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Numerical relativity (NR) simulations provide the most accurate binary black hole gravitational

waveforms, but are prohibitively expensive for applications such as parameter estimation. Surrogate

models of NR waveforms have been shown to be both fast and accurate. However, NR-based surrogate

models are limited by the training waveforms’ length, which is typically about 20 orbits before merger.

We remedy this by hybridizing the NR waveforms using both post-Newtonian and effective one-body

waveforms for the early inspiral. We present NRHybSur3dq8, a surrogate model for hybridized

nonprecessing numerical relativity waveforms, that is valid for the entire LIGO band (starting at

20 Hz) for stellar mass binaries with total masses as low as 2.25 M⊙. We include the l ≤ 4 and (5, 5)

spin-weighted spherical harmonic modes but not the (4, 1) or (4, 0) modes. This model has been trained

against hybridized waveforms based on 104 NR waveforms with mass ratios q ≤ 8, and jχ1zj; jχ2zj ≤ 0.8,

where χ1z (χ2z) is the spin of the heavier (lighter) black hole in the direction of orbital angular momentum.

The surrogate reproduces the hybrid waveforms accurately, with mismatches ≲3 × 10−4 over the mass

range 2.25 M⊙ ≤ M ≤ 300 M⊙. At high masses (M ≳ 40 M⊙), where the merger and ringdown are more

prominent, we show roughly 2 orders of magnitude improvement over existing waveform models. We also

show that the surrogate works well even when extrapolated outside its training parameter space range,

including at spins as large as 0.998. Finally, we show that this model accurately reproduces the spheroidal-

spherical mode mixing present in the NR ringdown signal.

DOI: 10.1103/PhysRevD.99.064045

I. INTRODUCTION

The era of gravitational wave (GW) astronomy has been

emphatically unveiled with the recent detections [1–7] by

LIGO [8] and Virgo [9]. The detection of gravitational wave

signals from compact binary sources is expected to become a

routineoccurrence as the advanceddetectors reach their design

sensitivity [10,11]. The possible science output from these

events crucially depends on the availability of an accurate

waveform model to compare against observed signals.

Numerical relativity (NR) is the only ab initio approach

that accurately produces waveforms from the merger of a

binary black hole (BBH) system. However, because NR

simulations are computationally expensive, it is impractical

to use them directly for applications such as parameter

estimation, which can require upwards of 107 waveform

evaluations. Therefore, the GW community has developed

several approximate waveform models [12–21], some of

which are fast to evaluate. These models make certain

physically motivated assumptions about the underlying

phenomenology of the waveforms, and they fit for any

remaining free parameters using NR simulations.

Surrogate modeling [22,23] is an alternative approach that

does not assume an underlying phenomenology and has been

applied to a diverse range of problems [22–32]. NR surrogate

models follow a data-driven approach, directly using the NR

waveforms to implicitly reconstruct the underlying phenom-

enology. Three NR surrogate models have been built so far

[26–28], including a seven-dimensional (mass ratioq and two

spin vectors) model for generically precessing systems in

quasicircular orbit [28]. Through cross-validation studies,

these models were shown to be nearly as accurate as the NR

waveforms they were trained against.

Despite the success of the surrogate modeling approach,

existing surrogate models have two important limitations:

(1) Because they are based solely on NR simulations, which

typically are only able to cover the last ∼20 orbits of a BBH

inspiral, they are not long enough to span the full LIGOband*
vvarma@caltech.edu
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for stellarmass binaries. (2) Apart from the first nonspinning

model [26], these models have been restricted to mass ratios

q ≤ 2.
1
There are two reasons for this: (i) The 7D parameter

space is vast, requiring at least a few thousand simulations to

sufficiently cover it. (ii) Because of the smaller length scale

introduced by the lighter black hole,NR simulations become

increasingly more expensive with mass ratio.

In this work we address these limitations in the context

of nonprecessing BBH systems. First, to include the early

inspiral we “hybridize” the NR waveforms: each full

waveform consists of a post-Newtonian (PN) and effective

one-body (EOB) waveform at early times that is smoothly

attached to a NR waveform at late times. Second, since we

restrict ourselves to the three-dimensional space of non-

precessing BBHs, fewer simulations are necessary com-

pared to the seven-dimensional case, and therefore we can

direct computational resources to simulations with higher

mass ratios. The resulting model, NRHybSur3dq8, is the

first NR-based surrogate model to span the entire LIGO

frequency band for stellar mass binaries; assuming a

detector low-frequency cutoff of 20 Hz, this model is valid

for total masses as low as 2.25 M⊙. This model is based on

104 NR waveforms in the parameter range q ≤ 8, and

jχ1zj; jχ2zj ≤ 0.8, where χ1z (χ2z) is the dimensionless spin

of the heavier (lighter) black hole (BH).

The plus (hþ) and cross (h×) polarizations of GWs can

be conveniently represented by a single complex time

series, h ¼ hþ − ih×. The complex waveform on a

sphere can be decomposed into a sum of spin-weighted

spherical harmonic modes hlm [33,34], so that the wave-

form along any direction ðι;φ0Þ in the binary’s source

frame is given by

hðt; ι;φ0Þ ¼
X

∞

l¼2

X

l

m¼−l

hlmðtÞ
−2Ylmðι;φ0Þ; ð1Þ

where −2Ylm are the spin ¼ −2 weighted spherical har-

monics, ι is the inclination angle between the orbital

angular momentum of the binary and line of sight to the

detector, and φ0 is the initial binary phase. φ0 can also be

thought of as the azimuthal angle between the x axis of

the source frame and the line of sight to the detector. We

define the source frame as follows: The z axis is along

the orbital angular momentum direction, which is constant

for nonprecessing BBH. The x axis is along the line of

separation from the lighter BH to the heavier BH at some

reference time or frequency. The y axis completes the triad.

The l ¼ jmj ¼ 2 terms typically dominate the sum in

Eq. (1) and are referred to as the “‘quadrupole” modes.

Studies [35–42] have shown that the nonquadrupole

modes, while being subdominant, can play a non-negligible

role in detection and parameter estimation of GW sources,

particularly for large signal to noise ratio (SNR), large

total mass, large mass ratio, or large inclination angle ι. For

the first event, GW150914 [1], the systematic errors due to

the quadrupole-mode-only approximation are generally

smaller than the statistical errors [43,44], although higher

modes may lead to modest changes in some of the extrinsic

parameter values [45]. However, as the detectors approach

their design sensitivity [10], one should prepare for high-

SNR sources (particularly at larger mass ratios than those

seen so far), where the quadrupole-mode-only approxima-

tion breaks down. In addition, nonquadrupole modes can

help break the degeneracy between the binary inclination

and distance, which is present for quadrupole-mode-only

models (see, e.g., [14,46,47]).

In this work, we model the following spin-weighted

spherical harmonic modes: l ≤ 4 and (5, 5), but not the

(4, 1) or (4, 0) modes.
2
Several inspiral-merger-ringdown

waveform models [14,15,20,21] that include nonquadru-

pole modes have been developed in recent years; however,

compared to those models we show an improved accuracy

and we include more modes.

The rest of the paper is organized as follows. In Sec. II,

we choose the parameters at which to perform NR

simulations, which will be used for training the surrogate

model. Section III describes the NR simulations. Section IV

describes our procedure to compute the waveform for the

early inspiral using PN and EOB waveforms. Section V

describes our hybridization procedure to attach the early

inspiral waveform to the NR waveforms. Section VI

describes the construction of the surrogate model. In

Sec. VII, we test the surrogate model by comparing

against NR and hybrid waveforms. We end with some

concluding remarks in Sec. VIII. We make our model

available publicly through the easy-to-use PYTHON

package gwsurrogate [48]. In addition, our model is

implemented in C with PYTHON wrapping in the LIGO

algorithm library [49]. We provide an example PYTHON

evaluation code in [50].

II. TRAINING SET GENERATION

A. Greedy parameters from PN surrogate model

We do not know a priori the distribution or number of

NR simulations required to build an accurate surrogate

model. Furthermore, we hope to select a representative

distribution that will allow for an accurate surrogate to be

built with as few NR simulations as possible. Therefore, we

estimate this distribution by first building a surrogate model

for PN waveforms; we find that parameters suitable for

building an accurate PN surrogate are also suitable for

building a NR or a hybrid NR-PN surrogate.

1
We use the convention q ¼ m1=m2, where m1 and m2 are the

masses of the component black holes, with m1 ≥ m2.

2
Because of the symmetries of nonprecessing BBHs [see

Eq. (23)], the m < 0 modes contain the same information as
the m > 0 modes and do not need to be modeled separately.
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We use the same methods to build the PN surrogate as we

use for the hybrid surrogate (cf. Sec. VI). We use the PN

waveforms described in Sec. IVA; however, for simplicity

we only model the (2, 2) mode. In addition, we restrict the

length of the PN waveforms to be 5000M, terminating

at the innermost-stable-circular-orbit’s orbital frequency,

ωorb ¼ 6−3=2 rad=M, where M is the total mass of the

binary.

We determine the desired training dataset of parameters

as follows. We begin with just the corner cases of the

parameter space; for the 3D case considered here, that

consists of eight points at ðq; χ1z; χ2zÞ ¼ ð1 or 8;�0.8;
�0.8Þ. We build up the desired set of parameters iteratively,

in a greedy manner: At each iteration we build a PN

surrogate using the current training dataset and test the

model against a much larger (∼10 times) validation dataset.

The validation dataset is generated by randomly resampling

the parameter space at each iteration. Since the boundary

cases are expected to be more important, for 30% of the

points in the validation set we sample only from the

boundary of the parameter space, which corresponds to

the faces of a cube in the 3D case. We select the parameter

in the validation set that has the largest error [cf. Eq. (2)]

and add this to our training set (hence the name greedy

parameters). We repeat until the validation error reaches a

certain threshold.

In order to estimate the difference between two com-

plexified waveforms, h1 and h2, we use the time-domain

mismatch

MM ¼ 1 −
hh1; h2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh1; h1ihh2; h2i
p ; ð2Þ

hh1; h2i ¼

�

�

�

�

Z

tmax

tmin

h1ðtÞh
�
2ðtÞdt

�

�

�

�

; ð3Þ

where � indicates a complex conjugation, and j:j indicates
the absolute value. Note that in this section, we do not

perform an optimization over time and phase shifts. In

addition, we assume a flat noise curve.

Figure 1 shows how the maximum validation error

decreases aswe add greedy parameters to our training dataset.

Forour case,we stopat 100greedy parameters (atwhichpoint

themismatch is< 10−6) and use those parameters to perform

the NR simulations. Note that we do not expect 100 NR

simulations to produce a NR surrogate with comparable

accuracy,MM < 10−6, for two reasons. First, unlike the PN

waveforms used here, the NR simulations also include the

merger-ringdownpart,whichwe expect to bemore difficult to

model. Second, theNRnumerical truncation error is typically

higher than 10−6 in mismatch, therefore the numerical noise

will limit the accuracy.

III. NR SIMULATIONS

The NR simulations for this model are performed using

the Spectral Einstein Code (SPEC) [51–56] developed by

the SXS [57] Collaboration. Of the 100 cases determined in

Sec. II, only 91 simulations were successfully completed.
3

These simulations have been assigned the identifiers SXS:

BBH:1419–SXS:BBH:1509 and are made publicly avail-

able through the SXS public catalog [58]. For cases with

equal mass, but unequal spins, we can exchange the two

BHs to get an extra data point. There are 13 such cases,

leading to a total of 104 NRwaveforms. These are shown as

circular markers in Fig. 2.

The start time of these simulations varies between

4270M and 5227M before the peak of the waveform

amplitude [defined in Eq. (38)], where M ¼ m1 þm2 is

the total Christodoulou mass measured after the initial burst

of junk radiation. The algorithm for choosing a fiducial

time at which junk radiation ends is discussed in Ref. [59].

The initial orbital parameters are chosen through an

iterative procedure [60] such that the orbits are quasicir-

cular; the largest eccentricity for these simulations is

7.5 × 10−4, while the median value is 4.2 × 10−4. The

waveforms are extracted at several extraction surfaces at

varying finite radii from the origin and then extrapolated to

future-null infinity [61]. Finally, the extrapolated wave-

forms are corrected to account for the initial drift of the

center of mass [62,63]. The time steps during the simu-

lations are chosen nonuniformly using an adaptive time

stepper [59]. We interpolate these data to a uniform time

step of 0.1M; this is dense enough to capture all frequencies

of interest, including near merger.

FIG. 1. Largest mismatch of the surrogate (over the entire

validation set) as a function of number of greedy parameters used

to train the PN surrogate. The PN surrogate is seen to converge to

the validation waveforms as the size of the training dataset

increases.

3
The main reason for failure is large constraint violation as the

binary approaches merger. We believe a better gauge condition
may be needed for some of these simulations.
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IV. EARLY INSPIRAL WAVEFORMS

While NR provides accurate waveforms, computational

constraints limit NR to only the late inspiral, merger, and

ringdown phases. Fortunately, PN/EOB waveforms are

expected to be accurate in the early inspiral. Hence we

can “stitch” together an early inspiral waveform and a NR

waveform, to get a hybrid waveform [40,64–71] that spans

the entire frequency range relevant for ground-based

detectors. In this section, we describe the waveforms we

use for the early inspiral, leaving the hybridization pro-

cedure for the next section.

A. PN waveforms

We first generate PN waveforms as implemented in the

GWFRAMES package [72]. For the orbital phase we include

nonspinning terms up to 4 PN order [73–77] and spin terms

up to 2.5 PN order [78–80]. We use the TaylorT4 [81]

approximant to generate the PN phase; however, as

described below, we replace this phase with an EOB-

derived phase. For the amplitudes, we include terms up to

3.5 PN order [82–84].

The spherical harmonic modes of the PN waveform can

be written (after rescaling to unit total mass and unit

distance) as [74,82]

hPN
lm ¼ 2ηðvPNÞ2

ffiffiffiffiffiffiffiffi

16π

5

r

HPN
lme

−imϕPN
orb ; ð4Þ

where η ¼ q=ð1þ qÞ2 is the symmetric mass ratio, vPN is

the characteristic speed that sets the perturbation scale in

PN, ϕPN
orb is the (real) orbital phase, and HPN

lm are the

complex amplitudes of different modes. Note that we

ignore the tail distortions [85,86] to the orbital phase as

these are 4 PN corrections (see, e.g., [87]).

The complex strain hPN
lm is obtained as a time series from

GWFRAMES. We can absorb the complex part of the

amplitudes into the phases and rewrite the strain as

hPN
lm ¼ APN

lme
−iϕPN

lm ; ð5Þ

ϕPN
lm ¼ mϕPN

orb þ ξPN
lm; ð6Þ

ϕPN
orb ¼

ϕPN
22

2
; ð7Þ

where APN
lm and ϕPN

lm are the real amplitude and phase of a

given mode, and ξPN
lm is an offset that captures the complex

part of HPN
lm. Note that Eqs. (6) and (7) together imply

ξPN22 ¼ 0; HPN
22 contains complex terms starting at 2.5 PN,

but these appear as 5 PN corrections in the phase (see,

e.g., [87]), which we can safely ignore.

At this stage, APN
lm, ϕ

PN
lm, and ξPN

lm are functions of time.

But they can be recast as functions of the characteristic

speed by first computing

vPNðtÞ ¼

�

dϕPN
orb

dt

�

1=3

; ð8Þ

where the derivative is performed numerically, and then

inverting Eq. (8) to obtain tðvPNÞ. Then we define

APN
lmðv

PNÞ ¼ jhPN
lmðtðv

PNÞÞj; ð9Þ

ξPN
lmðv

PNÞ ¼ ϕPN
lmðtðv

PNÞÞ −mϕPN
orbðtðv

PNÞÞ: ð10Þ

Note that the PN waveform is generated in the source

frame defined such that the reference time is the initial time.

This also ensures that the heavier BH is on the positive x
axis at the initial time, and the initial orbital phase is zero.

To summarize, from the GWFRAMES package, we obtain

the complex time series hPN
lm [Eq. (5)]. We compute the

orbital phase [Eq. (7)], the real amplitudes [Eq. (9)], and the

phase offsets [Eq. (10)]. These three quantities are obtained

as a time series but can be represented as functions of the

characteristic speed using Eq. (8).

B. EOB correction

As was shown in previous works [35,40], we find

that the accuracy of the inspiral waveform can be improved

by replacing the PN phase with the phase derived from

a NR-calibrated EOB model. For this work we use

SEOBNRv4 [17].

FIG. 2. The parameter space covered by the 104 NR wave-

forms (circle markers) used in the construction of the surrogate

model in Sec. VI. We also show the nine long NR waveforms

(square markers) used to test hybridization in Sec. VII B

and the eight NR waveforms (triangle markers) used to test

extrapolation in Sec. VII C. The axes show the mass ratio and

the spin on the heavier BH, while the colors indicate the spin on

the lighter BH. The black rectangle indicates the bounds of the

training region: 1 ≤ q ≤ 8;−0.8 ≤ χ1z; χ2z ≤ 0.8.
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SEOBNRv4 is a time-domain model that includes only

the (2, 2) mode, which we can decompose as follows:

hEOB22 ¼ AEOB
22 e−iϕ

EOB
22 ; ð11Þ

where AEOB
22 and ϕEOB

22 are the real amplitude and phase of

the (2, 2) mode. These are functions of time, but following

the same procedure as earlier, they can be recast in terms

of the characteristic speed,

ϕEOB
orb ðtÞ ¼

ϕEOB
22 ðtÞ

2
; ð12Þ

vEOBðtÞ ¼

�

dϕEOB
orb

dt

�

1=3

; ð13Þ

where the derivative is performed numerically, and we

invert Eq. (13) to obtain tðvEOBÞ. We replace vPN → vEOB

in Eqs. (9) and (10) to get, respectively, the EOB-corrected

amplitudes and phase offsets

Ains
lmðtÞ ¼ APN

lmðv
EOBðtÞÞ; ð14Þ

ξins
lmðtÞ ¼ ξPN

lmðv
EOBðtÞÞ: ð15Þ

Note that, in practice, computing Ains
lmðtÞ and ξins

lmðtÞ is

accomplished via an interpolation in v: APN
lmðvÞ and ξPN

lmðvÞ
as computed in Eqs. (9) and (10) are known only at

particular values of v, which are vPNðtiPNÞ, where tiPN are

the times in the PN time series; we interpolate APN
lmðvÞ and

ξPN
lmðvÞ to the points v

EOBðtiEOBÞ, where tiEOB are the times in

the EOB time series. We use a cubic-spline interpolation

scheme as implemented in SCIPY [88].

Following Eq. (6), the EOB-corrected phases are

given by

ϕins
lm ¼ mϕEOB

orb þ ξins
lm; ð16Þ

where we use the EOB orbital phase from Eq. (12). Finally,

our EOB-corrected inspiral waveform modes are given by

hins
lm ¼ Ains

lme
−iϕins

lm : ð17Þ

Figure 3 shows an example of PN and EOB-corrected

waveforms along with the corresponding NR waveform.

All three waveforms have the same starting orbital fre-

quency and their initial orbital phase is set to zero. We see

that the PN waveform becomes inaccurate at late times, as

expected. The EOB-corrected waveform, on the other hand,

remains faithful to the NR waveform until much later times.

V. HYBRIDIZATION

In this section we describe our procedure to stitch

together an inspiral waveform (described in Sec. IV) to

a NR waveform (described in Sec. III).

We start by generating inspiral and NR waveforms with

the same component masses and spins. We note that the

spins measured in SPEC simulations agree well with PN

theory [89]. However, the PN and NR waveforms are

typically represented in different coordinate systems that

need to be aligned with each other as follows. The two

coordinate systems are related to each other by a possible

time translation and a possible rotation by three Euler

FIG. 3. NR, PN (Sec. IVA), and EOB-corrected PN (Sec. IV B) waveforms for an example case. We show the (2, 2) and (2, 1) modes.

The binary parameters are shown at the top of the plot. The EOB-corrected PN waveform [35,40] stays faithful to the NR waveform until

much later times, compared to the pure PN waveform.
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angles: inclination angle ι, initial binary phase φ0, and

polarization angle ψ . For nonprecessing BBH, the first

angle ι is trivially specified by requiring that the z axis is

along the direction of orbital angular momentum. This

leaves us with the freedom to vary φ0 and ψ . We choose the

hybridization frame and time shifts by minimizing a cost

function in a suitable matching region; this is described in

more detail below.

A. Choice of cost function

We use the following cost function when comparing two

waveforms, h and h̃, in the matching region:

E½h; h̃� ¼
1

2

P

l;m

R t2
t1
jhlmðtÞ − h̃lmðtÞj

2dt
P

l;m

R t2
t1
jhlmðtÞj

2dt
; ð18Þ

where t1 and t2 denote the start and end of the matching

region, to be defined in Sec. V C, and the sum does not

include m ¼ 0 modes for reasons described in Sec. V B.

This cost function was introduced in Ref. [27] and is shown

to be related to the weighted average of the mismatch over

the sky.

We minimize the cost function by varying the time and

frame shifts between the NR and inspiral waveforms

min
t0;φ0;ψ

E½hNRðt;φ0;ψÞ; h
insðt; t0Þ�; ð19Þ

hNR
lmðt;φ0;ψÞ ¼ hNR

lmðtÞe
imφ0e2iψ ; ð20Þ

hins
lmðt; t0Þ ¼ hins

lmðt − t0Þ: ð21Þ

We perform the time shifts on the inspiral waveform so that

the matching region always corresponds to the same

segment of the NR waveform. The frame shifts are

performed on the NR waveform so as to preserve the

initial frame alignment of the inspiral waveform

(cf. Sec. IVA). This alignment gets inherited by the hybrid

waveform and is important in the surrogate construction.

B. m= 0 modes

We find that the m ¼ 0 modes of the inspiral waveforms

do not agree very well with the NR waveforms. There are

several possible reasons for this [90]: (1) The NR waveform

does not have the correct “memory” contribution since this

depends on the entire history of the system starting at

t ¼ −∞, while the NR simulation covers only the last few

orbits. (2) The extrapolation to future-null infinity does not

work as well for these modes [59]. This could be improved

in the future with Cauchy characteristic extraction (CCE)

[91–94]. (3) The amplitude of these modes is very small

except very close to merger; therefore the early part of the

NR waveform where we compare with the inspiral wave-

forms is contaminated by numerical noise.

Therefore, when constructing the hybrid waveforms,

we set the entire inspiral waveform to zero for these

modes,

hins
l;m¼0 ¼ 0: ð22Þ

When computing the cost function [Eq. (18)], we ignore the

m ¼ 0 modes.

This means that our hybrid waveforms for these modes

are equivalent to the NR waveforms. In addition, the main

contribution for these modes comes from the region close

to merger, which does not correspond to a memory signal,

but instead is due to axisymmetric excitations near merger

(cf. bottom panel of Fig. 5).

C. Choice of matching region

There are several considerations to take into account

when choosing a matching region ½t1; t2� for the cost

function [Eq. (18)]: (1) The NR and inspiral waveforms

should agree with each other reasonably in this region; at

early times the NR waveform is contaminated by junk

radiation, while at late times the inspiral waveform

deviates from NR (cf. Figs. 3 and 5). (2) The matching

region should be wide enough that the cost function is

meaningful.

Our matching region starts at 1000M after the start of the

NR waveform; we find that this is necessary to avoid noise

due to junk radiation in some of the higher-order modes.

The length of the NR waveforms from the start of the

matching region to the peak of the waveform amplitude

varies between 3270M and 4227M. The width of the

matching region is then chosen to be equal to the time

taken for 3 orbits of the binary. We use the phase of the

(2, 2) mode of the NR waveform to determine this. This

choice ensures the width of the matching region scales

appropriately with the NR starting frequency, so that we get

wider matching regions when the NR waveform starts early

in the inspiral.

D. Allowed ranges for frame and time shifts

The allowed range for φ0 is [0; 2π]. For nonprecessing
binaries the allowed values for ψ can be restricted by taking

into account the symmetries of the system. We will show

that this restriction is a consequence of the well-known

relationship

hl;−m ¼ ð−1Þlh�
l;m; ð23Þ

between the m < 0 modes and the m > 0 modes for

nonprecessing binaries orbiting in the x − y plane [95].

We compute the shifted waveform
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hl;−mðtÞe
−imφ0e2iψ ¼ hl;−mðt;φ0;ψÞ

¼ ð−1Þlðhl;mðt;φ0;ψÞÞ
�

¼ ð−1Þle−2iψe−imφ0h�
l;mðtÞ

¼ e−2iψe−imφ0hl;−mðtÞ

⇒ e2iψ ¼ e−2iψ : ð24Þ

Equation (24) implies that the only allowed values for ψ are

0 and π=2.
4
If the inspiral waveform and the NR waveform

have the same sign convention, then ψ ¼ 0. Unfortunately,

not all NR catalogs and PN-waveform codes use the same

sign convention, so we allow the possibility of ψ ¼ π=2 to

account for this.

To set the allowed range for t0, we begin by computing

the orbital frequency of the inspiral waveform ωins as half

the frequency of the (2, 2) mode. Similarly, we compute the

orbital frequency of the NR waveform ωNR. We first time

align the NR and inspiral waveforms such that their

frequencies match at the start of the matching region.

This gives us a good starting point to vary the time shift.

We also define

ωins
mid ¼ ωNRðt ¼ t1Þ; ð25Þ

ωins
low ¼ 0.995 × ωins

mid; ð26Þ

ωins
hi ¼ 1.005 × ωins

mid; ð27Þ

where ωNRðt ¼ t1Þ is the NR frequency at the start of the

matching region. The allowed range for time shifts t0 is

restricted to lie in the interval [tinslow − tinsmid, t
ins
hi − tinsmid], where

tinslow, t
ins
mid, and tinshi are the times at which ωinsðtÞ is equal to

ωins
low, ωins

mid, and ωins
hi , respectively. In other words, the

allowed range for t0 is a region near t0 ¼ 0. t0 ¼ 0 is

the case when the frequencies of the inspiral and the NR

waveforms match at t1, the start of the matching region.

The lower (upper) limit for t0 is chosen such that the

inspiral waveform has a frequency equal to 0.995 (1.005)

times the NR frequency at t1.
The factors in Eqs. (25) and (27) are chosen such that the

time shift that minimizes the cost function is always well

within the range of allowed time shifts. Hence, choosing a

wider range (i.e., values of these factors farther from unity)

does not improve the hybridization procedure. Note also

that, like the width of the matching region in Sec. V C,

setting the range of time shifts based on the orbital

frequency ensures that it scales appropriately with the start

frequency of the NR waveform.

The minimization in Eq. (19) is performed as follows.

We vary the time shift t0 over 500 uniformly spaced values

in the above mentioned time range.
5
For each of these time

shifts t0, we try both allowed values of ψ ∈ f0; π=2g. For
each t0 and ψ , we minimize the cost function over φ0 using

the Nelder-Mead downhill simplex minimization algorithm

as implemented in SCIPY [88]. To avoid local minima in the

φ0 minimization, we perform ten searches with different

initial guesses, which are sampled from a uniform random

distribution in the range ½0; 2π�.

E. Stitching NR and inspiral waveforms

Having obtained the right frame and time shifts between

the NR and inspiral waveforms, the final step is to smoothly

stitch the inspiral waveform to the shifted NR waveform.

The stitching is done using a smooth blending function

τðtÞ ¼

8

>

>

<

>

>

:

0; if t < t1

sin2
�

π
2

t−t1
t2−t1

�

; if t1 ≤ t ≤ t2

1; if t > t2;

ð28Þ

where t1 and t2 take on the same values as those appearing

in Eq. (18). Different blending functions have been

proposed in the literature [64,67,69,96]. Our choice is

equivalent to the blending function defined in Ref. [67].

We find that our results are not sensitive to the choice of

blending function.

In what follows, for brevity, we drop the hybridization

parameters φ0, ψ , t0 with the understanding that the models

are stitched together after transforming into the hybridiza-

tion frame

hins
lmðtÞ≡ hins

lmðt; t0Þ; ð29Þ

hNR
lmðtÞ≡ hNR

lmðt;φ0;ψÞ: ð30Þ

Given the shifted waveforms and the blending function,

there are still several ways in which one can stitch the

waveforms together.

1. Inertial frame stitching

One could work with the complex waveform strain and

define

h
Hyb
lm ¼ ð1 − τðtÞÞhins

lmðtÞ þ τðtÞhNR
lmðtÞ: ð31Þ

With this choice, by construction, the complex strain

transitions smoothly from the inspiral part to the NR part

over the matching region. However, the transition is more

complicated for the frequency, since it involves time

derivatives of the complex argument of the strain; the time

4
ψ ¼ π is also allowed, but it is degenerate with ψ ¼ 0.

5
We find that increasing the number of time samples results in

no noticeable improvement; the typical values of the cost function
after minimization with 500 samples are E ∼ 10−5, and using
1000 samples results in changes only of order ΔE ≲ 10−8.
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derivatives of the blending function do not behave like a

smooth blending function. This is demonstrated in the left

panel of Fig. 4: the inspiral and NR frequencies agree well

in the matching region but the frequency of the hybrid

waveform deviates from this.

2. Amplitude-frequency stitching

To avoid the undesirable artifacts described above, we

choose to perform the inspiral-NR stitching using the

amplitude and frequency rather than the inertial frame

strain.

We begin by decomposing the NR and inspiral wave-

forms into their respective amplitude and phase,

hNR
lmðtÞ ¼ ANR

lme
−iϕNR

lm ; hNR
lmðtÞ ¼ Ains

lme
−iϕins

lm : ð32Þ

The frequency of each mode

ωNR
lm ¼

dϕNR
lm

dt
; ωins

lm ¼
dϕins

lm

dt
; ð33Þ

is then numerically computed from fourth-order finite

difference approximations to the time derivative. Finally,

we stitch the amplitude and frequency of each mode to get

their hybrid versions,

A
Hyb
lm ¼ ð1 − τðtÞÞ Ains

lmðtÞ þ τðtÞANR
lm; ð34Þ

ω
Hyb
lm ¼ ð1 − τðtÞÞ ωins

lmðtÞ þ τðtÞωNR
lm: ð35Þ

To get the inertial frame strain we first need to integrate

the frequency to get the phase. However, we already know

the phase in the region before (only inspiral) and after

(only NR) the matching region. So, we integrate the hybrid

frequency

ϕ
Hyb-match-region
lm ¼

Z

t2

t1

ω
Hyb
lm dt; ð36Þ

in the matching region using a fourth-order accurate

Runge-Kutta scheme.

Finally, we set the phase of the hybrid waveform to

ϕ
Hyb
lm ¼

8

>

>

<

>

>

:

ϕins
lm þ δ1

lm; if t < t1

ϕ
Hyb-match-region
lm þ δ2

lm; if t1 ≤ t ≤ t2

ϕNR
lm; if t > t2;

ð37Þ

where δ1
lm and δ2

lm are chosen such that ϕ
Hyb
lm is continuous

at t1 and t2.
Since, by construction, the frequency transitions

smoothly from the inspiral waveform to NR data, we

eliminate the artifact seen in the bottom left panel of Fig. 4

(dashed line), as demonstrated in the right panel of Fig. 4.

We note that since the m ¼ 0 modes are purely real

(imaginary) and nonoscillatory for nonprecessing systems,

they do not have a frequency associated with them, there-

fore we use the inertial frame stitching of Sec. V E 1 for

these modes. For these modes the waveform goes from zero

to the NR value over the matching region.

In the hybridized waveform we include the l ≤ 4 and

(5, 5) modes, but not the (4, 1) or (4, 0) modes. For the

(4, 1) and (4, 0) modes we find that the inspiral and NR

waveforms do not agree very well. This is possibly due to

issues in the extrapolation to future-null infinity [61] for

these modes and could be resolved in the future with CCE

FIG. 4. (Left) The real part (top) and frequency (bottom) of the (3, 2) mode using the inertial frame stitching described in

Sec. V E 1. The binary parameters are shown on the top of the plot. The vertical red dashed lines indicate the matching region.

Note that this plot shows the inspiral and NR waveforms after the time and frame shifts are performed. (Right) Same, but using

the amplitude-frequency stitching described in Sec. V E 2. Now we see that the frequency of the hybrid waveform agrees much

better with the NR and inspiral data.
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[91–94] An example of the final NR, inspiral, and hybrid

waveforms is shown in Fig. 5.

VI. BUILDING THE SURROGATE MODEL

Starting from the 104 NR waveforms described in

Secs. II and III, we construct hybrid waveforms as

described in Sec. V. In this section we describe our method

to construct a surrogate model for these hybrid waveforms.

A. Processing the training data

Before building a surrogate model, we process the hybrid

waveforms as follows.

1. Time shift

We shift the time arrays of the hybrid waveforms such

that the peak of the total amplitude

Atot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l;m

jhlmj
2

s

ð38Þ

occurs at t ¼ 0 for each waveform.

2. Frequency and mass ranges of validity

The length of a hybrid waveform is set by choosing a

starting orbital frequency ω0 for the inspiral waveform; we

use ω0 ¼ 2 × 10−4 rad=M for all waveforms. However, for

the same starting frequency, the length in time of the

waveform is different for different mass ratios and spins.

Since we want to construct a time-domain surrogate model,

we require a common time array for all hybrid waveforms.

The initial time for the surrogate is determined by the

shortest hybrid waveform in the training dataset; this

waveform begins at a time ∼5.4 × 108M before the peak.

We truncate all hybrid waveforms to this initial time value.

The largest starting orbital frequency among the trun-

cated hybrid waveforms is ω0 ¼ 2.9 × 10−4 rad=M, which

sets the low-frequency limit of validity of the surrogate.

For LIGO, assuming a starting GW frequency of 20 Hz, the

(2, 2) mode of the surrogate is valid for total masses

M ≥ 0.9 M⊙. The highest spin-weighted spherical har-

monic mode we include in the surrogate model is (5, 5),

for which the frequency is 5=2 times that of the (2, 2) mode.

Therefore, all modes of the surrogate are valid for

M ≥ 2.25 M⊙. This coverage of total mass is sufficient

to model all stellar mass binaries of interest for ground-

based detectors; for an equal-mass binary neutron star

system, the total mass is M ∼ 2.7 M⊙.

3. Downsampling and common time samples

Because the hybrid waveforms are so long, it is not

practical to sample the entire waveform with the same step

size we use for the NR waveforms (0.1M). Fortunately, the

early low-frequency portion of each waveform requires

FIG. 5. An example hybrid waveform used in this work. We show the l ¼ 2 modes of the inspiral, NR, and hybrid waveforms. The

binary parameters are shown on the top of the plot. The vertical red dashed lines indicate the matching region. Note that this plot shows

the inspiral and NR waveforms after the time and frame shifts are done.
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sparser sampling than the later high-frequency portion. We

therefore downsample the time arrays of the truncated

hybrid waveforms to a common set of time samples. We

choose these samples so that there are five points per orbit

for the above-mentioned shortest hybrid waveform in the

training dataset, except for t ≥ −1000M we choose uni-

form time samples separated by 0.1M. This ensures that we

have a denser sampling rate at late times when the

frequency is higher. We retain times up to 135M, which

is sufficient to capture the entire ringdown.

Before downsampling, we first transform the waveform

into the co-orbital frame, defined as

hC
lm ¼ hlme

imϕorb ; ð39Þ

h22 ¼ A22e
−iϕ22 ; ð40Þ

ϕorb ¼
ϕ22

2
; ð41Þ

where hlm is the inertial frame hybrid waveform, ϕorb is the

orbital phase, and ϕ22 is the phase of the (2, 2) mode. The

co-orbital frame can be thought of as roughly corotating

with the binary, since we perform a time-dependent rotation

given by the instantaneous orbital phase. Therefore the

waveform is a slowly varying function of time in this frame,

increasing the accuracy of interpolation to the chosen

common time samples. For the (2, 2) mode we save the

downsampled amplitude A22 and phase ϕ22, while for all

other modes we save hC
lm. We find that this downsampling

results in interpolation errors E ≲ 10−10 [defined in

Eq. (18)] for all hybrid waveforms.

4. Phase alignment

After downsampling to the common temporal grid of the

surrogate, we rotate the waveforms about the z axis such

that the orbital phase ϕorb is zero at t ¼ −1000M. Note that

this by itself would fix the physical rotation up to a shift of

π. When generating the inspiral waveforms for hybridiza-

tion, we align the system such that the heavier BH is on the

positive x axis at the initial frequency; this fixes the π

ambiguity. Therefore, after this phase rotation, the heavier

BH is on the positive x axis at t ¼ −1000M for all

waveforms.
6

B. Decomposing the data

It is much easier to build a model for slowly varying

functions of time. Therefore, rather than work with the

inertial frame strain hlm, which is oscillatory, we work with

simpler “waveform data pieces,” as explained below. We

build a separate surrogate for each waveform data piece.

When evaluating the full surrogate model, we first evaluate

the surrogate of each data piece and then recombine the

data pieces to get the inertial frame strain.

A common choice in literature when working with

nonprecessing waveforms has been to decompose the

complex strain into an amplitude and phase, each of which

is a slowly varying function of time,

hlm ¼ Alme
−iϕlm : ð42Þ

However, when q ¼ 1 and χ1z ¼ χ2z, the amplitude of

odd-mmodes becomes zero due to symmetry. This means

that the phase becomes meaningless, so one has to treat

such cases separately. For example, Ref. [26] used

specialized basis functions for the odd-m modes that

captured the divergent behavior of the phase in the equal-

mass limit.

To avoid this issue, instead of using the amplitude and

phase we use the real and imaginary parts of the co-orbital

frame strain hC
lm, defined in Eq. (39), for all nonquadrupole

modes. The co-orbital frame strain is always meaningful: in

the special, symmetric case mentioned above, the co-orbital

frame strain for the odd-m modes just goes to zero, rather

than diverge. For the (2, 2) mode we use the amplitude
7
A22

and phase ϕ22.

As mentioned above, our hybrid waveforms are very

long, typically containing ∼3 × 104 orbits. This presents

new challenges that are not present for pure-NR surrogates.

For instance, ϕ22 sweeps over ∼4 × 105 rad for a typical

hybrid waveform. We find that the accuracy of the

surrogate model at early times improves if we first subtract

a PN-derived approximation to the phase, model the phase

difference rather than ϕ22, and then add back the PN

contribution when evaluating the surrogate model. In

particular, we use the leading-order TaylorT3 approximant

[97]. For this approximant, the phase is given as an

analytic, closed-form function of time. Therefore, even

though TaylorT3 is known to be less accurate than some

other approximants [98], its speed makes it ideal for our

purpose as we only need it to capture the general trend. At

leading order, the TaylorT3 phase is given by

ϕT3
22 ¼ ϕT3

ref −
2

ηθ5
; ð43Þ

where ϕT3
ref is an arbitrary integration constant, θ ¼

½ηðtref − tÞ=ð5MÞ�−1=8, tref is an arbitrary time offset, and

η is the symmetric mass ratio. Note that ϕT3
22 diverges at

t ¼ tref . We choose tref ¼ 1000M, long after the end of the

waveform (recall that the peak is at t ¼ 0), to ensure that we

are always far away from this divergence. We choose ϕT3
ref

6
Here the BH positions at t ¼ −1000M are defined from the

waveform at future-null infinity, using a phase rotation relative to
the early inspiral where the BH positions are well defined in PN
theory; these positions do not necessarily correspond to the (gauge-
dependent) coordinate BH positions in the NR simulation.

7
Note that for the (2, 2) mode A22 ¼ hC22.
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such that ϕT3
22 ¼ 0 at t ¼ −1000M; this is the same time at

which we align the hybrid phase in Sec. VI A 4.

Instead of modeling ϕ22, we model the residual

ϕres
22 ¼ ϕ22 − ϕT3

22 ; ð44Þ

after removing the leading-order contribution ϕT3
22 . By

construction, ϕres
22 goes to zero at t ¼ −1000M. We find

that, after removing the leading-order TaylorT3 phase, the

scale of ϕres
22 for a typical hybrid is ∼103 rad, compared to

∼4 × 105 rad for ϕ22. In essence, this captures almost all of

the phase evolution in the early inspiral, simplifying the

problem of modeling the phase to the same as modeling

the phase of late-inspiral NR waveforms. We stress that

the exact form of ϕT3
22 (or its physical meaning) is not

important, as long as it captures the general trend, since we

add the exact same ϕT3
22 to our model of ϕres

22 when

evaluating the surrogate. In fact, we find that adding

higher-order PN terms in Eq. (43) does not improve the

accuracy of the surrogate.

To summarize, we decompose the hybrid waveforms into

the following waveform data pieces, each of which is a

smooth, slowly varying function of time: (A22, ϕ
res
22 ) for the

(2, 2) mode, and the real and imaginary parts of hC
lm for all

other modes.
8

C. Building the surrogate

Once we have the waveform data pieces, we build a

surrogate model for each data piece using the procedure

outlined in Refs. [22,27], which we only briefly describe

here. Note that the steps below are applied independently

for each waveform data piece.

1. Greedy basis

We first construct a greedy reduced basis [99] such that

the projection errors [cf. Eq. (5) of Ref. [27] ] for the entire

dataset onto this basis are below a given tolerance. For the

basis tolerances we use 10−2 rad for the ϕres
22 data piece,

2 × 10−5 for A22, and 8 × 10−6 for all other data pieces.

These are chosen through visual inspection of the basis

functions to ensure they are not noisy and based on the

expected truncation error of the NR waveforms. For

instance, we expect the error in phase to be about 10−2 rad.

The greedy procedure is initialized with a single basis

function as described in Ref. [27]. Then, at each step in the

greedy procedure, the waveform with the highest projection

error onto the current basis is added to the basis. Previous

work has shown that the resulting greedy reduced basis is

robust to different choices of initialization [100]. When

computing the basis projection errors, we only include data

up to 50M after the peak. We find that this helps avoid

noisy basis functions. This is particularly important for the

phase data piece as this becomes meaningless at late times,

when the waveform amplitude becomes very small.

2. Empirical interpolation

Next, using a different greedy procedure, we construct an

empirical interpolant [101–103] in time. This picks out the

most representative time nodes, where the number of time

nodes is the same as the number of greedy basis functions.

We require that the start of the waveform always be

included as a time node for all data pieces. This is a useful

modeling choice because the magnitude of the waveform

data pieces in the very early inspiral can be smaller than the

basis tolerances mentioned above. By requiring the first

index to be an empirical time node, we enforce an anchor

point that ensures the waveform data piece has the right

magnitude at the start of the waveform. Furthermore, we do

not allow any empirical time nodes at times > 50M, since

we expect this part to be dominated by noise (especially for

the phase data piece).

3. Parametric fits

Finally, for each time node, we construct a fit across the

parameter space. The fits are done using the Gaussian

process regression (GPR) fitting method described in the

supplemental material of Ref. [104]. Following Ref. [104],

we parametrize our fits using logðqÞ, χ̂, and χa. Here χ̂ is

the spin parameter entering the GW phase at leading order

[16,105–107] in the PN expansion,

χeff ¼
qχ1z þ χ2z

1þ q
; ð45Þ

χ̂ ¼
χeff − 38ηðχ1z þ χ2zÞ=113

1 − 76η=113
; ð46Þ

and χa is the “antisymmetric spin,”

χa ¼
1

2
ðχ1z − χ2zÞ: ð47Þ

The fit accuracy, and as a result the accuracy of the

surrogate model, improves noticeably when using logðqÞ,
compared to q or η.

D. Evaluating the surrogate

When evaluating the surrogate waveform, we first

evaluate each surrogate waveform data piece. Next, we

compute the phase of the (2, 2) mode,

ϕS
22 ≡ ϕres;S

22 þ ϕT3
22 ; ð48Þ

where ϕres;S
22 ≈ ϕres

22 is the surrogate model for ϕres
22 and ϕ

T3
22 is

given in Eq. (43). If the waveform is required at a uniform

8
For m ¼ 0 modes of nonprecessing systems, hC

lm is purely
real (imaginary) for even (odd) l, so we ignore the imaginary
(real) part for these modes.
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sampling rate, we interpolate each waveform data piece

from the sparse time samples used to construct the model to

the required time samples, using a cubic-spline interpola-

tion scheme. Finally, we use Eqs. (39)–(41) to reconstruct

the surrogate prediction for the inertial frame strain.

VII. RESULTS

In order to estimate the difference between two wave-

forms, h1 and h2, we use the mismatch, defined in Eq. (2),

but in this section instead of Eq. (3) we use the frequency-

domain inner product

hh1; h2i ¼ 4Re

Z

fmax

fmin

h̃1ðfÞh̃
�
2ðfÞ

SnðfÞ
df; ð49Þ

where h̃ðfÞ indicates the Fourier transform of the complex

strain hðtÞ, � indicates a complex conjugation, Re indicates

the real part, and SnðfÞ is the one-sided power spectral

density of a GW detector. We taper the time-domain

waveform using a Planck window [108] and then zero

pad to the nearest power of 2. We further zero pad the

waveform to increase the length by a factor of 8 before

performing the Fourier transform. The tapering at the start

of the waveform is done over 1.5 cycles of the (2, 2) mode.

The tapering at the end is done over the last 20M. Note that

our model contains times up to 135M after the peak of the

waveform amplitude, and the signal has essentially died

down by the last 20M.

We compute mismatches following the procedure

described in Appendix D of Ref. [27]: the mismatches

are optimized over shifts in time, polarization angle, and

initial orbital phase. Both plus and cross polarizations are

treated on an equal footing by using a two-detector setup

where one detector sees only the plus and the other only the

cross polarization. We compute the mismatches at 37 points

uniformly distributed on the sky in the source frame, and

we use all available modes of a given waveform model.

When computing flat noise mismatches (Sn ¼ 1), we

take fmin to be the frequency of the (2, 2) mode at the end of

the initial tapering window, and fmax ¼ 5f
peak
22 , where f

peak
22

is the frequency of the (2, 2) mode at its peak. This choice

of fmax ensures that we capture the peak frequencies of all

modes considered in this work, including the (5, 5) mode,

whose frequency has the highest multiple of the (2, 2) mode

frequency of all the modes we model. We also compute

mismatches with the advanced LIGO design sensitivity

zero-detuned-high-power noise curve [109] with fmin ¼ 20

and fmax ¼ 2000 Hz.

A. Surrogate errors

We evaluate the accuracy of our new surrogate model,

NRHybSur3dq8, by computing mismatches against hybrid

waveforms. For this, we compute “out-of-sample” errors as

follows. We first randomly divide the 104 training wave-

forms into groups of ∼5 waveforms each. For each group,

we build a trial surrogate using the remaining ∼99 training

waveforms and test against these five validation ones. We

also compute the mismatch between an existing higher-

mode waveform model, SEOBNRv4HM [15], and the

hybrid waveforms.

Figure 6 summarizes mismatches of both NRHybSur3dq8

and SEOBNRv4HM versus the hybrid waveforms. We use

all available modes for each waveform model. In the left

panel we show mismatches computed using a flat noise

FIG. 6. Errors in NRHybSur3dq8 and SEOBNRv4HMwhen compared against hybrid waveforms. For NRHybSur3dq8, we show out-

of-sample errors. Mismatches are computed at several points in the sky of the source frame using all available modes in each waveform:

For the hybrid waveforms and NRHybSur3dq8, that is l ≤ 4 and (5, 5), but not (4, 1) or (4, 0). For SEOBNRv4HM that is (2, 2),(2, 1),

(3, 3),(4, 4), and (5, 5). (Left) Mismatches computed using a flat noise curve, but including only the late inspiral part of the waveforms,

starting at −3500M before the peak. Therefore, we are essentially comparing only to the NR part of the hybrid waveforms. For

comparison, we also show the NR resolution error, obtained by comparing the two highest available resolutions. The histograms are

normalized such that the area under each curve is 1 when integrated over log10ðMismatchÞ. (Right) Mismatches as a function of total

mass, computed using the advanced LIGO design sensitivity noise curve. Here we compare against the full hybrid waveforms. The solid

(dashed) lines show the 95th percentile (median) mismatch values over points on the sky as well as different hybrid waveforms.
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curve over the NR part of the hybrid waveforms (to

do this, we truncate the waveforms and begin tapering

at t ¼ −3500M). We see that the mismatches for

NRHybSur3dq8 are about 2 orders of magnitude lower

than that of SEOBNRv4HM. We compare this with the

truncation error in the NR waveforms themselves, by

computing the mismatch between the two highest available

resolutions of each NR waveform. The errors in the

surrogate model are well within the truncation error of

the NR simulations. Note that NR error estimated in this

manner is a conservative estimate; if we treat the high-

resolution simulation as the fiducial case, the NR curve in

Fig. 6 can be thought of as the error in the lower-resolution

simulation. This explains why the errors in the surrogate

are smaller than the NR errors. We suspect that the error of

the high-resolution simulations is close to the surrogate

model’s error.

The right panel of Fig. 6 shows mismatches computed

using the advanced LIGO design sensitivity noise curve.

The mismatches are now dependent on the total mass

of the system, so we show mismatches for masses starting

at the lower limit of the range of validity of the surrogate:

M ≥ 2.25 M⊙. The 95th percentile mismatches for

NRHybSur3dq8 are always below ∼3 × 10−4 in the mass

range 2.25M⊙≤M≤300M⊙. At high masses (M≳40M⊙),

where the merger and ringdown are more prominent, our

model is more accurate than SEOBNRv4HM by roughly 2

orders of magnitude, in agreement with the left panel

of Fig. 6.

For high masses only the last few orbits of the hybrid

waveforms are in the LIGO band, and the hybrid wave-

forms are effectively the same as the NR waveforms.

For low masses, the errors in the right panel of Fig. 6

quantify how well different models reproduce the hybrid

waveforms. However, this comparison cannot account

for the errors in the hybridization procedure itself. We

provide some evidence for the fidelity of the hybrid

waveforms in Sec. VII B, by comparing against some long

NR waveforms.

Figure 7 shows NRHybSur3dq8 and SEOBNRv4HM

waveforms for the cases leading to the largest errors in

the left panel of Fig. 6. The surrogate shows very good

agreement with the NR waveform, even for its worst case.

SEOBNRv4HM shows a noticeably larger deviation that

cannot all be accounted for with a time and/or phase shift.

Note that we align the time and orbital phase of the

waveforms in Fig. 7.

We note that the main improvement over

SEOBNRv4HM is not due to the inclusion of more modes.

We find that the agreement between SEOBNRv4HM and

the NR (Hybrid) waveforms in Figs. 6 and 7 improves only

marginally when restricting the NR-hybrid waveforms to

the same set of modes as SEOBNRv4HM.

B. Hybridization errors

The errors described in Sec. VII A are computed by

comparing the surrogate against hybrid waveforms, hence

FIG. 7. The plus polarization of the waveforms for the cases that result in the largest mismatch for NRHybSur3dq8 (top) and

SEOBNRv4HM (bottom) in the left panel of Fig. 6. We also show the corresponding hybrid waveforms (labeled as NR because only the

late part is shown). Each waveform is projected using all available modes for that model, along the direction which results in the largest

mismatch for NRHybSur3dq8 (SEOBNRv4HM) in the top (bottom) panel. Note that NRHybSur3dq8 is evaluated using trial surrogates

that are not trained using these cases. The binary parameters and the direction in the source frame are indicated in the inset text. All

waveforms are time shifted such that the peak of the total waveform amplitude occurs at t ¼ 0 [using all available modes, according to

Eq. (38)]. Then the waveform modes are rotated about the z axis such that the orbital phase is zero at t ¼ −3500M.
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they do not include the errors in the hybridization pro-

cedure or the errors from EOB-corrected PN waveforms

(cf. Sec. IV B) we use for the early inspiral. To estimate

these errors, we compare the surrogate against a few very

long NR simulations.
9
We perform five new simulations

that are ∼105M long and two that are ∼3 × 104M long.

These have been assigned the identifiers SXS:BBH:

1412–SXS:BBH:1418 and will be made publicly available

in the upcoming update of the SXS public catalog [58]. In

addition, we use two simulations of length ∼3 × 104M
from Ref. [111]. These nine simulations are represented as

square markers in Fig. 2 and have not been used in training

the surrogate. The surrogate was trained against hybrid

waveforms whose NR duration varied between 3270M and

4227M. Therefore, comparing against long NR waveforms,

which include the early inspiral, is a good way to estimate

the hybridization error.

We begin by repeating the mismatch computation

from the right panel of Fig. 6, using the 105M long

NR waveforms. This is shown in Fig. 8. We also show

the errors in the NR simulations, estimated by comparing

the two highest available NR resolutions. We find

that the mismatches between the surrogate and the long

NR waveforms for M > 30 M⊙ are below 10−4, in

agreement with Fig. 6. For lower masses, the mismatches

quickly increase and can be as high as ∼10−2. However,

this increase in mismatch is accompanied by an increase

in the error of the NR waveforms. This is expected, since

for very long NR waveforms the accumulated phase

error is a dominant source of numerical error, which

becomes increasingly relevant for low mass systems as

more of the waveform moves in-band. Therefore, in

Fig. 8, at low masses, the comparison between the

surrogate and NR waveforms is largely dominated by

the numerical resolution error of the long NR waveforms

themselves.

We find that a better test of the hybridization procedure,

one that is less sensitive to NR phase accumulation errors,

is to compare against different segments of the NR wave-

form. Since the phase errors accumulate over a large

number of cycles, by looking at smaller segments we

ensure that this contribution is not the dominant error. To be

precise, we compare the surrogate and the NR data, using

segments of length Δt ¼ 5 × 103M ending at a particular

number of orbits before the peak of the waveform. For each

segment we compute mismatches at several points in the

sky using a flat noise curve. By varying the number of

orbits to the peak, we can cover the entire NR waveform

including the early inspiral region where the surrogate

depends on the hybridization procedure. These errors are

shown in Fig. 9. We find that, in each segment, the

mismatch between the surrogate and the NR data is, in

general, lower or comparable to the NR resolution error.

Therefore, the surrogate reproduces the NR data accurately

in the early inspiral and the hybridization errors are smaller

than or comparable to the NR resolution error for these

cases. We note that the surrogate errors in Fig. 9 depend

on the length of the segment considered and are only

meaningful when compared to the NR errors in the same

segment.

Unfortunately, long NR simulations such as these are not

available at regions of the parameter space where both mass

ratio and spin magnitudes are large. These are the cases

where PN is expected to perform poorly, so we expect

larger hybridization errors for these cases.

FIG. 8. Comparisons between the NRHybSur3dq8 surrogate

model and a few NR waveforms of ∼105M in duration. We also

show the NR resolution error. The 95th percentile mismatches

(over points in the sky) are shown as a function of total mass.

(Inset) Indicates the mass ratio and component spins. Mis-

matches are computed using the advanced LIGO design

sensitivity noise curve. To best assess the error introduced

by the hybridization procedure we use the same set of modes

for the NR waveforms as the surrogate. At low masses, the

hybridization errors (red circles) become less reliable measures

of accuracy due to the large NR resolution error (black circles)

itself. Figure 9 describes a refined comparison to improve the

assessment at low masses.

9
Note that, for these long NR simulations, the outer boundary

location is chosen based on the length of the simulations [59] so
as to avoid unphysical center-of-mass accelerations seen in earlier
long-duration runs [110].
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C. Extrapolation outside the training range

We now investigate the efficacy of NRHybSur3dq8 to

extrapolate beyond its training parameter range by compar-

ing against SPEC NR simulations [58,111–114] at larger

mass ratios (8 < q ≤ 10) and/or larger spin magnitudes

(jχ1zj > 0.8 or jχ12j > 0.8). These NR simulations are

represented as triangle markers in Fig. 2.

Figure 10 shows mismatches for NRHybSur3dq8 when

compared against these simulations. We find that the

surrogate extrapolates remarkably well, with the mismatch

always ≲4 × 10−4 for all cases, which include mass ratios

up to q ¼ 10 and spin magnitudes up to jχj ¼ 0.998.

However, the extrapolation errors can be about half an

order of magnitude larger than errors within the training

range. Note that NR simulations with both high mass ratios

and high spin magnitudes are not currently available, and

the ones used here represent the most extreme cases found

in the SXS catalog. We do not hybridize these simulations

before comparing to NRHybSur3dq8 because several of

them are too short. In Fig. 10, the minimum mass for each

case is chosen to be the lowest mass at which all used

modes of the NR simulation lie fully in the LIGO band with

a low-frequency cutoff of 20 Hz.

At much higher mass ratios than those tested here, such

as q ¼ 15, we find that the waveforms generated by the

surrogate can have “glitches” in the time series. Therefore,

we recommend the surrogate be used for q ≤ 10 and

jχ1zj; jχ2zj ≤ 1. However, we advise caution with any

extrapolation in general.

D. Mode mixing

Numerical relativity waveforms are extracted as spin-

weighted spherical harmonic modes [33,34]. However, in

the ringdown regime, the natural basis to use is the spin-

weighted spheroidal harmonic basis [115,116]. A spherical

harmonic mode hlm can be written as a linear combination

of all spheroidal harmonic modes hS
lm with the same m

index [117]. Therefore, during the ringdown, we expect

leakage of power between different spherical harmonic

modes with the samem. This is referred to as mode mixing.

Since the surrogate accurately reproduces the spherical

harmonic modes from the NR simulations, it also captures

FIG. 9. Errors in the NRHybSur3dq8 surrogate model against long NR waveforms, but only looking at segments of length

Δt ¼ 5 × 103M individually. Each point represents one segment that ends at a specified number of orbits before the waveform peak, as

plotted on the horizontal axis. Therefore, going from left to right in the figure, we plot segments that start earlier in the inspiral. We also

show the NR resolution error in the same segments. (Inset) Indicates the mass ratio and component spins. We show 95th percentile

mismatches (over points in the sky), computed using a flat noise curve. We use the same set of modes for the NR waveforms as the

surrogate. We find that, in general, the surrogate error is lower than or comparable to the NR resolution error throughout the inspiral.
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this mode mixing. We demonstrate this for an example case

in Fig. 11. Here we compute the Fourier transform of

different spherical harmonic modes in the ringdown stage

of the waveform. Before computing the Fourier transform,

we first drop all data before t ¼ 20M, where t ¼ 0

corresponds to the peak of the waveform amplitude

[cf. Eq. (38)]. Then, we taper the data between t ¼ 20M
and t ¼ 40M, as well as the last 10M of the time series,

using a Planck window [108]. The tapering width at the

start is chosen such that the remaining signal is dominated

by the fundamental quasinormal mode (QNM) overtone.

Figure 11 shows the absolute value of these Fourier

transforms for different modes, for both the surrogate

and the NR waveform. In addition, we show the frequency

of the fundamental QNM overtone for each mode [118].

Note that the (2, 2)mode and the (3, 2)mode have the same

m index, the condition required for modemixing.We see that

the peak of the (2, 2)mode agreeswith theQNMfrequency as

expected. For the (3, 2) mode, however, while there are

features of a peak at the expected QNM frequency, there is a

much larger peak at the frequency of the (2, 2) mode. This is

because some of the power of the stronger (2, 2) mode has

leaked into the (3, 2)modedue tomodemixing.Modemixing

can also be seen for the (3, 3) and (4, 3) modes, which also

have the same m index. Figure 11 shows that, not only does

the surrogate agree with NR in the ringdown, it also

reproduces the mode mixing present in the NR data.

E. Evaluation cost

Figure 12 shows the evaluation cost for NRHybSur3dq8,

at different total masses, starting at 20 Hz, and using a

sampling rate of 4096 Hz. This suggests that

NRHybSur3dq8 is fast enough for direct use in parameter

estimation. We also show the evaluation cost per mode.

Note that the total cost as well the cost per mode in Fig. 12

include the cost of a fast Fourier transform (FFT).

We perform the FFT only once, after summing over all

modes in the time domain. This cost is also shown separately

in Fig. 12. Finally, we show the evaluation cost of

FIG. 11. Mode mixing between spherical harmonic modes is

clearly seen in the ringdown signal of the NR waveform and is

accurately reproduced by the surrogate. The absolute values of

the Fourier transform of different spherical harmonic modes are

shown as solid (dashed) curves for the surrogate (NR). The dotted

vertical lines indicate the frequencies of the fundamental QNM

overtone of these modes. The component parameters as well as

the remnant mass and spin are shown in the text above the figure.

FIG. 10. Errors in NRHybSur3dq8 when evaluated outside its

training range. The 95th percentile mismatches (over points in the

sky) are shown as a function of total mass for different

extrapolated cases. These are computed using the advanced

LIGO design sensitivity noise curve. To best assess the error

introduced by the extrapolation, we use the same set of modes for

the NR waveforms as the surrogate. The labels indicate the mass

ratio and component spins (q, χ1z, χ2z). For comparison we

reproduce the 95th percentile mismatches for NRHybSur3dq8

within its training range from the right panel of Fig. 6.

FIG. 12. Evaluation cost for NRHybSur3dq8 including the cost

of a FFT. We show the cost for evaluating all 11 modes modeled

by NRHybSur3dq8, as well as the cost per mode. The FFT cost is

included in both of the above but also shown separately. We also

show the evaluation cost of SEOBNRv4_ROM, which includes

only the (2, 2) mode. The evaluation cost is computed by

averaging over 64 points uniformly distributed in the parameter

space, q ≤ 8 and jχ1zj; jχ2zj ≤ 0.8.
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SEOBNRv4_ROM [17], a Fourier domain reduced-

order model (ROM) version of SEOBNRv4. Note that

SEOBNRv4_ROM models only the (2, 2) mode.

Comparing the cost for SEOBNRv4_ROM to the cost per

mode of NRHybSur3dq8 suggests that the evaluation cost of

NRHybSur3dq8 can be reduced by a factor of ∼2.5 by

building a Fourier domain ROM along the lines of Ref. [23].

At low masses, where the waveform is very long, the

dominant costs for NRHybSur3dq8 are due to the temporal

interpolation from the sparse domain of the surrogate to the

required time samples and the FFT. At high masses, where

the waveform is short, the interpolation and FFT are cheap

and the dominant cost for NRHybSur3dq8 is due to the

GPR evaluations for the parametric fits. SEOBNRv4_ROM

instead uses tensor spline interpolation for the parametric

fits [17], which accounts for the main difference in the

evaluation cost per mode at high masses.

These tests were performed on a single core on a

3.1 GHz Intel Core i5 processor. Both NRHybSur3dq8

and SEOBNRv4_ROM were evaluated using a C imple-

mentation in the LIGO algorithm library [49]. The PYTHON

implementation of NRHybSur3dq8 in gwsurrogate [48] is

slower than the C implementation by at most a factor of 2.

VIII. CONCLUSION

We present NRHybSur3dq8, the first NR-based surro-

gate waveform model that spans the entire LIGO band-

width, valid for stellar mass binaries with total masses

M ≥ 2.25 M⊙. This model is trained on 104 NR-PN/EOB

hybrid waveforms of nonprecessing quasicircular BBH

systems with mass ratios q ≤ 8 and spin magnitudes

jχ1zj; jχ2zj ≤ 0.8. The parametric fits for this model are

performed using Gaussian process regression. This model

includes the following spin-weighted spherical harmonic

modes: l ≤ 4 and (5, 5), but not (4, 1) or (4, 0). We make

our model available publicly through the easy-to-use

PYTHON package gwsurrogate [48]. In addition, our model

is implemented in C with PYTHON wrapping in the LIGO

algorithm library [49]. We provide an example PYTHON

evaluation code in [50].

Through a cross-validation study, we show that the

surrogate accurately reproduces the hybrid waveforms.

The mismatch between them is always less than ∼3 ×

10−4 for total masses 2.25 M⊙ ≤ M ≤ 300 M⊙. For high

masses (M ≳ 40 M⊙), where the merger and ringdown are

more prominent, we show roughly a 2 orders of magnitude

improvement over the current state-of-the-art model with

nonquadrupole modes, SEOBNRv4HM [15].

By comparing against several long NR simulations, we

show that the errors in our hybridization procedure are

comparable or lower than the resolution error in current NR

simulations. In addition, by comparing against available

NR simulations at higher mass ratios and spins, we show

that our model extrapolates reasonably well outside its

training range. Based on these tests, we are cautiously

optimistic that the surrogate can be used for q ≤ 10 and

jχ1zj; jχ2zj ≤ 1, and we leave a more detailed investigation

for future work.

A. Future work

While our tests of the hybridization procedure are

encouraging, long NR simulations are available only for

low mass ratios and low spin magnitudes. Therefore, we

have no means to test hybridization at high mass ratios

and/or high spins, where the PN model is expected to

perform poorly. An improved surrogate model and

refined study of the hybridization errors will require

longer inspiral waveforms with greater coverage of the

parameter space.

Another extension of interest is towards larger mass

ratios and spin magnitudes. While the surrogate extrapo-

lates very well when compared to available simulations at

larger mass ratios and spins, no NR simulations are

available with both large mass ratios (q > 8) and large

spins (χ > 0.8). Therefore, our model is untested in that

region of parameter space and it might be necessary to add

training points there. The model could also be extended to

include precession and/or eccentricity, however, this is

more challenging because of the enlarged parameter space

as well as more complicated hybridization.

Finally, as mentioned in Sec. VII E, the evaluation

time of NRHybSur3dq8 can likely be reduced by

constructing a Fourier domain ROM [23] of the time-

domain model.

We leave these explorations to future work.
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tional-wave data from numerical simulations, Phys. Rev.

D 80, 124045 (2009).

[62] M. Boyle, Transformations of asymptotic gravitational-

wave data, Phys. Rev. D 93, 084031 (2016).

[63] M. Boyle, Scri, https://github.com/moble/scri.

[64] L. Santamaría, F. Ohme, P. Ajith, B. Brügmann, N.

Dorband, M. Hannam, S. Husa, P. Mösta, D. Pollney,

C. Reisswig, E. L. Robinson, J. Seiler, and B. Krishnan,

Matching post-Newtonian and numerical relativity wave-

forms: Systematic errors and a new phenomenological

model for non-precessing black hole binaries, Phys. Rev. D

82, 064016 (2010).

[65] F. Ohme, Analytical meets numerical relativity-status of

complete gravitational waveform models for binary black

holes, Classical Quantum Gravity 29, 124002 (2012).

[66] F. Ohme, M. Hannam, and S. Husa, Reliability of complete

gravitational waveform models for compact binary coa-

lescences, Phys. Rev. D 84, 064029 (2011).

[67] I. MacDonald, S. Nissanke, and H. P. Pfeiffer, Suitability

of post-Newtonian/numerical-relativity hybrid waveforms

for gravitational wave detectors, Classical Quantum Grav-

ity 28, 134002 (2011).

[68] I. MacDonald, A. H. Mroué, H. P. Pfeiffer, M. Boyle,
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