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Abstract: One way of getting insight into non-Gaussian measures is to first obtain good Gaussian
approximations. These best fit Gaussians can then provide a sense of the mean and variance of the
distribution of interest. They can also be used to accelerate sampling algorithms. This begs the question
of how one should measure optimality, and how to then obtain this optimal approximation. Here, we
consider the problem of minimizing the distance between a family of Gaussians and the target measure
with respect to relative entropy, or Kullback-Leibler divergence. As we are interested in applications
in the infinite dimensional setting, it is desirable to have convergent algorithms that are well posed on
abstract Hilbert spaces. We examine this minimization problem by seeking roots of the first variation
of relative entropy, taken with respect to the mean of the Gaussian, leaving the covariance fixed. We
prove the convergence of Robbins-Monro type root finding algorithms in this context, highlighting
the assumptions necessary for convergence to relative entropy minimizers. Numerical examples are
included to illustrate the algorithms.
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1. Introduction

In [13–16, 19], it was proposed that insight into a probability distribution, µ, posed on a Hilbert
space, H , could be obtained by finding a best fit Gaussian approximation, ν. This notion of best, or
optimal, was with respect to the relative entropy, or Kullback-Leibler divergence:

R(ν||µ) =

Eν
[
log dν

dµ

]
, ν � µ,

+∞, otherwise.
(1.1)
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Having a Gaussian approximation provides qualitative insight into µ, as it provides a concrete notion
of the mean and variance of the distribution. Additionally, this optimized distribution can be used
in algorithms, such as random walk Metropolis, as a preconditioned proposal distribution to improve
performance. Such a strategy can benefit a number of applications, including path space sampling for
molecular dynamics and parameter estimation in statistical inverse problems.

Observe that in the definition of R, (1.1), there is an asymmetry in the arguments. Were we to
work with R(µ||ν), our optimal Gaussian would capture the first and second moments of µ, and in some
applications this is desirable. However, for a multimodal problem (consider a distribution with two
well separated modes), this would be inadequate; our form attempts to match individual modes of the
distribution by a Gaussian. For a recent review of the R(ν||µ) problem, see [4], where it is remarked
that this choice of arguments is likely to underestimate the dispersion of the distribution of interest, µ.
The other ordering of arguments has been explored, in the finite dimensional case, in [2, 3, 10, 18].

To be of computational use, it is necessary to have an algorithm that will converge to this optimal
distribution. In [15], this was accomplished by first expressing ν = N(m,C(p)), where m is the mean
and p is a parameter inducing a well defined covariance operator, and then solving the problem,

(m, p) ∈ argminR(N(m,C(p))||µ), (1.2)

over an admissible set. The optimization step itself was done using the Robbins-Monro algorithm
(RM), [17], by seeking a root of the first variation of the relative entropy. While the numerical results
of [15] were satisfactory, being consistent with theoretical expectations, no rigorous justification for
the application of RM to the examples was given.

In this work, we emphasize the study and application of RM to potentially infinite dimensional
problems. Indeed, following the framework of [15, 16], we assume that µ is posed on the Borel σ-
algebra of a separable Hilbert space (H , 〈•, •〉 , ‖•‖). For simplicity, we will leave the covariance
operator C fixed, and only optimize over the mean, m. Even in this case, we are seeking m ∈ H , a
potentially infinite-dimensional space.

1.1. Robbins-Monro

Given the objective function f : H → H , assume that it has a root, x?. In our application to relative
entropy, f will be its first variation. Further, we assume that we can only observe a noisy version of f ,
F : H × χ→ H , such that for all x ∈ H ,

f (x) = E[F(x,Z)] =

∫
χ

F(x, z)µZ(dz), (1.3)

where µZ is the distribution associated with the random variable (r.v.) Z, taking values in the auxiliary
space χ. The naive Robbins-Monro algorithm is given by

Xn+1 = Xn − an+1F(Xn,Zn+1), (1.4)

where Zn ∼ µZ , are independent and identically distributed (i.i.d.), and an > 0 is a carefully chosen
sequence. Subject to assumptions on f , F, and the distribution µZ , it is known that Xn will converge to
x? almost surely (a.s.), in finite dimensions, [5,6,17]. Often, one needs to assume that f grows at most
linearly,

‖ f (x)‖ ≤ c0 + c1 ‖x‖ , (1.5)
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in order to apply the results in the aforementioned papers. The analysis in the finite dimensional case
has been refined tremendously over the years, including an analysis based on continuous dynamical
systems. We refer the reader to the books [1, 8, 11] and references therein.

1.2. Trust regions and truncations

As noted, much of the analysis requires the regression function f to have, at most, linear growth.
Alternatively, an a priori assumption is sometimes made that the entire sequence generated by (1.4)
stays in a bounded set. Both assumptions are limiting, though, in practice, one may find that the
algorithms converge.

One way of overcoming these assumptions, while still ensuring convergence, is to introduce trust
regions that the sequence {Xn} is permitted to explore, along with a “truncation” which enforces the
constraint. Such truncations distort (1.4) into

Xn+1 = Xn − an+1F(Xn,Zn+1) + an+1Pn+1, (1.6)

where Pn+1 is the projection keeping the sequence {Xn} within the trust region. Projection algorithms
are also discussed in [1, 8, 11].

We consider RM on a possibly infinite dimensional separable Hilbert space. This is of particular
interest as, in the context of relative entropy optimization, we may be seeking a distribution in a Sobolev
space associated with a PDE model. A general analysis of RM with truncations in Hilbert spaces can be
found in [20]. The main purpose of this work is to adapt the analysis of [12] to the Hilbert space setting
for two versions of the truncated problem. The motivation for this is that the analysis of [12] is quite
straightforward, and it is instructive to see how it can be easily adapted to the infinite dimensional
setting. The key modification in the proof is that results for Banach space valued martingales must
be invoked. We also adapt the results to a version of the algorithm where there is prior knowledge
on the location of the root. With these results in hand, we can then verify that the relative entropy
minimization problem can be solved using RM.

1.2.1. Fixed trust regions

In some problems, one may have a priori information on the root. For instance, we may know that
x? ∈ U1, some open bounded set. In this version of the truncated algorithm, we have two open bounded
sets, U0 ( U1, and x? ∈ U1. Let σ0 = 0 and X0 ∈ U0 be given, then (1.6) can be formulated as

X̃n+1 = Xn − an+1F(Xn,Zn+1) (1.7a)

Xn+1 =

X̃n+1 X̃n+1 ∈ U1

X(σn)
0 X̃n+1 < U1

(1.7b)

σn+1 =

σn X̃n+1 ∈ U1

σn + 1 X̃n+1 < U1
(1.7c)

We interpret X̃n+1 as the proposed move, which is either accepted or rejected depending on whether or
not it will remain in the trust region. If it is rejected, the algorithm restarts at X(σn)

0 ∈ U0. The restart
points, {X(σn)

0 }, may be random, or it may be that X(σn)
0 = X0 is fixed. The essential property is that the
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algorithm will restart in the interior of the trust region, away from its boundary. The r.v. σn counts the
number of times a truncation has occurred. Algorithm (1.7) can now be expressed as

Xn+1 = Xn − an+1F(Xn,Zn + 1) + Pn+1

Pn+1 = {X(σn)
0 − X̃n+1}1X̃n+1<U1

.
(1.8)

1.2.2. Expanding trust regions

In the second version of truncated Robbins-Monro, define the sequence of open bounded sets, Un

such that:

U0 ( U1 ( U2 ( . . . , ∪∞n=0Un = H . (1.9)

Again, letting X0 ∈ U0, σ0 = 0, the algorithm is

X̃n+1 = Xn − an+1F(Xn,Zn+1) (1.10a)

Xn+1 =

X̃n+1 X̃n+1 ∈ Uσn

X(σn)
0 X̃n+1 < Uσn

(1.10b)

σn+1 =

σn X̃n+1 ∈ Uσn

σn + 1 X̃n+1 < Uσn

(1.10c)

A consequence of this formulation is that Xn ∈ Uσn for all n. As before, the restart points may be
random or fixed, and they are in U0. This would appear superior to the fixed trust region algorithm, as it
does not require knowledge of the sets. However, to guarantee convergence, global (inH) assumptions
on the regression function are required; see Assumption 2 below. (1.10) can written with Pn+1 as

Xn+1 = Xn − an+1F(Xn,Zn + 1) + Pn+1

Pn+1 = {X(σn)
0 − X̃n+1}1X̃n+1<Uσn

(1.11)

1.3. Outline

In Section 2, we state sufficient assumptions for which we are able to prove convergence in both the
fixed and expanding trust region problems, and we also establish some preliminary results. In Section
3, we focus on the relative entropy minimization problem, and identify what assumptions must hold
for convergence to be guaranteed. Examples are then presented in Section 4, and we conclude with
remarks in Section 5.

2. Convergence of Robbins-Monro

We first reformulate (1.8) and (1.11) in the more general form

Xn+1 = Xn − an+1 f (Xn) − an+1δMn+1︸                              ︷︷                              ︸
=X̃n+1

+an+1Pn+1, (2.1)

where δMn+1, the noise term, is

δMn+1 = F(Xn,Zn+1) − f (Xn)
= F(Xn,Zn+1) − E[F(Xn,Zn+1) | Xn].

(2.2)

AIMS Mathematics Volume 4, Issue 3, 359–383.



363

A natural filtration for this problem is Fn = σ(X0,Z1, . . . ,Zn). Xn is Fn measurable and the noise term
can be expressed in terms of the filtration as δMn+1 = F(Xn,Zn+1) − E[F(Xn,Zn+1) | Fn].

We now state our main assumptions:

Assumption 1. f has a zero, x?. In the case of the fixed trust region problem, there exist R0 < R1 such
that

U0 ⊆ BR0(x?) ⊂ BR1(x?) ⊆ U1.

In the case of the expanding trust region problem, the open sets are defined as Un = Brn(0) with

0 < r0 < r1 < r2 < . . . < rn → ∞. (2.3)

These sets clearly satisfy (1.9).

Assumption 2. For any 0 < a < A, there exists δ > 0:

inf
a≤‖x−x?‖≤A

〈x − x?, f (x)〉 ≥ δ.

In the case of the fixed truncation, this inequality is restricted to x ∈ U1. This is akin to a convexity
condition on a functional F with f = DF .

Assumption 3. x 7→ E[‖F(x,Z)‖2] is bounded on bounded sets, with the restriction to U1 in the case
of fixed trust regions.

Assumption 4. an > 0,
∑

an = ∞, and
∑

a2
n < ∞

Theorem 2.1. Under the above assumptions, for the fixed trust region problem, Xn → x? a.s. and σn

is a.s. finite.

Theorem 2.2. Under the above assumptions, for the expanding trust region problem, Xn → x? a.s.
and σn is a.s. finite.

Note the distinction between the assumptions in the two algorithms. In the fixed truncation
algorithm, Assumptions 2 and 3 need only hold in the set U1, while in the expanding truncation
algorithm, they must hold in all of H . While this would seem to be a weaker condition, it requires
identification of the sets U0 and U1 for which the assumptions hold. Such sets may not be readily
identifiable, as we will see in our examples.

We first need some additional information about f and the noise sequence δMn.

Lemma 2.1. Under Assumption 3, f is bounded on U1, for the fixed trust region problem, and on
arbitrary bounded sets, for the expanding trust region problem.

Proof. Trivially,

‖ f (x)‖ = ‖E[F(x,Z)]‖ ≤ E[‖F(x,Z)‖] ≤
√
E[‖F(x,Z)‖2],

and the results follows from the assumption. �
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Proposition 2.1. For the fixed trust region problem, let

Mn =

n∑
i=1

aiδMi.

Alternatively, in the expanding trust region problem, for r > 0, let

Mn =

n∑
i=1

aiδMi1‖Xi−1−x?‖≤r.

Under Assumptions 3 and 4, Mn is a martingale, converging inH , a.s.

Proof. The following argument holds in both the fixed and expanding trust region problems, with
appropriate modifications. We present the expanding trust region case. The proof is broken up into 3
steps:

1. Relying on Theorem 6 of [7] for Banach space valued martingales, it will be sufficient to show that
Mn is a martingale, uniformly bounded in L1(P).

2. In the case of the expanding truncations,

E[
∥∥∥δMi1‖Xi−1−x?‖≤r

∥∥∥2
] ≤ 2E[

∥∥∥F(Xi−1,Zi)1‖Xi−1−x?‖≤r

∥∥∥2
] + 2E[

∥∥∥ f (Xi−1)1‖Xi−1−x?‖≤r

∥∥∥2
]

≤ 2 sup
‖x−x?‖≤r

E[‖F(x,Z)‖2] + 2 sup
‖x−x?‖≤r

‖ f (x)‖2

Since both of these terms are bounded, independently of i, by Assumption 3 and Lemma 2.1, this is
finite.

3. Next, since {δMi1‖Xi−1−x?‖≤r} is a martingale difference sequence, we can use the above estimate to
obtain the uniform L2(P) bound,

E[‖Mn‖
2] =

n∑
i=1

a2
i E[

∥∥∥δMi1‖Xi−1−x?‖≤r

∥∥∥2
] ≤ sup

i
E[

∥∥∥δMi1‖Xi−1−x?‖≤r

∥∥∥2
]
∞∑

i=1

a2
i < ∞

Uniform boundedness in L2, gives boundedness in L1, and this implies a.s. convergence inH .

�

2.1. Finite truncations

In this section we prove results showing that only finitely many truncations will occur, in either the
fixed or expanding trust region case. Recall that when a truncation occurs, the equivalent conditions
hold: Pn+1 , 0; σn+1 = σn + 1; and X̃n+1 < U1 in the fixed trust region algorithm, while X̃n+1 < Uσn in
the expanding trust region case.

Lemma 2.2. In the fixed trust region algorithm, if Assumptions 1, 2, 3, and 4 hold, then the number of
truncations is a.s. finite; a.s., there exists N, such that for all n ≥ N, σn = σN .

Proof. We break the proof up into 7 steps:
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1. Pick ρ and ρ′ such that
R0 < ρ

′ < ρ < R1 (2.4)

Let f̄ = sup ‖ f (x)‖, with the supremum over U1; this bound exists by Lemma 2.1. Under
Assumption 2, there exists δ > 0 such that

inf
R0/2≤‖x−x?‖≤R1

〈x − x?, f (x)〉 = δ. (2.5)

Having fixed ρ, ρ′, f̄ , and δ, take ε > 0 such that:

ε < min
{
ρ′ − R0,

R1 − ρ
′

2 + f̄
,
ρ′ − R0

f̄
,

R0

2
,
δ

2 f̄
,
δ

f̄ 2
, ρ − ρ′

}
. (2.6)

Having fixed such an ε, by the assumptions of this lemma and Proposition 2.1, a.s., there exists nε
such that for any n,m ≥ nε , both ∥∥∥∥∥∥∥

m∑
k=n

akδMk

∥∥∥∥∥∥∥ ≤ ε, an ≤ ε. (2.7)

2. Define the auxiliary sequence

X′n = Xn −

∞∑
k=n+1

akδMk. (2.8)

Using (2.1), we can then write

X′n+1 = X′n − an+1 f (Xn) + an+1Pn+1. (2.9)

By (2.7), for any n ≥ nε ,
‖X′n − Xn‖ ≤ ε (2.10)

3. We will show X′n ∈ Bρ′(x?) for all n large enough. The significance of this is that if n ≥ nε , and
X′n ∈ Bρ′(x?), then no truncation occurs. Indeed, using (2.6)

‖X̃n+1 − x?‖ ≤ ‖X′n − x?‖ + ‖Xn − X′n‖ + an+1 f̄ + ‖an+1δMn+1‖

< ρ′ + ε + ε f̄ + ε < R1,⇒ X̃n+1 ∈ U1.
(2.11)

Consequently, Pn+1 = 0, Xn+1 = X̃n+1, and σn+1 = σn. Thus, establishing X′n ∈ Bρ′(x?) will yield the
result.

4. Let
N = inf{n ≥ nε | X̃n+1 < U1} + 1 (2.12)

This corresponds to the the first truncation after nε . If the above set is empty, for that realization, no
truncations occur after nε , and we are done. In such a case, we may take N = nε in the statement of
the lemma.
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5. We now prove by induction that in the case that (2.12) is finite, X′n ∈ Bρ′(x?) for all n ≥ N. First,
note that XN ∈ BR0(x?) ⊂ Bρ(x?). By (2.6) and (2.10),

‖X′N − x?‖ ≤ ‖XN − x?‖ + ‖X′N − XN‖ < R0 + ε < ρ′,⇒ X′N ∈ Bρ′(x?).

Next, assume X′N , X
′
N+1, . . . , X

′
n are all in Bρ′(x?). Using (2.11), we have that PN+1 = . . . = Pn+1 = 0

and σN = . . . = σn = σn+1. Therefore,∥∥∥X′n+1 − x?
∥∥∥2

=
∥∥∥X′n − x?

∥∥∥2
− 2an+1

〈
X′n − x?, f (Xn)

〉
+ a2

n+1 ‖ f (Xn)‖2

≤
∥∥∥X′n − x?

∥∥∥2
− 2an+1

〈
X′n − x?, f (Xn)

〉
+ an+1ε f̄ 2

(2.13)

We now consider two cases of (2.13) to conclude ‖X′n+1 − x?‖ < ρ′.

6. In the first case, ‖X′n − x?‖ ≤ R0. By Cauchy-Schwarz and (2.6)

‖X′n+1 − x?‖2 < R2
0 + 2εR0 f̄ + ε2 f̄ 2 = (R0 + ε f̄ )2 < (ρ′)2.

In the second case, R0 < ‖X′n − x?‖ < ρ′. Dissecting the inner product term in (2.13) and using
Assumption 2 and (2.10),〈

X′n − x?, f (Xn)
〉

= 〈Xn − x?, f (Xn)〉 +
〈
X′n − Xn, f (Xn)

〉
≥ 〈Xn − x?, f (Xn)〉 − f̄ ε

(2.14)

Conditions (2.6) and (2.10) yield the following upper and lower bounds:

‖Xn − x?‖ ≥ ‖X′n − x?‖ − ‖X′n − Xn‖ ≥ R0 − ε >
1
2R0,

‖Xn − x?‖ ≤ ‖X′n − x?‖ + ‖X′n − Xn‖ ≤ ρ
′ + ε < ρ < R1.

Therefore, (2.5) applies and 〈Xn − x?, f (Xn)〉 ≥ δ. Using this in (2.14), and condition (2.6),〈
X′n − x?, f (Xn)

〉
≥ δ − f̄ ε > 1

2δ.

Substituting this last estimate back into (2.13), and using (2.6),

‖X′n+1 − x?‖2 < (ρ′)2 − an+1(δ − ε f̄ 2) < (ρ′)2.

This completes the inductive step.

7. Since the auxiliary sequence remains in Bρ′(x?) for all n ≥ N > nε , (2.11) ensures X̃n+1 ∈ BR1(x?),
Pn+1 = 0, and σn+1 = σN , a.s.

�

To obtain a similar result for the expanding trust region problem, we first relate the finiteness of the
number of truncations with the sequence persisting in a bounded set.

Lemma 2.3. In the expanding trust region algorithm, if Assumptions 1, 3, and 4 hold, then the sequence
remains in a set of the form BR(0) for some R > 0 if and only if the number of truncations is finite, a.s.
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Proof. We break this proof into 4 steps:

1. If the number of truncations is finite, then there exists N such that for all n ≥ N, σn = σN .
Consequently, the proposed moves are always accepted, and Xn ∈ Uσn = UσN for all n ≥ N. Since
Xn ∈ Uσn ⊂ UσN for n < N, Xn ∈ UσN for all n. By Assumption 3, BR(0) = BrσN

(0) = UσN is the
desired set.

2. For the other direction, assume that there exists R > 0 such that Xn ∈ BR(0) for all n. Since the rn in
(2.3) tend to infinity, there exists N1, such that R < R + 1 < rN1 . Hence, for all n ≥ N1,

BR(0) ⊂ BR+1(0) ⊂ Un (2.15)

Let f̄ = sup ‖ f (x)‖, with the supremum over BR(0). Let R̃ be sufficiently large such that BR+1(0) ⊂
BR̃(x?). Lastly, using Proposition 2.1 and Assumption 4, a.s., there exists N2, such that for all n ≥ N2

‖anδMn1‖Xn−x?‖≤R̃‖ <
1
2
, an <

1
2(1 + f̄ )

(2.16)

Since Xn ∈ BR(0) ⊂ BR̃(x?), the indicator function in (2.16) is always one, and ‖anδMn‖ < 1/2.

3. Next, let
N = inf{n ≥ 0 | σn ≥ max{N1,N2}} (2.17)

If the above set is empty, then σn < max{N1,N2} for all n, and the number of truncations is a.s.
finite. In this case, the proof is complete.

4. If the set in (2.17) is not empy, then N < ∞. Take n ≥ N. As Xn ∈ BR(0), and since n ≥ σn ≥

max{N1,N2}, (2.16) applies. Therefore,

‖X̃n+1‖ ≤ ‖Xn‖ + ‖X̃n+1 − Xn‖

≤ ‖Xn‖ + an+1‖ f (Xn)‖ + ‖an+1δMn+1‖

< R + 1
2 + 1

2 < R + 1.
(2.18)

Thus, X̃n+1 ∈ BR+1(0) ⊂ UN1 , σn ≥ N1, and UN1 ⊂ Uσn . Therefore, X̃n+1 ∈ Uσn . No truncation
occurs, and σn = σn+1. Since this holds for all n ≥ N, σn = σN , and the number of truncations is
a.s. finite.

�

Next, we establish that, subject to an additional assumption, the sequence remains in a bounded set;
the finiteness of the truncations is then a corollary.

Lemma 2.4. In the expanding trust region algorithm, if Assumptions 1, 2, 3, and 4 hold, and for any
r > 0, there a.s. exists N < ∞, such that for all n ≥ N,

Pn+11‖Xn−x?‖≤r = 0,

then {Xn} remains in a bounded open set, a.s.

Proof. We break this proof into 7 steps:
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1. We begin by setting some constants for the rest of the proof. Fix R > 0 sufficiently large such that
BR(x?) ⊃ U0. Next, let f̄ = sup ‖ f (x)‖ with the supremum taken over BR+2(x?). Assumption 2
ensures there exists δ > 0 such that

inf
R/2≤‖x−x?‖≤R+2

〈x − x?, f (x)〉 = δ. (2.19)

Having fixed R, f̄ , and δ, take ε > 0 such that:

ε < min
{

1,
1
f̄
,
δ

2 f̄
,
δ

f̄ 2
,

R
2

}
. (2.20)

By the assumptions of this lemma and Proposition 2.1 there exists, a.s., nε ≥ N such that for all
n ≥ nε , ∥∥∥∥∥∥∥

∞∑
i=n+1

aiδMi1‖Xi−1−x?‖≤R+2

∥∥∥∥∥∥∥ ≤ ε, (2.21a)

Pn+11‖Xn−x?‖≤R+2 = 0, (2.21b)
an+1 ≤ ε (2.21c)

2. Define the modified sequence for n ≥ nε as

X′n = Xn −

∞∑
k=n+1

akδMk1‖Xk−1−x?‖≤R+2,⇒ ‖X′n − Xn‖ ≤ ε. (2.22)

Using (2.1), we have the iteration

X′n+1 = X′n − an+1δMn+11‖Xn−x?‖>R+2 − an+1 f (Xn) + an+1Pn+1. (2.23)

3. Let
N = inf{n ≥ nε | σn+1 , σn} + 1, (2.24)

the first time after nε that a truncation occurs.

If the above set is empty, no truncations occur after nε . In this case, σn = σnε ≤ nε < ∞ for all
n ≥ nε . Therefore, for all n ≥ nε , Xn ∈ Uσn ⊂ Uσnε

. Since Uσn ⊂ Uσnε
for all n < nε too, the proof is

complete in this case.

4. Now assume that N < ∞. We will show that {X′n} remains in BR+1(x?) for all n ≥ N. Were this to
hold, then for n ≥ N,

‖Xn − x?‖ ≤ ‖X′n − x?‖ +

∥∥∥∥∥∥∥
∞∑

i=n+1

aiδMi1‖Xi−1−x?‖≤R+2

∥∥∥∥∥∥∥
< R + 1 + ε < R + 2,

(2.25)

having used (2.21) and (2.22). For n < N, Xn ∈ Uσn ⊂ UσN = BrN (0). Therefore, for all n,
Xn ∈ BR̃(0) where R̃ = max{rN , ‖x?‖ + R + 2}.
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5. We prove X′n ∈ BR+1(x?) by induction. First, since ε < 1 and XN ∈ U0 ⊂ BR(x?),

‖X′N − x?‖ ≤ ‖X′N − XN‖ + ‖XN − x?‖ < ε + R < R + 1.

Next, assume that X′N , X
′
N+1, . . . , X

′
n are all in BR+1(x?). By (2.25), Xn ∈ BR+2(x?). Since

Pn+11‖Xn−x?‖≤R+2 = 0, we conclude Pn+1 = 0. The modified iteration (2.23) simplifies to have

X′n+1 = X′n − an+1 f (Xn),

and

‖X′n+1 − x?‖2 = ‖X′n − x?‖2 − 2an+1
〈
X′n − x?, f (Xn)

〉
+ a2

n+1‖ f (Xn)‖2

< ‖X′n − x?‖2 − 2an+1
〈
X′n − x?, f (Xn)

〉
+ an+1ε f̄ 2.

(2.26)

6. We now consider two cases of (2.26). First, assume ‖X′n − x?‖ ≤ R. Then (2.26) can immediately be
bounded as

‖X′n+1 − x?‖2 < R2 + 2εR f̄ + ε2 f̄ 2 = (R + ε f̄ )2 < (R + 1)2,

where we have used condition (2.20) in the last inequality.

7. Now consider the case R < ‖X′n − x?‖ < R + 1. Using (2.20), the inner product in (2.26) can first be
bounded from below:〈

X′n − x?, f (Xn)
〉

= 〈Xn − x?, f (Xn)〉 +
〈
X′n − Xn, f (Xn)

〉
≥ 〈Xn − x?, f (Xn)〉 − ε f̄ > 〈Xn − x?, f (Xn)〉 − 1

2δ.

Next, using (2.20)

‖Xn − x?‖ ≥ ‖X′n − x?‖ − ‖Xn − X′n‖ > R − ε > R − 1
2R = 1

2R

Therefore, 1
2R < ‖Xn − x?‖ < R + 2, so (2.19) ensures 〈Xn − x?, f (Xn)〉 ≥ δ and〈

X′n − x?, f (Xn)
〉
> δ − 1

2δ = 1
2δ.

Returning to (2.26), by (2.20),

‖X′n+1 − x?‖2 ≤ (R + 1)2 − an+1(δ − ε f̄ 2) < (R + 1)2.

This completes the proof of the inductive step in this second case, completing the proof.

�

Corollary 2.1. For the expanding trust region algorithm, if Assumptions 1, 2, 3, and 4 hold, then the
number of truncations is a.s. finite.
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Proof. The proof is by contradiction. We break the proof into 4 steps:

1. Assuming that there are infinitely many truncations, Lemma 2.3 implies that the sequence cannot
remain in a bounded set. Then, continuing to assume that Assumptions 1, 2, 3, and 4 hold, the only
way for the conclusion of Lemma 2.4 to fail is if the assumption on Pn+11‖Xn−x?‖≤r is false. Therefore,
there exists r > 0 and a set of positive measure on which a subsequence, Pnk+11‖Xnk−x?‖≤r , 0. Hence
Xnk ∈ Br(x?), and Pnk+1 , 0. So truncations occur at these indices, and X̃nk+1 < Uσnk

.

2. Let f̄ = sup ‖ f (x)‖ with the supremum over the set Br(x?) and let ε > 0 satisfy

ε < ( f̄ + 1)−1. (2.27)

By our assumptions of the lemma and Proposition 2.1, there exists nε such that for all n ≥ nε

‖an+1δMn+11‖Xn−x?‖≤r‖ ≤ ε, an+1 ≤ ε (2.28)

Along the subsequence, for all nk ≥ nε ,

‖ank+1δMnk+11‖Xnk−x?‖≤r‖ = ‖ank+1δMnk+1‖ ≤ ε. (2.29)

3. Furthermore, for nk ≥ nε:

‖X̃nk+1 − x?‖ ≤ ‖Xnk − x?‖ + ank+1‖ f (Xnk)‖ + ‖ank+1δMnk+1‖

< r + ε f̄ + ε < r + 1,⇒ X̃nk+1 ∈ Br+1(x?),
(2.30)

where (2.27) has been used in the last inequality.

4. By the definition of the Un, there exists an index M such that UM ⊃ Br+1(x?). Let

N = inf{n ≥ nε | σn ≥ M}. (2.31)

This set is nonempty and N < ∞ since we have assumed there are infinitely many truncations. Let
nk ≥ N. Then σnk ≥ M and Uσnk

⊃ Br+1(x?). But (2.30) then implies that X̃nk+1 ∈ Uσnk
, and no

truncation will occur; Pnk+1 = 0, providing the desired the contradiction.

�

2.2. Proof of convergence

Using the above results, we are able to prove Theorems 2.1 and 2.2. Since the proofs are quite
similar, we present the more complicated expanding trust region case.

Proof. We split this proof into 6 steps:

1. First, by Corollary 2.1, only finitely many truncations occur. By Lemma 2.3, there exists R > 0 such
that Xn ∈ BR(0) for all n. Consequently, there is an r such that Xn ∈ Br(x?) for all n.
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2. Next, we fix constants. Let f̄ = sup ‖ f (x)‖ with the supremum taken over Br(x?). Fix η ∈ (0, 2R),
and use Assumption 2 to determine δ > 0 such that

inf
η/2≤‖x−x?‖≤r

〈x − x?, f (x)〉 = δ (2.32)

Take ε > 0 such that:

ε < min
{

1,
η

2
,
δ

2 f̄
,
δ

2 f̄ 2

}
(2.33)

Having set ε, we again appeal to Assumption 4 and Proposition 2.1 to find nε such that for all n ≥ nε:∥∥∥∥∥∥∥
∞∑

i=n+1

aiδMi1‖Xi−1−x?‖≤r

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∞∑

i=n+1

aiδMi

∥∥∥∥∥∥∥ ≤ ε, an+1 ≤ ε (2.34)

3. Define the auxiliary sequence,

X′n = Xn −

∞∑
i=n+1

aiδMi1‖Xi−1−x?‖≤r = Xn −

∞∑
i=n+1

aiδMi. (2.35)

Since there are only finitely many truncations, there exists N ≥ nε , such that for all n ≥ N, Pn+1 = 0,
as the truncations have ceased. Consequently, for n ≥ N,

X′n+1 = X′n − an+1 f (Xn) (2.36)

By (2.34) and (2.35), for n ≥ N, ‖Xn − X′n‖ ≤ ε. Since ε > 0 may be arbitrarily small, it will be
sufficient to prove X′n → x?.

4. To obtain convergence of X′n, we first examine ‖X′n+1 − x?‖. For n ≥ N,

‖X′n+1 − x?‖2 ≤ ‖X′n − x?‖2 − 2an+1
〈
X′n − x?, f (Xn)

〉
+ an+1ε f̄ 2, (2.37)

Now consider two cases of this expression. First, assume ‖X′n − x?‖ ≤ η. In this case, using (2.33),

−2an+1
〈
X′n − x?, f (Xn)

〉
+ an+1ε f̄ 2 ≤ an+1(2η f̄ + ε f̄ 2)

< an+1(4R f̄ + f̄ 2) = an+1B.
(2.38)

where B > 0 is a constant depending only on R and f̄ . For ‖X′n − x?‖ > η, using (2.33)〈
X′n − x?, f (Xn)

〉
= 〈Xn − x?, f (Xn)〉 +

〈
X′n − Xn, f (Xn)

〉
≥ 〈Xn − x?, f (Xn)〉 − ε f̄

> 〈Xn − x?, f (Xn)〉 − 1
2δ.

(2.39)

By (2.33),
‖Xn − x?‖ ≥ ‖X′n − x?‖ − ‖Xn − X′n‖ > η − ε >

1
2η

Since ‖Xn − x?‖ < r too, (2.32) and (2.39) yield the estimate〈
X′n − x?, f (Xn)

〉
> δ − ε f̄ > 1

2δ
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Thus, in this regime, using (2.33),

−2an+1
〈
X′n − x?, f (Xn)

〉
+ an+1ε f̄ 2 ≤ −an+1(δ − ε f̄ 2)

< − 1
2δan+1 = −Aan+1

(2.40)

where A > 0 is a constant depending only on δ.

Combining estimates (2.38) and (2.40), we can write for n ≥ N

‖X′n+1 − x?‖2 < ‖X′n − x?‖2 − an+1A1‖X′n−x?‖>η + an+1B1‖X′n−x?‖≤η. (2.41)

5. We now show that ‖X′n − x?‖ ≤ η i.o. The argument is by contradiction. Let M ≥ N be such that for
all n ≥ M, ‖X′n − x?‖ > η. For such n,

η2 < ‖X′n+1 − x?‖2 < ‖X′n − x?‖2 − an+1A

< ‖X′n−1 − x?‖2 − an+1A − anA

< . . . < ‖X′M − x?‖2 − A
n∑

i=M

ai+1.

(2.42)

Using Assumption 4 and taking n→ ∞, we obtain a contradiction.

6. Finally, we prove convergence of X′n → x?. Since X′n ∈ Bη(x?) i.o., let

N′ = inf{n ≥ N | ‖X′n − x?‖ < η}. (2.43)

For n ≥ N′, we can then define

ϕ(n) = max
{
p ≤ n |

∥∥∥X′p − x?
∥∥∥ < η} . (2.44)

For all such n, ϕ(n) ≤ n, and X′ϕ(n) ∈ Bη(x?).

We claim that for n ≥ N′,

‖X′n+1 − x?‖2 < ‖X′ϕ(n) − x?‖2 + Baϕ(n)+1 < η
2 + Baϕ(n)+1.

First, if n = ϕ(n), this trivially holds in (2.41). Suppose now that n > ϕ(n). Then for i = ϕ(n) +

1, ϕ(n) + 2, . . . n, ‖X′i − x?‖ > η. Consequently,

‖X′n+1 − x?‖2 < ‖X′n − x?‖2 < ‖X′n−1 − x?‖2 < . . .

< ‖X′ϕ(n)+1 − x?‖2 < ‖X′ϕ(n) − x?‖2 + Baϕ(n)+1

< η2 + Baϕ(n)+1

As ϕ(n)→ ∞,
lim sup

n→∞
‖X′n+1 − x?‖2 ≤ η2

Since η may be arbitrarily small, we conclude that

lim sup
n→∞

‖X′n+1 − x?‖ = lim
n→∞
‖X′n+1 − x?‖ = 0,

completing the proof.

�
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3. Minimization of relative entropy

Recall from the introduction that our distribution of interest, µ, is posed on the Borel subsets of
Hilbert space H . We assume that µ � µ0, where µ0 = N(m0,C0) is some reference Gaussian. Thus,
we write

dµ
dµ0

=
1
Zµ

exp
{
−Φµ(u)

}
, (3.1)

where Φν : X → R, X a Banach space, a subspace ofH , of full measure with respect to µ0, a Gaussian
onH , assumed to be continuous. Zµ = Eµ0[exp {−Φ(u)}] ∈ (0,∞) is the partition function ensuring we
have a probability measure.

Let ν = N(m,C), be another Gaussian, equivalent to µ0, such that we can write

dν
dµ0

=
1
Zν

exp {−Φν(v)} , (3.2)

Assuming that ν � µ, we can write

R(ν||µ) = Eν[Φµ(u) − Φν(u)] + log(Zµ) − log(Zν) (3.3)

The assumption that ν � µ implies that ν and µ are equivalent measures. As was proven in [16], if
A is a set of Gaussian measures, closed under weak convergence, such that at least one element of
A is absolutely continuous with respect to µ, then any minimizing sequence over A will have a weak
subsequential limit.

If we assume, for this work, that C = C0, then, by the Cameron-Martin formula (see [9]),

Φν(u) = − 〈u − m,m − m0〉H1 −
1
2
‖m − m0‖

2
H1 , Zν = 1. (3.4)

Here, 〈•, •〉H1 and ‖•‖H1 are the inner product and norms of the Cameron-Martin Hilbert space, denoted
H1,

〈 f , g〉H1 =
〈
C−1/2

0 f ,C−1/2
0 g

〉
, ‖ f ‖2

H1 = 〈 f , f 〉2
H1 . (3.5)

Convergence to the minimizer will be established in H1, and H1 will be the relevant Hilbert space in
our application of Theorems 2.1 and 2.2 to this problem.

Letting ν0 = N(0,C0) and v ∼ ν0, we can then rewrite (3.3) as

J(m) ≡ R(ν||µ) = Eν0[Φµ(v + m)] +
1
2
‖m − m0‖

2
H1 + log(Zµ) (3.6)

The Euler-Lagrange equation associated with (3.6), and the second variation, are:

J′(m) = Eν0[Φ′µ(v + m)] + C−1
0 (m − m0), (3.7)

J′′(m) = Eν0[Φ′′µ (v + m)] + C−1
0 . (3.8)
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3.1. Application of Robbins-Monro

In [15], it was suggested that rather than try to find a root of (3.7), the equation first be
preconditioned by multiplying by C0,

C0E
ν0[Φ′µ(v + m)] + (m − m0), (3.9)

and a root of this mapping is sought, instead. Defining

f (m) = C0E
ν0[Φ′µ(v + m)] + (m − m0), (3.10a)

F(m, v) = C0Φ
′
µ(v + m) + (m − m0). (3.10b)

The Robbins-Monro formulation is then

mn+1 = mn − an+1F(mn, vn+1) + Pn+1, (3.11)

with vn ∼ ν0, i.i.d.
We thus have

Theorem 3.1. Assume:

• There exists ν = N(m,C0) ∼ µ0 such that ν � µ.
• Φ′µ and Φ′′µ exist for all u ∈ H1.
• There exists m?, a local minimizer of J, such that J′(m?) = 0.
• The mapping

m 7→ Eν0

[∥∥∥∥√
C0Φ

′
µ(m + v)

∥∥∥∥2]
(3.12)

is bounded on bounded subsets ofH1.
• There exists a convex neighborhood U? of m? and a constant α > 0, such that for all m ∈ U?, for

all u ∈ H1,
〈J′′(m)u, u〉 ≥ α ‖u‖2

H1 (3.13)

Then, choosing an according to Assumption 4,

• If the subset U? can be taken to be all of H1, for the expanding truncation algorithm, mn → m?

a.s. inH1.
• If the subset U? is not all of H1, then, taking U1 to be a bounded (in H1) convex subset of U?,

with m? ∈ U1, and U0 any subset of U1 such that there exist R0 < R1 with

U0 ⊂ BR0(x?) ⊂ BR1(x?) ⊂ U1,

for the fixed truncation algorithm, mn → m? a.s. inH1.

Proof. We split the proof into 2 steps:

1. By the assumptions of the theorem, we clearly satisfy Assumptions 1 and 4. To satisfy Assumption
3, we observe that

Eν0[‖F(m, v)‖2
H1] ≤ 2Eν0

[∥∥∥∥√
C0Φ

′
µ(m + v)

∥∥∥∥2]
+ 2 ‖m − m0‖

2
H1 .

This is bounded on bounded subsets ofH1.
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2. Per the convexity assumption, (3.13), implies Assumption 2, since, by the mean value theorem in
function spaces,

〈m − m?, f (m)〉H1 =
〈
m − m?,C0

[
J′(m?) + J′′(m̃)(m − m?)

]〉
H1

= 〈m − m?, J′′(m̃)(m − m?)〉 ≥ α ‖m − m?‖
2
H1

where m̃ is some intermediate point between m and m?. This completes the proof.

�

While condition (3.13) is sufficient to obtain convexity, other conditions are possible. For instance,
suppose there is a convex open set U? containing m? and constant θ ∈ [0, 1), such that for all m ∈ U?,

inf
u∈H
u,0

〈
Eν0[Φ′′µ (v + m)]u, u

〉
‖u‖2

≥ −θλ−1
1 , (3.14)

where λ1 is the principal eigenvalue of C0. Then this would also imply Assumption 2, since

〈m − m?, f (m)〉H1 =
〈
m − m?,C0

[
J′(m?) + J′′(m̃)(m − m?)

]〉
H1

= 〈m − m?, J′′(m̃)(m − m?)〉

≥ ‖m − m?‖
2
H1 +

〈
m − m?,E

ν0[Φ′′µ (v + m̃)](m − m?)
〉

≥ ‖m − m?‖
2
H1 − θλ

−1
1 ‖m − m?‖

2

≥ (1 − θ) ‖m − m?‖
2
H1 .

We mention (3.14) as there may be cases, shown below, for which the operator Eν0[Φ′′µ (v + m)] is
obviously nonnegative.

4. Examples

To apply the Robbins-Monro algorithm to the relative entropy minimization problem, the Φµ

functional of interest must be examined. In this section we present a few examples, based on those
presented in [15], and examine when the assumptions hold. The one outstanding assumption that we
must make is that, a priori, µ0 is an equivalent measure to µ.

4.1. Scalar problem

Taking µ0 = N(0, 1), the standard unit Gaussian, let V : R→ R be a smooth function such that

dµ
dµ0

=
1
Zµ

exp
{
−ε−1V(x)

}
(4.1)

is a probability measure on R. For these scalar cases, we use x in place of v. In the above framework,

F(x, ξ) = ε−1V ′(x + ξ) − ξ,
f (x) = ε−1E[V ′(x + ξ)]m

Φ′µ(x) = ε−1V ′(x),

Φ′′µ (x) = ε−1V ′′(x)

and ξ ∼ N(0, 1) = ν0 = µ0.
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4.1.1. Globally convex case

Consider the case that
V(x) = 1

2 x2 + 1
4 x4. (4.2)

In this case

F(x, ξ) = ε−1
(
x + ξ + (x + ξ)3

)
+ x,

f (x) = ε−1
(
4x + x3

)
+ x,

E[Φ′′µ (x + ξ)] = ε−1(4 + 3x2),

E[
∣∣∣Φ′µ(x + ξ)

∣∣∣2] = ε−1
(
22 + 58x2 + 17x4 + x6

)
.

Since E[Φ′′µ (x + ξ)] ≥ 4ε−1, all of our assumptions are satisfied and the expanding truncation algorithm
will converge to the unique root at x? = 0 a.s. See Figure 1 for an example of the convergence at
ε = 0.1, Un = (−n − 1, n + 1), and always restarting at 0.5.

We refer to this as a “globally convex” problem since R is globally convex about the minimizer.

100 101 102 103 104 105

Iteration n

−15

−10

−5

0

5

10

15

m
n

Robbins-Monro
Exact
Trust Region

Figure 1. Robbins-Monro applied to a globally convex scalar problem associated with (4.2)
with ε = 0.1 and expanding trust regions Un = (−1 − n, 1 + n).

4.1.2. Locally convex case

In contrast to the above problem, some mimizers are only “locally” convex. Consider the case the
double well potential

V(x) = 1
4 (4 − x2)2 (4.3)

Now, the expressions for RM are

F(x, ξ) = ε−1
(
(x + ξ)3 − 4(x + ξ))

)
+ x,

f (x) = ε−1
(
x3 − x

)
+ x,

E[Φ′′µ (x + ξ)] = ε−1
(
3x2 − 1

)
,

E[
∣∣∣Φ′µ(x + ξ)

∣∣∣2] = ε−1(1 + x2)(7 + 6x2 + x4).
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In this case, f (x) vanishes at 0 and ±
√

1 − ε, and J′′ changes sign from positive to negative when x
enters (−

√
(1 − ε)/3,

√
(1 − ε)/3). We must therefore restrict to a fixed trust region if we want to ensure

convergence to either of ±
√

1 − ε.
We ran the problem at ε = 0.1 in two cases. In the first case, U1 = (0.6, 3.0) and the process always

restarts at 2. This guarantees convergence since the second variation will be strictly postive. In the
second case, U1 = (−0.5, 1.5), and the process always restarts at −0.1. Now, the second variation
can change sign. The results of these two experiments appear in Figure 2. For some random number
sequences the algorithm still converged to

√
1 − ε, even with the poor choice of trust region.
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Robbins-Monro
Exact
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(b)

Figure 2. Robbins-Monro applied to the nonconvex scalar problem associated with (4.3).
Figure (a) shows the result with a well chosen trust region, while (b) shows the outcome of a
poorly chosen trust region.

4.2. Path space problem

Take µ0 = N(m0(t),C0), with

C0 =

(
−

d2

dt2

)−1

, (4.4)

equipped with Dirichlet boundary conditions on H = L2(0, 1).∗ In this case the Cameron-Martin
space H1 = H1

0(0, 1), the standard Sobolev space equipped with the Dirichlet norm. Let us assume
m0 ∈ H1(0, 1), taking values in Rd.

Consider the path space distribution on L2(0, 1), induced by

dµ
dµ0

= −
1
Zµ

exp
{
−Φµ(v)

}
, Φµ(u) = ε−1

∫ 1

0
V(v(t))dt, (4.5)

where V : Rd → R is a smooth function. We assume that V is such that this probability distribution
exists and that µ ∼ µ0, our reference measure.

We thus seek an Rd valued function m(t) ∈ H1(0, 1) for our Gaussian approximation of µ, satisfying
the boundary conditions

m(0) = m−, m(1) = m+. (4.6)
∗This is the covariance of the standard unit Brownian bridge, Yt = Bt − tB1.
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For simplicity, take m0 = (1− t)m− + tm+, the linear interpolant between m±. As above, we work in the
shifted coordinated x(t) = m(t) − m0(t) ∈ H1

0(0, 1).
Given a path v(t) ∈ H1

0 , by the Sobolev embedding, v is continuous with its L∞ norm controlled by
its H1 norm. Also recall that for ξ ∼ N(0,C0), in the case of ξ(t) ∈ R,

E
[
ξ(t)p] =

0, p odd,
(p − 1)!! [t(1 − t)]

p
2 , p even.

(4.7)

Letting λ1 = 1/π2 be the ground state eigenvalue of C0,

E[‖
√

C0Φ
′
µ(v + m0 + ξ)‖2] ≤ λ1E[‖Φ′µ(v + m0 + ξ)‖2]

= λ1ε
−2

∫ 1

0
E[|V ′(v(t) + m0(t) + ξ(t))|2]dt.

The terms involving v+m0 in the integrand can be controlled by the L∞ norm, which in turn is controlled
by the H1 norm, while the terms involving ξ can be integrated according to (4.7). As a mapping applied
to x, this expression is bounded on bounded subsets of H1.

Minimizers will satisfy the ODE

ε−1E
[
V ′(x + m0 + ξ)

]
− x′′ = 0, x(0) = x(1) = 0. (4.8)

4.3. Globally convex example

With regard to convexity about a minimizer, m?, if, for instance, V ′′ were pointwise positive definite,
then the problem would satisfy (3.14), ensuring convergence. Consider the quartic potential V given
by (4.2). In this case,

Φ(v) = ε−1
∫ 1

0

1
2

v(t)2 +
1
4

v(t)4dt, (4.9)

and

Φ′(v + m0 + ξ) = ε−1
[
(v + m0 + ξ) + 3(v + m0 + ξ)3

]
Φ′′(v + m0 + ξ) = ε−1

[
1 + 3(v + m0 + ξ)2

]
,

E[Φ′(v + m0 + ξ)] = ε−1
[
v + m0 + (v + m0)3 + 3t(1 − t)(v + m0)

]
E[Φ′′(v + m0 + ξ)] = ε−1

[
1 + 3(v + m0)2 + 3t(1 − t)

]
Since Φ′′(v + m0 + ξ) ≥ ε−1, we are guaranteed convergence using expanding trust regions. Taking
ε = 0.01, m− = 0 and m+ = 2, this is illustrated in Figure 3, where we have also solved (4.8) by ODE
methods for comparison. As trust regions, we take

Un =
{
m ∈ H1

0(0, 1) | ‖x‖H1 ≤ 10 + n
}
, (4.10)

and we always restart at the zero solution Figure 3 also shows robustness to discretization; the number
of truncations is relatively insensitive to ∆t.
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Figure 3. The mean paths computed for (4.9) at different resolutions, along with the
truncation sequence.

4.4. Locally convex example

For many problems of interest, we do not have global convexity. Consider the double well potential
(4.3), but in the case of paths,

Φ(u) = ε−1
∫ 1

0

1
4

(4 − v(t)2)2dt. (4.11)

Then,

Φ′(v + m0 + ξ) = ε−1
[
(v + m0 + ξ)3 − 4(v + m0 + ξ)

]
Φ′′(v + m0 + ξ) = ε−1

[
3(v + m0 + ξ)2 − 4

]
,

E[Φ′(v + m0 + ξ)] = ε−1
[
(v + m0)3 + 3t(1 − t)(v + m0) − 4(v + m0)

]
E[Φ′′(v + m0 + ξ)] = ε−1

[
3(v + m0)2 + 3t(1 − t) − 4

]
Here, we take m− = 0, m+ = 2, and ε = 0.01. We have plotted the numerically solved ODE in Figure

4. Also plotted is E[Φ′′(v? + m0 + ξ)]. Note that E[Φ′′(v? + m0 + ξ)] is not sign definite, becoming as
small as −400. Since C0 has λ1 = 1/π2 ≈ 0.101, (3.14) cannot apply.

Discretizing the Schrödinger operator

J′′(v?) = −
d2

dt2 + ε−1
(
3(v?(t) + m0(t))2 + 3t(1 − t) − 4

)
, (4.12)

we numerically compute the eigenvalues. Plotted in Figure 5, we see that the minimal eigenvalue of
J′′(m?) is approximately µ1 ≈ 550. Therefore,

〈J′′(x?)u, u〉 ≥ µ1 ‖u‖2L2 ⇒ 〈J′′(x)u, u〉 ≥ α ‖u‖2H1 , (4.13)

for all v in some neighborhood of v?. For an appropriately selected fixed trust region, the algorithm
will converge.

However, we can show that the convexity condition is not global. Consider the path m(t) = 2t2,
which satisfies the boundary conditions . As shown in Figure 5, this path induces negative eigenvalues.
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Figure 4. The numerically computed solution to (4.8) in the case of the double well, (4.11),
m?, and the associated Eν0[Φ′′(m? + ξ)].
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Figure 5. The numerically computed spectrum for (4.12), associated with the m? shown in
Figure 4. Also shown is the numerically computed spectrum for the path m(t) = 2t2, which
introduces negative eigenvalues.

Despite this, we are still observe convergence. Using the fixed trust region

U1 =
{
x ∈ H1

0(0, 1) | ‖x‖H1 ≤ 100
}
, (4.14)

we obtain the results in Figure 6. Again, the convergence is robust to discretization.
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Figure 6. The mean paths computed for (4.11) at different resolutions, along with the
truncation sequence.

5. Discussion

We have shown that the Robbins-Monro algorithm, with both fixed and expanding trust regions, can
be applied to Hilbert space valued problems, adapting the finite dimensional proof of [12]. We have
also constructed sufficient conditions for which the relative entropy minimization problem fits within
this framework.

One problem we did not address here was how to identify fixed trust regions. Indeed, that requires
a tremendous amount of a priori information that is almost certainly not available. We interpret that
result as a local convergence result that gives a theoretical basis for applying the algorithm. In practice,
since the root is likely unknown, one might run some numerical experiments to identify a reasonable
trust region, or just use expanding trust regions. The practitioner will find that the algorithm converges
to a solution, though perhaps not the one originally envisioned. A more sophisticated analysis may
address the convergence to a set of roots, while being agnostic as to which zero is found.

Another problem we did not address was how to optimize not just the mean, but also the covariance
in the Gaussian. As discussed in [15], it is necessary to parameterize the covariance in some way,
which will be application specific. Thus, while the form of the first variation of relative entropy with
respect to the mean, (3.7), is quite generic, the corresponding expression for the covariance will be
specific to the covariance parameterization. Additional constraints are also necessary to guarantee that
the parameters always induce a covariance operator. We leave such specialization as future work.
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