
Coding for a Single Sparse Inverse Problem
Yaoqing Yang, Pulkit Grover, Soummya Kar

Email: {yyaoqing, pgrover, soummyak}@andrew.cmu.edu

Abstract—We propose a coded computing technique for mak-
ing the power-iteration method of solving a single sparse linear
inverse problem robust to erasure-type noise. We observe that
for sparse inverse problems, codes with dense generator matrices
can significantly increase storage costs. Thus, we propose coding
the power-iteration computation using sparse generator matrices.
Surprisingly, despite the poor error-correction ability of codes
with sparse generator matrices, we show through both theoretical
analysis and simulations that these codes are sufficient to achieve
almost the same convergence rate as noiseless power iterations,
provided that a new decoding algorithm that we call “substitute
decoding” is used.

I. INTRODUCTION
Sparse linear inverse problems solved by power iterations

(see (1)) have been widely used in different applications,
such as webpage ranking [1], semi-supervised learning [2] and
clustering [3]. In this work, we utilize error correcting codes
to make the parallel computing of power iterations robust to
system noise such as stragglers and erasures. Researchers from
the coded computing field have investigated a wide range of
applications [4]–[9]. A comprehensive literature survey is in
the extended version of the paper [10], including full proofs
of theorems and extended applications. Our previous work
[11] considered coded computing for power iterations when
many problem instances with the same linear system matrix
Mxi = yi, i = 1, 2, . . . ,m are computed in parallel. However,
a more common setting is the computation of a single linear
inverse problem Mx = y where the linear system matrix M
is square and sparse1. In this case, usually, the system matrix
is too large to fit in the memory of a single machine, and thus
distributed computing is necessary.

Existing results in coded computing typically use dense
generator matrices, such as those of MDS codes, to ensure
good error-correcting capability. However, a dense encoding
of the sparse matrix M can significantly increase the number
of non-zero entries, and hence increase storage cost and
computation time. In fact, dense encoding using MDS codes
can easily make the sparse problem completely non-sparse.
For example, the necessity of using sparse codes for sparse
data and the idea of storing uncoded relevant sparse data at
each worker as specified by the encoding matrix is discussed
in [9]. In this work, we use codes with sparse generator
matrices (low-density generator matrices, or LDGM) and show
that, despite the bad error-correcting ability of LDGM codes,
these codes can be made surprisingly efficient in maintaining
the convergence rate of power iterations. As we show in
simulations (see Section III-D), even for sparse generator

1Notice the difference between this problem setting and coding for gradient
descent [5], [9]. Power-iteration, and the more general Jacobi iteration, are
not gradient descent methods.

matrices with only 2 non-zeros in each row, coded power
iterations work significantly better than replication-based and
uncoded power iterations in convergence rate. When there are
3 non-zeros in each row, the convergence rate of noiseless
power iteration can be approximately achieved.

The key is to use a novel decoding algorithm that we
call “substitute decoding”. The intuitive idea is to extract the
largest amount of available information from partial coded
results in the computation of the power iteration xt+1 = y +
Bxt, and substitute the complementary unknown information
by the available side information xt. As we show in our main
theorem (Theorem III.1), substitute decoding can reduce error
by a multiple factor δ. This δ is linear in the rank of the
(partial) generator matrix formed by the linear combinations
from non-erased workers, and δ drops to 0 when the (partial)
generator matrix is close to full-rank. The convergence rate of
noiseless computation can be achieved when δ is small and
for certain type of sparse linear system matrices B.

II. PROBLEM FORMULATION

A. Preliminaries on the Power Iteration Method
We use the PageRank problem [1], [12] as an example

to introduce power iterations. The PageRank and the more
general personalized PageRank problem aim to measure the
importance score of the nodes on a graph by solving the
linear problem x = cr + (1 − c)Ax, where c = 0.15 is
a constant, N is the number of nodes, A is the column-
normalized (stochastic) adjacency matrix and r ∈ RN repre-
sents the preference of different users or topics. The classical
method to solve PageRank is power iteration, which iterates
xt+1 = cr + (1 − c)Axt until convergence [1]. If we define
B = (1− c)A and y = cr. Then, we obtain the general form
of power iteration:

xt+1 = y + Bxt. (1)

The condition to ensure that (1) converges to the true solution
x∗ is that the spectral radius ρ(B) < 1. For the PageRank
problem, ρ(B) = 1− c and (1) always converges to x∗.

B. Uncoded Distributed Computing of Power Iteration
The most straightforward uncoded way is to partition B

row-wise into several row blocks and store them in the
memory of several workers. Denote the number of workers
by P , and this is also the number of row blocks for uncoded
computation. At the beginning of the t-th iteration, a central
node sends the current result xt to all workers. Then, the
worker that has the row block Bi computes Bixt and sends it
back to the central node. At the end of the iteration, the central
node concatenates all the results Bixt, i = 1, 2, . . . , P from
the P workers to obtain Bxt, and computes xt+1 = Bxt+y.

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 1575

Fig. 1. A comparison between the classical coded computing and the proposed
coded computing technique. In the proposed method, we only show the scalar
version as mentioned in Remark 1.

C. Preliminaries and Notation on Coded Computing

Error correcting codes can help make distributed comput-
ing robust to stragglers and erasures. We first present the
straightforward way of coded computing of the power iteration
(1), and point out a drawback of it. As shown in the upper
part of Fig. 1, BN×N is partitioned into k row blocks and
linearly combined into P > k row blocks B̃i, i = 1, 2, . . . , P
using a (P, k) linear code with a generator matrix G of size
P × k. Each block B̃i is stored at one of the P workers. For
simplicity, we assume that N is divisible by k, and denote the
number of rows in each row block by b = N

k . The encoding
can be mathematically represented as

B̃ = (GP×k ⊗ Ib)B, (2)

where the Kronecker product is because we encode row
blocks.

Example 1. Suppose B is partitioned into BN×N =

[
B1

B2

]
and

encoded into B̃ 3
2N×N

= [B>
1 ,B

>
2 ,B

>
1 +B>

2]
>. The generator

matrix is G3×2 =

[
1 0
0 1
1 1

]
. The number of row blocks in B

is k = 2, the number of workers is P = 3 (which is also the
code length), and the number of rows in each row block is
b = N

2 . The encoding can indeed by written as (2), because[
B1

B2

B1 +B2

]
=

[
Ib

Ib
Ib Ib

] [
B1

B2

]
=

([
1 0
0 1
1 1

]
⊗ Ib

)[
B1

B2

]
.

At each iteration, the i-th worker computes B̃ixt. Now,
we define two operations (shown in Fig. 2). Denote by
v = vec (X) the operation to vectorize the matrix X into
the concatenation of its transposed rows, and denote by
X = mat (v) the operation to partition the column vector v
into small vectors and stack the transposed small vectors into
the rows of X. We always partition the vector v into smaller
ones of length b = N

k which represents the row-block size
at each worker. Then, it is straightforward to show that any
operation of the form x = (A⊗ Ib) · v can be rewritten in a

Fig. 2. An illustration on the vec (·) and the mat (·) operations.

compact form x = vec (Amat (v)). Therefore, from (2), the
obtained results at the central node is

B̃x = (GP×k ⊗ Ib)Bx = vec (G ·mat (Bx)) . (3)

The matrix-version of B̃x is hence G·mat (Bx), which means
each column of the matrix-version of B̃x is a codeword.
In the presence of stragglers or erasures, the coded results
G ·mat (Bx) would lose some of the rows, and the decoding
can be done in a parallel fashion on each column. There are
b columns in G · mat (Bx). Thus, the decoding complexity
is bNdec, where Ndec is the complexity of decoding a single
codeword.

A main drawback of the above method is that the generator
matrix G is usually dense, such as MDS codes. However, the
system matrix B is often sparse, as in the PageRank problem.
Therefore, using a dense G may significantly increase the
number of non-zeros in B̃. For example, if G has 20 non-zeros
in each row, it means that the sub-matrices B̃i stored at each
worker can have at most 20 times larger size than the uncoded
case. In section III-A, we show that G can actually be very
sparse (such as 2 ones in each row), while the computation of
power iterations can still remain robust to system noise.

D. Preliminaries on the Proposed Technique

In our technique, similar to standard coded computing,
the linear system matrix B is partitioned into k row blocks
and encoded into P row blocks using a (P, k) code with
rate R = k

P . Each encoded row block is stored at one
worker. We now state an important difference in our code:
at each iteration, we use a different generator matrix G(t),
but its sparsity pattern remains the same across iterations.

In Example 1, G =

[
1 0
0 1
1 1

]
, so now at each iteration t we

have a different generator matrix G(t) =

[
g11(t) 0

0 g22(t)
g31(t) g32(t)

]
. We

choose each non-zero gij(t) to be a standard Gaussian r.v.,
and all of these r.v.s are independent of each other. The fixed
sparsity pattern G determines which (sparse) row blocks of
the uncoded matrix B are stored at each worker. In particular,
Bj , j = 1, . . . , k is stored at worker-i, i = 1 . . . P , when
Gi,j = 1. In Example 1, B1 is stored at worker-1 and worker-
3, and B2 is stored at worker-2 and worker-3. However, instead
of precomputing the encoded sub-matrices B̃i, the i-th worker
just stores its required row blocks in B, because the code is
time-varying. Similarly, we also partition the vector y into k
sub-vectors of length b and store them in the P workers in
the exactly same fashion as B. At the t-th iteration, worker-
i computes (G(t))i-th rowmat (Bx + y). In Example 1, this
means that worker-3 stores B1 and B2 at the local memory.
At the t-th iteration, it computes B1x + y1 and B2x + y2

2018 IEEE International Symposium on Information Theory (ISIT)

1576

and encodes them to g31(t)(B1x + y1) + g32(t)(B2x + y2)
using the linear coefficients in G(t). Since the sparsity pattern
is fixed, although the code is time-varying, stored data at each
worker remains the same.

At each iteration, a random fraction ε of the workers fails
to send their results back due to either erasures (packet losses)
or stragglers (the communications with slow workers are
discarded to save time). Then, at the central node, available
results are G

(t)
s mat (Bxt + y), where G

(t)
s is the sub-matrix

of G(t) formed by the linear combinations at the non-erased
workers. We call G

(t)
s a “partial generator matrix”. In clas-

sical coded computing, if a dense Vandermonde-type code
is used, the desired result Bxt + y can be decoded from
G

(t)
s mat (Bxt + y) if 1 − ε > R, because any square sub-

matrix G
(t)
s of a Vandermonde matrix is invertible. However,

if G is sparse, even if ε is very small, it is possible that Bxt+y

cannot be decoded because G
(t)
s may not be invertible.

III. SUBSTITUTE DECODING OF CODED POWER
ITERATIONS

A. Substitute Decoding Algorithm for LDGM codes

In the previous section, we suggested a plausible tradeoff
on the sparsity of G. If it is dense, storage cost is high.
If it is sparse, G

(t)
s may not be inverted to get the desired

results Bxt +y. Surprisingly, we show that G(t)
s can actually

be made sparse, while its noise-tolerance is maintained. The
key observation is that although G

(t)
s may not have full

column rank, we can get partial information of Bxt +y from
G

(t)
s mat (Bxt + y). Suppose that the SVD of G(t)

s is

(G(t)
s)(1−ε)P×k = UtDtV

>
t , (4)

where the matrix Vt has orthonormal columns and has size
k × rank(G

(t)
s). By multiplying Lt = D−1t U>t to the partial

coded results G
(t)
s mat (Bxt + y), the central node obtains

(D−1t U>t)G(t)
s mat (Bxt + y)

(a)
= V>t mat (Bxt + y) , (5)

where (a) follows from (4). Then, the central node finds an
orthonormal basis of the orthogonal complementary space of
the column space of Vt, i.e., an orthonormal basis ofR⊥(Vt),
and forms the basis into matrix Ṽt, such that [Vt, Ṽt] is an
orthonormal matrix2 of size k×k, i.e., Vt, Ṽt are orthogonal
to each other, and

VtV
>
t + ṼtṼ

>
t = Ik. (6)

The central node uses V>t mat (Bxt + y) obtained from (5)
and the stored xt as side information to obtain a good estimate
of Bxt + y to compute xt+1. In particular, xt+1 is

xt+1 = vec
(

[Vt, Ṽt] ·
[
V>t mat (Bxt + y)

Ṽ>t mat (xt)

])
. (7)

This is equivalent to

xt+1 = vec
(
VtV

>
t mat (Bxt + y) + ṼtṼ

>
t mat (xt)

)
. (8)

2If G
(t)
s has full rank, Vt is already a square orthonormal matrix and in

this case Ṽt is the NULL matrix, because R⊥(Vt) is the trivial space {0}.

Fig. 3. From G
(t)
s (Bxt + y), we can get the projection of Bxt + y onto

the column space of Vt (see Proj1). For the unknown part Proj2, we use the
projection of xt instead, which is Proj2’.

Remark 1. (Intuition underlying substitute decoding) We
provide intuition by looking at a scalar-version as shown in
the lower part of Fig. 1. In the scalar version, b = 1, Ib = 1
and (8) becomes

xt+1 = VtV
>
t (Bxt + y) + ṼtṼ

>
t xt. (9)

Since Vt and Ṽt have orthogonal columns and they are
orthogonal to each other, VtV

>
t and ṼtṼ

>
t are two projection

matrices onto the column spaces of Vt and Ṽt respectively.
Since Vt is obtained from SVD of G(t)

s (see equation (4)), the
projection VtV

>
t is the projection to the row space of G

(t)
s .

The intuition of substitute decoding is that even if we cannot
get the exact value of Bxt+y by inverting the sparse G

(t)
s , we

can at least obtain the projection of Bxt+y onto the row space
of G

(t)
s . Then, for the remaining unknown part of Bxt + y,

i.e., the projection of Bxt + y onto the right null space of
G

(t)
s , we use the projection ṼtṼ

>
t xt of the side information

xt to substitute. This intuition is illustrated in Fig. 3. We give
an outline of the substitute decoding algorithm in Algorithm 1.

B. Focus on communication time: an explanation

First, we analyze communication cost. For each worker, the
communication cost at each iteration comes from the trans-
mission of xt of length N and the transmission of the result
of length b = N/k. So the total number of communicated
floating point numbers is N(1 + 1/k) which is linear in N .

For the computation cost at the central node, the SVD has
complexity O(kP 2) which is negligible. The computation of
(5) and the substitute decoding given in (7) together have
complexity O(k2b) = O(kN) which is linear in N . The
vectorization and matricization steps have a negligible cost.

The i-th worker computes a sub-vector of the entire Bx.
Denote by E the number of non-zeros in B. Suppose the
sparse generator matrix G has d ones in each row. Then, the
complexity at each worker is O((dE)/k). This complexity
can be superlinear in N for dense graphs, but usually, the
average degree of a graph is a large constant. This means the
computation cost at each worker is also linear in N , but with
a large constant.

Since communication and computation complexity are both
linear in N , constant factors matter in determining which cost
is dominant. When the code size is small, the communication
time can dominate even when the average degree of the graph
is much larger than 1, because, in practice, communication
time can dominate computing time even if computing is

2018 IEEE International Symposium on Information Theory (ISIT)

1577

in scaling sense more expensive, simply due to the fact
that communication is slower than computation in current
technologies [5], [7]. In our simulations, we focus on the
communication cost and analyze the cost mostly from this
perspective. However, we still cannot use a dense code for
encoding due to increased storage cost.

Algorithm 1 Coded Power Iterations
Input: Input y, matrix B and sparse pattern G.
Preprocessing: Partition B into row blocks and y into sub-
vectors and store them distributedly as specified by the
sparse pattern G. Generate a series of random generator
matrices G(t), t = 1, 2, . . . , T .
Central Node: Send out xt at each iteration and receive
partial coded results. Compute xt+1 using substitute decod-
ing (8), where V and Ṽ are obtained from SVD (4) and
mat (Bxt + y) is computed using (5).
Workers: Worker-i computes (G(t))i-th rowmat (Bx + y).
Output: The central node outputs xT .

C. Convergence Analysis of the Coded Power Iterations

Denote by x∗ the true solution of x = Bx + y. Then,

x∗
(a)
= vec

(
VtV

>
t mat (x∗)

)
+ vec

(
ṼtṼ

>
t mat (x∗)

)
=vec

(
VtV

>
t mat (Bx∗ + y) + ṼtṼ

>
t mat (x∗)

)
,

(10)

where (a) holds because of (6). Defining the remaining error
as et = xt − x∗ and subtracting (10) from (8), we have

et+1 = vec
(
VtV

>
t mat (Bet)

)
+ vec

(
ṼtṼ

>
t mat (et)

)
.

(11)

Remark 2. (Why substitute decoding suppresses error) Before
presenting formal proofs, we show the underlying intuition
on why the substitute decoding (7) approximates the noiseless
power iteration xt+1 = Bxt + y well. Again, we look at the
scalar version, i.e., Ib = 1. In this case, (11) becomes

et+1 = VtV
>
t Bet + ṼtṼ

>
t et. (12)

Ideally, we want et+1 = Bet since B is a contraction matrix
(recall that ρ(B) < 1). Due to noise, we can only realize this
contraction in the column space of Vt, which is the first term
VtV

>
t Bet. Although the partial generator matrix G

(t)
s may

not have full rank due to being sparse (i.e., dim(R(Vt)) < k),
G

(t)
s can be close to full rank. This means that the column

space R(Ṽt) can have low dimension. Therefore, for the
second term in (12), the projection matrix ṼtṼ

>
t suppresses

the larger error et (compared to Bet) by projecting it onto
the low-dimensional space R(Ṽt). In Theorem III.1, we will
show ṼtṼ

>
t multiplies E[‖et‖2] with a small multiple factor

that decreases to 0 linearly as rank(G
(t)
s) increases.

Definition 1. (Combined cyclic sparsity pattern) The sparsity

pattern matrix satisfies G =

[
S1

S2

]
, where S1 and S2 are both

k × k square cyclic matrices with d non-zeros in each row.

Assumption 1. (Random failures) At each iteration, a random
subset of the workers fails to compute the result due to
either stragglers or erasure-type errors. Failure events are
independent across iterations.
Theorem III.1. (Convergence Rate) If the sparsity pattern G
in Definition 1 is used and Assumption 1 holds, the remaining
error et = xt − x∗ of Algorithm 1 satisfies

E[‖et+1‖2] = (1− δt)E[‖Bet‖2] + δtE[‖et‖2], (13)

where

δt = 1− E[rank(G
(t)
s)]

k
. (14)

The proof is in Section IV. From Theorem III.1, we can
simply upper-bound E[‖Bet‖2] by ‖B‖22 E[‖et‖2] and hence

E[‖et+1‖2] ≤ [(1− δt) ‖B‖22 + δt] · E[‖et‖2]. (15)

This means that when δt is close to 0, i.e., when G
(t)
s is

close to full rank, E[‖et‖2] converges to 0 with rate close to
‖B‖2t2 . In Table I, we show how δt changes with the degree
d in Definition 1. Notice that the noiseless power iteration
converges with rate (ρ(B))2t. For the PageRank problem,
B = (1 − c)A and A is the column-normalized adjacency
matrix. We show in Appendix B in [10] that for Erdös-Rényi
model G(N, p), Pr

(
‖A‖ >

√
1+ε
1−ερ(A)

)
< 3Ne−ε

2Np/8.
This means that with high probability ‖A‖2 ≈ ρ(A) and
hence ‖B‖2 ≈ ρ(B), and the convergence rates of coded
power iteration and noiseless power iteration are close. Here,
in G(N, p), it suffices for p to be Ω(log n/(nε2)).

D. Simulation Results on the Twitter Graph

To support Theorem III.1, we compare uncoded, replication-
based power iterations and Algorithm 1 on the Twitter graph
[13]. We also show the result of noiseless power iterations. We
run 100 independent simulations and average the results. There
are P = 20 workers. In each iteration, 50% of the workers
are disabled randomly. In the uncoded simulation, the graph
matrix is partitioned into P = 20 row blocks. The central node
updates xt+1 = Bxt + y on the row blocks where results
are available, and maintains the unavailable rows as xt. In
the replication-based simulation, B is partitioned into 10 row
blocks and each one is replicated in 2 workers. Therefore, in
each iteration, effectively 50% of the entries in xt get updated
in the uncoded simulation and about 75% of the entries in xt
get updated in the replication-based simulation. For the coded
case, the sparse pattern matrix G is randomly generated using
Definition 1 with degree d = 2 and d = 3. The code is a
(20, 10) code with rate 1/2. We show in Table I how the
sample average estimate of δt changes with the degree of G.

Cost Analysis: We also compare the convergence rates
against communication cost (see Fig. 4; right). For Algo-
rithm 1, B is partitioned into k = 10 row blocks and encoded
into 20. The communication complexity in each iteration
is N(1 + 1/k) = 1.1N . Similarly, it can be shown that
the communication complexity of uncoded and replication-
based power iterations are respectively N(1 + 1/P) = 1.05N

2018 IEEE International Symposium on Information Theory (ISIT)

1578

0 5 10 15 20 25 30
gOofOiterations

10-4

10-3

10-2

10-1

100

101

M
S

E

Uncoded
ReplicationO(sameOcomm.)
Ours,Odegree=2
Ours,Odegree=3
Noiseless

Coded

Noiseless

0 5 10 15 20 25 30

communicationOtimeOcost
10-3

10-2

10-1

100

101

M
S

E

Uncoded
ReplicationO(sameOcomm.)
ReplicationO(sameOstorage)
Ours,Odegree=2
Ours,Odegree=3
Noiseless

Fig. 4. The comparison between uncoded, replication-based and substitute-
decoding-based power iterations on the Twitter graph. Substitute decoding
(blue line) achieves almost exactly the same convergence rate as the noiseless
case (red line) for the same number of iterations. Coded computing also beats
the other techniques for the same communication time cost.

d̄(G) 2 3 4 5
δt 0.1294 0.0442 0.0243 0.0040

TABLE I
THE FACTOR δt DECREASES WHEN THE DEGREE OF G INCREASES.

and N(1 + 1/k) = 1.1N . Since the average degree of the
sparse pattern is d = 2 ∼ 3, computation cost and memory
consumption only increase by a constant. We also plot the
tradeoff for replication scheme with the same storage cost as
d = 3. However, in this case, the communication complexity
for replication is larger, which is N(1 + d/k) = 1.3N . In the
extended paper [10], we compare substitute-decoding-based
coded computing with replication-based schemes for not only
row-splitting on the B matrix, but also column-splitting and
SUMMA-type (i.e., both row and column) splitting, in which
we obtain even larger reductions in communication cost using
coded computing.

IV. PROOF OF THEOREM III.1

Lemma IV.1. If the sparsity pattern in Definition 1 is used and
Assumption 1 holds, the projection matrix VtV

>
t satisfies

E[VtV
>
t] = (1− δt)Ik, (16)

where the expectation is taken respect to the randomness of
non-zero entries’ values (the sparsity pattern G is fixed) and
the randomness of the workers’ failure events.

Proof. See Appendix A of the extended paper [10] for the
full proof. The proof relies on proving some symmetric prop-
erties of E[VtV

>
t]. We prove that the symmetry of standard

Gaussian pdf on the real line ensures that all of the off-
diagonal entries in E[VtV

>
t] are zero. Further, we prove that

the “combined cyclic” structure of G in Definition 1 ensures
that all diagonal entries on E[VtV

>
t] are identical. The two

facts above show that E[VtV
>
t] = xIk for some constant x.

Then, we can use a property of trace to compute x.

We denote the projection VtV
>
t by PV . Then, from (6),

ṼtṼ
>
t = Ik − PV . The first term vec

(
VtV

>
t mat (Bet)

)
=

vec (PV mat (Bet)) in (11) can be bounded by

E
[
‖vec (PV mat (Bet))‖2

]
(a)
= E

[
‖(PV ⊗ Ib)Bet‖2

]
(b)
=E

[
trace

(
(Bet)

>(PV ⊗ Ib)
>(PV ⊗ Ib)Bet

)]

(c)
=E

[
trace

(
Bet(Bet)

>(PV ⊗ Ib)
>(PV ⊗ Ib)

)]
(d)
= trace

(
E
[
Bet(Bet)

>]E [(PV ⊗ Ib)
>(PV ⊗ Ib)

])
=trace

(
E
[
Bet(Bet)

>]E [(P>VPV)⊗ Ib
])

(e)
= trace

(
E
[
Bet(Bet)

>]E [PV ⊗ Ib]
)

(f)
= trace

(
E
[
Bet(Bet)

>] ((1− δt)Ik)⊗ Ib
)

=(1− δt)trace
(
E
[
Bet(Bet)

>]) = (1− δt)E[‖Bet‖2],
(17)

where (a) is from the property of mat-vec operations, (b) is
because (PV ⊗Ib)Bet is a vector, (c) is because trace(AB) =
trace(BA), (d) is because trace and E commutes and the
projection PV only depends on the random partial generator
matrix Gs and is independent of et, (e) is because PV
is a projection matrix and (f) is from Lemma IV.1 and
PV = VtV

>
t . Similarly, we can prove

E
[
‖vec ((Ik −PV)mat (et))‖2

]
= δtE[‖et‖2]. (18)

Therefore

E[‖et+1‖2]

(a)
=E[

∥∥vec
(
VtV

>
t mat (Bet)

)∥∥2] + E[
∥∥∥vec

(
ṼtṼ

>
t mat (et)

)∥∥∥2]

(b)
=(1− δt)E[‖Bet‖2] + δtE[‖et‖2],

(19)

where (a) is from (11) and the Pythagorean theorem, and (b)
is from (17) and (18). Thus, we have completed the proof.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[2] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in ICML, 2003, pp. 912–
919.

[3] F. Lin and W. W. Cohen, “Power iteration clustering,” in ICML, 2010,
pp. 655–662.

[4] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” in ISIT, 2016,
pp. 1143–1147.

[5] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding,” in ICML, 2017.

[6] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in NIPS, 2016,
pp. 2092–2100.

[7] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.
109–128, 2018.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
an optimal design for high-dimensional coded matrix multiplication,” in
NIPS, 2017.

[9] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in NIPS, 2017, pp.
5440–5448.

[10] Y. Yang, M. Chaudhari, P. Grover, and S. Kar, “Coded iterative com-
puting using substitute decoding,” in arxiv, to appear, 2018.

[11] Y. Yang, P. Grover, and S. Kar, “Coded distributed computing for inverse
problems,” in NIPS, 2017, pp. 709–719.

[12] T. H. Haveliwala, “Topic-sensitive pagerank,” in WWW. ACM, 2002,
pp. 517–526.

[13] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in NIPS, 2012, pp. 539–547.

2018 IEEE International Symposium on Information Theory (ISIT)

1579

