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We present a lattice quantum chromodynamics determination of the ratio of the scalar and vector
form factors for two semileptonic decays of the Bs; meson: Bs — K{v and Bs — Dg{v. In conjunc-
tion with future experimental data, our results for these correlated form factors will provide a new
method to extract |Vis/Ves|, which may elucidate the current tension between exclusive and inclu-
sive determinations of these Cabibbo-Kobayashi-Maskawa mixing matrix parameters. In addition to
the form factor results, we determine the ratio of the differential decay rates, and forward-backward

and polarization asymmetries, for the two decays.

I. INTRODUCTION

Semileptonic decays of heavy mesons provide stringent
tests of the standard model of particle physics and op-
portunities to observe signals of new physics. In partic-
ular, experimental measurements of B decays have high-
lighted a number of deviations from standard model ex-
pectations. These discrepancies include R(D™), the ra-
tio of the branching fraction of the B — D®)rv and
B — D(*)e/uu decays, Ry« , the ratio of the branch-
ing fraction of the B — K" ytu~ and B — K®ete
decays, and the long-standing tension between inclusive
and exclusive determinations of the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix elements |V,| and |Vp|.
Although none of these differences are conclusive evi-
dence of new physics effects, the cumulative weight of
these tensions suggest a hint of new physics.

The ratio |Vip/Ves|, which enters into the length of the
side of the CKM unitarity triangle opposite the precisely-
determined angle 3, is a central input into tests of CKM
unitarity. Both |Vy,| and |Vip| have been determined
through measurements of multiple exclusive mesonic de-
cay channels [1, 2|, primarily B — wfw, [3-11] and
B — D"){w, respectively [12-20], although other chan-
nels are also used [21-25]. The B; — K decay has gen-
erally received less theoretical attention than the cor-
responding B decay, largely due to the absence of ex-
perimental data, although this channel has been studied
on the lattice in [297 |, and using other theoretical ap-
proaches [? ], including light cone sum rules [? ? ],
perturbative QCD [? ? ] and QCD-inspired models
[? ? 7 7 7 ]. Form factors for both B — m{p,
and B — D"/(7, decays have been calculated by sev-
eral lattice groups [26-33] and using light cone sum rules
[34—42], which provide complementary coverage of dif-
ferent kinematic regions. The leptonic decay B — 70
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provides an alternative method to extract |V, but this
approach is limited by current experimental uncertainties
[1]. Most recently, the ratio |Viy/Vey| was determined by
the LHCD collaboration through the ratio of the bary-
onic decays AY) — AFuv and A) — puv [43, 44], using
form factors determined with lattice QCD [45]. Inclusive
determinations of |V,;| differ from the value extracted
from exclusive decays at the level of approximately three
standard deviations.

Here we undertake a correlated study of the form fac-
tors for the By — K/{vy, and B; — D4 (v, decays, which,
in conjunction with anticipated experimental results from
the LHCb Collaboration, will provide a new method
to determine the ratio |V,/Ves|. We perform a chiral-
continuum-kinematic fit to the scalar and vector form
factors for both the By — K/{v, [46] and B; — Dy{v, de-
cays [47], to determine the correlated form factors over
the full range of momentum transfer. Using the ratio
of the form factors significantly reduces the largest sys-
tematic uncertainty at large values of the momentum
transfer, which stems from the perturbative matching of
lattice nonrelativistic QCD (NRQCD) currents to con-
tinuum QCD. We use our form factor results to predict
several phenomenological ratios, including the differen-
tial branching fractions, and the forward-backward and
polarization asymmetries.

We briefly summarize the details of the lattice calcu-
lations used in the analyses of [46, 47] in Sec. II and the
corresponding form factor results in Sec. III. We then
present our new chiral-continuum-kinematic extrapola-
tion in Sec. IV, and our phenomenological predictions in
Sec. V, before summarizing in Sec. VI. We provide fur-
ther details of the input two-point correlator data in Ap-
pendix A and details required to reconstruct our chiral-
continuum-kinematic fit in Appendix B.
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TABLE I. Details of three “coarse” and two “fine” ny =2+1
MILC ensembles used in the determination of the scalar and
vector form factors.

Set  r1/a  mi/ms (sea) Neont (K/Ds) Nisrc L3 x N,

Cl 2647 0.005/0.050  1200/2096  2/4 24% x 64
C2 2618 0.010/0.050  1200/2256  2/2 207 x 64
C3 2644 0.020/0.050  600/1200  2/2 20° x 64
F1 3.699 0.0062/0.031  1200/1896  4/4 28% x 96

F2 3.712 0.0124/0.031 600/1200 4/4 28° x 96

II. ENSEMBLES, CURRENTS AND
CORRELATORS

Our determination of the ratio of the form factors for
the exclusive By — X /v semileptonic decays closely par-
allels the analyses presented in [31, 46, 47]. Throughout
this work, we use X, to represent a K or D meson. We
use the two- and three-point correlator data presented in
[46, 47] to perform a simultaneous, correlated fit of the
form factors for both By — K/lv and By — D¢lv decays.
In this section we outline the details of the ensembles,
reproduce the form factor results for convenience, and
refer the reader to [31, 46, 47] for details of the correla-
tor analysis.

We use five gauge ensembles with ny = 2 + 1 flavors
of AsqTad sea quarks generated by the MILC Collabora-
tion [48], including three “coarse” (with lattice spacing
a ~ 0.12fm) and two “fine” (with a ~ 0.09fm) ensem-
bles. We summarize these ensembles in Table I and tab-
ulate the corresponding light pseudoscalar masses, for
both AsqTad and HISQ valence quarks, in Table II.

In Table III we list the valence quark masses for the
NRQCD bottom quarks and HISQ charm quarks [46, 50].
For completeness and ease of reference, we include both
the tree-level wave function renormalization for the mas-
sive HISQ quarks [51] and the spin-averaged T mass,
corrected for electroweak effects, determined in [50].

The scalar, f( “)( 2), and vector, f(X )( 2), form fac-
tors that characterlze the Bs; — X semileptonic decays
are defined by the matrix element

M2 _M2
Kl VP |Bulpn)) = 5 (a8) =2
M2 — M?2
+ 5P vl + e, — %q“ .

where V*# is a flavor-changing vector current and the mo-
mentum transfer is ¢* = plz — pl_. On the lattice it is

more convenient to work with the form factors fl( *) and

iX ), which are given in terms of the scalar and vector

form factors by

) = TMB 77 @)
+ (Mg, - B @
) = 3 | s, — ) #)

(B - MRS >] 3)

Here Ex_ is the energy of the X, meson in the rest frame
of the B; meson. We work in the rest frame of the B,
meson and throughout the rest of this work the spatial
momentum, P, denotes the momentum of the X, meson.

NRQCD is an effective theory for heavy quarks and re-
sults determined using lattice NRQCD must be matched
to full QCD to make contact with experimental data. We
match the bottom-charm currents, J,,, at one loop in per-
turbation theory through O(as, Aqep/me, as/(ams)),
where amy, is the bare lattice mass [51]. We rescale all
currents by the nontrivial massive wave function renor-
malization for the HISQ charm quarks, tabulated in Ta-
ble III, and taken from [31, 51].

The By and X, meson two-point correlators and three-
point correlators of the NRQCD-HISQ currents, J,,, were
calculated in [46, 47]. In those calculations, we used
smeared heavy-strange bilinears to represent the Bs me-
son and incorporated both delta-function and Gaussian
smearing, with a smearing radius of ro/a = 5 and
ro/a = 7 on the coarse and fine ensembles, respectively.
The three-point correlators were determined with the
setup illustrated in Fig. 1. The Bs meson is created at
time ¢y and a current J,, inserted at time ¢, between %
and tg + T. The X, meson is then annihilated at time
to +T. We used four values of T: 12, 13, 14, and 15
on the coarse lattices; and 21, 22, 23, and 24 on the
fine lattices. We implemented spatial sums at the source
through the U(1) random wall sources &(z) and &(z’) [52]
and generated data for four different values of the X me-
son momenta, p = 27/(aL)(0,0,0), p = 27/(aL)(1,0,0),
p = 2n/(aL)(1,1,0), and p' = 27 /(aL)(1,1,1), where L
is the spatial lattice extent.

III. CORRELATOR AND FORM FACTOR
RESULTS

The results for the two- and three-point correlators
were determined with a Bayesian multiexponential fitting
procedure, based on the PYTHON packages LSQFIT [53]
and CORRFITTER [54]. The results are summarized for
convenience in Appendix A.

We summarize the final results for the form factors,
fo(P) and f4(p), for each ensemble and X momentum
in Tables IV and V. For more details, see [31, 46, 47].



TABLE II. Light meson masses on MILC ensembles for both AsqTad [48] and HISQ valence quarks [46]. In the final column

we list the finite volume corrections to chiral logarithms from staggered perturbation theory [49], for each ensemble.

Set aMAsaTad aMH1SQ aMﬁquad aMIH(IISQ aM,I;IsISQ aMgiSQ SFV

C1 0.15971(20)  0.15990(20) 0.36530(29) 0.31217(20) 0.41111(12) 1.18755(22) 0.053647
02 0.22447(17)  0.21110(20) 0.38331(24) 0.32851(48) 0.41445(17) 1.20090(30) 0.030760
C3 0.31125(16) 0.29310(20) 0.40984(21) 0.35720(22) 0.41180(23) 1.19010(33) 0.003375
F1 0.14789(18) 0.13460(10) 0.25318(19) 0.22855(17) 0.294109(93) 0.84674(12) 0.059389
F2 0.20635(18)  0.18730(10) 0.27217(21) 0.24596(14) 0.29315(12) 0.84415(14) 0.007567

TABLE III. Valence quark masses am, for NRQCD bottom
quarks and am and am. for HISQ strange and charm quarks.
The fifth column gives Zéo) (am.), the tree-level wave function
renormalization constant for massive (charm) HISQ quarks.
The sixth column lists the values of the spin-averaged T mass,
corrected for electroweak effects.

Set  amy ams ame Zéo) (ame) aksm

Cl 2.650 0.0489 0.6207 1.00495618 0.28356(15)
C2 26838 0.0492 0.6300 1.00524023 0.28323(18)
C3 2650 0.0491 0.6235 1.00504054 0.27897(20)
F1 1.832 0.0337 0.4130 1.00103879  0.25653(14)
F2 1.826 0.0336 0.4120 1.00102902  0.25558(28)
FIG. 1. Lattice setup for the three-point correlators. See

accompanying text for details.

IV. CHIRAL, CONTINUUM AND KINEMATIC
EXTRAPOLATIONS

Form factors determined from experimental data are
functions of a single kinematic variable, which is typically
the momentum transfer, g2, or the energy of the mesonic
decay product, Ex,. Alternatively, the form factors can
be expressed in terms of the z-variable,

R eV
Vir — @2+ Vit —to

Here t, = (Mp, + Mx,)? and ty is a free parame-
ter, which we take to be to = (Mp, + Mx,)(v/ Mg, +
/Mx_)?, as in [46]. This choice minimizes the magni-
tude of z over the physical range of momentum transfer.
Note that in [47] the choice ty = ¢2,, = (Mp, — Mx.)?

(¢) (4)

was used to ensure consistency with the analysis of [31].
We have confirmed that our extrapolation results are in-
dependent of our choice of #y, within fit uncertainties.

Lattice calculations of form factors are necessarily de-
termined at finite lattice spacing, generally with light
quark masses that are heavier than their physical values,
and are thus functions of the lattice spacing and the light
quark mass in addition to the momentum transfer. We
remove the lattice spacing and light quark mass depen-
dence of the lattice results by performing a combined
continuum-chiral-kinematic extrapolation, through the
modified z-expansion, which was introduced in [52, 55]
and applied to By semileptonic decays in [46, 47, 56, 57].

Our chiral-continuum-kinematic extrapolation for the
By — Xslv decays closely parallels those studied in [31,
46, 47], so here we outline the main components and refer
the reader to those references for details.

The dependence of the form factors on the z-variable
is expressed through a modification of the Bourrely-
Caprini-Lellouch (BCL) parametrization [58]

X)) p(Xs .
PYO I (@ () = [14+ 2]
J—1 4
x 3 ay X (i, i, )l (5)
§=0
PED P (q2()) = (14 L)
J—-1 ) . .
< i a) [+ - (<1927 )
7=0

Here the Py  are Blaschke factors that take into account
the effects of expected poles above the physical region,

X, q
PR = 1= | (7)
(5%)
where we take [46, 47, 59|
(K) _
M) = 5.32520(48) GeV, (8)
M) = 5.6794(10) GeV, (9)
M) = Mp. = 6.330(9) GeV, (10)
MSP?) = 6.42(10) GeV. (11)



TABLE IV. Final results for the form factors féK)

(7) and f{*

(). Data reproduced from Table IT of [46].

Set $9(0,0,0) (1,0,0) (1,1,0) 89, 1,1) 5(1,0,0) ) (1,1,0) £,
C1 0.8244(23) 0.7081(27) 0.6383(30) 0.5938(41) 2.087(16) 1.657(14) 1.378(13)
2 0.8427(25) 0.6927(35) 0.6036(49) 0.536(12) 1.880(12) 1.412(16) 1.142(33)
C3 0.8313(29) 0.6953(33) 0.6309(30) 0.5844(46) 1.773(11) 1.4212(84) 1.184(10)
F1 0.8322(25) 0.6844(35) 0.5994(43) 0.5551(56) 1.878(13) 1.385(12) 1.158(13)
F2 0.8316(27) 0.6915(38) 0.6199(43) 0.5563(61) 1.834(14) 1.396(10) 1.163(14)

TABLE V. Final results for the form factors fO

)(p) and f(D )(). Data reproduced from Tables VI and VII of [47].

Set  f$79)(0,0,0) P91,0,00 £8P 1,1,0) $P901,1,1) P4)(1,0,0) P:)(1,1,0) Pa)(1,1,1)
Cl1 0.8885(11) 0.8754(14) 0.8645(13) 0.8568(13) 1 1384(35) 1.1081(20) 1.0827(21)
C2 0.8822(13) 0.8663(15) 0.8524(16) 0.8418(18) 1.1137(29) 1.0795(22) 1.0470(21)
C3 0.8883(13) 0.8723(16) 0.8603(16) 0.8484(21) 1.1260(34) 1.0912(24) 1.0552(28)
F1  0.90632(98) 0.8848(13) 0.8674(13) 0.8506(17) 1.1453(29) 1.0955(24) 1.0549(24)
F2 0.9047(12) 0.8855(16) 0.8667(15) 0.8487(19) 1.1347(42) 1.0905(26) 1.0457(33)
In line with [46], we convert these values to lattice units  as
in the chiral-continuum-kinematic extrapolation, so that ~
’ (0,+,X5) se:  (0,4,X5) 75(0,4,X5) se:

the difference between the ground state meson masses a; (my, mj**, a) = a; Dj (g, mi**, a),
and these pole masses is fixed in physical units. _ (17)

The functions L(*#) incorporate the chiral logarithmic where the D](-0’+’XS) include all lattice artifacts. Sup-

corrections, which are fixed by hard pion chiral pertur-
bation theory [60, 61] for the B; — K decay

1+ 6g>

3
LE=— gsvﬂ(loga:7r +dpv) — ri logxy
1+ 1292
5y n log z,,. (12)
Here g?> = 0.51(20), dpy are finite volume corrections
given in Table II, we define
M
T, Knns = W")ZS, (13)
MAquad 2 MHISQ 2
51'71—]( _ ( w, K ) ( T, K ) ’ (14)
’ (4 fr)?
MHISQ 2 _ Mphys. 2
590,:(775 )~ (M) 15
s

(4 fx)? ’

and M? = (M2 + 2M?)/3. We tabulate the meson
masses required to calculate 0z g 5, in Table II. For the
Bs — Dy decay, the chiral logarithmic corrections cannot
be factored out in the z-expansion [61] and therefore we
follow [31, 47] and fit the logarithmic dependence by in-
troducing corresponding fit parameters in the expansion

coefficients a§0’+’DS). In other words, we take
LP:) =, (16)

and introduce an appropriate fit parameter, 05-2), in the
corresponding fit function, Eq. (19).
The expansion coefficients a' %X include lattice

spacing and quark mass dependence and can be written

pressing the 0, 4+ superscripts for clarity, these coefficients
are given by [46]

~ 0%y
D§K) = (1)xw + d(l) ( 5 + 5xK> (,2)5an
2 4
NE (GEK) e (aEK)
J T J T
1 (a (2)
; — 18
) e ()
and [47]
EéDS) = mxw + c( ):v,r log(x)

(1) [ 02x @)
+ d; (2+5;v >+dj 0y,

Ep.\? Ep. \*
eV (GD> e (ULD)
T ™

+ m(l)(amp) + m(2) (ame)?. (19)

(i) dD e () (@)
Here the c; j €5 fj , and m;
0+

along with the a; We incorporate light- and heavy-
quark mass dependence in the discretization coefficients

are fit parameters,

f;i) by replacing
() (4) (1,9) (2/9) .2
fj — fj (1 + lj T+ lj :Eﬂ')
X (L4 A 0my + B (5my)?), (20)

where dmy = amy — 2.26 [46] and is chosen to minimize
the magnitude of dmy, such that —0.4 < dmy < 0.4. Here



T, captures sea pion mass dependence and is determined
from the AsqTad pion mass [48].

The actions we use are highly improved and O(a?) tree-
level lattice artifacts have been removed. The O(asa?)
and O(a?) corrections are dominated by powers of (am.)
and (aFEx,), rather than those of the spatial momenta
(ap;). Thus, we do not incorporate terms involving hy-
percubic invariants constructed from the spatial momen-
tum ap; [62].

We follow [46, 47] and impose the kinematic constraint
fo(0) = f1(0) analytically for the By — K decay, and
as a data point for the By, — D, channel. To incorpo-
rate the systematic uncertainty associated with trunca-
tion of the perturbative current-matching procedure at
O(as, Aqep /M, as/(amy)), we introduce fit parameters
my and m_, with central value zero and width dm |
and re-scale the form factors, f and f, according to

Sl = X +my ) fj,o (21)

We take dm 1 = 0.04. We refer to this fit Ansatz, in-
cluding terms up to 23 in the modified z-expansion, as
the “standard extrapolation.”

To test the convergence of our fit Ansatz and ensure we
have included a sufficient number of terms in the modified
z-expansion, we modify the fit Ansatz in the following
ways:

1. include terms up to 22 in the z-expansion;
. include terms up to z* in the z-expansion;
. include discretization terms up to (am.)?;
. include discretization terms up to (am.)%;

. include discretization terms up to (a/r1)?%;

. include discretization terms up to (aEg /7)?;

2

3

1 (

5 (

6. include discretization terms up to (a/r1)";

7 (

8. include discretization terms up to (aEg /7)°;
9 (

. include discretization terms up to (aEp, /7)?%;
10. include discretization terms up to (aEp, /m)°;

We show the results of these modifications in Fig. 2,
where we label the standard fit Ansatz as “Test 0”. These
tests demonstrate the stability of the standard fit Ansatz;
adding higher order terms does not alter the fit results
or improve the goodness-of-fit.

We also study the stability of the fit with respect to
the following variations:

i. omit the x, log(z,) term;

ii. omit the light quark mass-dependent discretization
terms from the fj@ coefficients;

iii. add strange quark mass-dependent discretization
terms to the f;l) coefficients;

FIG. 2. Comparison of the convergence tests of the “standard
extrapolation” fit Ansatz. The top panel shows the x?/dof
for each test, normalized by the x?/dof for the standard ex-
trapolation. The lower panel shows the fit results for the form
factor ratio fOK)/ (P2) at ¢> = 0. The test numbers label-
ing the horizontal axis correspond to the modifications listed
in the text. The first data point, the purple square, is the
“standard extrapolation” fit result, which is also represented
by the purple shaded band.
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iv. omit the amy-dependent discretization terms from
the fj@ coefficients;

. . 1
v. omit sea- and valence-quark mass difference, dg- );

vi. omit the strange quark mass mistuning, d§2);
vii. omit finite volume effects;

viii. add light-quark mass dependence to the mg-i) fit
parameters;

ix. add strange-quark mass dependence to the mgi) fit
parameters;

x. add bottom-quark mass dependence to the mg-i) fit
parameters;



FIG. 3. Analogous to Fig. 2, but for stability tests labeled by

1.7 to “xii.” in the text. Details provided in the caption of
Fig. 2.
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xi. incorporate a 2% uncertainty for higher-order
matching contributions;

xii. incorporate a 5% uncertainty for higher-order
matching contributions;

We show the results of these stability tests in Fig. 3.
Test 0 represents the standard fit Ansatz. Taken to-
gether, these plots demonstrate that the fit has converged
with respect to a variety of modifications of the chiral-
continuum-kinematic extrapolation Ansatz.

V. RESULTS

A. Form factor ratios

Our final results, from a simultaneous fit to both decay
channels, for the ratio of form factors at zero momentum
transfer are

(K)
f(?;((?))) — 0.507(66), (22)

where the uncertainties account for correlations between
the form factor results for each decay channel. The
corresponding results for the individual form factors at
zero momentum transfer are féK) (0) = 0.341(42) and
éDS)(O) = 0.661(42), in good agreement with the re-
sults of [46] and [47], respectively. The result in Eq. (22)
is in good agreement with, but with significantly re-
duced uncertainties, the value obtained assuming un-
correlated uncertainties between the results of [46, 47):
$59(0)/£5P2)(0) = 0.323(63)/0.656(31) = 0.492(99).

We obtain a reduced x? of x2/dof = 1.3 with 71 de-
grees of freedom (dof), with a quality factor of @ = 0.011.
The Q-value (or p-value) corresponds to the probabil-
ity that the y2/dof from the fit could have been larger,
by chance, assuming the data are all Gaussian and con-
sistent with each other. The simultaneous fit ensures
that the uncertainties associated with the perturbative
matching procedure for the heavy-light currents largely
cancel in the form factor ratio. This can be seen by
comparing the error budget contribution from perturba-
tive matching in Table VI, with the individual fits, for
which the perturbative truncation uncertainty was the
second-largest source of uncertainty. The uncertainties
in our ratio results are dominated by the By — K chan-
nel, which has fewer statistics and a larger extrapolation
uncertainty, because, in the region of momentum transfer
reported here, 0 — —12.5 GeV?, the corresponding form
factors are extrapolated further from the region in which
we have lattice results.

We tabulate our choice of priors and the fit results in
the Appendix, where we provide the corresponding z-
expansion coefficients and their correlations. Following
[47], based on the earlier work of [31, 52, 55], we split
the priors into three groups. Broadly speaking, Group I
priors includes the typical fit parameters, Group II the
input lattice scales and masses, and Group III priors the
inputs from experiment, such as physical meson masses.
We plot our final results for the ratios of the form factors,
féK)/f(()Ds)(qg) and J“J(FI()/]”(+135)(q2)7 as a function of the
momentum transfer, ¢2, in Fig. 4. Details required to
reconstruct the fully correlated form factors are given in
Appendix B.

B. Form factor error budget

We tabulate the errors in the ratios of the form factors
at zero momentum transfer, Eq. (22), in Table VI. The
sources of uncertainty listed in Table VI are:

a. Statistical. Statistical uncertainties include the
two- and three-point correlator fit errors and those as-
sociated with the lattice spacing determination, r; and
r1/a. These effects are the second largest source of un-
certainty in our results, and are dominated by the smaller
statistics available in the By — K analysis.

b. Chiral extrapolation. Includes the uncertainties
arising from extrapolation in both valence and sea quark



FIG. 4. Chiral and continuum extrapolated form factor ra-
tios, f(gK)/féD‘“’)(qQ) (upper panel) and fJ(rK)/fiDS)(qQ) (lower
panel), as a function of the momentum transfer, ¢>. The
dashed lines indicate the central values of the extrapolated
form factors and the uncertainty bands include all sources of
statistical and systematic uncertainty.
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TABLE VI. Error budget for the form factor ratios at zero
momentum transfer, Eq. (22). We describe each source of
uncertainty in more detail in the accompanying text.

Type Partial uncertainty (%)
Statistical 6.63
Chiral extrapolation 0.89
Quark mass tuning 2.18
Discretization 4.16
Kinematic 9.31
Matching 0.28
Total 13.03

masses and from the B; — D chiral logarithms in the
chiral-continuum extrapolation, corresponding to the fit
parameters ng) in Egs. (18) and (19).

c. Quark mass tuning. These uncertainties arise
from tuning the light and strange quark masses at finite
lattice spacing and partial quenching effects.

d. Discretization. These  effects include the
(aEx,/m)", (a/r1)"™, and (am.)™ terms in the modified
z-expansion, corresponding to the fit parameters ey),
f]@ and mgz) in Egs. (18) and (19).

e. Kinematic. Uncertainties that arise from the z-
expansion coefficients, including the Blaschke factors.
These effects are the dominant source of uncertainty
in our results, and again predominantly arise from the
By — K channel.

f- Matching. The perturbative matching uncertain-
ties stemming from the truncation of the expansion of
NRQCD-HISQ effective currents in terms of QCD cur-
rents. These are the second largest source of uncertainty
in the results for the individual channels, but the effects
largely cancel in the ratio. This is further demonstrated
by tests (xi) and (xii) of the previous section, in which
changing the matching uncertainty from 2% to 5% has
practically negligible effect on the fit, and in particular,
the ratio at zero momentum transfer.

We propagate all uncertainties from the large
momentum-transfer region, for which we have lattice re-
sults, to zero momentum transfer. We do not include the
uncertainties associated with physical meson mass input
errors and finite volume effects, which are both less than
0.01%, because they are negligible contributions to our
error budget estimates. Moreover, we neglect uncertain-
ties from isospin breaking, electromagnetic effects, and
charm-quark quenching effects in the gauge ensembles.

We plot our estimated error budges for the ratios of
the form factors, fo(q?) and f; (¢?), as a function of the
momentum transfer, ¢, in Fig. 5.

C. Semileptonic decay phenomenology

The experimental measurements of the ratio

ORI EUC

which measures the ratio of branching fraction of the
semileptonic decay to the 7 lepton to the branching frac-
tion to an electron or muon (represented by ¢), are cur-
rently in tension with the standard model result. The
global experimental average is [63-66]

R(D)exp. = 0-391(41)stat.(28)sy547 (24)

whereas the standard model expectation, neglecting cor-
relations between the calculations [31, 67, 68], is

R(D)heor. = 0.299(7). (25)

We determine the corresponding ratio of the R-ratios
for the semileptonic By — X /v decays,

=2.02(12), (26)



FIG. 5. Error budget estimates for the ratios of the form fac-
K D, K Ds

tors, f(g )/f(g )(q2) (upper panel) and ffL )/fJ(r )(q2) (lower

panel), as a function of the momentum transfer, ¢*.
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which is in agreement with, but with slightly

smaller errors than, the value of R(K)/R(D;) =
0.695(50)/0.314(6) = 2.21(16) obtained assuming uncor-
related uncertainties between the values given in [46, 47].

Neglecting final state electromagnetic interactions, the
full angular dependence of the differential decay rate for
Bs; — X lv is given in terms of the corresponding scalar
and vector form factors by

A2T(B, — X.lv)
dg2d cos 6,

GRlVas? (| mi\*

= 1—— | Ipx

12873 Mp, q>? :
m2

x {4M]23;5%( (Sin2 0o + q—; cos? 94) | fe]?

4m§ (

2 MJ25’5 - M)2() Ms,

Dx,|cos b fof+

m2 2
20 (0t 03" 6] (2

Here 6, is defined as the angle between the final state
lepton and the By meson, in the frame in which py+p, =
0. Integrating over the angle 6, one obtains the standard

FIG. 6. Ratio of the differential decay rates, 'yéK)/fyéDS), di-

vided by |Vus/ Vcb|27 as a function of the momentum transfer,
2

q°.

dr /qrib:}
o

model differential decay rate,
d’T(B, — X lv)
dg?

G L A
= o\ 1—— ] IPx,

241 MBS q

2
my 2 -2 2
X { (1 + 2q2) Mg px | f+]

3m?2 2
+ W; (M?B - M)2<) |f0|2} (28)

Xs
1 =

In Fig. 6 we plot the ratio of the differential decay rates,
VEK) / fyéDS), as a function of the momentum transfer, for
the semileptonic decays to muons ({ = p) and to tau
leptons (¢ = 7).

We combine our results for these decay rate ratios with
the experimental world average results for |V,,/Ve| [1],
using both inclusive and exclusive determinations,

exclusive |Vi,/Vep| = 0.088(6),
inclusive |Vyp/Vep| = 0.107(7),

and plot the results in Fig. 7. The LHCb Collabora-
tion has measured this ratio to be |Vi/Vep| = 0.083(6),
updated in [1] to |Vus/Ves| = 0.080(6), from the ratio
of the baryonic semileptonic decays A, — ptu~7 and
Ap — AFp~ v [43]. This result is sufficiently close to the
world average given in Egs. (29) that we do not include
it in Fig. 7. A correlated average, |Viuy/Vey| = 0.092(8),
of both inclusive and exclusive results is given in [1],
which also includes the experimental result from baryonic
decays, but the large discrepancy between the inclusive
and exclusive determinations suggests that this average
should be treated with caution.



FIG. 7. Ratio of the differential decay rates, *yéK)/*yéDS), using
inclusive and exclusive world average results for |V, /Ves|, as
a function of the momentum transfer, ¢>. The upper panel
shows the decay rates for £ = 7, and the lower panel ¢ = p.
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Defining the partially integrated ratio

2
1 Imax dI'(By — Xl
(Xs) _ / ( — V) dqQ7 (31)

C TVl e dg?

where ¢2,. = (Mg, — Mx,)?, we integrate our results
numerically to obtain

(K)

# = 0.85(13), (32)
"

(K)
C(TDS) = 1.72(19). (33)

T

Asymmetries in the differential decay rate can be
defined from the angular distribution, Eq. (27). The

forward-backward asymmetry is given by

1 0 2
d°r
AKX 2y = / _/ g
) 0 1 dcosaed(ﬂdcoseg
2\ 2 2

G%‘Vmbp my S 2y
= a1 —— 17X, —
3213 Mp, q q
x (Mg, — M%) fof+, (34)

and the polarization asymmetry by

_ dr(LH)  dI'(RH)

X
P (g?) a7 i

(35)

where the differential decay rates to left-handed (LH) and
right-handed (RH) final state leptons are given by

dU(LH) _ GR|VaslPx.[* (| mi e (36)
dg? 2473 2)
dU(RH) _ GEV[*px, [P mi (| mi i
dgz 2473 q? q?
3 (Mg, —MZ)? 5 1 . 5o
X[S%fo+2|pxsl 2. e

In the standard model, the production of right-handed fi-
nal state leptons is helicity suppressed, and so this asym-
metry offers a probe for helicity-violating interactions
generated by new physics.

In Figs. 8 and 9, we plot the ratios of the forward-
backward and polarization asymmetries, respectively, for
the B — K/{lv and Bs — Dgslv decays. We plot the
asymmetry ratios using both inclusive and exclusive val-
ues of |Vyp/Vep|. Integrating over ¢2, and multiplying by
the appropriate combination of CKM matrix elements to
define the QCD contribution, we find

2
max K
V2 [ A dg?
2 g2 D,
|Vub| fg;:z:ax AEL )dq2

= 0.399(85), (38)

2
o 5 A0
Vi [? [%ee A(P2) g2

— 1.38(15), (39)

2

max K
Vi 2 S P dg?
Vi |2 fi%ax PP dq2

= 0.87(13), (40)

2

max p(K
“/cb|2 f:zg qu )dq2
[V |? fr‘fgax P-,EDs)dqz

= —0.42(22). (41)

Normalizing these asymmetry ratios by the corre-
sponding differential decay rate ratio removes the am-



FIG. 8. Ratio of the forward-backward asymmetries,
AgK)/A(TDS) (upper panel) and AELK)/AELDS) (lower panel), us-
ing inclusive and exclusive world average results for |V, /Ves|,
as a function of the momentum transfer, ¢.
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qrznax Xs
—(X,) fm3 P e( )dq2
‘PZ == q2 5 5 . (43)
Jn3™(dT'/dg?)dg

We integrate over the momentum transfer numerically to
find

—(K) —(K)
A P

k= 0.470(41), K —1.0193(17)  (44)
_(Ds) _(Ds)
A P,
—(K) —(K)
A P
T =0.804(15), —— =-025(11), (45)
AgDS) P(TDS)

where the smaller relative uncertainties compared to the
asymmetries themselves demonstrates that most of the
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FIG. 9. Ratio of the polarization asymmetries, PT(K) /PT(DS)
(upper panel) and P;SK) /PL(LDS) (lower panel), using inclusive
and exclusive world average results for |V, /Ves|, as a function
of the momentum transfer, ¢?.
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hadronic uncertainties have canceled in these normalized
results.

VI. SUMMARY

We have presented a study of the ratio of the scalar
and vector form factors for the By — X /v semileptonic
decays, where X is a K or Dy meson, over the full kine-
matic range of momentum transfer. These ratios combine
correlator data results determined in [46] for the B, — K
decay and in [47] for the B; — D decay. Our simultane-
ous, correlated chiral-continuum kinematic extrapolation
reduces the uncertainty in the form factor ratio and, in
particular, largely removes the uncertainty arising from
the perturbative matching procedure.

In addition to the form factor ratios, we predict
R(K)/R(Ds), where R(Xj) is the ratio of the branching
fractions of the corresponding semileptonic By decay to



TABLE VII. Fit results for the ground state energies of the
K meson at each spatial momentum px. Data reproduced
from Table V of [46].

Set aMy aEx(1,0,0) aFk(1,1,0) aExk(1,1,1)
C1 0.31211(15) 0.40657(58) 0.48461(76)  0.5511(16)
C2  0.32863(18) 0.54506(85) 0.5511(16)  0.6261(75)
O3 0.35717(22) 0.47521(85) 0.5723(11)  0.6524(30)
F1 0.22865(11) 0.32024(66) 0.39229(86)  0.4515(25)
F2 0.24577(13) 0.33322(52) 0.40214(73)  0.4623(14)

TABLE VIII. Fit results for the ground state energies of the
D, meson at each spatial momentum pp,. Data reproduced
from Table IV of [47].

Set aMp, aFp,(1,0,0) aFp,(1,1,0) aEp,(1,1,1)
C1 1.18755(22) 1.21517(34) 1.24284(33) 1.27013(39)
C2 1.20000(30) 1.24013(56) 1.27822(61) 1.31543(97)
C3 1.19010(33) 1.23026(53) 1.26948(54) 1.30755(79)
F1 0.84674(12) 0.87559(19) 0.90373(20)  0.93096(26)
F2 0.84415(14) 0.87348(25) 0.90145(25) 0.92869(33)

tau and to electrons and muons. We determine the ratio
of the differential decay rates for the two decay channels,
as well as the ratio of the forward-backward and polar-
ization asymmetries.

The LHC is scheduled to significantly improve the sta-
tistical uncertainties in experimental measurements of B,
decays with more data over the next decade. In particu-
lar, experimental data on the ratio of the By, — K/v and
By — Dglv decays, when combined with our form factor
results, will provide a new determination of |Vyp,/Vep|.
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Appendix A: Two-point fit results

Here we reproduce the two-point fit results of [46] in
Table VII for the K meson and for the D; meson [47] in
Table VIII.
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Appendix B: Reconstructing form factors

In this Appendix we provide our fit results for the co-
efficients of the z-expansion for the By — K/v decay in
Table IX, for By — D4 /v in Table X, and for the cor-
related fit to both decays in Table XI. We also tabulate
our choice of priors for the chiral-continuum extrapola-
tion for the By — K{v decay in Tables XII and XIV, for
the By, — Dgflv decay in Tables XIII and XV, and for
priors common to both channels in XVI, and XVII.


http://arxiv.org/abs/de-sc/0011726
http://arxiv.org/abs/de-sc/0011726
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TABLE IX. Coefficients of z-expansion and the corresponding Blaschke factors for the By — K{v decay.

a(lo) ago) a:(;)) Py a((;r) agﬂ aéﬂ Py

0.336(88) 1.23(70) 2.1(2.6) 5.6793(10) 0.301(18) -0.48(12) 2.39(86) 5.32450(27)

TABLE X. Coefficients of z-expansion and the corresponding Blaschke factors, for the B; — D fv decay.

o® o o o® ) o o) a5 P,

0.673(39)  -0.02(34) 1.4(28)  -0.1(3.0) 6.41(10) 0.773(37)  -3.01(56)  -0.01(2.95)  6.3300(90)

TABLE XI. Covariance matrix for the coefficients of z-expansion and the corresponding Blaschke factors for the simultaneous
fit to the B — K{lv and Bs — Dsfv decays. The rows correspond to the columns, moving from top to bottom and left to
right, respectively.

K ORS oK P NOR NONS

7.81655746x 1072 5.11931999x 102 1.26040746x 107! -3.95599616x 10" 6.67729571x10"* 7.88936302x10~3
4.94505240x 107 ¢ 1.62865239 2.22974369x107% 3.58512534x1072 6.75709862x102

6.51816994  -4.88348307x107% 9.03252850x1072 1.99167048x10~*

9.99995307x10~7 -1.81816269x10~° 1.55891061x10~"

3.09228616x10~* -5.88646696x107°

1.46893824x 1072

a§H PiK) NORZ a{0):Ds MORZ MOES
5.54055868x 1072 5.22263419x107° 4.89761879x107° 1.47978430x1072 1.61294090x10™* -1.50864482x107°
5.20212224x107 4.60220124x107% 4.23550639x10~ % -1.12557927x1072 -4.15916006x10~* 6.86722615x10~°
1.72576055 1.64613013x1077 5.32746249x10™% -8.00096682x1072 -1.57760368x10~3 6.07028861x10°
1.27709131x107° 4.34812507x1071° -2.93868039x10° 3.60812633x107% 3.12552274x107° -2.93053824x10~1°
5.57789886x 1074 3.44350904x107° 1.08803466x10~* 7.14515361x10™* 1.46191770x10~% -9.57576314x10°
6.49789179x1072 -1.42002142x10~7 2.37456520x10~% -7.74705909x 103 -1.63296714x103 9.27876845%x10~°
7.40157233x107! 8.20182628x1077 9.33127619%x10~* 3.38332719x107* -1.12948406x10° -1.17310027x107°
5.28997606x 1078 -4.00252884x 107! 1.55683903x 10710 8.25859041x 10! 4.62131689x10~ 12
1.51331616x10™3 -1.32946477x1072 -2.95921529x10~2 -1.18940865%x10~*
1.14391084x 1071 3.77594136x 10~ -1.47064962x 102
8.04802477 6.00685427x 1072

8.99580234

PP HOES oD oD PP

2.48190307x107%  1.25952168x10™% -1.00202940x10~3 3.13648146x107° -1.42966100x10~8
1.66495291x107°%  4.16420952x107* -8.93653944x10™* 4.32425257x10™% -3.15809640x 1078
-3.14364934x107% 2.30951064x10™% 1.62406281x1072 1.00576304x10~3 8.26930192x10~1°
5.51018709x 10711 -1.49607346x107° -1.05105378x10~% 3.28268609x1071° -4.41710197x10~**
7.04107924x1077  1.61718771x10™% -9.47821843x10~* -7.78344712x107°% -1.33434640x1078
-6.39749633x107% -1.59677031x10"% 4.95080220x1072 5.36015327x10~* 2.94137887x 1078
2.60283535x107°%  1.06965630x1072 -3.87458330x1072 3.61587037x10~* -8.16004467x10~8
-1.19874155%x 10712 -3.95882072x 1011 2.69588869x 1019 -1.34953976x1071° 2.49776863x10~1°
3.86973615x10™%  1.25442551x1073  7.19766977x1072 7.34363847x107% -6.23834522x10~"
-1.51873367x1072 1.80319837x1073 2.26955835x1072 2.65518223x1072 -2.61624148x107°
4.53224736x107%  1.19829415x1072 1.18533968x107% 2.29348564x10~1 -2.65313186x107°
-2.72916676x10™* -1.76329307x107* -1.96104068x1073 -8.21918389x1072 1.15675448x107°
9.95331216x1073  -5.12869129x107° -5.75838181x10~* -9.37738726x10™* 1.10417128x10~7
1.37380763x1072 -1.31877655x107% -8.10703811x10™2 4.47444315x107°

3.21831236x10~1  2.71750438%x10~% -1.70915346x10~*

8.72142922 4.09895485x107°

8.10107530%107°




TABLE XII. Group I priors and fit results for the parameters
in the modified z-expansion for the Bs — K/v decay. Note
that these parameters are fit simultaneously with those of
Table XIII, but displayed separately for clarity.
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TABLE XIII. Group I priors and fit results for the parameters
in the modified z-expansion for the B; — D v decay. Note
that these parameters are fit simultaneously with those of
Table XII, but displayed separately for clarity.

Prior [fo] Fit result [fo] Fit result [f4] Prior [fo] Fit result [fo] Prior [f4] Fit result [fy]
0.0(3.0)  0.336(88) 0.301(43) a0 0.0(3.0)  0.673(39)  0.0(5.0) 0.773(37)
0.0(3.0) 1.23(70) -0.48(23) ar  0.0(3.0)  -0.02(34) 0.0(5.0) -3.01(56)
0.0(3.0) 2.1(2.6) 2.39(86) az  0.0(3.0) 1.4(2.8) 0.0(5.0)  -0.01(2.95)
0.0(1.0)  -0.17(48) 0.222(89) as  0.0(3.0) -0.1(3.0) - -
0.0(1.0) 0.34(72) 0.52(48) c”0.0(1.0)  0.087(15) 0.0(1.0) 0.188(69)
0.0(1.0)  0.002(976) -0.11(65) i’ 00(1.0)  -0.03(1.0)  0.0(1.0) 0.61(46)
0.00(30)  -0.08(30) 0.03(26) Y 0.0(1.0)  -0.09(1.0)  0.0(1.0)  -0.0001(1.0)
0.00(30) 0.02(30) 0.02(30) g’ 0.0(1.0)  -0.0002(1.0) - -
0.00(30)  0.002(300) 0.02(30) cs?  0.00(30)  0.006(31)  0.00(30)  0.165(67)
0.0(1.0) 0.3(1.0) 0.04(97) ?0.00(30)  0.003(300)  0.00(30) 0.06(29)
0.0(1.0)  -0.2(1.0) 0.007(1.0) ¢” 0.00(30)  0.005(30)  0.00(30) -7x107°(0.3)
0.0(1.0)  0.04(1.0) 0.004(1.0) ¢’ 0.00(30) 5x107°(0.3) - -
0.00(30)  0.0007(0.3) 0.013(28) di" 0.00(30)  -0.36(16)  0.00(30)  -0.52(17)
0.00(30)  0.006(0.3) 0.0007(0.3 di") 0.00(30)  -0.0006(0.3)  0.00(30) -0.03(30)
0.00(30)  -0.002(0.3) -0.003(0.3) diY0.00(30)  -0.0002(0.3)  0.00(30)  2x107%(0.3)
0.0(1.0)  0.006(1.0) 0.01(30) d 0.00(30)  3x107°(0.3) - -
0.0(1.0)  -0.001(1.0) 0.0005(1.0) di?  0.00(30)  0.06(30)  0.00(30)  0.11(30)
0.0(1.0)  -0.0001(1.0) 3%107%(1.0) d? 0.00(30) 7x107°(0.3)  0.00(30)  0.01(30)
0.00(30)  -0.20(27) 0.24(19) d?  0.00(30) 1x107%(0.3) 0.00(30) -1x10%(0.3)
0.00(30)  0.14(29) -0.08(29) d¥ 0.00(30)  2x1077(0.3) - -
0.00(30)  -0.03(30) -0.03(30) ey’ 0.00(30)  0.17(25)  0.00(30)  0.18(23)
0.0(1.0) -0.47(94) 0.28(83) egl) 0.00(30)  -0.0008(0.3)  0.00(30) -0.02(30)
0.0(1.0) 0.33(98) -0.13(99) e 0.00(30)  0.0008(0.3)  0.00(30)  5x107%(0.3)
0.0(1.0)  -0.08(1.0) -0.08(1.0) es”  0.00(30) 1x107°(0.3) - -
0.0(1.0)  -0.21(98) 0.09(99) e’ 00(1.0)  L51(53)  0.0(1.0)  0.06(29)
0.0(1.0)  -0.06(1.0) 0.03(1.0) et 0.0(1.0)  -0.002(1.0)  0.0(10)  -0.001(1.0)
0.0(1.0)  -0.0005(1.0) 0.002(1.0) s’ 0.0(1.0)  -0.002(1.0)  0.0(L0)  1x107°(1.0)
0.0(1.0)  -0.07(1.0) 0.06(1.0) el 0.0(1.0)  9x107°(1.0) - -
0.0(1.0)  -0.02(1.0) 0.002(1.0) mg” 0.00(30)  -0.004(0.229)  0.00(30)  0.15(23)
0.0(1.0)  -0.0006(1.0) -0.0003(1.0) m{0.00(30)  -0.0003(0.3)  0.00(30)  -0.09(28)
0.0(1.0)  -0.06(1.0) -0.02(1.0) m?  0.00(30)  0.008(0.3)  0.00(30) 2x107°(0.3)
0.0(1.0)  -0.003(1.0) 0.009(1.0) m§Y0.00(30)  4x107°(0.3) - -
0.0(1.0)  0.0007(1.0) 0.003(1.0) mg0.0(1.0) -0.49(40) 0.0(1.0) -0.34(42)
0.0(1.0)  -0.03(1.0) -0.0003(1.0) m{® 0.0(1.0)  -0.003(1.0)  0.0(1.0) -0.74(81)
0.0(1.0)  -0.007(1.0) 0.001(1.0) mg  0.0(1.0) 0.03(1.0) 0.0(1.0)  0.0001(1.0)
0.0(1.0)  -0.0002(1.0) 0.0004(1.0) m§ 0.0(10)  0.0002(1.0) - -
0.0(1.0)  -0.21(98) -0.49(61)

0.0(1.0)  -0.06(1.0) 0.2(1.0)

0.0(1.0)  -0.0005(1.0) 0.03(1.0)

0.0(1.0)  -0.07(1.0) -0.04(97)

0.0(1.0)  -0.02(1.0) 0.03(1.0)

0.0(1.0)  -0.0006(1.0) 0.004(1.0)

0.0(1.0)  -0.06(1.0) -0.11(1.0)

0.0(1.0)  -0.003(1.0) 0.03(1.0)

0.0(1.0)  0.0007(1.0) 0.01(1.0)

0.0(1.0)  -0.03(1.0) -0.04(1.0)

0.0(1.0)  -0.007(1.0) 0.01(1.0)

0.0(1.0)  -0.0002(1.0) 0.003(1.0)
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TABLE XIV. Group II priors and fit results for the parame- TABLE XVI. Group II priors and fit results for the parame-
ters in the modified z-expansion for the Bs — K/{v decay. ters in the modified z-expansion, common to both By — X /v

decay channels.

Quantity Prior Fit result
aEx(0,0,0) 0.31195(14) 0.31197(14) ~ Quantity Prior Fit result
0.32870(17) 0.32865(17) r/a 2.6470(30) 2.6463(28)
0.35744(21) 0.35747(21) 2.6180(30) 2.6209(27)
0.22861(12) 0.22862(12) 2.6440(30) 2.6423(29)
0.24566(13) 0.24565(13) 3.6990(30) 3.6984(30)
aEx(1,0,0) 0.40661(49) 0.40662(48) 3.7120(40) 3.7127(40)
0.45434(73) 0.45432(70) aMp 3.18915(65) 3.18921(64)
0.47507(71) 0.47566(69) 3.23184(88) 3.23136(85)
032020%61% O.31986§58§ 3. 21191577; 3. 21221276%
0.33310(50 0.33293(49 2.28109(52 2.28120(51
aEx(1,1,0) 0.48408(63) 0.48393(62) 2.28101(44) 2.28093(44)
0.5506(11) 0.5511(11) aMp, 3.23019(25) 3.23012(25)
0.57218(80) 0.57168(78) 3.26785(33) 3.26792(33)
0.39192%82% 0‘392405793 3. 23585538; 3. 23566238%
0.40184(72 0.40204(70 2.30906(26 2.30899(25
aEr(1,1,1) 0.5513(13) 0.5511(13) 2.30122(16) 2.30124(16)
0.6273(35) 0.6290(34) aMx 0.15990(20) 0.15990(20)
0.6539(18) 0.6534(17) 0.21110(20) 0.21110(20)
0.4528(16) 0.4527(15) 0.29310(20) 0.29310(20)
0.4624(11) 0.4624(11) 0.13460(10) 0.13460(10)
M, 5.32450(27) 5.32450(27) 0.18730(10) 0.18730(10)
My 5.6793(10) 5.6793(10) aMy, 0.41113(18) 0.41113(18)
0.41435(22) 0.41433(22)
0.41185(22) 0.41186(22)
0.29416(12) 0.29416(12)
0.29311(18) 0.29311(18)
aMMIEC 0.15971(20) 0.15971(20)
0.22447(17) 0.22448(17)
0.31125(16) 0.31124(16)
0.14789(18) 0.14789(18)
TABLE XV. Group II priors and fit results for the parameters 0.20635(18) 0.20636(18)
in the modified z-expansion for the Bs — Ds{v decay. aMNILC 0.36530(29) 0.36526(29)
Quantity Prior Fit result 8 igggigg 8 igggigg
aEp,(0,0,0) }égzgggi’g }égggglgg 0.25318(19) 0.25317(19)
: : 0.27217(21 0.27219(21
1.19031(24) 1.19020(24) L 4m 1.000((0)) 1.001((0))
0.84674(12) 0.84674(12) 1+my 1.000(40) 1.000(40)
0.84419(10) 0.84421(10)
aEp,(1,0,0) 1.21497(19) 1.21504(19)
1.24055(30) 1.24080(28)
1.23055(35) 1.23055(31)
0.87575(18) 0.87574(18)
0.87353(16) 0.87345(15)
aEp,(1,1,0) }3422;1(;9) 1';4274%9) TABLE XVII. Group III priors and fit results for the parame-
27942(29) 27958(26) ters in the modified z-expansion, common to both By — K/v
1.26974(35) L26941(32) 4 B Dty decays.
0.90393(18) 0.90392(18)
0.90144(16) 0.90148(15) Quantity Prior (GeV) Fit result (GeV)
i-gézgg(ig) ;gégg;(fﬁ) MPhys 0.13497700(50) 0.13497700(50)
: (48) ‘ (41) MRy 0.495644(26) 0.495644(26)
0.93126(24) 0.93123(24) -
0.92873(20) 0.92880(20) M};}y 0.547862(17) 0.547862(17)
phys
M. 6.3300(90) 6.3300(90) Mz%ys 0.6858(40) 0.6857(40)
My 6.41(10) 6.41(10) MDﬁ 1.96828(10) 1.96828(10)
Mp»* 5.36689(23) 5.36689(23)
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