
1 

  

  

  

  

  

cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud 

   

Michael A. Cianfrocco1,4#, Indrajit Lahiri1, Frank DiMaio3, Andres E. Leschziner1,2 

   

1Department of Cellular & Molecular Medicine, University of California – San Diego, La Jolla, CA, 

United States 

2Section of Molecular Biology, Division of Biology, University of California – San Diego, La Jolla, 

CA, United States 

3Department of Biochemistry, University of Washington, Seattle, United States; Institute for 

Protein Design, University of Washington, Seattle, WA, United States 

4Current address: Life Sciences Institute, Department of Biological Chemistry, University of 

Michigan, Ann Arbor, MI, United States 

#For correspondence: mcianfro@umich.edu 

  

  

  

 

 

 

 

ABSTRACT 
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         Access to streamlined computational resources remains a significant bottleneck for new 

users of cryo-electron microscopy (cryo-EM). To address this, we have developed tools that will 

submit cryo-EM analysis routines and atomic model building jobs directly to Amazon Web 

Services (AWS) from a local computer or laptop. These new software tools (“cryoem-cloud-tools”) 

have incorporated optimal data movement, security, and cost-saving strategies, giving novice 

users access to complex cryo-EM data processing pipelines. Integrating these tools into the 

RELION processing pipeline and graphical user interface we determined a 2.2 Å structure of ß-

galactosidase in ~55 hours on AWS. We implemented a similar strategy to submit Rosetta atomic 

model building and refinement to AWS. These software tools dramatically reduce the barrier for 

entry of new users to cloud computing for cryo-EM and are freely available at cryoem-tools.cloud. 
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INTRODUCTION 

Cryo-electron microscopy (cryo-EM) is a structural biology technique that has undergone 

rapid growth over the past few years (Nogales 2016). Technical developments in direct electron 

detection and electron optics in conjunction with improvements in image analysis (S. H. Scheres 

2014; Punjani et al. 2017) have led to the widespread adoption of cryo-EM as a structural biology 

technique. Furthermore, the advent of GPU-accelerated cryo-EM structure determination (Punjani 

et al. 2017; Kimanius et al. 2016) has helped to reduce the overall cost for computing hardware 

for a single user. While these improvements have helped to spread cryo-EM, it becomes difficult 

to scale the required hardware to accommodate large cryo-EM facilities that have a large number 

of users. These facilities have to balance cost with availability of resources: idle computing 

infrastructure is wasted capital whereas queuing times for compute resources waste personnel 

salaries. The challenge is how to create a computing facility that is cost-effective while also 

delivering compute resources on-demand without wait times. 

Previous work has shown that Amazon Web Services (AWS), the world’s largest cloud 

computing provider, is a cost-effective resource for cryo-EM structure determination (Cuenca-

Alba et al. 2017; Cianfrocco and Leschziner 2015). Since this original publication, AWS released 

GPU-accelerated virtual machines (‘VMs’) (named ‘p2’, ‘p3, and ‘g3’) with 1, 8, or 16 NVIDIA K80 

GPUs on p2, 1, 8, or 16 NVIDIA V100 GPUs on p3,  1, 2, or 4 NVIDIA M60 GPUs on g3, while 

also reducing prices for data storage on the block storage service (‘S3’) and archival storage 

(‘Glacier’).  

Despite its power, previous implementations for cryo-EM required users to manually 

deploy AWS resources. To streamline the process, we have developed software tools that allow 

for the remote management of AWS resources from the local computer of a user. These tools 

were then combined with the standard suite of cryo-EM software tools MOTIONCOR (Li et al. 

2013), MOTIONCOR2 (Zheng et al. 2017), UNBLUR (Grant and Grigorieff 2015), GCTF (Zhang 

2016), CTFFIND4 (Rohou and Grigorieff 2015), RELION (S. H. W. Scheres 2012) and Rosetta 
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(Wang et al. 2016, 2015), allowing users to submit jobs directly to AWS from their local project 

directory while syncing results back in real time. In contrast to our previous implementation, we 

are now using ‘on-demand’ VMs from AWS, which eliminates the risk of users being ‘kicked-off’ 

due to price changes. Finally, by combining the full RELION pipeline (and associated software) 

with atomic model building and refinement with Rosetta (Wang et al. 2016, 2015) with AWS, 

cryoem-cloud-tools provides users with all aspects of cryo-EM structure determination in a single 

pipeline - from micrograph motion correction to atomic model refinement. 

 

APPROACH 

We realized that manual workflows for managing AWS resources was cumbersome, 

requiring the use of complex commands. To streamline this process, we wrote software tools that 

leverage the capabilities of command-line tools provided by AWS. Then, we incorporated these 

commands directly into the RELION GUI to allow users to submit RELION jobs directly to AWS 

(Figure 1).  

The overall approach takes advantage of the cluster submission feature of RELION by 

providing users with a new submission command (‘qsub_aws’) to do the following: 1) identify the 

type of RELION job, 2) upload data to AWS block storage (S3), 3) start VM(s) required for the 

task, 4) download data from S3 to VM, 5) Run RELION commands, 6) Sync output results back 

to the local machine in real time, and 7) Turn off machines when finished (or if an error is 

detected). Given this workflow, for large upload tasks (such as uploading movies), there is an 

initial data movement step onto S3 prior to any calculations being performed. We are maintaining 

the latest stable version of RELION, which will inform users of the RELION version and detect 

any discrepancies between local and cloud versions of RELION. As shown in Figure 1, we 

implemented job type-dependent data processing strategies for RELION analysis routines. This 

means that GPU-accelerated steps (Auto Pick, CTF estimation, 2D/3D classification, auto-refine) 

are run on VMs with GPUs (p2 VMs), whereas CPU-based steps are run on VMs with 16 or 128 
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virtual CPUs (vCPUs) (See (Cianfrocco and Leschziner 2015) for a detailed discussion of vCPUs 

vs. CPUs). 

In building this software, we are providing users with workflows that have been optimized 

for data transfer and computing. For instance, all data is first uploaded into AWS’s S3 ‘buckets’. 

This allows for fast uploads (up to 300 MB/sec) and also for cost-effective storage of data in-

between analysis routines. Storing data on S3 between RELION runs removes the latency that 

results from re-uploading the same data multiple times. Next, we implemented data storage 

policies that allow for high input/output tasks and large dataset sizes, which included 42 terabyte 

drives for movie particle extraction on d2 VMs. Finally, for computational tasks that can be 

distributed (Movie alignment and Movie particle extraction), we boot up and manage multiple VMs 

in parallel to finish analysis routines quickly. 

  

 RESULTS & DISCUSSION 

  To assess the performance of our approach, we compared processing times for the 

determination of a 2.2 Å ß-galactosidase structure (Bartesaghi et al. 2015) that was recently 

solved using a stand-alone GPU workstation (Kimanius et al. 2016). While the comparison is 

testing very different computing environments, we chose it because many new cryo-EM users are 

purchasing stand-alone GPU workstations and we wanted to compare performance relative to 

AWS. The following discussions of AWS assume that the user has setup an AWS account and 

followed installation instructions for using ‘cryoem-cloud-tools’, including setting up security 

access keys on local computing resources. 

Below we lay out two computing scenarios: ‘advanced’ and ‘common’. The advanced 

computing scenario (Figure 1) describes all steps in the RELION processing pipeline, which 

include movie alignment and particle polishing, as previously described. The common approach 

involves (Figure 3) using particles that have already been extracted from motion-corrected 
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micrographs, and thus does not require S3 storage or particle polishing steps. We will first 

describe the advanced pipeline and then the common pipeline. 

Using our integrated AWS software tools in the RELION GUI and launching all RELION 

analysis commands remotely for the advanced pipeline, we were able to determine a 2.2 Å 

structure in 54.5 hours on AWS (Figure 2A & 2B, Figure 2 - Supplement 1), which is 2X faster 

than a standalone GPU workstation (Figure 2C). These processing times also included the time 

required for movement of data into and between resources on AWS, thus reflecting the full 

processing times experienced by a user (For full list of data transfer times, see Figure 2 - 

supplement 1). For GPU-accelerated RELION processing steps, VMs with 8 GPUs (p2.8xlarge) 

performed equally well or slightly faster than a 4 GPU workstation (Figure 2D). This likely results 

from faster GPUs in the workstation (NVIDIA GTX1070: 1683 MHz clock speed) compared to 

those on AWS (NVIDIA K80: 875 MHz clock speed). Expectedly, the largest time savings were 

seen in steps that could be distributed across multiple VMs (Movie alignment and Movie particle 

extraction) (Figure 2D). For these processes, we were able to select VMs that were appropriate 

for the process - CPU machines for movie alignment (x1.32xlarge), large storage arrays for movie 

particle extraction (d2.8xlarge), and high vCPU numbers for movie refinement and polishing 

(x1.32xlarge: 128 vCPUs). As an alternative to cryoem-cloud-tools, a common processing 

pipeline can also be used. The common pipeline assumes particles that have already been 

extracted from motion-corrected micrographs (e.g. using MotionCor2) (Figure 3).  

In order to build the atomic model for ß-galactosidase into this density, we used the 

molecular modelling program Rosetta (Wang et al. 2016, 2015). As modelling software, Rosetta 

needs CPU computing clusters because its sampling of hundreds of atomic models relative to the 

cryo-EM density requires a dedicated CPU for each model. Therefore, we incorporated Rosetta 

tools for model building and refinement into our AWS-based pipeline, allowing users to submit a 

Rosetta refinement to AWS from their local computer or laptop (Figure 4A). By distributing the 

Rosetta refinement over multiple VMs on AWS, each with 36 vCPUs (c4.8xlarge), we were able 
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to generate 200 models using RosettaCM and Rosetta FastRelax 6.1 hours on AWS, a speedup 

of about 7X over a single workstation with 16 processors (41.8 hours) (Figure 4B). The resulting 

model showed good agreement with the density, with a r.m.s.d for the top 10 Rosetta models of 

< 0.5 Å. (Figure 4C & Figure 4D, Figure 4 - Supplement 1).  

The cost for determining a 2.2 Å structure using the advanced computing pipeline with 

RELION and building an atomic model with Rosetta, both using AWS, was $1,468 USD (Figure 

2 - Supplement 1). This cost represents both storage and computing on AWS, with the top three 

expenditures (71% of the total) coming from 30 terabytes of data storage on AWS S3 ($690.00), 

Movie particle extraction ($179.73), and Movie alignment ($146.72) (Figure 2 - Supplement 1). 

The common pipeline (including Rosetta modeling) was ~6X cheaper than the advanced pipeline, 

with an overall price of $247 (Figure 3 - Supplement 1). As a typical user likely already has 

extracted, motion-corrected particles, this common pipeline cost represents a realistic price for 

users of cryoem-cloud-tools.  

This approach for cryo-EM data analysis has the potential to benefit many different types 

of cryo-EM users. Since this software package integrates directly into a user interface, individual 

users will have the option to perform multiple analysis routines from a single workstation by 

pushing additional jobs to AWS instead of waiting to run them sequentially on a local GPU 

workstation. For research teams, this software provides ‘burstable’ processing power, ensuring 

that data processing does not become rate-limiting ahead of grant and manuscript deadlines. 

Finally, this software can have a significant impact on cryo-EM facilities with a large user base. 

Given the scale of AWS, a cryo-EM facility could not only provide many users with access to 

microscopes but also allow those users to push cryo-EM jobs to AWS without having to 

accommodate their computing needs locally. 

 

DATA ACCESSIBILITY 
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Information and tutorials related to using the software presented here are available at cryoem-

tools.cloud. All software is freely available at Github: https://github.com/cianfrocco-lab/cryoem-

cloud-tools. The ß-galactosidase cryo-EM structure can be accessed at EMD XXXX and PDB 

XXXX. 
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METHODS 

Integrating cryoem-cloud-tools into the RELION GUI 

The overall strategy for users accessing cryoem-cloud-tools from the RELION GUI used the 

cluster submission of RELION. When users submit jobs to a cluster, they indicate the submission 

command directly into the RELION GUI (e.g. ‘qsub’). Within this framework, we built cryoem-

cloud-tools to be specified directly from the GUI using a python program named ‘qsub_aws.’ This 

program will automatically determine the type of RELION command that needs to be run and 

determine the AWS resources required to execute the task. This approach does not require users 

to compile RELION using cryoem-cloud-tools; instead cryoem-cloud-tools is a software extension 

for RELION to submit jobs to AWS. 

 

ß-galactosidase image processing 

To replicate the published work on ß-galactosidase (Kimanius et al. 2016; Bartesaghi et al. 2015), 

we used an almost identical processing strategy using RELION v2.1 compiled with CUDA v7.5. 

A summary of processing times, VM types, and costs can be found in Figure 2 - Supplement 1. 
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All VMs were ‘on-demand’, which means that we paid full price and did not risk being ‘kicked off’ 

by being outbid due to spot price markets. We uploaded 1536 7676 x 7420 pixels super-resolution 

movies of ß-galactosidase (EMPIAR 10061) (Bartesaghi et al. 2015) to AWS and aligned them 

using Unblur v1.0.2 (Grant and Grigorieff 2015) on 5 x x1.32xlarge instances. From our data 

servers at UCSD that have a 10 Gb connection to AWS, we were able to achieve ~350 MB/sec 

upload speeds to S3 using multi-file uploads with ‘rclone’. Note that data upload times reflect data 

movement into S3, which is a separate process from data processing. For users with 1 Gb 

connections to AWS, we expect speeds of 35 MB/sec, which would increase upload time by 10X, 

requiring 110 hours for movie upload (4.5 days). Gctf v0.50 (Zhang 2016) was used to estimate 

the CTF of the aligned micrographs on a single p2.8xlarge VM (8 GPUs). Then, 138,901 particles 

were picked using GPU-accelerated AutoPick on a single p2.8xlarge VM and extracted at a pixel 

size of 1.274 Å (binned by 4 from the original data) in a box size of 192 x 192 pixels on a single 

m4.4xlarge VM (16 vCPUs). This stack of particles was subjected to 2D classification into 200 

classes over 25 iterations on a p2.16xlarge VM (16 GPUs). Selection of the best class averages 

resulted in a stack of 119,443 particles that were then re-extracted at a pixel size of 0.637 Å in a 

box size of 384 x 384 pixels on a m4.4xlarge VM. These particles were refined with PDB 3I3E 

(Dugdale et al. 2010) as the initial model using auto-refine to a resolution of 3.5 Å (unmasked) on 

a single p2.8xlarge VM. These refined coordinates were used for Movie particle extraction on 8 x 

d2.8xlarge VMs (36 vCPUs and 48 Terabytes on each VM) and Movie refinement on a single 

x1.32xlarge VM (128 vCPUs) with a running average of 7 movie frames and a standard deviation 

of 2 pixels on particle translations. These particles were subjected to Polishing on a single 

x1.32xlarge VM, yielding an unmasked resolution of 3.3 Å, after which they were used for 3D 

classification into 8 classes over 25 iterations using an angular step of 7.5 degrees on a single 

p2.8xlarge VM. From the 4 best classes, 106,237 particles were used for 3D auto-refine on a 

single p2.8xlarge instance to obtain a final, post-processed structure at 2.2 Å, as previously 

reported(Kimanius et al. 2016; Bartesaghi et al. 2015). During the course of this work, we moved 
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data using ’rclone’ for data synchronization, uploading 12 TB of movie files and downloading 

approximately 400 GB of data, which would incur $36 in data egress charges ($0.09 USD/GB).  

 

Atomic model building with Rosetta on AWS 

We extended cryoem-cloud-tools to allow users to build atomic models into cryo-EM maps using 

Rosetta, specifically RosettaCM and Rosetta’s FastRelax protocols. We ran these protocols on 

c4.8xlarge instances with a single solution requested per vCPU. Using this method we generated 

atomic models for the 2.2 Å ß-galactosidase map determined on AWS. We used atomic 

coordinates of 1JZ7 chain A as the starting model for the asymmetric unit of the ß-galactosidase 

map and generated the initial aligned reference structure using rosetta_refinement_on_aws.py 

routine from cryoem-cloud-tools. Following this step, we generated the symmetry definition file for 

Rosetta describing the D2 symmetry of ß-galactosidase in the context of 1JZ7 using the script 

rosetta_prepare_symmfile.py. All these initial steps were carried out on t2.micro instances. We 

used the initial reference structure and the symmetry definition file as input and used RosettaCM 

to generate 200 output models.  RosettaCM was run using using rosetta_refinement_on_aws.py 

routine running on 10 x c4.8xlarge instances with 20 models per instance. The best model in 

terms of  Rosetta energy (including fit-to-density energy) was used as an input for a final 

refinement with Rosetta’s FastRelax. We generated 8 models from FastRelax using one of the 

two half maps generated during refinement (training half map) low-pass filtered to a resolution of 

2.24 Å and sharpened with a B-factor of -49.52. To estimate overfitting, FSCwork (FSC curve 

between the refined model and the training half map) and and FSCfree (FSC curve between the 

refined model and the other half map generated during refinement, the test half map) were 

compared and the the spatial frequency at which the FSC value was 0.5 was 1/2.4 Å-1 in both 

cases (Figure 4D green and blue curves). The nearly identical FSC curves obtained with the two 

half maps indicate that there was no over-refinement of the model. The FSC curve between the 

refined model and the final cryo-EM map (obtained by combining data from both the half maps) 
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showed that FSC value was 0.5 at a spatial frequency of 1/2.2 Å-1 (Figure 4D red curve). The FSC 

curves were calculated in Rosetta and the plots were made using GraphPad Prism (GraphPad 

software). The best model in terms of Rosetta energy and model geometry (as determined by 

MolProbity) was selected as the final atomic model for the  ß-galactosidase map.  
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FIGURES 

 

Figure 1 - AWS architecture for ‘advanced’ cryo-EM data processing with RELION. Shown 

is a schematic of AWS resources deployed by cryoem-cloud-tools through the program 

‘qsub_aws’. For all job types shown, the software places VMs within security groups that restrict 

access to the IP address of the end-user. Within a security group, the software determines the 

appropriate VM and storage choices, using S3 as a distribution point between local and AWS 

resources.  
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Figure 2 - Performance of AWS vs. local GPU workstation. Processing times (A) and FSC 

curve (B) for the determination of a 2.2 Å ß-galactosidase structure on AWS. (C) Processing times 

from the determination of 2.2 Å ß-galactosidase structure on GPU workstation (Kimanius et al. 

2016). (D) Comparison of percent speed-up increases between AWS and a GPU workstation. 
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Figure 2 - Supplement 1 - Summary of processing times and costs associated with ß-

galactosidase structure determination using advanced pipeline on AWS compared with a 

local GPU workstation. 
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Figure 3 - AWS architecture for ‘common’ cryo-EM data processing with RELION. Shown is 

a schematic of AWS resources deployed by cryoem-cloud-tools through the program ‘qsub_aws’. 

For this common pipeline, there is no data storage on S3 and RELION jobs are run directly on p2 

instances.  
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Figure 3 - Supplement 1 - Summary of processing times and costs associated with ß-

galactosidase structure determination using the “common” pipeline on AWS compared 

with a local GPU workstation. 
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Figure 4 - Rosetta atomic model refinement in the cloud. 

(A) AWS architecture for running Rosetta model refinement across multiple VMs. (B) Run time 

comparisons between a local workstation (16 cores) and AWS (252 vCPUs). (C) Representative 

region of the cryo-EM map with the top five atomic models built by Rosetta FastRelax (D) FSC 

curves between the best atomic model from FastRelax and the cryo-EM map of ß-galactosidase. 

The resolution corresponding to the FSC value of 0.5 for the full map is shown. 
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Figure 4 -  Supplement 1 - Rosetta modeling statistics.  

(A) The RosettaCM model used as input for Rosetta FastRelax colored by the the all atom r.m.s.d. 

value of the top ten RosettaCM models  (based on Rosetta energy). Units of scale are Å. One of 

the four asymmetric units is shown. (B) Table summarizing the model validation statistics 

determined by MolProbity for the final atomic model. For comparison the model statistics of the 

starting model, 1JZ7 is shown. (C) Representative region of the cryo-EM map showing better fit 

of the final output model from Rosetta (dark grey) compared to the starting model, 1JZ7 (blue). 

We have zoomed in on Arg 256 of chain D of the output model from Rosetta. 


