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Numerical relativity (NR) simulations provide the most accurate binary black hole gravitational
waveforms, but are prohibitively expensive for applications such as parameter estimation. Surrogate
models of NR waveforms have been shown to be both fast and accurate. However, NR-based surrogate
models are limited by the training waveforms’ length, which is typically about 20 orbits before merger.
We remedy this by hybridizing the NR waveforms using both post-Newtonian and effective one-body
waveforms for the early inspiral. We present NRHybSur3dq8, a surrogate model for hybridized
nonprecessing numerical relativity waveforms, that is valid for the entire LIGO band (starting at
20 Hz) for stellar mass binaries with total masses as low as 2.25 M. We include the # <4 and (5, 5)
spin-weighted spherical harmonic modes but not the (4, 1) or (4, 0) modes. This model has been trained
against hybridized waveforms based on 104 NR waveforms with mass ratios ¢ < 8, and |y1.|, |y».| < 0.8,
where y |, (v»,) is the spin of the heavier (lighter) black hole in the direction of orbital angular momentum.

The surrogate reproduces the hybrid waveforms accurately, with mismatches <3 x 10~ over the mass
range 2.25 My < M <300 M. At high masses (M 2 40 M), where the merger and ringdown are more
prominent, we show roughly 2 orders of magnitude improvement over existing waveform models. We also
show that the surrogate works well even when extrapolated outside its training parameter space range,
including at spins as large as 0.998. Finally, we show that this model accurately reproduces the spheroidal-

spherical mode mixing present in the NR ringdown signal.
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I. INTRODUCTION

The era of gravitational wave (GW) astronomy has been
emphatically unveiled with the recent detections [1-7] by
LIGO [8] and Virgo [9]. The detection of gravitational wave
signals from compact binary sources is expected to become a
routine occurrence as the advanced detectors reach their design
sensitivity [10,11]. The possible science output from these
events crucially depends on the availability of an accurate
waveform model to compare against observed signals.

Numerical relativity (NR) is the only ab initio approach
that accurately produces waveforms from the merger of a
binary black hole (BBH) system. However, because NR
simulations are computationally expensive, it is impractical
to use them directly for applications such as parameter
estimation, which can require upwards of 107 waveform
evaluations. Therefore, the GW community has developed
several approximate waveform models [12-21], some of
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which are fast to evaluate. These models make certain
physically motivated assumptions about the underlying
phenomenology of the waveforms, and they fit for any
remaining free parameters using NR simulations.

Surrogate modeling [22,23] is an alternative approach that
does not assume an underlying phenomenology and has been
applied to a diverse range of problems [22-32]. NR surrogate
models follow a data-driven approach, directly using the NR
waveforms to implicitly reconstruct the underlying phenom-
enology. Three NR surrogate models have been built so far
[26-28], including a seven-dimensional (mass ratio ¢ and two
spin vectors) model for generically precessing systems in
quasicircular orbit [28]. Through cross-validation studies,
these models were shown to be nearly as accurate as the NR
waveforms they were trained against.

Despite the success of the surrogate modeling approach,
existing surrogate models have two important limitations:
(1) Because they are based solely on NR simulations, which
typically are only able to cover the last ~20 orbits of a BBH
inspiral, they are not long enough to span the full LIGO band
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for stellar mass binaries. (2) Apart from the first nonspinning
model [26], these models have been restricted to mass ratios
g < 2." There are two reasons for this: (i) The 7D parameter
space is vast, requiring at least a few thousand simulations to
sufficiently cover it. (ii) Because of the smaller length scale
introduced by the lighter black hole, NR simulations become
increasingly more expensive with mass ratio.

In this work we address these limitations in the context
of nonprecessing BBH systems. First, to include the early
inspiral we “hybridize” the NR waveforms: each full
waveform consists of a post-Newtonian (PN) and effective
one-body (EOB) waveform at early times that is smoothly
attached to a NR waveform at late times. Second, since we
restrict ourselves to the three-dimensional space of non-
precessing BBHs, fewer simulations are necessary com-
pared to the seven-dimensional case, and therefore we can
direct computational resources to simulations with higher
mass ratios. The resulting model, NRHybSur3dg8, is the
first NR-based surrogate model to span the entire LIGO
frequency band for stellar mass binaries; assuming a
detector low-frequency cutoff of 20 Hz, this model is valid
for total masses as low as 2.25 M. This model is based on
104 NR waveforms in the parameter range ¢ < 8, and
l¥1z]» lx2:| < 0.8, where . (r».) is the dimensionless spin
of the heavier (lighter) black hole (BH).

The plus (h.) and cross (h,) polarizations of GWs can
be conveniently represented by a single complex time
series, = h, —ih,. The complex waveform on a
sphere can be decomposed into a sum of spin-weighted
spherical harmonic modes Y, [33,34], so that the wave-
form along any direction (z,¢) in the binary’s source
frame is given by

l L, (/)0) Z Z f))f’m Yfm L, (/)0) (1)
=2 m=—1
where ~2Y,,, are the spin = —2 weighted spherical har-

monics, ¢ is the inclination angle between the orbital
angular momentum of the binary and line of sight to the
detector, and ¢, is the initial binary phase. ¢, can also be
thought of as the azimuthal angle between the x axis of
the source frame and the line of sight to the detector. We
define the source frame as follows: The z axis is along
the orbital angular momentum direction, which is constant
for nonprecessing BBH. The x axis is along the line of
separation from the lighter BH to the heavier BH at some
reference time or frequency. The y axis completes the triad.

The ¢ = |m| = 2 terms typically dominate the sum in
Eq. (1) and are referred to as the “‘quadrupole” modes.
Studies [35-42] have shown that the nonquadrupole
modes, while being subdominant, can play a non-negligible
role in detection and parameter estimation of GW sources,

'We use the convention q = m; /m,, where m, and m, are the
masses of the component black holes, with m; > m,.

particularly for large signal to noise ratio (SNR), large
total mass, large mass ratio, or large inclination angle :. For
the first event, GW150914 [1], the systematic errors due to
the quadrupole-mode-only approximation are generally
smaller than the statistical errors [43,44], although higher
modes may lead to modest changes in some of the extrinsic
parameter values [45]. However, as the detectors approach
their design sensitivity [10], one should prepare for high-
SNR sources (particularly at larger mass ratios than those
seen so far), where the quadrupole-mode-only approxima-
tion breaks down. In addition, nonquadrupole modes can
help break the degeneracy between the binary inclination
and distance, which is present for quadrupole-mode-only
models (see, e.g., [14,46,47]).

In this work, we model the following spin-weighted
spherical harmonic modes: £ <4 and (5, 5), but not the
4, 1) or (4, 0) modes.? Several inspiral-merger-ringdown
waveform models [14,15,20,21] that include nonquadru-
pole modes have been developed in recent years; however,
compared to those models we show an improved accuracy
and we include more modes.

The rest of the paper is organized as follows. In Sec. II,
we choose the parameters at which to perform NR
simulations, which will be used for training the surrogate
model. Section III describes the NR simulations. Section IV
describes our procedure to compute the waveform for the
early inspiral using PN and EOB waveforms. Section V
describes our hybridization procedure to attach the early
inspiral waveform to the NR waveforms. Section VI
describes the construction of the surrogate model. In
Sec. VII, we test the surrogate model by comparing
against NR and hybrid waveforms. We end with some
concluding remarks in Sec. VIII. We make our model
available publicly through the easy-to-use PYTHON
package gwsurrogate [48]. In addition, our model is
implemented in ¢ with PYTHON wrapping in the LIGO
algorithm library [49]. We provide an example PYTHON
evaluation code in [50].

II. TRAINING SET GENERATION

A. Greedy parameters from PN surrogate model

We do not know a priori the distribution or number of
NR simulations required to build an accurate surrogate
model. Furthermore, we hope to select a representative
distribution that will allow for an accurate surrogate to be
built with as few NR simulations as possible. Therefore, we
estimate this distribution by first building a surrogate model
for PN waveforms; we find that parameters suitable for
building an accurate PN surrogate are also suitable for
building a NR or a hybrid NR-PN surrogate.

Because of the symmetries of nonprecessing BBHs [see
Eqg. (23)], the m < 0 modes contain the same information as
the m > 0 modes and do not need to be modeled separately.
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We use the same methods to build the PN surrogate as we
use for the hybrid surrogate (cf. Sec. VI). We use the PN
waveforms described in Sec. IV A; however, for simplicity
we only model the (2, 2) mode. In addition, we restrict the
length of the PN waveforms to be 5000M, terminating
at the innermost-stable-circular-orbit’s orbital frequency,
W, = 673/2 rad/M, where M is the total mass of the
binary.

We determine the desired training dataset of parameters
as follows. We begin with just the corner cases of the
parameter space; for the 3D case considered here, that
consists of eight points at (q,y.,x.) = (1 or 8,£0.8,
+0.8). We build up the desired set of parameters iteratively,
in a greedy manner: At each iteration we build a PN
surrogate using the current training dataset and test the
model against a much larger (~10 times) validation dataset.
The validation dataset is generated by randomly resampling
the parameter space at each iteration. Since the boundary
cases are expected to be more important, for 30% of the
points in the validation set we sample only from the
boundary of the parameter space, which corresponds to
the faces of a cube in the 3D case. We select the parameter
in the validation set that has the largest error [cf. Eq. (2)]
and add this to our training set (hence the name greedy
parameters). We repeat until the validation error reaches a
certain threshold.

In order to estimate the difference between two com-
plexified waveforms, §; and §,, we use the time-domain
mismatch

MM =1- <f)]’h2> (2)

vV {(91.9:)(5,.5,)

"y (1)b3(1)dr|.

Imin

(51.5,) = ] 3)

where * indicates a complex conjugation, and |.| indicates
the absolute value. Note that in this section, we do not
perform an optimization over time and phase shifts. In
addition, we assume a flat noise curve.

Figure 1 shows how the maximum validation error
decreases as we add greedy parameters to our training dataset.
For our case, we stop at 100 greedy parameters (at which point
the mismatch is < 107%) and use those parameters to perform
the NR simulations. Note that we do not expect 100 NR
simulations to produce a NR surrogate with comparable
accuracy, MM < 107°, for two reasons. First, unlike the PN
waveforms used here, the NR simulations also include the
merger-ringdown part, which we expect to be more difficult to
model. Second, the NR numerical truncation error is typically
higher than 1076 in mismatch, therefore the numerical noise
will limit the accuracy.

100 —*— Max Mismatch
10—1 —

10—2 L

10—3 —

Mismatch

1074
10—5 —

10—6 —

10—7 | | | | |
20 40 60 80 100 120
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FIG. 1. Largest mismatch of the surrogate (over the entire
validation set) as a function of number of greedy parameters used
to train the PN surrogate. The PN surrogate is seen to converge to
the validation waveforms as the size of the training dataset
increases.

III. NR SIMULATIONS

The NR simulations for this model are performed using
the Spectral Einstein Code (SPEC) [51-56] developed by
the SXS [57] Collaboration. Of the 100 cases determined in
Sec. I, only 91 simulations were successfully completed.’
These simulations have been assigned the identifiers SXS:
BBH:1419-SXS:BBH:1509 and are made publicly avail-
able through the SXS public catalog [58]. For cases with
equal mass, but unequal spins, we can exchange the two
BHs to get an extra data point. There are 13 such cases,
leading to a total of 104 NR waveforms. These are shown as
circular markers in Fig. 2.

The start time of these simulations varies between
4270M and 5227M before the peak of the waveform
amplitude [defined in Eq. (38)], where M = m; + m, is
the total Christodoulou mass measured after the initial burst
of junk radiation. The algorithm for choosing a fiducial
time at which junk radiation ends is discussed in Ref. [59].
The initial orbital parameters are chosen through an
iterative procedure [60] such that the orbits are quasicir-
cular; the largest eccentricity for these simulations is
7.5 x 10~%, while the median value is 4.2 x 10~*. The
waveforms are extracted at several extraction surfaces at
varying finite radii from the origin and then extrapolated to
future-null infinity [61]. Finally, the extrapolated wave-
forms are corrected to account for the initial drift of the
center of mass [62,63]. The time steps during the simu-
lations are chosen nonuniformly using an adaptive time
stepper [59]. We interpolate these data to a uniform time
step of 0.1M;; this is dense enough to capture all frequencies
of interest, including near merger.

The main reason for failure is large constraint violation as the
binary approaches merger. We believe a better gauge condition
may be needed for some of these simulations.
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FIG. 2. The parameter space covered by the 104 NR wave-
forms (circle markers) used in the construction of the surrogate
model in Sec. VI. We also show the nine long NR waveforms
(square markers) used to test hybridization in Sec. VIIB
and the eight NR waveforms (triangle markers) used to test
extrapolation in Sec. VIL C. The axes show the mass ratio and
the spin on the heavier BH, while the colors indicate the spin on
the lighter BH. The black rectangle indicates the bounds of the
training region: 1 < g < 8,-0.8 < yy,,x2, < 0.8.
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IV. EARLY INSPIRAL WAVEFORMS

While NR provides accurate waveforms, computational
constraints limit NR to only the late inspiral, merger, and
ringdown phases. Fortunately, PN/EOB waveforms are
expected to be accurate in the early inspiral. Hence we
can “stitch” together an early inspiral waveform and a NR
waveform, to get a hybrid waveform [40,64—71] that spans
the entire frequency range relevant for ground-based
detectors. In this section, we describe the waveforms we
use for the early inspiral, leaving the hybridization pro-
cedure for the next section.

A. PN waveforms

We first generate PN waveforms as implemented in the
GWEFRAMES package [72]. For the orbital phase we include
nonspinning terms up to 4 PN order [73—77] and spin terms
up to 2.5 PN order [78-80]. We use the TaylorT4 [81]
approximant to generate the PN phase; however, as
described below, we replace this phase with an EOB-
derived phase. For the amplitudes, we include terms up to
3.5 PN order [82-84].

The spherical harmonic modes of the PN waveform can
be written (after rescaling to unit total mass and unit
distance) as [74,82]

167
N = (P S, (4)

where = q/(1 + q)? is the symmetric mass ratio, o™~ is

the characteristic speed that sets the perturbation scale in
PN, ¢F} is the (real) orbital phase, and HY\ are the
complex amplitudes of different modes. Note that we
ignore the tail distortions [85,86] to the orbital phase as
these are 4 PN corrections (see, e.g., [87]).

The complex strain hEN is obtained as a time series from
GWFRAMES. We can absorb the complex part of the
amplitudes into the phases and rewrite the strain as

fm A?fi _l¢m (5)
= m¢0rb + gfm’ (6)
N PD
= —, 7
orb 2 ( )

where ALY and @) are the real amplitude and phase of a
given mode, and &) is an offset that captures the complex
part of HPN. Note that Egs. (6) and (7) together imply
PN = 0; HYY contains complex terms starting at 2.5 PN,
but these appear as 5 PN corrections in the phase (see,
e.g., [87]), which we can safely ignore.
At this stage, APN, ¢EN and &N are functions of time.
But they can be recast as functlons of the characteristic
speed by first computing

vPN(1) = (d‘Z;fb> : (8)

where the derivative is performed numerically, and then
inverting Eq. (8) to obtain #(vN). Then we define

LPMUCKRINE ©)

o (0™) = g (t(v™)) = mpgi (1)) (10)

m orb

AN =

Note that the PN waveform is generated in the source
frame defined such that the reference time is the initial time.
This also ensures that the heavier BH is on the positive x
axis at the initial time, and the initial orbital phase is zero.

To summarize, from the GWFRAMES package, we obtain
the complex time series h°Y [Eq. (5)]. We compute the
orbital phase [Eq. (7)], the real amplitudes [Eq. (9)], and the
phase offsets [Eq. (10)]. These three quantities are obtained
as a time series but can be represented as functions of the
characteristic speed using Eq. (8).

B. EOB correction

As was shown in previous works [35,40], we find
that the accuracy of the inspiral waveform can be improved
by replacing the PN phase with the phase derived from
a NR-calibrated EOB model. For this work we use
SEOBNRv4 [17].
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SEOBNRV4 is a time-domain model that includes only
the (2, 2) mode, which we can decompose as follows:

5P — ARRe Y, (1)

where AFPB and ¢59P are the real amplitude and phase of

the (2, 2) mode. These are functions of time, but following

the same procedure as earlier, they can be recast in terms
of the characteristic speed,

EOB(,\ _ by (1)
orb (t) - 2 ’

EOB (1) = dgsa™\ '
dt ’

where the derivative is performed numerically, and we
invert Eq. (13) to obtain #(vF°B). We replace v™N — »FOB
in Egs. (9) and (10) to get, respectively, the EOB-corrected
amplitudes and phase offsets

(12)

(13)

A (1) = AZL (0598 (1)), (14)

P(1) = E20 (05OB (1)), (15)
Note that, in practice, computing A () and & () is
accomplished via an interpolation in v: AXN (v) and &N (v)
as computed in Egs. (9) and (10) are known only at
particular values of v, which are v™(z; ), where 1, are
the times in the PN time series; we interpolate APN (v) and

the EOB time series. We use a cubic-spline interpolation
scheme as implemented in SciPy [88].
Following Eq. (6), the EOB-corrected phases are
given by
e = mgEQP + g (16)
where we use the EOB orbital phase from Eq. (12). Finally,
our EOB-corrected inspiral waveform modes are given by
P = Al e, (17)
Figure 3 shows an example of PN and EOB-corrected
waveforms along with the corresponding NR waveform.
All three waveforms have the same starting orbital fre-
quency and their initial orbital phase is set to zero. We see
that the PN waveform becomes inaccurate at late times, as

expected. The EOB-corrected waveform, on the other hand,
remains faithful to the NR waveform until much later times.

V. HYBRIDIZATION

In this section we describe our procedure to stitch
together an inspiral waveform (described in Sec. IV) to
a NR waveform (described in Sec. III).

We start by generating inspiral and NR waveforms with
the same component masses and spins. We note that the
spins measured in SPEC simulations agree well with PN
theory [89]. However, the PN and NR waveforms are
typically represented in different coordinate systems that
need to be aligned with each other as follows. The two
coordinate systems are related to each other by a possible

() to the points v"OB(#; ), where 7; _ arethe timesin  time translation and a possible rotation by three Euler
q=38.0 x1.=—-0.8 x2. = 0.8
01 {=2 m=2

o

< 0.0 | \

& f

= ‘

&

—-0.1 —
| |
0.05
o
=
& 000
&
(Y]
o
_0.05 NRI PI\: EOlB—correctedI PN | | |
0 500 1000 1500 2000 2500 3000 3500 4000
¢ (M)

FIG. 3.

NR, PN (Sec. IVA), and EOB-corrected PN (Sec. IV B) waveforms for an example case. We show the (2, 2) and (2, 1) modes.

The binary parameters are shown at the top of the plot. The EOB-corrected PN waveform [35,40] stays faithful to the NR waveform until

much later times, compared to the pure PN waveform.
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angles: inclination angle i, initial binary phase ¢, and
polarization angle . For nonprecessing BBH, the first
angle 1 is trivially specified by requiring that the z axis is
along the direction of orbital angular momentum. This
leaves us with the freedom to vary ¢, and . We choose the
hybridization frame and time shifts by minimizing a cost
function in a suitable matching region; this is described in
more detail below.

A. Choice of cost function

We use the following cost function when comparing two
waveforms, §) and §, in the matching region:

h 1 me ﬁz |hfm f)fm( )|2dt
g[h’ h] 2 Zf m ftl |I)lm |2dt

where #; and #, denote the start and end of the matching
region, to be defined in Sec. V C, and the sum does not
include m = 0 modes for reasons described in Sec. V B.
This cost function was introduced in Ref. [27] and is shown
to be related to the weighted average of the mismatch over
the sky.

We minimize the cost function by varying the time and
frame shifts between the NR and inspiral waveforms

, (18)

tofglpj)nwg[f)NR(t; @o.y). 5™ (t:10)], (19)
By (00, w) = B, (1)e™ eV, (20)
Pt 10) = B (1 = 19). (21)

We perform the time shifts on the inspiral waveform so that
the matching region always corresponds to the same
segment of the NR waveform. The frame shifts are
performed on the NR waveform so as to preserve the
initial frame alignment of the inspiral waveform
(cf. Sec. IVA). This alignment gets inherited by the hybrid
waveform and is important in the surrogate construction.

B. m =0 modes

We find that the m = 0 modes of the inspiral waveforms
do not agree very well with the NR waveforms. There are
several possible reasons for this [90]: (1) The NR waveform
does not have the correct “memory” contribution since this
depends on the entire history of the system starting at
t = —oo, while the NR simulation covers only the last few
orbits. (2) The extrapolation to future-null infinity does not
work as well for these modes [59]. This could be improved
in the future with Cauchy characteristic extraction (CCE)
[91-94]. (3) The amplitude of these modes is very small
except very close to merger; therefore the early part of the
NR waveform where we compare with the inspiral wave-
forms is contaminated by numerical noise.

Therefore, when constructing the hybrid waveforms,
we set the entire inspiral waveform to zero for these
modes,

;lgm =0 — (22)

When computing the cost function [Eq. (18)], we ignore the
m = 0 modes.

This means that our hybrid waveforms for these modes
are equivalent to the NR waveforms. In addition, the main
contribution for these modes comes from the region close
to merger, which does not correspond to a memory signal,
but instead is due to axisymmetric excitations near merger
(cf. bottom panel of Fig. 5).

C. Choice of matching region

There are several considerations to take into account
when choosing a matching region [z,#,] for the cost
function [Eq. (18)]: (1) The NR and inspiral waveforms
should agree with each other reasonably in this region; at
early times the NR waveform is contaminated by junk
radiation, while at late times the inspiral waveform
deviates from NR (cf. Figs. 3 and 5). (2) The matching
region should be wide enough that the cost function is
meaningful.

Our matching region starts at 1000M after the start of the
NR waveform; we find that this is necessary to avoid noise
due to junk radiation in some of the higher-order modes.
The length of the NR waveforms from the start of the
matching region to the peak of the waveform amplitude
varies between 3270M and 4227M. The width of the
matching region is then chosen to be equal to the time
taken for 3 orbits of the binary. We use the phase of the
(2, 2) mode of the NR waveform to determine this. This
choice ensures the width of the matching region scales
appropriately with the NR starting frequency, so that we get
wider matching regions when the NR waveform starts early
in the inspiral.

D. Allowed ranges for frame and time shifts

The allowed range for ¢ is [0, 2z]. For nonprecessing
binaries the allowed values for y can be restricted by taking
into account the symmetries of the system. We will show
that this restriction is a consequence of the well-known
relationship

f)f,—m = <_1)Kh;.m’ (23)

between the m <0 modes and the m > 0 modes for
nonprecessing binaries orbiting in the x —y plane [95].
We compute the shifted waveform

064045-6



SURROGATE MODEL OF HYBRIDIZED NUMERICAL ...

PHYS. REV. D 99, 064045 (2019)

brm(1)e™" 0V =B, _, (£ 0o, 1)
= (=) (B (t: 00, w))"
= (=1)/ePVemmpy (1)
= ooy, _, ()

= Q2 = o2 (24)

Equation (24) implies that the only allowed values for y are
0 and z/ 2.4 If the inspiral waveform and the NR waveform
have the same sign convention, then yy = 0. Unfortunately,
not all NR catalogs and PN-waveform codes use the same
sign convention, so we allow the possibility of y = /2 to
account for this.

To set the allowed range for 7y, we begin by computing
the orbital frequency of the inspiral waveform ™ as half
the frequency of the (2, 2) mode. Similarly, we compute the
orbital frequency of the NR waveform o™R. We first time
align the NR and inspiral waveforms such that their
frequencies match at the start of the matching region.
This gives us a good starting point to vary the time shift.

We also define

oty = 0" (1 = 1), (25)
o = 0.995 x @, (26)
ol = 1.005 x @, (27)

where @R (¢ = t,) is the NR frequency at the start of the
matching region. The allowed range for time shifts #; is

: e : ins ins  ins ins
restricted to lie in the interval [#55, — 705, i3 — 1051, where

Ans s and 7% are the times at which @™ (7) is equal to
o, ond, and i, respectively. In other words, the

allowed range for ¢, is a region near 7, =0. t, =0 is
the case when the frequencies of the inspiral and the NR
waveforms match at ¢, the start of the matching region.
The lower (upper) limit for 7, is chosen such that the
inspiral waveform has a frequency equal to 0.995 (1.005)
times the NR frequency at #,.

The factors in Eqs. (25) and (27) are chosen such that the
time shift that minimizes the cost function is always well
within the range of allowed time shifts. Hence, choosing a
wider range (i.e., values of these factors farther from unity)
does not improve the hybridization procedure. Note also
that, like the width of the matching region in Sec. V C,
setting the range of time shifts based on the orbital
frequency ensures that it scales appropriately with the start
frequency of the NR waveform.

The minimization in Eq. (19) is performed as follows.
We vary the time shift 7, over 500 uniformly spaced values

“w = r is also allowed, but it is degenerate with y = 0.

in the above mentioned time range.5 For each of these time
shifts 7y, we try both allowed values of w € {0,7/2}. For
each 7, and y, we minimize the cost function over ¢, using
the Nelder-Mead downhill simplex minimization algorithm
as implemented in SCIPY [88]. To avoid local minima in the
@, minimization, we perform ten searches with different
initial guesses, which are sampled from a uniform random
distribution in the range [0, 27].

E. Stitching NR and inspiral waveforms

Having obtained the right frame and time shifts between
the NR and inspiral waveforms, the final step is to smoothly
stitch the inspiral waveform to the shifted NR waveform.
The stitching is done using a smooth blending function

0, if t <1
7(t) = { sin? (%;i__t}l» if 1, <r<n (28)
1, if t>1,,

where #; and 7, take on the same values as those appearing
in Eq. (18). Different blending functions have been
proposed in the literature [64,67,69,96]. Our choice is
equivalent to the blending function defined in Ref. [67].
We find that our results are not sensitive to the choice of
blending function.

In what follows, for brevity, we drop the hybridization
parameters ¢, , to with the understanding that the models
are stitched together after transforming into the hybridiza-
tion frame

b (1) = B (1:10), (29)
P (1) = 05, (.90, ). (30)

Given the shifted waveforms and the blending function,
there are still several ways in which one can stitch the
waveforms together.

1. Inertial frame stitching

One could work with the complex waveform strain and
define

fm = (L=2(O)BZ(0) +2(OFR().  (31)

With this choice, by construction, the complex strain
transitions smoothly from the inspiral part to the NR part
over the matching region. However, the transition is more
complicated for the frequency, since it involves time
derivatives of the complex argument of the strain; the time

>We find that increasing the number of time samples results in
no noticeable improvement; the typical values of the cost function
after minimization with 500 samples are £ ~ 107>, and using
1000 samples results in changes only of order AE < 1078,
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(Left) The real part (top) and frequency (bottom) of the (3, 2) mode using the inertial frame stitching described in

Sec. VE 1. The binary parameters are shown on the top of the plot. The vertical red dashed lines indicate the matching region.
Note that this plot shows the inspiral and NR waveforms after the time and frame shifts are performed. (Right) Same, but using
the amplitude-frequency stitching described in Sec. V E 2. Now we see that the frequency of the hybrid waveform agrees much

better with the NR and inspiral data.

derivatives of the blending function do not behave like a
smooth blending function. This is demonstrated in the left
panel of Fig. 4: the inspiral and NR frequencies agree well
in the matching region but the frequency of the hybrid
waveform deviates from this.

2. Amplitude-frequency stitching

To avoid the undesirable artifacts described above, we
choose to perform the inspiral-NR stitching using the
amplitude and frequency rather than the inertial frame
strain.

We begin by decomposing the NR and inspiral wave-
forms into their respective amplitude and phase,

Pn(t) = ANje o, RN = Afe i (32)
The frequency of each mode
NR _ d¢12/>11’12 ins _ 1;1;1 (33)
‘m dt ’ ‘m dt ’

is then numerically computed from fourth-order finite
difference approximations to the time derivative. Finally,
we stitch the amplitude and frequency of each mode to get
their hybrid versions,

Ay = (1—1(r)) A (1) +2(nANR, (34)
o’ = (1-1(1)) o) +2(whR. (35

To get the inertial frame strain we first need to integrate
the frequency to get the phase. However, we already know
the phase in the region before (only inspiral) and after

(only NR) the matching region. So, we integrate the hybrid

frequency
I
= :

in the matching region using a fourth-order accurate
Runge-Kutta scheme.
Finally, we set the phase of the hybrid waveform to

Hyb-match-region Hyb
‘m W dr,

(36)

) | )
o ifr<t

Hyb __ Hyb-match-region > .
R, if t>1,,

where 5}," and 530,” are chosen such that qﬁ?rynb is continuous
at t; and t,.

Since, by construction, the frequency transitions
smoothly from the inspiral waveform to NR data, we
eliminate the artifact seen in the bottom left panel of Fig. 4
(dashed line), as demonstrated in the right panel of Fig. 4.

We note that since the m = 0 modes are purely real
(imaginary) and nonoscillatory for nonprecessing systems,
they do not have a frequency associated with them, there-
fore we use the inertial frame stitching of Sec. VE 1 for
these modes. For these modes the waveform goes from zero
to the NR value over the matching region.

In the hybridized waveform we include the 7 < 4 and
(5, 5) modes, but not the (4, 1) or (4, 0) modes. For the
(4, 1) and (4, 0) modes we find that the inspiral and NR
waveforms do not agree very well. This is possibly due to
issues in the extrapolation to future-null infinity [61] for
these modes and could be resolved in the future with CCE

064045-8



SURROGATE MODEL OF HYBRIDIZED NUMERICAL ...

PHYS. REV. D 99, 064045 (2019)

q=38.0 x1: = —0.8 x2. =038

T T
o1 ft=2m=2 1 l 0.1
= 1 1
EN | |
8 I I
; 0.0 ¥ Y 0.0
K | |
0.1 | | —0.1
| 1 | | | |
T T
005 {=2,m=1 I ] —0.05
= 1 1
2 I I
& 0.00 = 0.00
= | |
2 I I
—0.05 = ! ! — —0.05
| 1 | | | | | | |
(=2,m=0 | I . :
= 0.025 ' i I = Inspiral ----Hybrid = 0.025
s I I — NR
& 0.000 : : 0.000
& o025 - l l .
—0.025 I I —0.025
| 1 | | | | | | |
—1000 0 1000 2000 3000 3300 3350 3400
t (M)
FIG. 5. An example hybrid waveform used in this work. We show the £ = 2 modes of the inspiral, NR, and hybrid waveforms. The

binary parameters are shown on the top of the plot. The vertical red dashed lines indicate the matching region. Note that this plot shows
the inspiral and NR waveforms after the time and frame shifts are done.

[91-94] An example of the final NR, inspiral, and hybrid
waveforms is shown in Fig. 5.

VI. BUILDING THE SURROGATE MODEL

Starting from the 104 NR waveforms described in
Secs. II and III, we construct hybrid waveforms as
described in Sec. V. In this section we describe our method
to construct a surrogate model for these hybrid waveforms.

A. Processing the training data

Before building a surrogate model, we process the hybrid
waveforms as follows.

1. Time shift

We shift the time arrays of the hybrid waveforms such
that the peak of the total amplitude

Atot = /Z|f)fm|2
lm

occurs at ¢t = 0 for each waveform.

(38)

2. Frequency and mass ranges of validity

The length of a hybrid waveform is set by choosing a
starting orbital frequency w, for the inspiral waveform; we
use wy = 2 x 10~ rad/M for all waveforms. However, for

the same starting frequency, the length in time of the
waveform is different for different mass ratios and spins.
Since we want to construct a time-domain surrogate model,
we require a common time array for all hybrid waveforms.
The initial time for the surrogate is determined by the
shortest hybrid waveform in the training dataset; this
waveform begins at a time ~5.4 x 108M before the peak.
We truncate all hybrid waveforms to this initial time value.

The largest starting orbital frequency among the trun-
cated hybrid waveforms is wy = 2.9 x 107* rad/M, which
sets the low-frequency limit of validity of the surrogate.
For LIGO, assuming a starting GW frequency of 20 Hz, the
(2, 2) mode of the surrogate is valid for total masses
M > 0.9 M. The highest spin-weighted spherical har-
monic mode we include in the surrogate model is (5, 5),
for which the frequency is 5/2 times that of the (2, 2) mode.
Therefore, all modes of the surrogate are valid for
M >2.25 M. This coverage of total mass is sufficient
to model all stellar mass binaries of interest for ground-
based detectors; for an equal-mass binary neutron star
system, the total mass is M ~ 2.7 M.

3. Downsampling and common time samples

Because the hybrid waveforms are so long, it is not
practical to sample the entire waveform with the same step
size we use for the NR waveforms (0.1M). Fortunately, the
early low-frequency portion of each waveform requires
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sparser sampling than the later high-frequency portion. We
therefore downsample the time arrays of the truncated
hybrid waveforms to a common set of time samples. We
choose these samples so that there are five points per orbit
for the above-mentioned shortest hybrid waveform in the
training dataset, except for ¢ > —1000M we choose uni-
form time samples separated by 0.1M. This ensures that we
have a denser sampling rate at late times when the
frequency is higher. We retain times up to 135M, which
is sufficient to capture the entire ringdown.

Before downsampling, we first transform the waveform
into the co-orbital frame, defined as

f)gm = f)fmeimd)orb? (39)

By = Apei2, (40)
¢

¢orb = % B (41)

where §,,, is the inertial frame hybrid waveform, ¢, is the
orbital phase, and ¢,, is the phase of the (2, 2) mode. The
co-orbital frame can be thought of as roughly corotating
with the binary, since we perform a time-dependent rotation
given by the instantaneous orbital phase. Therefore the
waveform is a slowly varying function of time in this frame,
increasing the accuracy of interpolation to the chosen
common time samples. For the (2, 2) mode we save the
downsampled amplitude A,, and phase ¢,,, while for all
other modes we save f)gm. We find that this downsampling
results in interpolation errors & < 107! [defined in
Eq. (18)] for all hybrid waveforms.

4. Phase alignment

After downsampling to the common temporal grid of the
surrogate, we rotate the waveforms about the z axis such
that the orbital phase ¢, is zero at t = —1000M. Note that
this by itself would fix the physical rotation up to a shift of
7. When generating the inspiral waveforms for hybridiza-
tion, we align the system such that the heavier BH is on the
positive x axis at the initial frequency; this fixes the z
ambiguity. Therefore, after this phase rotation, the heavier
BH is on the positive x axis at t = —1000M for all
waveforms.®

B. Decomposing the data

It is much easier to build a model for slowly varying
functions of time. Therefore, rather than work with the
inertial frame strain y,,,,, which is oscillatory, we work with

®Here the BH positions at t = —1000M are defined from the
waveform at future-null infinity, using a phase rotation relative to
the early inspiral where the BH positions are well defined in PN
theory; these positions do not necessarily correspond to the (gauge-
dependent) coordinate BH positions in the NR simulation.

simpler “waveform data pieces,” as explained below. We
build a separate surrogate for each waveform data piece.
When evaluating the full surrogate model, we first evaluate
the surrogate of each data piece and then recombine the
data pieces to get the inertial frame strain.

A common choice in literature when working with
nonprecessing waveforms has been to decompose the
complex strain into an amplitude and phase, each of which
is a slowly varying function of time,

[)fm = Afme_i(/)fm- (42)

However, when ¢ =1 and y;, = y,,, the amplitude of
odd-m modes becomes zero due to symmetry. This means
that the phase becomes meaningless, so one has to treat
such cases separately. For example, Ref. [26] used
specialized basis functions for the odd-m modes that
captured the divergent behavior of the phase in the equal-
mass limit.

To avoid this issue, instead of using the amplitude and
phase we use the real and imaginary parts of the co-orbital
frame strain ¢ , defined in Eq. (39), for all nonquadrupole
modes. The co-orbital frame strain is always meaningful: in
the special, symmetric case mentioned above, the co-orbital
frame strain for the odd-m modes just goes to zero, rather
than diverge. For the (2, 2) mode we use the amplitude’ Ay,
and phase ¢y,.

As mentioned above, our hybrid waveforms are very
long, typically containing ~3 x 10* orbits. This presents
new challenges that are not present for pure-NR surrogates.
For instance, ¢,, sweeps over ~4 x 103 rad for a typical
hybrid waveform. We find that the accuracy of the
surrogate model at early times improves if we first subtract
a PN-derived approximation to the phase, model the phase
difference rather than ¢,,, and then add back the PN
contribution when evaluating the surrogate model. In
particular, we use the leading-order TaylorT3 approximant
[97]. For this approximant, the phase is given as an
analytic, closed-form function of time. Therefore, even
though TaylorT3 is known to be less accurate than some
other approximants [98], its speed makes it ideal for our
purpose as we only need it to capture the general trend. At
leading order, the TaylorT3 phase is given by

2

T3 _ 4T3
22 = Wref T ﬁ ’ (43)
where @73 is an arbitrary integration constant, 6 =

[7(tees — 1)/ (5M)]~'/8, t,o is an arbitrary time offset, and
n is the symmetric mass ratio. Note that ¢§23 diverges at
t = tos- We choose t,.; = 1000M, long after the end of the
waveform (recall that the peak is at = 0), to ensure that we

are always far away from this divergence. We choose rTe?

"Note that for the (2, 2) mode Ay, = BS,.
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such that ¢13 = 0 at t = —1000M; this is the same time at
which we align the hybrid phase in Sec. VI A 4.
Instead of modeling ¢,,, we model the residual

55 = o — 3. (44)

after removing the leading-order contribution ¢l3. By
construction, ¢35 goes to zero at t = —1000M. We find
that, after removing the leading-order TaylorT3 phase, the
scale of ¢53 for a typical hybrid is ~10° rad, compared to
~4 x 10° rad for ¢,,. In essence, this captures almost all of
the phase evolution in the early inspiral, simplifying the
problem of modeling the phase to the same as modeling
the phase of late-inspiral NR waveforms. We stress that
the exact form of ¢I3 (or its physical meaning) is not
important, as long as it captures the general trend, since we
add the exact same @13 to our model of @5 when
evaluating the surrogate. In fact, we find that adding
higher-order PN terms in Eq. (43) does not improve the
accuracy of the surrogate.

To summarize, we decompose the hybrid waveforms into
the following waveform data pieces, each of which is a
smooth, slowly varying function of time: (A,,, ¢5;) for the
(2, 2) mode, and the real and imaginary parts of h¢ _ for all
other modes.”

C. Building the surrogate

Once we have the waveform data pieces, we build a
surrogate model for each data piece using the procedure
outlined in Refs. [22,27], which we only briefly describe
here. Note that the steps below are applied independently
for each waveform data piece.

1. Greedy basis

We first construct a greedy reduced basis [99] such that
the projection errors [cf. Eq. (5) of Ref. [27] ] for the entire
dataset onto this basis are below a given tolerance. For the
basis tolerances we use 1072 rad for the ¢55 data piece,
2 x 107 for A, and 8 x 107 for all other data pieces.
These are chosen through visual inspection of the basis
functions to ensure they are not noisy and based on the
expected truncation error of the NR waveforms. For
instance, we expect the error in phase to be about 1072 rad.

The greedy procedure is initialized with a single basis
function as described in Ref. [27]. Then, at each step in the
greedy procedure, the waveform with the highest projection
error onto the current basis is added to the basis. Previous
work has shown that the resulting greedy reduced basis is
robust to different choices of initialization [100]. When
computing the basis projection errors, we only include data

¥For m = 0 modes of nonprecessing systems, ¢  is purely
real (imaginary) for even (odd) #, so we ignore the imaginary
(real) part for these modes.

up to 50M after the peak. We find that this helps avoid
noisy basis functions. This is particularly important for the
phase data piece as this becomes meaningless at late times,
when the waveform amplitude becomes very small.

2. Empirical interpolation

Next, using a different greedy procedure, we construct an
empirical interpolant [101-103] in time. This picks out the
most representative time nodes, where the number of time
nodes is the same as the number of greedy basis functions.
We require that the start of the waveform always be
included as a time node for all data pieces. This is a useful
modeling choice because the magnitude of the waveform
data pieces in the very early inspiral can be smaller than the
basis tolerances mentioned above. By requiring the first
index to be an empirical time node, we enforce an anchor
point that ensures the waveform data piece has the right
magnitude at the start of the waveform. Furthermore, we do
not allow any empirical time nodes at times > 50M, since
we expect this part to be dominated by noise (especially for
the phase data piece).

3. Parametric fits

Finally, for each time node, we construct a fit across the
parameter space. The fits are done using the Gaussian
process regression (GPR) fitting method described in the
supplemental material of Ref. [104]. Following Ref. [104],
we parametrize our fits using log(¢), 7, and y,. Here } is
the spin parameter entering the GW phase at leading order
[16,105-107] in the PN expansion,

_ Wiz T X

= , 45
eff 1 +q ( )

- 38 113
2 _ Xeff N\ +x22)/ ’ (46)

1—-76n/113
and y, is the “antisymmetric spin,”
1

Ya =50z = 22:). (47)

The fit accuracy, and as a result the accuracy of the
surrogate model, improves noticeably when using log(g),
compared to g or 7.

D. Evaluating the surrogate

When evaluating the surrogate waveform, we first
evaluate each surrogate waveform data piece. Next, we
compute the phase of the (2, 2) mode,

S =050 + ¢33, (48)

where ¢53°° & i is the surrogate model for @55 and 13 is

given in Eq. (43). If the waveform is required at a uniform
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sampling rate, we interpolate each waveform data piece  treated on an equal footing by using a two-detector setup
from the sparse time samples used to construct the model to ~ where one detector sees only the plus and the other only the

the required time samples, using a cubic-spline interpola-  cross polarization. We compute the mismatches at 37 points

tion scheme. Finally, we use Eqs. (39)—(41) to reconstruct  uniformly distributed on the sky in the source frame, and
the surrogate prediction for the inertial frame strain. we use all available modes of a given waveform model.

When computing flat noise mismatches (S, = 1), we

VII. RESULTS take f ., to be the frequency of the (2, 2) mode at the end of

. . . o peak peak
the initial tapering window, and f..x = 5f5, , where f7,

is the frequency of the (2, 2) mode at its peak. This choice
of fnax €nsures that we capture the peak frequencies of all
modes considered in this work, including the (5, 5) mode,
whose frequency has the highest multiple of the (2, 2) mode

In order to estimate the difference between two wave-
forms, §; and §),, we use the mismatch, defined in Eq. (2),
but in this section instead of Eq. (3) we use the frequency-
domain inner product

Fous B ( f)f)*( ) frequency of all the modes we model. We also compute
(§;,9,) = 4Re / lS 27 df, (49)  mismatches with the advanced LIGO design sensitivity
min a(f) zero-detuned-high-power noise curve [109] with f;, = 20

- and f.« = 2000 Hz.
where §(f) indicates the Fourier transform of the complex S max

strain §(), * indicates a complex conjugation, Re indicates
the real part, and S,(f) is the one-sided power spectral
density of a GW detector. We taper the time-domain We evaluate the accuracy of our new surrogate model,
waveform using a Planck window [108] and then zero =~ NRHybSur3dq8, by computing mismatches against hybrid
pad to the nearest power of 2. We further zero pad the  waveforms. For this, we compute “out-of-sample” errors as
waveform to increase the length by a factor of 8 before  follows. We first randomly divide the 104 training wave-
performing the Fourier transform. The tapering at the start ~ forms into groups of ~5 waveforms each. For each group,
of the waveform is done over 1.5 cycles of the (2, 2) mode.  we build a trial surrogate using the remaining ~99 training
The tapering at the end is done over the last 20M. Note that ~ waveforms and test against these five validation ones. We
our model contains times up to 135M after the peak of the  also compute the mismatch between an existing higher-
waveform amplitude, and the signal has essentially died mode waveform model, SEOBNRv4HM [15], and the
down by the last 20M. hybrid waveforms.

We compute mismatches following the procedure Figure 6 summarizes mismatches of both NRHybSur3dq8
described in Appendix D of Ref. [27]: the mismatches = and SEOBNRv4HM versus the hybrid waveforms. We use
are optimized over shifts in time, polarization angle, and  all available modes for each waveform model. In the left
initial orbital phase. Both plus and cross polarizations are ~ panel we show mismatches computed using a flat noise

A. Surrogate errors

1.6 1071 3
[ NRHybSur3dg8 E == NRHybSur3dgs 3
1 SEOBNRV4HM =% SEOBNRV4HM b

1 NR 107 = -
= B R R s
g, -
10° = T g E
s L ]
104 = -
L g e = o i —_— ]
107 & | =k~ -kl— —te =
Il I I ' Il Il I I ' Il
107 107® 10> 10* 1073 1072 107! 1 10 100 300
Mismatch M (M)

FIG. 6. Errors in NRHybSur3dq8 and SEOBNRv4HM when compared against hybrid waveforms. For NRHybSur3dq8, we show out-
of-sample errors. Mismatches are computed at several points in the sky of the source frame using all available modes in each waveform:
For the hybrid waveforms and NRHybSur3dg8, that is £ < 4 and (5, 5), but not (4, 1) or (4, 0). For SEOBNRv4HM that is (2, 2),(2, 1),
(3, 3),(4, 4), and (5, 5). (Left) Mismatches computed using a flat noise curve, but including only the late inspiral part of the waveforms,
starting at —3500M before the peak. Therefore, we are essentially comparing only to the NR part of the hybrid waveforms. For
comparison, we also show the NR resolution error, obtained by comparing the two highest available resolutions. The histograms are
normalized such that the area under each curve is 1 when integrated over log;o(Mismatch). (Right) Mismatches as a function of total
mass, computed using the advanced LIGO design sensitivity noise curve. Here we compare against the full hybrid waveforms. The solid
(dashed) lines show the 95th percentile (median) mismatch values over points on the sky as well as different hybrid waveforms.
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FIG. 7.

The plus polarization of the waveforms for the cases that result in the largest mismatch for NRHybSur3dq8 (top) and

SEOBNRv4HM (bottom) in the left panel of Fig. 6. We also show the corresponding hybrid waveforms (labeled as NR because only the
late part is shown). Each waveform is projected using all available modes for that model, along the direction which results in the largest
mismatch for NRHybSur3dq8 (SEOBNRv4HM) in the top (bottom) panel. Note that NRHybSur3dqs8 is evaluated using trial surrogates
that are not trained using these cases. The binary parameters and the direction in the source frame are indicated in the inset text. All
waveforms are time shifted such that the peak of the total waveform amplitude occurs at ¢ = 0 [using all available modes, according to
Eq. (38)]. Then the waveform modes are rotated about the z axis such that the orbital phase is zero at t = —3500M.

curve over the NR part of the hybrid waveforms (to
do this, we truncate the waveforms and begin tapering
at t= —-3500M). We see that the mismatches for
NRHybSur3dg8 are about 2 orders of magnitude lower
than that of SEOBNRv4HM. We compare this with the
truncation error in the NR waveforms themselves, by
computing the mismatch between the two highest available
resolutions of each NR waveform. The errors in the
surrogate model are well within the truncation error of
the NR simulations. Note that NR error estimated in this
manner is a conservative estimate; if we treat the high-
resolution simulation as the fiducial case, the NR curve in
Fig. 6 can be thought of as the error in the lower-resolution
simulation. This explains why the errors in the surrogate
are smaller than the NR errors. We suspect that the error of
the high-resolution simulations is close to the surrogate
model’s error.

The right panel of Fig. 6 shows mismatches computed
using the advanced LIGO design sensitivity noise curve.
The mismatches are now dependent on the total mass
of the system, so we show mismatches for masses starting
at the lower limit of the range of validity of the surrogate:
M >225Mg. The 95th percentile mismatches for
NRHybSur3dq8 are always below ~3 x 107 in the mass
range 2.25M 5 <M <300M . At high masses (M 240M,),
where the merger and ringdown are more prominent, our
model is more accurate than SEOBNRv4HM by roughly 2
orders of magnitude, in agreement with the left panel
of Fig. 6.

For high masses only the last few orbits of the hybrid
waveforms are in the LIGO band, and the hybrid wave-
forms are effectively the same as the NR waveforms.
For low masses, the errors in the right panel of Fig. 6
quantify how well different models reproduce the hybrid
waveforms. However, this comparison cannot account
for the errors in the hybridization procedure itself. We
provide some evidence for the fidelity of the hybrid
waveforms in Sec. VII B, by comparing against some long
NR waveforms.

Figure 7 shows NRHybSur3dq8 and SEOBNRv4HM
waveforms for the cases leading to the largest errors in
the left panel of Fig. 6. The surrogate shows very good
agreement with the NR waveform, even for its worst case.
SEOBNRvV4HM shows a noticeably larger deviation that
cannot all be accounted for with a time and/or phase shift.
Note that we align the time and orbital phase of the
waveforms in Fig. 7.

We note that the main improvement over
SEOBNRV4HM is not due to the inclusion of more modes.
We find that the agreement between SEOBNRv4HM and
the NR (Hybrid) waveforms in Figs. 6 and 7 improves only
marginally when restricting the NR-hybrid waveforms to
the same set of modes as SEOBNRv4HM.

B. Hybridization errors

The errors described in Sec. VIIA are computed by
comparing the surrogate against hybrid waveforms, hence
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they do not include the errors in the hybridization pro-
cedure or the errors from EOB-corrected PN waveforms
(cf. Sec. IV B) we use for the early inspiral. To estimate
these errors, we compare the surrogate against a few very
long NR simulations.” We perform five new simulations
that are ~10°M long and two that are ~3 x 10*M long.
These have been assigned the identifiers SXS:BBH:
1412-SXS:BBH:1418 and will be made publicly available
in the upcoming update of the SXS public catalog [58]. In
addition, we use two simulations of length ~3 x 10°M
from Ref. [111]. These nine simulations are represented as
square markers in Fig. 2 and have not been used in training
the surrogate. The surrogate was trained against hybrid
waveforms whose NR duration varied between 3270M and
4227M. Therefore, comparing against long NR waveforms,
which include the early inspiral, is a good way to estimate
the hybridization error.

We begin by repeating the mismatch computation
from the right panel of Fig. 6, using the 10°M long
NR waveforms. This is shown in Fig. 8. We also show
the errors in the NR simulations, estimated by comparing
the two highest available NR resolutions. We find
that the mismatches between the surrogate and the long
NR waveforms for M > 30 M, are below 1074, in
agreement with Fig. 6. For lower masses, the mismatches
quickly increase and can be as high as ~1072. However,
this increase in mismatch is accompanied by an increase
in the error of the NR waveforms. This is expected, since
for very long NR waveforms the accumulated phase
error is a dominant source of numerical error, which
becomes increasingly relevant for low mass systems as
more of the waveform moves in-band. Therefore, in
Fig. 8, at low masses, the comparison between the
surrogate and NR waveforms is largely dominated by
the numerical resolution error of the long NR waveforms
themselves.

We find that a better test of the hybridization procedure,
one that is less sensitive to NR phase accumulation errors,
is to compare against different segments of the NR wave-
form. Since the phase errors accumulate over a large
number of cycles, by looking at smaller segments we
ensure that this contribution is not the dominant error. To be
precise, we compare the surrogate and the NR data, using
segments of length At =5 x 10°M ending at a particular
number of orbits before the peak of the waveform. For each
segment we compute mismatches at several points in the
sky using a flat noise curve. By varying the number of
orbits to the peak, we can cover the entire NR waveform
including the early inspiral region where the surrogate
depends on the hybridization procedure. These errors are

*Note that, for these long NR simulations, the outer boundary
location is chosen based on the length of the simulations [59] so
as to avoid unphysical center-of-mass accelerations seen in earlier
long-duration runs [110].
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FIG. 8. Comparisons between the NRHybSur3dq8 surrogate
model and a few NR waveforms of ~10°M in duration. We also
show the NR resolution error. The 95th percentile mismatches
(over points in the sky) are shown as a function of total mass.
(Inset) Indicates the mass ratio and component spins. Mis-
matches are computed using the advanced LIGO design
sensitivity noise curve. To best assess the error introduced
by the hybridization procedure we use the same set of modes
for the NR waveforms as the surrogate. At low masses, the
hybridization errors (red circles) become less reliable measures
of accuracy due to the large NR resolution error (black circles)
itself. Figure 9 describes a refined comparison to improve the
assessment at low masses.

shown in Fig. 9. We find that, in each segment, the
mismatch between the surrogate and the NR data is, in
general, lower or comparable to the NR resolution error.
Therefore, the surrogate reproduces the NR data accurately
in the early inspiral and the hybridization errors are smaller
than or comparable to the NR resolution error for these
cases. We note that the surrogate errors in Fig. 9 depend
on the length of the segment considered and are only
meaningful when compared to the NR errors in the same
segment.

Unfortunately, long NR simulations such as these are not
available at regions of the parameter space where both mass
ratio and spin magnitudes are large. These are the cases
where PN is expected to perform poorly, so we expect
larger hybridization errors for these cases.
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FIG. 9. Errors in the NRHybSur3dq8 surrogate model against long NR waveforms, but only looking at segments of length
At = 5 x 103M individually. Each point represents one segment that ends at a specified number of orbits before the waveform peak, as
plotted on the horizontal axis. Therefore, going from left to right in the figure, we plot segments that start earlier in the inspiral. We also
show the NR resolution error in the same segments. (Inset) Indicates the mass ratio and component spins. We show 95th percentile
mismatches (over points in the sky), computed using a flat noise curve. We use the same set of modes for the NR waveforms as the
surrogate. We find that, in general, the surrogate error is lower than or comparable to the NR resolution error throughout the inspiral.

C. Extrapolation outside the training range

We now investigate the efficacy of NRHybSur3dq8 to
extrapolate beyond its training parameter range by compar-
ing against SPEC NR simulations [58,111-114] at larger
mass ratios (8 < g < 10) and/or larger spin magnitudes
(lx1z] > 0.8 or |yj5| > 0.8). These NR simulations are
represented as triangle markers in Fig. 2.

Figure 10 shows mismatches for NRHybSur3dq8 when
compared against these simulations. We find that the
surrogate extrapolates remarkably well, with the mismatch
always <4 x 10~ for all cases, which include mass ratios
up to ¢ =10 and spin magnitudes up to [y| = 0.998.
However, the extrapolation errors can be about half an
order of magnitude larger than errors within the training
range. Note that NR simulations with both high mass ratios
and high spin magnitudes are not currently available, and
the ones used here represent the most extreme cases found
in the SXS catalog. We do not hybridize these simulations
before comparing to NRHybSur3dq8 because several of
them are too short. In Fig. 10, the minimum mass for each
case is chosen to be the lowest mass at which all used

modes of the NR simulation lie fully in the LIGO band with
a low-frequency cutoff of 20 Hz.

At much higher mass ratios than those tested here, such
as g = 15, we find that the waveforms generated by the
surrogate can have “glitches” in the time series. Therefore,
we recommend the surrogate be used for ¢ < 10 and
l¥1:]s l¥2:] < 1. However, we advise caution with any
extrapolation in general.

El

D. Mode mixing

Numerical relativity waveforms are extracted as spin-
weighted spherical harmonic modes [33,34]. However, in
the ringdown regime, the natural basis to use is the spin-
weighted spheroidal harmonic basis [115,116]. A spherical
harmonic mode §,,, can be written as a linear combination
of all spheroidal harmonic modes I)?m with the same m
index [117]. Therefore, during the ringdown, we expect
leakage of power between different spherical harmonic
modes with the same m. This is referred to as mode mixing.

Since the surrogate accurately reproduces the spherical
harmonic modes from the NR simulations, it also captures
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FIG. 10. Errors in NRHybSur3dq8 when evaluated outside its
training range. The 95th percentile mismatches (over points in the
sky) are shown as a function of total mass for different
extrapolated cases. These are computed using the advanced
LIGO design sensitivity noise curve. To best assess the error
introduced by the extrapolation, we use the same set of modes for
the NR waveforms as the surrogate. The labels indicate the mass
ratio and component spins (g, yi,, ¥».). For comparison we
reproduce the 95th percentile mismatches for NRHybSur3dq8
within its training range from the right panel of Fig. 6.

this mode mixing. We demonstrate this for an example case
in Fig. 11. Here we compute the Fourier transform of
different spherical harmonic modes in the ringdown stage
of the waveform. Before computing the Fourier transform,
we first drop all data before r=20M, where t =0
corresponds to the peak of the waveform amplitude
[cf. Eq. (38)]. Then, we taper the data between t = 20M
and t = 40M, as well as the last 10M of the time series,
using a Planck window [108]. The tapering width at the
start is chosen such that the remaining signal is dominated
by the fundamental quasinormal mode (QNM) overtone.
Figure 11 shows the absolute value of these Fourier
transforms for different modes, for both the surrogate
and the NR waveform. In addition, we show the frequency
of the fundamental QNM overtone for each mode [118].
Note that the (2, 2) mode and the (3, 2) mode have the same
m index, the condition required for mode mixing. We see that
the peak of the (2, 2) mode agrees with the QNM frequency as
expected. For the (3, 2) mode, however, while there are
features of a peak at the expected QNM frequency, there is a
much larger peak at the frequency of the (2, 2) mode. This is
because some of the power of the stronger (2, 2) mode has
leaked into the (3, 2) mode due to mode mixing. Mode mixing
can also be seen for the (3, 3) and (4, 3) modes, which also
have the same m index. Figure 11 shows that, not only does
the surrogate agree with NR in the ringdown, it also
reproduces the mode mixing present in the NR data.

E. Evaluation cost

Figure 12 shows the evaluation cost for NRHybSur3dg8,
at different total masses, starting at 20 Hz, and using a

q=4.4 x1- = 0.80 x2. = 0.80 my = 0.96M x; = 0.88

100 ? - (2' 2)
B (3.2
B — (33
< - :
= — (4,3)
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10-3 L [ L
0.05 0.10 0.15 0.20 0.25
f [cycles/M]
FIG. 11. Mode mixing between spherical harmonic modes is

clearly seen in the ringdown signal of the NR waveform and is
accurately reproduced by the surrogate. The absolute values of
the Fourier transform of different spherical harmonic modes are
shown as solid (dashed) curves for the surrogate (NR). The dotted
vertical lines indicate the frequencies of the fundamental QNM
overtone of these modes. The component parameters as well as
the remnant mass and spin are shown in the text above the figure.

sampling rate of 4096 Hz. This suggests that
NRHybSur3dg8 is fast enough for direct use in parameter
estimation. We also show the evaluation cost per mode.
Note that the total cost as well the cost per mode in Fig. 12
include the cost of a fast Fourier transform (FFT).
We perform the FFT only once, after summing over all
modes in the time domain. This cost is also shown separately
in Fig. 12. Finally, we show the evaluation cost of

)
10 E
= —k— NRHybSur3dq8 total cost
L —@— NRHybSur3dg8 cost per mode
— 100 = —— FFT cost
3 F —¥— SEOBNRv4_ROM (single mode)
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FIG. 12. Evaluation cost for NRHybSur3dqg8 including the cost
of a FFT. We show the cost for evaluating all 11 modes modeled
by NRHybSur3dg8, as well as the cost per mode. The FFT cost is
included in both of the above but also shown separately. We also
show the evaluation cost of SEOBNRv4_ROM, which includes
only the (2, 2) mode. The evaluation cost is computed by
averaging over 64 points uniformly distributed in the parameter
space, g < 8 and |y, [x2.] <0.8.

)
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SEOBNRv4_ROM [17], a Fourier domain reduced-
order model (ROM) version of SEOBNRv4. Note that
SEOBNRv4_ROM models only the (2, 2) mode.
Comparing the cost for SEOBNRv4_ROM to the cost per
mode of NRHybSur3dq8 suggests that the evaluation cost of
NRHybSur3dg8 can be reduced by a factor of ~2.5 by
building a Fourier domain ROM along the lines of Ref. [23].

At low masses, where the waveform is very long, the
dominant costs for NRHybSur3dq8 are due to the temporal
interpolation from the sparse domain of the surrogate to the
required time samples and the FFT. At high masses, where
the waveform is short, the interpolation and FFT are cheap
and the dominant cost for NRHybSur3dqg8 is due to the
GPR evaluations for the parametric fits. SEOBNRv4_ROM
instead uses tensor spline interpolation for the parametric
fits [17], which accounts for the main difference in the
evaluation cost per mode at high masses.

These tests were performed on a single core on a
3.1 GHz Intel Core i5 processor. Both NRHybSur3dq8
and SEOBNRv4_ROM were evaluated using a C imple-
mentation in the LIGO algorithm library [49]. The PYTHON
implementation of NRHybSur3dq8 in gwsurrogate [48] is
slower than the ¢ implementation by at most a factor of 2.

VIII. CONCLUSION

We present NRHybSur3dqg8, the first NR-based surro-
gate waveform model that spans the entire LIGO band-
width, valid for stellar mass binaries with total masses
M > 2.25 M. This model is trained on 104 NR-PN/EOB
hybrid waveforms of nonprecessing quasicircular BBH
systems with mass ratios ¢ <8 and spin magnitudes
¥1:], lxa:| <0.8. The parametric fits for this model are
performed using Gaussian process regression. This model
includes the following spin-weighted spherical harmonic
modes: £ <4 and (5, 5), but not (4, 1) or (4, 0). We make
our model available publicly through the easy-to-use
PYTHON package gwsurrogate [48]. In addition, our model
is implemented in ¢ with PYTHON wrapping in the LIGO
algorithm library [49]. We provide an example PYTHON
evaluation code in [50].

Through a cross-validation study, we show that the
surrogate accurately reproduces the hybrid waveforms.
The mismatch between them is always less than ~3 x
10~ for total masses 2.25 My < M < 300 M. For high
masses (M Z 40 M), where the merger and ringdown are
more prominent, we show roughly a 2 orders of magnitude
improvement over the current state-of-the-art model with
nonquadrupole modes, SEOBNRv4HM [15].

By comparing against several long NR simulations, we
show that the errors in our hybridization procedure are
comparable or lower than the resolution error in current NR
simulations. In addition, by comparing against available
NR simulations at higher mass ratios and spins, we show
that our model extrapolates reasonably well outside its
training range. Based on these tests, we are cautiously

9’

optimistic that the surrogate can be used for ¢ < 10 and
lr1:]s lr2:] < 1, and we leave a more detailed investigation
for future work.

A. Future work

While our tests of the hybridization procedure are
encouraging, long NR simulations are available only for
low mass ratios and low spin magnitudes. Therefore, we
have no means to test hybridization at high mass ratios
and/or high spins, where the PN model is expected to
perform poorly. An improved surrogate model and
refined study of the hybridization errors will require
longer inspiral waveforms with greater coverage of the
parameter space.

Another extension of interest is towards larger mass
ratios and spin magnitudes. While the surrogate extrapo-
lates very well when compared to available simulations at
larger mass ratios and spins, no NR simulations are
available with both large mass ratios (¢ > 8) and large
spins (y > 0.8). Therefore, our model is untested in that
region of parameter space and it might be necessary to add
training points there. The model could also be extended to
include precession and/or eccentricity, however, this is
more challenging because of the enlarged parameter space
as well as more complicated hybridization.

Finally, as mentioned in Sec. VIIE, the evaluation
time of NRHybSur3dq8 can likely be reduced by
constructing a Fourier domain ROM [23] of the time-
domain model.

We leave these explorations to future work.
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