36], which combine the intermediate results in two
consecutive rounds to improve the performance of sparse
coded computing. Our work is the first to code cross an
arbitrary number of iterations, and leveraging this coding to
reduce the number of communication rounds to one with a
controlled increase in storage and computation costs.

The coded computing technique derived in this paper orig-
inates from “MatDot codes” [37], [38], which are storage-
optimal codes for matrix multiplication, whose optimality
was shown recently in [39]. MatDot codes, and their gen-
eralization, Poly-Dot codes, were recently applied to coded
neural network training [40], [41]. Some contemporary works
on polynomial-encoded matrix operations include [31], [42],
and also, notably [43], which focuses on matrix opera-
tions with reduced communication costs. Compared to these
works, our work applies to the general framework of multi-
round iterative computation, with emphasis on techniques
in distributed optimization. Perhaps most significantly, our
technique can be useful in reducing communication costs,
and thus speeding up the computation, even when no strag-
gling is present. A technical report with some preliminary
ideas of this paper, that specialized to the application of
gradient descent (Example 1 above) is available at [44].
Our paper generalizes [44] significantly to include generic
iterative algorithms of the form (1),(2), as well as introduces
the concept of flexible recovery thresholds.

Next, in Section II, we describe our cross-iteration coded
computing based algorithm and compare it with the baseline
algorithm. In Section III, we describe the modification to
the algorithm of Section II that can flexibly recover of
the output based on the degree of straggling allowing for
graceful performance degradation with increasing number of
stragglers.

II. CROSS-ITERATION CODED COMPUTING

We begin with some preliminary lemmas in Section II-A.
Then we will describe an algorithm in Section II-B that will
perform n iterations of iterative algorithm of (1),(2) in fewer
than n rounds of communication.

A. Preliminary Lemmas

Consider an N x N matrix A that can be written as
A,

A=[A) A, A1) = A

Km—l
where A;,i=0,1,...,m—1are a N x N/m matrices and
A, are N/m x N matrices. Let h1(¢), ho(¢) be respectively

N x N/m and N/m x N matrices whose entries are poly-
nomials in ¢ as follows:

m—1 m—1
h(Q) =D A™ 7 ha(¢) =) Al
i=0 i=0
Our first lemma describes a sequence of polynomials,
where the ¢-th polynomial in the sequence has, as one
of its coefficients, A? for i = 1,2,...,n. Furthermore,
the sequence of polynomials is described via a recursive
structure, which makes it amenable to iterative computation.
This structure will be used in our algorithm in Section II-B.

Lemma 1. For an even integer n, let H™ () be a matrix
of polynomials defined recursively as follows:

H®(¢) = hi(O)h=2(C) (6)
HM(Q) = hi (¢ Dha(¢™ " HHM(©Q) ()

Suppose we partition the N x N identity matrix I column-
wise as I = [Io I, Im,l] , where I is a N x N/m
matrix for j = 1,2,...,m. For an odd integer n > 1, we
define H™(() as

n/2—1

n—1 n—1
H™() = (Ly1+Ln—oC™ 7 + 1,3

b T T (e 1))

®)

Then, for n > 1, A" is the co-efficient of (¥ in
H™ () where

Kon(n) = {

mn/2 -1

+1
n2 . 1

if n is even

if nis odd ©)

The polynomial H(™)(¢) is a degree 2K, (n) polynomial,
and can therefore be interpolated with 2K, (n)+1 evaluation
points. For reasons that will become clear in Section II-B, the
number 2K,,(n) + 1 is referred to as the recovery threshold
of our algorithm. The next lemma establishes a tangible
connection between Lemma 1 and the iterative algorithm in

(D.(2).

Lemma 2. Let p(™ (2), ¢™)(2) be polynomials as described
in (2). Then p(A),q(A) are respectively the coefficients of
CKm(n) in
T Q) = 3 6l (K=K @ FO(¢) 4 of¢KnT
=1

198

m (n)_Knl (E)H(é) (C) + /B(()n)CKm(n)I

=24k
=1
where 1 is the N x N identity matrix.

Lemmas 1 and 2 are proved in the appendix.

B. Cross-Iteration Coded Computing Based Distributed Al-
gorithm

We describe in Algorithm 2 the Cross-Iteration Coded
Computing (CICC) algorithm, which performs n iterations of
(1),(2) in one round of communication. In a system with P
workers, the algorithm uses P distinct scalars (1, (s, ..., (p.
The goal of the algorithm is to ensure that worker 1 computes
and sends to the master node 7. (¢;)x(@, 5™ (¢,)y, where
Tl(") €), Tz(")(C) are as defined in Lemma 2. Since the
degrees of Tl("),T(n) are both 2K,,(n), the master node
can interpolate T\™ (()x(®, T\") (¢)y from any 2K, (n)+ 1
worker nodes.

In the algorithm description, we use the following notation

h1(¢)

As described in Line 14, the algorithm requires P > 2K, (n)
workers to complete their iterations to compute the eventual
output; for this reason, 2K,,(n) is referred to as a recovery-
threshold for the algorithm. Note that the algorithm can
tolerate P — 2K,,(n) failed/straggling worker nodes.

Lines 3-5 in Algorithm 2 are designed based on equations
(6),(7). Specifically, for even k, lines 3-5 at worker ¢ effec-
tively compute

hi(¢" Yha (¢)hl(@m) (G)ha(G)x,

which is equal to H*) (¢;)x(?). Thus for even k, r(®) is equal
to H®) (¢;)x(). For odd k, line 11 ensures that r(*) is also
equal to H®) (¢;)x(©). Similarly, lines 3,6, 12 ensure that at
worker i, s*) is equal to H®)(¢;)y for k = 1,2,...,n. Line
13 is designed based on Lemma 2 and ensures that the master
processing in Line 14 recovers (p(™ (A)x(®, ¢™ (A)y).

if k is even
if k£ is odd

k/2_q k/2_q k/2_g

C. Cost incurred by of the algorithm

In comparison with BaselineParallel algorithm which uses
n rounds of communication, the CICC algorithm, Algorithm
2, uses only 1 round of communication. Furthermore, while
BaselineParallel sends n vectors of length N/ P x 1 from each
worker node to the master node, our CICC algorithm requires
communication of only one vector of length N x 1 to the
master node. Thus CICC provides significant improvement
in communication cost over the baseline algorithm in terms
of number of rounds, and can also outperform the baseline
algorithm in terms of the volume of data (number of bits)
for certain parameters.

The CICC algorithm incurs an overhead in terms of com-
putation and storage. In a system with P workers, the storage
cost of BaselineParallel per worker is O(N?/P) whereas for
CICC, it is O(nN?/m). In particular, if, like our baseline,

Algorithm 2 CICC(A,n,m,x(©),y)

I: [A] Offline computations at Master node:
Let (1,(2,...,(p be distinct scalars. Send matrices
h(¢™), ho(¢™) for j = 0,1,2,...,|%52], to node
i€{1,2,...,P}

2: [B] Online computations at worker :: Master sends
x(y to the ith worker for i = 1,2,... P.

3 70 .=x0) 50 .=y

4: for k=1:n do

5 f-(k) Z:h (Cmt(k 1)/2] ~(k 1)
6 &®) = Ry (V)50
7

8

9

if k is even then
= (k)

: sgk) =5

10: else

11: I'Ek) =

b
- (In—1 4+ Lp—oC™?* + ... +
Ioc(m—l)m 2)f.(k)
12: S(k) =

k—1
Iog(mfl)mT)é(k)

13: Send vector-pair
>, CKm(n)—Km(é) (n) 513), .
to the master node, Where r(o) = r(o) s;) — 50

14: [C] Post-processing at Master node: On receiving input
(T;,8;) from 2K,,(n) + 1 workers, using the evaluation
points of these workers, compute the N x 1 vector R by
interpolating the vectors T; for a degree 2K,,(n) poly-
nomial; that is, each component R is interpolated from
the corresponding components of ¥;,i € {1,2,..., P}.

15: Similarly, compute S by interpolating §; for a degree

2K, (n) polynomial with the evaluation points of the

corresponding 2K, (n) + 1 workers.

Output R + S

k-1
(Imfl + Im72cm : + o+

(I‘l,S) =

._
a

we do not build any straggler tolerance in our algorithm, we
have P = 2m"/?—1, so that m = (%)wn
cost of CICC is O(#W) Similarly, the computation
cost of the baseline algorithm is O(nN?/P), whereas the

2
computation cost of our algorithm is O(W).

A simple generalization that intersperses the baseline al-
gorithm with the CICC algorithm can be used to reduce
communication costs. Specifically, for any ¢ that divides n,
we can perform n iterations of (1),(2) with ¢ rounds of
communication, by implementing CICC(A,n/¢, m,x(©),y),
where x(0), ¥, are based on the input in the previous round.
In this version of the algorithm, the master node will obtain
Ax(©) Aty i =1,2,... n via interpolation, and then use
(1),(2) to linearly combine them into the appropriate output.
For the sake of brevity, we do not describe this generalization
in detail here (See [44], Sec. 5, for an example in the special
case of gradient descent.). This generalization has computa-
tion and storage costs respectively equal to O(

. So the storage

nlN)
(0.5(P+1))2/¢ /0

199

CKWL(”) le(é)ﬂ(n) (Z))

nN?2 . . .
O(.W.)’ with a communication cost of. £ rounds.
This generalization can be used to tune computation/storage

costs based on the desired communication cost.

Remark 1. In the gradient descent and accelerated gradient
descent algorithms described in Section I-A, the vector y
is of the form Qb. In such settings, the vector b is the
input and the matrix-vector multiplication Qb is a part
of the online phase of the algorithm. The matrix-vector
multiplication Qb can be readily incorporated both into
BaselineParallel, and more importantly CICC by storing
appropriate partitions/linear combinations of Q in the offline
stage, and using b as the input. For the sake of brevity, we
omit this modification in this paper (See [44] for an example).

III. FLEXIBLE RECOVERY THRESHOLDS

In this section, we introduce the idea of flexible recovery
thresholds for the iterative algorithm of (1),(2). We begin
with the motivation in Section III-A. We then describe our
algorithm in Section III-B.

A. Motivation

The idea of flexible recovery thresholds is relevant for
distributed computing settings where stragglers are prevalent.
Iterative algorithms of the form (1),(2) are usually associated
with an error function that decays as the number of iterations
increases. For instance, in linear inverse problems where
gradient descent is used, the error is a measure of the distance
between the output of the nth iteration and the optimal
solution. For such scenarios, with a fixed recovery threshold,
the error is small when the number of non-straggling workers
is larger than the recovery threshold, however the error can
be large if the number of non-straggling workers is smaller
than the recovery threshold. The idea of flexible recovery
thresholds allows for more graceful degradation of error with
increasing number of stragglers.

We present our idea in the context of the CICC algorithm
of Section II-B. We assume that there is deadline, Ty, , after
which workers sends their results to the master node. Note
that different workers would perform a different number of
iterations of CICC because of straggling and other sources
of variability in computation time. With a fixed number of
iterations n, and a corresponding fixed recovery threshold,
the master declares a failure if the number of workers that
completed n iterations is smaller than the recovery threshold.

To understand this more quantitatively, let the number of
iterations completed by worker j by time ¢ be denoted by
I(j,t). The worker-profile function, [J (¢,t) is the number of
workers that have completed at least ¢ iterations in time ¢, that
is {k : I(k,t) > £}|. Now with a fixed number of iterations
n, a fixed recovery threshold K, and a deadline Ty;, we refer
to a run of an algorithm as a failure if its worker profile
J (4, t) satisfies J(n,Ty) < K. In particular, for CICC, a
failure occurs if J(n, Ty) < 2K,,(n) +1 = 2mlr/2) — 1.
A run of the algorithm that has not failed is referred to as
successful.

Note that the worker-profile can be different in different
runs of the algorithm. See Fig.2 for visual depictions of two
runs of CICC, one with a successful (non-failed) run, and
another with a failed run. If the worker computation time can
be statistically modeled, e.g. [13], then it would be possible
to evaluate the probability of failure for CICC.

of machines
A
Successful run

2m™? —1 < J(n, Ty)

J(n,le)

of machines # of iterations

A

Failure

2771”/2 —1> J(TZ,le)

(n,2m? —1)
J(n, Tar) [

n # of fterations

Fig. 2. Two runs of the CICC algorithm with fixed recovery threshold
Kpm(n) = 2m2 — 1. The run with the profile on the top is a successful
run, whereas the profile on the bottom is a failure.

Flexible recovery thresholds reduces the chances of failure,
by allowing the master node to choose the appropriate num-
ber of iterations in the post-processing stage, based on the
number of stragglers. This is in contrast with fixed recovery
thresholds algorithms, where the recovery threshold and the
number of iterations are fixed in the offline pre-processing
stage of the computation. For a given worker profile J (¢, t),
with a flexible recovery threshold, the master node can
recreate the output of ny iterations of CICC so long as
J(ng,Ta) < 2K,,(n7)+1. This idea is visually depicted in
Fig. 3. With a flexible recovery threshold, a failure does not
occur so long as at least 2m—1 workers complete at least one
iteration, that is, J(1,Ty) > 2K,,(1) + 1 = 2m — 1. Note
that the flexibility is particularly useful, when the algorithm
has a “best-effort” requirement to get the lowest possible
error with in deadline Ty;. Since the scenario with fixed
recovery threshold is a special case of the flexible recovery
threshold, in theory, flexible recovery threshold would also
lower the probability of error if the worker output is modeled
statistically.

B. Algorithm description

The offline and online phases of the algorithm with flexible
recovery threshold are essentially identical to the CICC

200

of machines
A
J(ns, Ty)

J(n2, Tar)

J(n1, Tar)

Fig. 3. A depiction of flexible recovery threshold. All the points colored
black are feasible, and all the points colored red are in feasible. Unlike fixed
recovery thresholds where the operating point is decided before the online
phase, the algorithm can choose the operating point in the post-processing
consensus phase.

algorithm, Algorithm 2 lines 1-12. However, in place of Line
13, we require a consensus phase, where the master/workers
decide the number of iterations. Note that the number of
iterations corresponding to profile J is the maximum number
n satisfying

ny = argmax J(n, Ty) > K, (n). (10)

However, since ny is not decided offline, and since each
worker does not know how many iterations the other workers
have performed, a consensus phase is required for the worker
to include the output of the n sth iteration in its message to
the master.

To achieve consensus, we require the workers to send the
outputs of all their iterations to the master, and the master
can reconstruct the worker profile, and then use the worker
outputs to reconstruct the output of the algorithm. Note that
this involves an increased communication cost as compared
with the fixed-recovery threshold version, as each worker
sends the output of all the iterations it completes, rather
than only the output of the final iteration. This is depicted in
Algorithm 3.

There is a second approach to achieving consensus. After
completing their iterations, the workers send their number of
iterations n; to the master node. The master node determines
the number of iterations n s required based on (10) and
sends this number to the workers. The workers respond
to the master node with the outputs of that corresponding
iteration, similar to Line 5 in Algorithm 2. We omit a formal
description of this second approach for the sake of brevity.
The question of which consensus approach is more likely to
be useful in practice is a topic of future investigations.

IV. CONCLUSION

In this paper, we present a new approach for iterative
distributed algorithms, such as gradient descent and accel-
erated gradient descent for quadratic loss functions, that can

of iterations

Algorithm 3 CICC-flex(A, Tai, maz, m, X9, y)

I: [A] Offline computations at Master node:
Let (i,(2,...,(p be distinct scalars. Send matrices
h(¢™), ho(¢™) for j = 0,1,2,..., | 2mee=1| to node
i€{1,2,...,P}

2: [B] Online computations at worker i:

: Perform lines 1-12 in Algorithm 2 until time T}, or until

Nmaq iterations, whichever completes first.

4: Denote the number of iterations performed as n;.

5. Send vector-pairs (n;, rgk), sgk)), k=1,2,... n; to the
master node.

. [C] Post-processing at Master node:

7: On receiving inputs from the workers (ni,rgk)
construct worker profile 7 from ni,ne, ..
(10) to find the number of iterations n ;.

8: For every worker ¢ that has completed

at least ng iterations, compute (T;,S;) =
ng rKmnz)—Km() (£) ng ~Km(ng)—Km(€) 5 (0
(>eZo G 7 aery 3070 G 7 Bes;)

sy,

.,np and use

9: Perform Lines 14,15 in Algorithm 2 for iteration index
ng with any of the 2K,,(ns) + 1 workers that have
completed n s iterations, and then perform Line 16 to
output.

perform multiple iterations within a single round of com-
munication. Cross-iteration coded computing thus saves on
communication, one of the central bottlenecks in distributed
computing systems, at an increased storage/computation cost.
Because of the generic nature of the iterative algorithms
considered in this paper, we anticipate that our work may
be applicable beyond the applications explicitly listed in
this paper. Our paper also demonstrates the idea of flexible
recovery threshold that departs, in spirit from several previous
coded computing works that use a fixed recovery threshold.
An open question motivated by our work is whether the
storage/computation overhead of our coding approach is
optimal, even when restricted to simple linear schemes.

Complementary approaches that do not use coded comput-
ing involves ignoring stragglers [45], and communication-
efficient distributed algorithms with weaker convergence
guarantees (See [46]-[48] and references therein). The ben-
efit of [45]-[48] in comparison with cross-iteration coded
computing is that their storage/computation cost is similar
to the baseline algorithm. A thematic direction of research
motivated by our work is the idea of merging cross-iteration
coded computing based and the ideas of [46]-[48] to reduce
the storage cost of cross-iteration coded computing, but
perhaps improve on the fidelity and convergence guarantees
of [46]-[48].

APPENDIX A
PROOF OF LEMMAS 1, 2

Proof of Lemma 1. We show this lemma for even n using
induction. Later we handle the case of odd n. The ﬁo-efﬁcient
of ¢™1in H®(C) = hy(O)ha(C) is 175" AJA; = A2

201

Assume, as an inductive hypothesis, that for some
even n > 2, A™ is the co-efficient of (K"L(”) =
¢™"*=1 in HM (). We will show that A™2 is the
co-efficient of (Hm(+2) L gy g2 =

B (¢ o (¢ H Q).
Let
2(m—1)m"/?
m"/? m™/? 4
hC™ (¢ = Y Gl
i=0
2(m™/2—1)

n m"/ 21 i
H™(¢) = Z D;¢".
=0

Note that C; = 0 if m™/2 does not divide i. Also note
that C,,_1ypn/z = A? and, by inductive hypothesis,

D,,»/2_; = A". For convenience, we will assume that
d = 0 for £ > 2(m"™? — 1). Thus the co-efficient of
CKm(n) _ Cm”/2+1—1 in H(n+2) (C) is

mn/2+1_q

E Cm"/2+1—1—€D£
£=0

Because C; = 0 if m™'? does not divide ¢, and because
C;, = 0 for £ > 2(m™? — 1) this co-efficient is equal to
Cim—1ym2 = Dyynjz_; = AZA™ = A™*2. This completes
the proof for even n.

Consider the case where n is odd. Let
m(n=D/2 g (n+1)/2_o
Since n—1 is even, from the above part of the proof, we know
that A"~! is the co-efficient of ¢(¥=("=1 in H™=1(().
Therefore, in polynomial hq ((m(n_l)/z YH =1 (),
the N/m x N matrix A;A""! the co-efficient of
CKm(n—l)-ﬁ-i(m("fl)/z) C(i+1)m(”’1)/2—1 fOI' -
0,1,2,...,m — 1. That is E(;y 1,012, = A AM7D.
The co-efficient of (Km() = ¢m™ /-1

(n—1)/2

ha(C™ YH" () = E.(,

in polynomial

n—1 n—1
H(n) (C) = (Im71+Im72<m : + Imf?)CQm :
n—1 n—1

+ .+ Ioc(m—l)m 2)h2(cm7

)
2

is equal to
m—1
g Lo r1E in/2_1_pmn-1/2
=0
m—1
= E Ly—t—1Eo-0/20m—r)—1,
/=

which is equal to 1 Z?:Bl Lv—1A,_r—1 A"t which
is in turn equal to A.A"~! = A" as required.
|

Proof of Lemma 2. From Lemma 1, we infer that A’ is the
co-efficient of ¢Km (™) in (Km()=Kn () (0 ((). Therefore,
the co-efficient of (5™ in T is 37 a{™ A which is
equal to p(n)(A). The proof is similar for TQ(n)(C). [|

VH" D (C)ys)

ACKNOWLEDGMENTS

This work was supported by NSF grants CCF-1350314,
CCF-1553248, CCF-1763657 and CNS-1702694.

REFERENCES

[1] J. Dean, “Software engineering advice from building large-scale dis-
tributed systems,” CS295 Lecture at Stanford University, July, 2007.
V. Smith, S. Forte, M. Chenxin, M. Takac¢, M. I. Jordan, and M. Jaggi,
“Cocoa: A general framework for communication-efficient distributed
optimization,” Journal of Machine Learning Research, vol. 18, p. 230,
2018.
S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss minimization,” Journal of Machine Learn-
ing Research, vol. 14, no. Feb, pp. 567-599, 2013.
M. Jaggi, V. Smith, M. Takéc, J. Terhorst, S. Krishnan, T. Hofmann,
and M. 1. Jordan, “Communication-efficient distributed dual coordinate
ascent,” in Advances in neural information processing systems, 2014,
pp- 3068-3076.
X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy
and accuracy of admm-based distributed algorithms,” arXiv preprint
arXiv:1806.02246, 2018.
S. Maleki, M. Musuvathi, and T. Mytkowicz, “Parallel stochastic gradi-
ent descent with sound combiners,” arXiv preprint arXiv:1705.08030,
2017.
[71 K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” in IEEE
International Symposium on Information Theory (ISIT), 2016, pp.
1143-1147.
S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large
Linear Transforms Distributedly Using Coded Short Dot Products,” in
Advances In Neural Information Processing Systems (NIPS), 2016, pp.
2092-2100.
[9] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for
secure distributed computing,” in Information Theory (ISIT), 2017
IEEE International Symposium on. 1EEE, 2017, pp. 2900-2904.
S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
arXiv preprint arXiv:1802.03430, 2018.
A. Mallick, M. Chaudhari, and G. Joshi, “Rateless Codes for Near-
Perfect Load Balancing in Distributed Matrix-Vector Multiplication,”
arXiv preprint arXiv:1804.10331, 2018.
H. Jeong, T. M. Low, and P. Grover, “Coded FFT and Its Communi-
cation Overhead,” Submitted, 2018.
K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514-1529,
2018.
F. Haddadpour and V. R. Cadambe, “Codes for distributed finite
alphabet matrix-vector multiplication,” in 2018 IEEE International
Symposium on Information Theory (ISIT). 1EEE, 2018, pp. 1625—
1629.
H. Park, K. Lee, J.-y. Sohn, C. Suh, and J. Moon, “Hierarchical coding
for distributed computing,” arXiv preprint arXiv:1801.04686, 2018.
N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
2018 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2018, pp. 1620-1624.
A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” in IEEE International Sym-
posium on Information Theory (ISIT), 2017, pp. 2408-2412.
S. Li, M. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A Fundamental
Tradeoff Between Computation and Communication in Distributed
Computing,” IEEE Transactions on Information Theory, vol. 64, no. 1,
pp. 109-128, 2018.
S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,”
in Communication, Control, and Computing (Allerton), 2015, pp. 964—
971.
S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers
in coded computation,” in 2018 IEEE International Symposium on
Information Theory (ISIT). 1EEE, 2018, pp. 1988-1992.
[21] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed
computation,” in Communication, Control, and Computing (Allerton),
2016 54th Annual Allerton Conference on. IEEE, 2016, pp. 954-960.

2

—

3

=

[4

=

[5

=

[6

=

[8

=

[10]

(11]

[12]

[13]

[14]

[16]

(17]

(18]

[19]

[20]

202

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix
multiplication,” in Communication, Control, and Computing (Allerton),
2017, pp. 1271-1278.

T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional
product codes,” 2018.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Distributed Learning,” in International
Conference on Machine Learning (ICML), 2017, pp. 3368-3376.

N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient Coding
from Cyclic MDS Codes and Expander Graphs,” arXiv preprint
arXiv:1707.03858, 20117.

W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi, “Improving
Distributed Gradient Descent Using Reed-Solomon Codes,” arXiv
preprint arXiv:1706.05436, 2017.

C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimiza-
tion,” in IEEE International Symposium on Information Theory (I1SIT),
2017, pp. 2890-2894.

C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler Mitigation
in Distributed Optimization through Data Encoding,” in Advances in
Neural Information Processing Systems (NIPS), 2017, pp. 5440-5448.
Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient
coding via sparse random graphs,” arXiv preprint arXiv:1711.06771,
2017.

R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust gradient
descent via moment encoding with ldpc codes,” arXiv preprint
arXiv:1805.08327, 2018.

Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,” arXiv
preprint arXiv:1806.00939, 2018.

Y. Yang, P. Grover, and S. Kar, “Fault-tolerant distributed logistic
regression using unreliable components,” in Communication, Control,
and Computing (Allerton), 2016 54th Annual Allerton Conference on.
IEEE, 2016, pp. 940-947.

Y. Yang, P. Grover, and S. Kar, “Coded Distributed Computing for
Inverse Problems,” in Advances in Neural Information Processing
Systems (NIPS), 2017, pp. 709-719.

S. Li, S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S. Avestimehr,
“Polynomially coded regression: Optimal straggler mitigation via data
encoding,” arXiv preprint arXiv:1805.09934, 2018.

Y. Yang, P. Grover, and S. Kar, “Coding for a single sparse inverse
problem,” in 2018 IEEE International Symposium on Information
Theory (ISIT). 1EEE, 2018, pp. 1575-1579.

Y. Yang, M. Chaudhari, P. Grover, and S. Kar, “Coded iterative com-
puting using substitute decoding,” arXiv preprint arXiv:1805.06046,
2018.

M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix multi-
plication,” in Communication, Control, and Computing (Allerton), Oct
2017, pp. 1264-1270.

S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix multi-
plication,” arXiv preprint arXiv:1801.10292, submitted to Transactions
on Information Theory, 2018.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” arXiv preprint arXiv:1801.07487, 2018.

S. Dutta, Z. Bai, T. M. Low, and P. Grover, “Codenet: Training Large
Neural Networks in presence of Soft-Errors,” 2018.

S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A Unified
Coded Deep Neural Network Training Strategy based on Generalized
PolyDot codes,” in IEEE International Symposium on Information
Theory (ISIT), 2018, pp. 1585-1589.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial Codes:
an Optimal Design for High-Dimensional Coded Matrix Multiplica-
tion,” in Advances In Neural Information Processing Systems (NIPS),
2017, pp. 4403-4413.

M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” arXiv preprint arXiv:1802.03475, 2018.

F. Haddadpour, Y. Yang, M. Chaudhari, V. R. Cadambe, and P. Grover,
“Straggler-resilient and communication-efficient distributed iterative
linear solver,” arXiv preprint arXiv:1806.06140, 2018.

203

[45]

[46]

[47]

(48]

J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.
J. D. Lee, Q. Lin, T. Ma, and T. Yang, “Distributed stochastic variance
reduced gradient methods by sampling extra data with replacement,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 4404—
4446, 2017.

M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Advances in neural information pro-
cessing systems, 2010, pp. 2595-2603.

Y. Zhang, M. J. Wainwright, and J. C. Duchi, “Communication-
efficient algorithms for statistical optimization,” in Advances in Neural
Information Processing Systems, 2012, pp. 1502-1510.

