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Abstract

We present a scheme for generating first-order metric perturbation initial 

data for an arbitrary background and source. We then apply this scheme 

to derive metric perturbations in order-reduced dynamical Chern–Simons 

gravity (dCS). In particular, we solve for metric perturbations on a black 

hole background that are sourced by a first-order dCS scalar field. This gives 

us the leading-order metric perturbation to the spacetime in dCS gravity. 

We then use these solutions to compute black hole shadows in the linearly 

perturbed spacetime by evolving null geodesics. We present a novel scheme 

to decompose the shape of the shadow into multipoles parametrized by the 

spin of the background black hole and the perturbation parameter ε2. We 

find that we can differentiate the presence of a pure Kerr spacetime from a 

spacetime with a dCS perturbation using the shadow, allowing in part for a 

null-hypothesis test of general relativity. We then consider these results in the 

context of the event horizon telescope.
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1. Introduction

Einstein’s theory of general relativity (GR) has passed all precision tests to date [1]. In 

particular, model-independent tests using binary black hole merger data from the Laser 

Interferometry Gravitational Wave Observatory (LIGO) are consistent with GR at the 96% 

confidence level [2–4].

However, at some length scale GR must be reconciled with quantum mechanics in a theory 

of quantum gravity. Black holes and black hole binaries probe the strong-field, non-linear, 

high-curvature regime of gravity, and thus observations of these systems might contain signa-

tures of quantum gravity. Our goal is to predict these signatures.

We know from the first LIGO detections that deviations from GR are small, and thus rather 

than considering black holes in a fully quantum theory, we can calculate their properties in 

effective field theories (EFTs). These theories involve adding perturbative quantum-gravity-

motivated terms to the Einstein–Hilbert action of general relativity. Since these theories are 

classical, we can hope to apply the numerical tools used to study GR (a classical theory) to 

these quantum-gravity-motivated theories.

One such EFT is dynamical Chern–Simons gravity (dCS), which modifies the action of 

GR through the inclusion of a scalar field coupled to spacetime curvature [5]. In particular, 

this theory has motivations in string theory [6], loop quantum gravity [7, 8], and inflation [9]. 

The full effective field theory, however, most likely does not have a well-posed initial value 

form ulation [10]. However, we can expand the theory around general relativity in order to 

guarantee a well-posed system of equations at each order [11]. This is in part justified by the 

first LIGO detection, which found deviations from GR in black hole systems to be small [3]. 

In a previous study, we investigated the leading-order behavior of the dCS scalar field in a 

binary black hole system, quantifying the amount by which gravitational waves in dCS gravity 

would differ from those in pure GR [11].

In this study, we numerically compute metric perturbations in dCS. In other words, we cal-

culate to leading order the modifications to a pure GR spacetime due to the presence of the dCS 

scalar field. Such modifications will be required , for example, as initial data to perform binary 

black hole simulations involving a dCS metric perturbation. We thus produce and test a formal-

ism for generating metric perturbation initial data based on the extended conformal thin sand-

wich formalism (see [12] for a review). Previous studies have considered such modifications, 

but we present the first such formalism that can be used in the binary black hole case [13–18].

In addition to LIGO, an instrument coming online that will have the power to probe the 

strong-field regime of gravity is the event horizon telescope (EHT). The primary goal of this 

instrument (a very long baseline interferometry array of radio telescopes) is to image black 

hole event horizons, including those of Sgr A∗, the black hole at the center of the Milky Way 

galaxy, and the black hole of the center of the M87 galaxy [19, 20]. The EHT in part has the 

power to image the black hole shadow, a dark region on the image corresponding to angles at 

which no photons reach the observer, because of light-bending and the presence of an event 

horizon. The shadow, for a black hole with a given mass and spin, has a precise shape pre-

dicted by GR, and thus deviations from this shape can be used to test the theory [21, 22]. Since 

the paths of photons are determined by the spacetime itself, resolving the shadow corresponds 

to directly probing the metric of the spacetime, and hence is a metric test of GR. Moreover, 

predictions for black hole shadows exist in other theories of gravity. Thus one can go beyond 

performing a null-hypothesis test of GR and instead test specific theories. Additionally, 

since the mass of Sgr A∗ is  ∼106 M⊙, whereas the masses of black holes observed by LIGO 

are  ∼10 M⊙, the EHT probes gravity on a wholly new scale [23].
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Given dCS metric perturbations, our goal is to compute the black hole shadow in a dCS-

modified spacetime, and quantify the effects (including degeneracies) on the shape of the 

shadow as a function of mass, spin, and the dCS coupling parameter. We can then estimate 

whether the EHT would be able to resolve these deviations.

1.1. Roadmap and conventions

This paper is organized as follows. In section 2, we derive and provide all of the equations for 

the formalism for generating metric perturbation initial data. In section  3, we specifically 

apply this formalism to black holes in dCS gravity, presenting convergent initial data results. 

In section 4, we present results using stationary dCS metric perturbation initial data to calcu-

late black hole shadows. We conclude in section 5.

We set G  =  c  =  1 throughout. Quantities are given in terms of units of M, the ADM mass 

of the system. Latin letters in the beginning of the alphabet {a, b, c, d . . .} denote 4D space-

time indices, while Latin letters in the middle of the alphabet {i, j, k, l . . .} denote 3D spatial 

indices. ψab refers to the spacetime metric, while gij refers to the spatial metric from a 3  +  1 

decomposition with corresponding timelike unit normal one-form na (see [12] for a review of 

the 3  +  1 ADM formalism).

2. Solving for general metric perturbation initial data

2.1. Overview

In standard numerical general relativity, initial data is often generated using the extended 

conformal thin sandwich formalism [24–28]. A thorough review of this method is presented 

in [12] and a derivation is presented in [29]. This formalism decomposes the 3  +  1 ADM 

Hamiltonian and momentum constraints, as well as the equation for the time derivative of the 

extrinsic curvature, to generate a set of elliptic equations to numerically solve for initial data.

Recall that in the 3  +  1 decomposition, the constraints and time derivative of the extrinsic 

curvature are given as

R + K2
− KijK

ij = 16πρ, (1)

Dj(K
ij
− gijK) = 8πSi, (2)

∂tKij = α(Rij − 2KijK
k

j + KKij)− DiDjα

− 8πα(Sij −
1

2
gij(S − ρ)) + βk∂kKij + Kik∂jβ

k + Kkj∂iβ
k,

 (3)

where gij is the spatial metric with corresponding covariant derivative Di, α is the lapse, and 

βi  is the shift. Kij is the extrinsic curvature with trace K, and Rij is the spatial Ricci tensor with 

trace R. The matter terms ρ , Si, Sij, and S are defined with respect to the stress–energy tensor 

Tab and timelike unit normal one-form na as

ρ ≡ nanbTab, (4)

Si
≡ −gijnaTaj, (5)

Sij ≡ giagjbTab, (6)
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S ≡ gijSij, (7)

where the time-space components of the spatial metric are given via gab ≡ ψab + nanb for 

spacetime metric ψab.

The extended conformal thin sandwich formalism involves writing the spatial metric in 

terms of a conformal metric ḡij as

gij = ψ4ḡij, (8)

where ψ is known as the conformal factor. Additionally, the time derivative of the spatial 

metric is decomposed as

uij = ∂tgij −
2

3
gij(−αK + Diβ

i), (9)

where the function uij is related to the time derivative of the conformal metric as

uij = ψ4ūij, (10)

with

ūij ≡ ∂tḡij. (11)

In this formalism, the extrinsic curvature is decomposed into traceless and trace parts as

Kij = Aij +
1

3
gijK, (12)

where Aij is the traceless part of Kij, and is conformally transformed as

Aij = ψ−2Āij, (13)

with

Āij =
ψ7

2αψ
((L̄β)ij

− ūij), (14)

(L̄β)ij ≡ D̄iβ j
+ D̄ jβi −

2

3
ḡijD̄kβ

k. (15)

Here, D̄i  refers to the covariant derivative with respect to the conformal metric, ḡij.

Having defined all of these quantities, we can now recast equations (1)–(3) to give an ellip-

tic equation for the conformal factor,

D̄2ψ −

1

8
ψR̄ −

1

12
ψ5K2

+
1

8
ψ−7ĀijĀ

ij
= −2πψ5ρ, (16)

an elliptic equation for the shift,

(Λ̄Lβ)
i
− (L̄β)ijD̄j ln ᾱ = ᾱD̄j(ᾱ

−1ūij) +
4

3
ᾱψ6D̄iK + 16πᾱψ10Si, (17)

and an elliptic equation for αψ,

D̄2(αψ) = αψ(
7

8
ψ−8ĀijĀ

ij +
5

12
ψ4K2 +

1

8
R̄

+ 2πψ4(ρ+ 2S))− ψ5∂tK + ψ5βiD̄iK.

 (18)
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Here, ᾱ ≡ ψ−6α is the densitized lapse, R̄ is the conformal Ricci scalar computed for ḡij, and 

(Λ̄Lβ)
i  is the vector Laplacian (see [12]).

In the extended conformal thin sandwich formalism, we are freely allowed to specify

Free data : ḡij, ūij, K, ∂tK , (19)

and solve for the variables

Solved data : ψ,βi,αψ . (20)

We are interested in solving for initial data for linear metric perturbations of the form

ψab → ψab +∆ψab. (21)

In order to solve for perturbed initial data, we will perturb the extended conformal thin sand-

wich equations. Our overall goal is to perturb each of these equations to linear order, which 

will give us elliptic equations for the perturbed variables with the same principal part as the 

background equations. Throughout, we will denote by ∆X the first-order (linear) perturbation 

to some variable X. We perturb each of the variables as

ψ → ψ +∆ψ, (22)

βi
→ βi +∆βi, (23)

αψ → αψ + (α∆ψ +∆αψ), (24)

and solve for ∆ψ, the perturbation to the conformal factor, ∆βi, the perturbation to the shift, 

and

∆C ≡ ∆(αψ) = α∆ψ +∆αψ, (25)

the perturbation to the lapse times the conformal factor.

The equations will additionally involve perturbing metric quantities to first order, such as

ḡij → ḡij +∆ḡij, (26)

ūij → ūij +∆ūij, (27)

K → K +∆K, (28)

∂tK → ∂tK + ∂t∆K, (29)

where ∆ūij ≡ ∂t∆ḡij. We outline these terms in more detail in appendix A.

Much like we have the solved data and free data in the extended conformal thin sandwich 

formalism, we will have

Perturbed free data : ∆ḡij,∆ūij,∆K, ∂t∆K , (30)

and

Perturbed solved data : ∆ψ,∆βi,∆C . (31)

M Okounkova et alClass. Quantum Grav. 36 (2019) 054001
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2.2. Perturbed initial data formalism

We now perturb equations (16)–(18) to obtain elliptic equations for ∆ψ, ∆βi, and ∆C . Each 

of these equations involves the perturbations to the extended conformal thin sandwich quanti-

ties. For example, the equations will include the first-order perturbation to Āij (defined in equa-

tion (14)), denoted ∆Āij. We leave the derivations of the perturbations to all of the extended 

conformal thin sandwich quantities to appendix A, and present the perturbations to the elliptic 

equations for ∆ψ, ∆βi, and ∆C  here.

2.2.1. Perturbed equations. Perturbing equation (16) yields an elliptic equation for ∆ψ. We 

obtain

0 = −D̄2∆ψ −∆(D̄2)ψ

+
1

8
∆ψR̄ +

1

8
ψ∆R̄ +

5

12
ψ4∆ψK2 +

1

6
ψ5K∆K

+
7

8
ψ−8∆ψĀijĀ

ij
−

1

8
ψ−7(∆ĀijĀ

ij + Āij∆Āij)

− 2π(5ψ4∆ψρ+ ψ5∆ρ),

 (32)

where D̄2∆ψ is the principal part of this perturbed equation.

Perturbing equation (18) yields an elliptic equation for ∆C . Since this equation is longer, 

we will do it piece by piece, splitting the original expression as

0 = −D̄2(αψ)
︸ ︷︷ ︸

Principal part

+αψ

(
7

8
ψ−8ĀijĀ

ij +
5

12
ψ4K2 +

1

8
R̄

)

︸ ︷︷ ︸

Non-matter terms

−ψ5∂tK + ψ5βiD̄iK
︸ ︷︷ ︸

Non-matter terms

+αψ2πψ4(ρ+ 2S)
︸ ︷︷ ︸

Matter terms

.

 (33)

Perturbing the matter terms, we obtain

∆(C Matter terms) = 2π(∆Cψ4(ρ+ 2S) + 4αψψ3∆ψ(ρ+ 2S) + αψψ4(∆ρ+ 2∆S)). (34)

Next, perturbing the non-matter terms, we obtain

∆(C Non-matter terms) = ∆C

(

7

8
ψ−8ĀijĀ

ij
+

5

12
ψ4K2

+
1

8
R̄

)

+ αψ(−7ψ−9∆ψĀijĀ
ij +

7

8
ψ−8(∆ĀijĀ

ij
+ Āij∆Āij)

+
5

3
ψ3∆ψK2 +

5

6
ψ4K∆K +

1

8
∆R̄)

− 5ψ4∆ψ∂tK − ψ5∂t∆K

+ 5ψ4∆ψβiD̄iK + ψ5∆βiD̄iK + ψ5βiD̄i∆K.
 (35)

Finally, for the perturbation to the principal part, we obtain

∆(C Principal part) = −D̄2(∆C)−∆(D̄2)(αψ), (36)

where the first term gives us the principal part for the perturbed equation. We combine these 

terms into an overall elliptic equation for ∆C

∆(C Principal part) + ∆(C Non-matter terms) + ∆(C Matter terms) = 0,
 (37)

M Okounkova et alClass. Quantum Grav. 36 (2019) 054001
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where the perturbed terms are given in equations (34)–(36).

In order to complete our system of equations, we perturb equation (17) to obtain an equa-

tion for ∆βi. In practice, we solve the momentum constraint with the principal part

−αψD̄j

(
1

αψ
(L̄β)ij

)

, (38)

where the momentum constraint has been rewritten using as

0 = −αψD̄j

(
1

αψ
(L̄β)ij

)

+ D̄jū
ij
−

14αψ

ψ8
ĀijD̄jψ − ūij D̄jαψ

αψ
+

4

3

αψ

ψ
D̄iK

+ 16παψψ3Si.

 

(39)

For simplicity, we split up equation (39) as

0 = −αψD̄j

(
1

αψ
(L̄β)ij

)

︸ ︷︷ ︸

Principal part

+D̄jū
ij
−

14αψ

ψ8
ĀijD̄jψ − ūij D̄jαψ

αψ
+

4

3

αψ

ψ
D̄iK

︸ ︷︷ ︸

Non-matter terms

+16παψψ3Si

︸ ︷︷ ︸

Matter terms

.

 

(40)

Perturbing the matter terms, we obtain

∆(βi Matter terms) = 16π(∆Cψ3Si + 3αψψ2∆ψSi + αψψ3∆Si). (41)

Perturbing the non-matter terms gives

∆(βi Non-matter terms) =∆(D̄)jū
ij
+ D̄j∆ūij

−
14∆C

ψ8
ĀijD̄jψ +

112αψ

ψ9
∆ψĀijD̄jψ

−
14αψ

ψ8
(∆ĀijD̄jψ + ĀijD̄j∆ψ)

−∆ūij D̄jαψ

αψ
−

ūij

αψ
D̄j∆C + ūij∆C

D̄jαψ

(αψ)2

+
4

3

∆C

ψ
D̄iK −

4

3

αψ

ψ2
∆ψD̄iK

+
4

3

αψ

ψ
(∆(D̄) jK + D̄i∆K).

 

(42)

Finally, perturbing the principal part gives

∆(βi Principal part) =− αψD̄j

(
1

αψ
((L̄∆β)ij + (∆(L̄)β)ij)

)

−∆(D̄)j(L̄β)
ij +

(L̄β)ij

αψ
D̄j∆C − (L̄β)ij ∆C

(αψ)2
D̄jαψ.

 (43)
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Our overall elliptic equation for ∆βi is

∆(βi Principal part) + ∆(βi Non-matter terms) + ∆(βi Matter terms) = 0,
 (44)

where the perturbed terms are given in equations (41)–(43).

Thus, we have derived a set of three second-order, elliptic equations for ∆ψ, ∆C , and ∆βi. 

We solve equation (32) for ∆ψ, equation (37) for ∆C , and equation(44) for ∆βi. The princi-

pal parts of all of these equations are the same as in the unperturbed extended conformal thin 

sandwich equations. Thus, for numerical solutions, we can reuse the preconditioning matrices 

and linearized operators that are used in the unperturbed equations. The specific details of the 

numerical computation can be found in [25].

2.2.2. Reconstructing perturbed data. Given solutions of the equations  from the previous 

section for ∆ψ,∆C,∆βi, as well as the perturbed free data and background data, we now 

wish to reconstruct ∆gij , the full perturbed spatial metric, and ∂t∆gij , its time derivative. This 

allows us to construct ∆ψab, the perturbation to the spacetime metric, and its time derivative, 

∂t∆ψab. We detail this procedure in appendix B.

2.2.3. Constraint satisfaction. Writing down the perturbed initial data equations is only the 

first half of the problem. In practice, we need to make sure that solving them produces data 

that satisfies the Hamiltonian and momentum constraints. In the unperturbed case, we simply 

check that equations (1) and (2) are satisfied. In the perturbed case, since we are computing 

a linear perturbation, we do not expect the full, non-linear constraints to be satisfied. Rather, 

the first-order linearization of these constraints should hold. We thus perturb these constraints 

to give

∆H ≡ ∆R + 2K∆K −∆KijK
ij − Kij∆Kij − 16π∆ρ, (45)

for the perturbed Hamiltonian constraint, and

∆Mi ≡ ∆g jk(DjKki − DiKjk)

+ g jk(∆(D)jKki −∆(D)iKjk + Dj∆Kki − Di∆Kjk)− 8π∆Si

 (46)

for the perturbed momentum constraint. Constraint-satisfying perturbed initial data will thus 

have ∆H = 0 and ∆Mi = 0.

In practice, these conditions will never be exactly satisfied, but we can check that these 

quantities tend toward zero with increasing numerical resolution. In our case, we use a spec-

tral code [30], and thus the constraint violation converges to zero exponentially. In order to 

give meaning to the level of constraint violation, we normalize each constraint by the magni-

tude of the fields contained therein.

2.3. Boundary conditions

Before solving elliptic equations for metric perturbations for a generic source ∆Tab, we must 

impose boundary conditions. Specifically, we must impose conditions on ∆ψ, ∆C , and ∆βi 

at spatial infinity (R → ∞). In our spectral code [30], we excise the black hole singularities 

from the computational domain via a surface that conforms to the apparent horizon (or is 

slightly inside the apparent horizon) [31]. Thus, for a background containing a black hole, we 

must specify boundary conditions on the excision surface. In the case of a black hole binary, 
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there are two such excision surfaces, one for each hole, and thus we must specify boundary 

conditions on each of them.

Let us now consider the boundary conditions we would impose in the case where the 

background spacetime contains a single black hole. First, the matter distribution, and hence 

the source of the perturbation, should decay at least as fast as 1/R2 as R → ∞. Thus, we can 

choose the conditions

∆ψ|r→∞ = 0, (47)

∆βi|r→∞ = 0, (48)

∆C|r→∞ = 0. (49)

These conditions agree with the perturbed boundary conditions for an isolated black hole 

spacetime given in [24, 25]. In practice, we extend the (finite) outer domain to R = 1014 M , 

more than sufficient to satisfy these conditions.

For conditions on the inner boundaries, which correspond to apparent horizons, we impose 

the set of apparent horizon boundary conditions for ψ, α, and βi  given in [24, 25]. The condi-

tions ensure that the surface has zero expansion, and has a desired value for the spin. In our 

case, we can perturb these apparent horizon boundary conditions to give conditions on ∆ψ, 

∆C , and ∆βi.

Specifically, for the unperturbed boundary conditions, the condition on ψ corresponds to 

setting the expansion of the surface to be zero, the condition on βi  corresponds to setting the 

spin and also setting the shear of the null rays on the horizon to be zero, while the condition 

on α is physically unconstrained and can be set with a Dirichlet condition. The condition on 

ψ takes the form

0 = −P̄i∂iψ − Bψ +
1

8

ψ4

αψ
(Cij)(L̄β

ij
− uij) +

ψ3

12
CijḡijK, (50)

where

N ≡

√

ḡijn̂in̂j, (51)

P̄i ≡
n̂jḡ

ij

N
, (52)

with n̂i being the normal vector to the inner boundary, and

Cij ≡ ḡij − P̄iP̄ j, (53)

B ≡
1

4N
(Cij)(∂jn̂i − Γ̄l

ijn̂l). (54)

When perturbing this condition, we must consider what to do with the perturbation to n̂i. 

If we set ∆n̂i
= 0, then the excision surface corresponds to a horizon for the background, and 

the overall shape of the surface is not perturbed. By choosing a non-zero ∆n̂i, we can, for 

example, set the expansion of the background metric plus the first-order metric perturbation 

to zero, and hence have the surface correspond to a linearly perturbed horizon. In this study, 

we set ∆n̂i
= 0 for simplicity.

M Okounkova et alClass. Quantum Grav. 36 (2019) 054001
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Perturbing equation (50), we thus obtain

0 = −∆P̄i∂iψ − P̄i∂i∆ψ −∆Bψ − B∆ψ

+
1

2

ψ3∆ψ

αψ
(Cij)(L̄β

ij
− uij)

−
1

8

ψ4

(αψ)2
∆C(Cij)(L̄β

ij
− uij)

+
1

8

ψ4

αψ
(∆Cij)(L̄β

ij
− uij)

+
1

8

ψ4

αψ
(Cij)(∆(L̄βij)−∆uij)

+
ψ2∆ψ

4
CijḡijK +

ψ3

12
∆CijḡijK +

ψ3

12
Cij∆ḡijK

+
ψ3

12
Cijḡij∆K

 

(55)

on the excision surface, where

∆N =
1

2N
∆ḡijn̂in̂j, (56)

∆P̄i
=

n̂j∆ḡij

N
−

n̂jḡ
ij

N2
∆N, (57)

∆Cij
= ∆ḡij

−∆P̄iP̄ j
− P̄i

∆P̄ j, (58)

∆B = −
1

4N2
∆N(Cij)(∂jn̂i − Γ̄l

ijn̂l),

+
1

4N
(∆Cij)(∂jn̂i − Γ̄l

ijn̂l)

+
1

4N
(Cij)(−∆Γ̄l

ijn̂l).
 (59)

Next, the background boundary condition on βi  takes the form

0 = βi
−

1

ψ3

n̂jg
ij

N
αψ − ξi (60)

on the inner boundary. Here, ξi is the vector

ξi
= ΩxXi

+ΩyY i
+ΩzZ

i, (61)

where Ωi  corresponds to the components of the orbital angular momentum, and Xi, Yi, and Zi 

have the form

Xi = (0,−z, y), (62)

Y i = (z, 0,−x), (63)

Zi = (−y, x, 0). (64)
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Now, when we perturb this condition, we must consider how to perturb Ωi . Setting this to a 

non-zero value gives a spin to the metric perturbation as well.

Perturbing equation (60), we thus obtain

0 = ∆βi
+ 3

1

ψ4
∆ψ

n̂jg
ij

N
αψ

−
1

ψ3

n̂j∆gij

N
αψ

+
1

ψ3

n̂jg
ij

N2
∆Nαψ

−
1

ψ3

n̂jg
ij

N
∆C

−∆ξi

 

(65)

on the excision surface, where ∆ξi is the vector

∆ξi = ∆ΩxXi
+∆ΩyY i

+∆ΩzZ
i. (66)

The Dirichlet boundary condition on α, meanwhile, can be perturbed to give a Dirichlet 

boundary condition on ∆C . However, we are already solving equation (55) for ∆ψ, and thus 

to uncouple these equations, we can instead try to drive ∆α to some desired value ∆αDesired 

on the excision surface via the Dirichlet condition

0 = ∆C − (∆ψα+ ψ∆αDesired). (67)

We can generalize the isolated black hole case to a binary black hole case, by applying 

equations (55) (65) and (67) to each excision surface corresponding to a horizon, and applying 

a boost in the case of an initial velocity.

2.4. Summary

Thus, in order to generate metric perturbation initial data given some source ∆Tab and back-

ground spacetime metric ψab, we solve the elliptic equations given in section 2.2.1 for ∆ψ, 

∆C , and ∆βi. We then apply the formulae in section 2.2.2 to construct ∆ψab, the perturbed 

spacetime metric for these variables. For the case where the background is an isolated black 

hole, we can apply the perturbed version of the horizon boundary conditions on ∆ψ, ∆C , and 

∆βi given in section 2.3. In order to generate stationary data on an isolated black hole back-

ground, we choose ∆Ωi in equation (65) to be equal to the Ωi  of the background.

Note that, as outlined in section 2.1, we have the freedom to choose ∆ḡij , ∆ūij , ∆K , and 

∂t∆K . To simplify the calculation in the isolated black hole case, we choose ∆ḡij = 0, and 

thus ∆gij = 4ψ3∆ψḡij. For stationarity, we choose ∆ūij = 0 and ∂t∆K = 0 to set as many 

time derivatives to zero as possible. We similarly choose ∆K = 0.

3. Solving for metric perturbations in dCS

3.1. Order reduction scheme

We now turn to applying the method for solving for metric perturbation initial data outlined in 

section 2 to isolated black holes in dynamical Chern–Simons (dCS) gravity. The dCS action 

for a metric ψab and scalar field ϑ is given by
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∫

d4x
√

−ψ

(

m2
pl

2
R −

1

2
(∂ϑ)2

−
mpl

8
ℓ

2
ϑ

∗RR

)

, (68)

where ℓ is a coupling constant with dimensions of length,

∗RR ≡ ∗RabcdRabcd (69)

is the Pontryagin density, where ∗Rabcd
=

1
2
ǫabef Ref

cd  is the dual of the Riemann tensor and 

ǫabcd ≡ −[abcd]/
√
−ψ  is the fully-antisymmetric Levi-Civita tensor, and mpl is the Planck 

mass.

Varying the action in equation (68), we obtain a sourced wave equation for the scalar field,

�ϑ =
mplℓ

2

8
∗RR, (70)

where � ≡ ∇a∇
a is the d’Alembertian operator. For the metric, we obtain a corrected Einstein 

field equation

m2
plGab + mplℓ

2Cab = Tab, (71)

where Tab is the kinetic stress–energy tensor of ϑ,

Tab = ∇aϑ∇bϑ−
1

2
ψab∇cϑ∇

c
ϑ, (72)

and

Cab ≡ ǫcde(a∇
dRb)

c
∇

eϑ+ ∗Rc
(ab)

d
∇c∇dϑ. (73)

Note that Cab contains third derivatives of the metric, and thus these equations of motion 

must likely not have a well-posed initial value problem [10]. However, in the perturbation 

limit we can solve these equations of motion using an order reduction scheme, expanding the 

metric and scalar field in powers of a parameter ε that counts powers of ℓ2:

ψab = ψ
(0)
ab +

∞∑

k=1

εkh
(k)
ab , (74)

ϑ =

∞∑

k=0

εk
ϑ
(k). (75)

The key is that at each order of this scheme, we will obtain equations of motion with the same 

principal part as GR. Perturbing around GR is justified in part by the first LIGO detection, 

which showed that deviations from GR in black hole systems are small [3].

At zeroth order in ε, we obtain for our equations of motion

m2
plGab[ψ

(0)] = T
(0)
ab , (76)

�
(0)

ϑ
(0)

= 0, (77)

where T
(0)
ab  is the stress–energy tensor constructed from ϑ(0). Since the zeroth order scalar field 

has no source, we can take ϑ(0)
= 0. This is turn means that the equation for the metric at 

zeroth order is a pure GR Einstein field equation.
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At first order, meanwhile, we obtain the equation

�
(0)

ϑ
(1) =

mpl

8
ℓ

2[ ∗RR](0)
 (78)

for the first-order scalar field ϑ(1), and the equation

m2
plGab[h

(1)] = −mplℓ
2C

(0)
ab + T

(1)
ab (79)

for the first-order metric perturbation, where Gab is the Einstein–Hilbert operator of the back-

ground acting on the metric perturbation. Here, C
(0)
ab  is the background value of the tensor 

defined in equation (73), and T
(1)
ab  is the first-order perturbation to the stress–energy tensor 

given in equation (72). However, both C
(0)
ab  and T

(1)
ab  are linear in ϑ(0), which vanishes, and 

hence −mplℓ
2C

(0)
ab + T

(1)
ab , the RHS of equation  (79) vanishes, leaving an unsourced metric 

perturbation,

m2
plGab[h

(1)] = 0. (80)

Thus, at first order in ε, h(1)  =  0, there is no modification to the metric, and the scalar field is 

governed by equation (78). Indeed, in [11], we evolved this ε1 system on a binary black hole 

background.

We now turn to order ε2, where we obtain a metric perturbation sourced by ϑ(1). Specifically, 

we obtain

m2
plGab[h

(2)] = −mplℓ
2C

(1)
ab [ϑ(1)] + T

(2)
ab [ϑ(1),ϑ(1)]. (81)

Here, the first term on the right-hand side is the perturbed C-tensor formed from the back-

ground metric and the non-vanishing first-order scalar field ϑ(1) (and hence is non-zero). The 

second term is the second-order perturbation to the stress–energy tensor, quadratic in ϑ(1), and 

hence also non-zero.

To simplify the equations and to more easily use the results of the previous section, it is 

useful to define a new variable Ψ by

ϑ
(1) ≡

mpl

8
ℓ

2Ψ, (82)

which gives, at first-order

�Ψ =
∗RR. (83)

Here all metric variables now correspond to the background (in other words, ∗RR = [ ∗RR](0), for 

example). Similarly, let ∆ψab correspond to the second-order metric perturbation by defining

h
(2)
ab ≡

ℓ4

8
∆ψab. (84)

The equation for the metric perturbation is thus

Gab[∆ψab] = Teff
ab (Ψ), (85)

where

Teff
ab (Ψ) ≡ −Cab(Ψ) +

1

8
Tab(Ψ). (86)

We can then write the C-tensor and matter terms in the form

Cab(Ψ) = ǫcde(a∇
dRb)

c
∇

eΨ+ ∗Rc
(ab)

d
∇c∇dΨ, (87)
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Tab(Ψ) = ∇aΨ∇bΨ−
1

2
ψab∇cΨ∇

cΨ. (88)

The first term of Cab vanishes when working on a vacuum GR background.

Thus, ∆ψab is governed by the Einstein tensor and is a perturbation off a GR background 

of the form ψab → ψab +∆ψab with source Teff
ab . Comparing this to equation (21), we can thus 

use the formalism developed in section 2 to solve for ∆ψab sourced by Teff
ab  on a black hole 

background.

3.2. Scalar field initial data

Before solving for ∆ψab, however, we need a scalar field Ψ on a black hole background that 

obeys equation (83). Moreover, in order to obtain stationary data for ∆ψab, we require that Ψ 

is stationary. Rather than attempting to find an analytical solution, we use the numerical solu-

tion for Ψ computed using the methods in [32]. This solution is valid for any spin. However, 

this solution is expressed in Boyer–Lindquist coordinates, which are singular at the horizon, 

and thus we transform to Kerr–Schild coordinates. The transformation to Kerr–Schild coordi-

nates is given, e.g. in [33].

We check that the solution for Ψ is constraint satisfying, and moreover that it is stationary. 

Note that the solution given in [32] has its own inherent resolution in terms of the number 

of radial and angular basis functions. Including more radial basis functions in this solution 

increases its stationarity. We interpolate the solution onto our grid, generally with a different 

resolution.

Given this solution for Ψ, we then construct the perturbed source terms of equations (A.20)–

(A.23) using ∆Tab = Teff
ab  computed from Ψ via equation (86).

3.3. dCS metric perturbation results

Given these source terms, we then apply the formalism developed in section 2 to solve for 

∆ψab. We verify that our results are convergent by checking the perturbed constraints given 

in section  2.2.3. We solve for the data on a set of nested spherical shells extending from 

the apparent horizon to R = 1014 M , all with equal numbers of spectral collocation points. 

Figure  1 presents the behavior of the normalized, perturbed Hamiltonian and momentum 

constraints with increasing resolution. The figure shows the exponential convergence of the 

constraints to zero as the numerical resolution increases. Higher spins in Kerr–Schild coor-

dinates require more grid points to fully resolve the solution, and thus have a slower level of 

convergence. Recall likewise that we wish to solve for stationary initial data. In practice, the 

stationarity converges with increasing resolution. However, at the same numerical resolution, 

a lower spin will have a greater stationarity, as measured by ‖∆gij‖/‖gij‖, than a higher spin. 

Thus, when comparing quantities across spins in practice, we choose resolutions that give the 

same level of non-stationarity to mitigate these spin-dependent effects.

In summary, we have constraint-satisfying data for the second-order metric perturbation in 

order-reduced dCS gravity. In figure 2, we plot the profiles for the scalar field Ψ as well as the 

conformal factor ∆ψ.

The extended conformal thin sandwich formalism can potentially suffer from ill-posedness 

and non-uniqueness problems if the equations do not have a positive-definite linearization  

[34, 35]. In our case, however, we do not see the appearance of non-unique solutions.
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4. Physics with dCS metric perturbations

We now consider what physics we can extract from these solutions for ∆ψab in dCS.

4.1. Regime of validity

To second order, the perturbed metric takes the form

ψab → ψab + ε2∆ψab (89)

where ε2 determines the amplitude of the metric perturbation. For the perturbative scheme to 

be valid, we require that ‖ψab‖ � ‖ε2∆ψab‖, where ‖‖ denotes the L2 norm of the field. The 

values of ε2 that satisfy this condition define the regime of validity. We can measure this value 

of ε2 by comparing the magnitudes of ψab and ∆ψab as

ε2
max = 0.1

(

‖
ψab

∆ψab

‖

)

min

. (90)

Here the ratio is taken pointwise on the domain, we have chosen a constant 0.1 for the com-

parison, and we find a global minimum (the minimum is close to the horizon, where the 

perturbation is the largest). We plot the results in figure 3, where for lower spins larger values 

of ε2 are allowed. Recall that ε counts powers of ℓ2/GM , and thus we can map this regime of 

validity result to ℓ as well.

4.2. Black hole shadows

One application of this initial data framework is to study modifications to the black hole 

shadow. Observing black hole shadows explores an entirely new scale of gravitational curva-

ture and thus can test GR in a wholly new way [23]. Since looking at the shadow effectively 

involves observing the behavior of test particles (photons) moving on geodesics in the space-

time, observing the shadows of stationary black holes serves as a metric test of GR.

4.2.1. EHT capabilities and previous work. Let us first review the capabilities of the event 

horizon telescope (EHT) for detecting black hole shadows. The EHT is a very long baseline 

interferometry array of radio telescopes around the world that aims to generate images of the 

black hole at the center of the Milky Way galaxy, Sgr A∗, as well as that of the M87 galaxy, 

with horizon-scale resolution. Electromagnetic images show not the actual horizon, but the 

region external to the light ring at 3GM/c2, which serves as a probe of the black hole shadow 

[20]. Resolving Sgr A∗ requires an angular resolution of O(10) microarcseconds (µas) [22]. 

Once complete, the array should have resolutions of up 23 µas at 230 GHz and 15 µas at 345 

GHz [19]. The size of Sgr A∗’s visible event horizon is predicted to be  ∼50 µas [36], with the 

photon ring contributing to 1–10% of the total flux [37].

Actually predicting what black hole images will look like for Sgr A∗ and M87, however, 

requires simulating the matter around the black hole using GRMHD simulations (see [22] 

for a review). However, as the shadow only depends on the black hole spacetime, the shadow 

is not affected by the presence of matter [38]. Nevertheless, observing the shadow free from 

obscuration due to the accretion onto the black hole (and gravitational lensing thereof) is a 

technical challenge. Additionally, interstellar scattering affects the resolution of the image 

[22]. In this study, we only consider null rays and the scalar field around a black hole other-

wise in vacuum when probing the shadow, and thus do not include the matter effects.
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How well can the edge of the shadow be detected? Psaltis et al [38] took advantage of 

the fact that the black hole shadow produces some of the steepest gradients in an image, and 

applied various edge-finding algorithms to locate the shadow. In practice, thus, it is possible to 

extract to an extent an edge corresponding roughly to the black hole shadow to within  ∼9%, 

assuming a given scattering kernel.

How well can current algorithms measure the properties of the black hole shadow of Sgr 

A∗? figure 13 of Psaltis et al [22] shows a combined posterior distribution for the black hole 

quadrupole moment q and the black hole spin a for a hypothetical observation of Sgr A∗. If 

the black hole is Kerr, then there should be a unique point in this space for each mass and spin 

on the curve q  =  −a2. EHT observations give a wide curve in the q-a space, while constraints 

from spin measurements from stars and pulsars around Sgr A∗ provide tighter constraints. 

Nevertheless, the spin in this posterior can only be predicted to an accuracy of σa ∼ 0.1.

Previous studies have calculated (without considering matter effects) black hole shadows 

in alternative theories of gravity (see [36] and [22] for a review). Additionally, [39] reviews the 

detectability of effective deviation parameters from otherwise GR predictions.

4.2.2. Computing the shadow. We now compute the second-order deviation to the black hole 

shadow in order-reduced dynamical Chern–Simons gravity. Recall that we have solved for a 

metric perturbation ∆ψab around an isolated black hole of a given spin. We can then add it 
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Figure 1. Convergence of the perturbed constraints with resolution for a metric 
perturbation ∆ψab on a Kerr background with given dimensionless spin χ. We evaluate 
the constraints on the entire numerical grid. The horizontal axis is the number of radial 
basis functions NR times angular basis functions NL in a representative subdomain of 
our numerical grid. As this number increases, the constraint violation exponentially 
converges to zero. Higher-spin black holes require more grid points to achieve the same 
level of constraint satisfaction in the metric perturbation as lower-spin black holes, just 
as for the unperturbed background spacetime.
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to the background metric ψab via a coupling parameter ε2 that lies in the regime of validity 

outlined in section 4.1. The overall metric is thus

ψ
pert
ab ≡ ψab + ε2∆ψab. (91)

We compute the dCS black hole shadow in this metric, which will be correct to second order. 

Note that since we have solved for stationary data, we only need to evolve geodesics on one 

Figure 2. Plot of the numerical solution for Ψ from [32] (left) and perturbed conformal 
factor ∆ψ (right) on a spin χ = 0.6 black hole background, shown in the y -z plane. 
Note that the solution is axisymmetric about the z-axis.

0.2 0.4 0.6 0.8
χ

0.050

0.075

0.100

ε
2

Allowed

Not allowed

Figure 3. Evaluation of the regime of validity as given by equation (90), for various 
values of spin. The top region is not allowed by perturbation theory, while the bottom 
region is allowed. The stars denote the values of χ at which we have evaluated 
equation (90). We can compare this to the regime of validity figure given in [32].
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time slice to trace the shadow, as all of the slices will be the same. Note also that since the 

shadow is a physical observable, we do not need to worry about gauge effects.

To probe the shadow, we use the geodesic integration methods (and corresponding code) 

outlined in [40] and [41]. We refer the reader to those papers for a technical discussion. 

Schematically, we start geodesics from a camera some C = O(10)M  away from the black 

hole, and integrate them backwards in time. The geodesics that make it to past null infinity 

(which we approximate as a distance of 2C from the black hole in order to avoid integrating 

geodesics to infinity) are labeled as not in the shadow, while the geodesics that converge onto 

the horizon determine the edge of the shadow. The code has built-in refinement, and with 

increasing resolution more geodesics are added along the shadow edge.

4.2.3. Analyzing the shadow. We now present a novel way to analyze the black hole shadow 

as computed from evolving null geodesics. Note that there exist previously-proposed methods 

of analyzing the shadow [42]. Given the shadow edge in the x-y  plane of the camera (also 

known as the image plane), parameterized as two functions x(θ) and y(θ) where θ is the angle 

about some chosen center, we can Fourier decompose the shadow edge as

x(θ) = a0 +

N∑

n=1

an cos(nθ), (92)

y(θ) = b0 +

N∑

n=1

bn sin(nθ), (93)

up to some number N of fitting coefficients. We define a measure of the power in each Fourier 

mode as

fn ≡

√

a2
n + b2

n. (94)

In this procedure, one must take precautions in defining the axes and the origin for θ. 

Suppose we have an image of a black hole shadow. For simplicity, assume that the spin axis 

has no component normal to the plane of the camera, but has some arbitrary orientation in that 

plane. Given such an image, we can find a line about which the image has a reflection sym-

metry. Let this be the x-axis (in the case of χ = 0, we can take any axis).

Next, we need to define an origin {x0, y0} in the x-y  plane from which to measure the angle 

θ. For y 0, we can simply choose y 0  =  0 since we have defined y   =  0 to be the axis of reflec-

tion symmetry. For x0, however, we need to be more careful. In the χ = 0 case, for example, 

one can choose an x0 such that the decomposition has an artificially non-zero n  =  2 multipole. 

Thus, we choose x0 to be the point at which the value of f 2 is minimized. We show the result 

of this procedure in figure 4.

We also check that the values of the coefficients given in the decomposition (94) converge 

with resolution. We show a quantitative convergence analysis in figure 5. We check conv-

ergence for each shadow we analyze, for a given χ and ε2.

The n  =  0 multipole refers to the coordinate location of the shadow center in the plane 

of the camera, which is not gauge-invariant and hence not meaningful. The n  =  1 multipole 

corresponds to the ‘size’ of the shadow, and is proportional to both the mass of the black hole 

and the distance to the camera. Thus, the value of the n  =  1 multipole is not meaningful as 

there is a mass-distance degeneracy. However, dividing all of the n  >  1 multipoles f n by f 1 

gives normalized values that are independent of the mass and distance, and in the ε2
= 0 case, 

only dependent on the dimensionless spin. We have verified this numerically by changing the 
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mass of the black hole, and checking that the normalized n  >  1 coefficients remain the same. 

We thus focus out attention on the n  >  1 multipoles normalized by f 1, which have physical 

meaning.

Now, in the presence of a nonzero ε, we still apply this same procedure (orienting on the 

axis of reflection symmetry, finding the center by minimizing f 2, then dividing through by f 1). 

Note that in this case, we expect the higher multipoles to have a different dependence on χ and 

now ε. We will need to observe at least two multipoles to perform a consistency check with the 

ε = 0 case, or to estimate ε and χ if we find ε �= 0.

4.2.4. Results. Let us now analyze the black hole shadow using the procedure outlined in 

this section for various dimensionless spins χ of the background black hole and perturbation 

parameters ε2. In accordance with the feasibility study shown in figure 13 of [22], we concen-

trate our attention on spins of χ = 0.6. In figure 6, we plot the black hole shadow for χ = 0.6 

for ε2
= 0 (i.e. the shadow as predicted by GR) and ε2

= 0.05, the maximal value allowed by 

the regime of validity. Additionally, we plot the GR shadows for χ = 0.7 and χ = 0.9 black 

holes. We see that shifting the spin away from 0.6 has a greater effect than adding a dCS per-

turbation. Given the σa ∼ 0.1 spread in the recovered spin for the trial EHT measurement in 

[22], it is informative to compare the effect of increasing χ by 0.1 versus increasing ε2 to its 

maximum valid value at a given χ. We see that the effect increasing ε2 on the visual shape of 

the shadow is less than the effect from increasing χ.
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Figure 4. Results of our procedure for designating the center (and hence the origin for 
the angle θ) of a black hole shadow for χ = 0.9 and ε2

= 0. We find the central value 
of x by minimizing the recovered n  =  2 multipole for each trial value. Here, we plot in 
the dashed black line the optimal value of x. We see that when x is chosen to minimize 
n  =  2, it also minimizes the artificial n  =  0 multipole. Note that the minimum value of 
the n  =  2 multipole is finite, as the shadow shape is non-spherical. Additionally, we 
plot the difference between the n  =  1 multipole and its maximum value, finding that 
it attains the maximum near but not at the optimum center value as the shape is not 
exactly spherical.
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We can quantitatively analyze the shape of the shadow by considering the values of f2/f1 

and f3/f1, the two dominant normalized multipoles. Considering again spins around χ = 0.6, 

we plot the values of these multipoles with increasing ε2 in figures 7(a) and (b). We see that, 

for a given spin, as we increase ε2, the values of f2/f1 and f3/f1 linearly deviate away from the 

ε2
= 0, GR prediction. Since the shadow, with the mass normalized away, is dependent only 

on χ and ε2 in dCS, we can map

{χ, ε2} → { f2/f1, f3/f1}, (95)

for each choice of χ and ε2.

While the mapping shown in equation (95) is unique for each {χ, ε2} pair, it may not be 

invertible. In other words, degeneracies may exist such that a given pair { f2/f1, f3/f1} can be 

generated by more than one combination of {χ, ε2}. In particular, this degeneracy can spoil a 

GR null hypothesis test using the shadow. Suppose there exists a spin χa and ε2
a �= 0 combina-

tion such that the corresponding f2/f1 and f3/f1 values are equal to those of a χb and ε2
b = 0 

shadow. Then, we would not be able to distinguish a black hole with a dCS perturbation from 

a Kerr black hole with a different spin.

We explore this potential degeneracy in figure 8. Using the ε2
= 0 values of f2/f1 and 

f3/f1 for various spins, we trace out a curve in this multipolar parameter space. This curve is 

solely parametrized by spin χ, and any deviation away from this curve corresponds to some 

additional, non-Kerr effects. We call this the ‘Kerr’ curve. Then, considering χ = 0.6 and 

neighboring spins, we consider the effect of adding an ε2
= 0.05 dCS perturbation. We see 

10
2

Number of Geodesics

10
−2

10
−1

10
0

10
1

‖f
n
−

f
∗ n
‖/

‖f
∗ n
‖

n = 1

n = 2

n = 3

n = 4

n = 5

Figure 5. Convergence of the shadow multipoles with resolution for a spin χ = 0.9 
black hole for ε2

= 0. For each multipole (n  =  1 to n  =  5), we plot the normalized 
difference of the value of the multipole from the highest resolution value (denoted as 
f ∗n ), as a function of resolution. Here, the x-axis corresponds to the number of geodesics 
that converge onto the horizon when integrated backwards in time, and hence are used to 
image the black hole shadow. As we increase this resolution, the normalized differences 
from the highest resolution value decrease. We see that the higher multipoles, which 
take more geodesics to resolve, converge more slowly than the lower multipoles.
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that in the presence of ε2 �= 0, the multipolar values deviate away from the Kerr curve. In 

other words, we do not have a χ-ε2 degeneracy. This in turn makes a GR null-hypothesis test 

possible using dCS shadows. On the other hand, we can also see from the figure that it may be 

difficult to distinguish various {χ, ε2 �= 0} pairs. However, since ε2 is a universal parameter, 

observing more and more black hole shadows in practice should statistically narrow the value.

Let us now consider these results in the context of the EHT capabilities outlined in sec-

tion 4.2.1. We claim, given our investigation of the shape of the shadow, that precisely quanti-

fying χ and ε2 for Sgr A∗, for example, may be infeasible with the current EHT resolution. 

Given that observations can yield a spread of as much as 0.2 in the spin, and given that we 

have seen that dCS effects for the maximum allowed values of ε2 are smaller than a 0.1 

increase in the spin, it will be difficult to observe such a deviation with the EHT. However, 

increasing the resolution of EHT shadow edge observations will allow us to perhaps probe 

these small effects, in part to perform an analysis to check for ε2
= 0 consistency, or at least 

bound large values of ε2.

Suppose that an external measurement of the mass of Sgr A∗ was available. Because the 

size of the shadow on the camera depends not only on mass but also on distance, we would 
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Figure 6. Visualization of black hole shadows. The x- and y -axes correspond to 
camera coordinates for a camera resolving the black hole, and thus are not physically 
meaningful. The shape of each shadow has been normalized by its overall ‘size’ as 
given by the n  =  1 multipole. Likewise, each shadow has been centered according the 
procedure described in this paper. We plot the shadow for spin of χ = 0.6, with dCS 
perturbation parameters ε2

= 0 and ε2
= 0.05, the maximum allowed within the regime 

of validity. Zooming in, we see a difference in the two shadows. However, increasing 
the spin to χ = 0.7 without a dCS perturbation (and even χ = 0.9) has a stronger effect 
on the shape of the shadow. We have checked that increasing the resolution of the 
shadow by integrating more geodesics has a smaller effect than aforementioned the 
physical effects.
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need to have a measurement of the distance of Sgr A∗ as well. In this case, we would not need 

to normalize all of f >1 coefficients by f 1, since the mass would be known. However, the f 1 

multipole is independent of spin, and thus a deviation of the f 1 multipole predicted from an 

independent measurement of the mass and distance of Sgr A∗ could point to a non-GR signa-

ture. Such an analysis was performed, for example in [38].

On the other hand, suppose there were an independent measurement of the spin of Sgr A∗ 

from pulsars [43], with tighter constraints than the example shown in [22]. If χ was known 

precisely from pulsar measurements, then we would simply use the value of the dominant 

multipole f 3 to observe deviations from the predicted value in the case of ε2 = 0. Figure 7(b) 

shows the value of f 3 away from its predicted GR value for a spin of χ = 0.6, for example. 

Knowing precisely the value of χ would thus allow us to constrain the value of ε2 in the ε2
–f 3 

space. However, we must be careful in noting that this would only serve as a null-hypothesis 

test of GR, as inferring χ from pulsar measurements (presently) assumes that GR is the under-

lying model.

5. Conclusion

In this paper, we have presented a method for numerically generating metric perturbation 

initial data (section 2), applied it to dynamical Chern–Simons gravity (section 3), and investi-

gated black hole shadows in the presence of dCS metric perturbations (section 4).

The metric perturbation initial data computation is fully general, meaning that given some 

metric perturbation source, background spacetime, and boundary conditions (as well as speci-

fying a choice of the free data), we can produce constraint-convergent first-order metric per-

turbation results. In particular, we can easily extend the dCS initial data results for a single 
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Figure 7. Values of the f 2 (left panel) and f 3 (right panel) coefficients of the black hole 
shadow, as calculated using the methods outlined in section 4.2.3. Each coefficient is 
normalized by f 1, which corresponds to the size of the shadow. Each dashed line shows 
the ε2

= 0 value of the coefficient, corresponding to an unperturbed GR black hole, 
for spins χ = 0.5, χ = 0.6, and χ = 0.7 (as labeled on the plot). Since the shadow 
in GR becomes less spherical with increasing spin, it is consistent that the f 2 and f 3 
coefficients, which correspond to non-spherical multipoles, increase with spin. For each 
spin, we also plot the values of the multipoles when we introduce a dCS perturbation of 
the form ψab + ε2∆ψab. As we increase ε2 (up to a value given by the regime of validity 
of perturbation theory), we see that these coefficients increase as well, in a power-law 
fashion. We have checked that increasing the resolution of the shadow by integrating 
more geodesics leads to convergent results for the multipoles, and does not affect the 
results on the scale presented here.
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black hole presented in this paper to the binary case. We can also, for example, apply this ini-

tial data formalism to explore linear versus non-linear metric perturbations in a standard Kerr 

spacetime, as our metric perturbation data is constraint-satisfying to first order (for example, 

to compare to the metric perturbation data used in [44] and [45]).

Future work in this program involves evolving dCS initial metric perturbations. This is 

done following the order-reduction scheme (see section 3.1 and [11]), which guarantees well-

posedness, as each order in the scheme has the same principal part as the general relativity 

background. One possibility is to evolve a single spinning black hole to see if it is stable. A 

second is for the binary black hole case. There, we can evolve the metric perturbation sourced 

by the dCS scalar field and generate perturbed gravitational waveforms, thus performing the 

next step of the program outlined in [11].
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Appendix A. Perturbed extended conformal thin sandwich quantities

In this appendix, we derive the first-order perturbations to all of the extended conformal thin 

sandwich quantities, which enter into equations (32), (37) and (44).

First, the perturbation to the inverse of the conformal spatial metric is

∆ḡij = −ḡikḡ jm∆ḡkm. (A.1)

We can use this to obtain the useful identities

∆Vi = ∆ḡijV
j
+ ḡij∆V j,

 (A.2)

∆Fkl
= ∆ḡkiḡljF

ij
+ ḡki∆ḡljF

ij
+ ḡkiḡlj∆Fij,

 (A.3)

∆F = ∆ḡijFij + ḡij
∆Fij, (A.4)

for vectors V i with perturbation ∆V i  and tensor Fij with trace F and perturbation ∆Fij.

The covariant derivative operator D̄ will also have a perturbation. We perturb the Christoffel 

symbols corresponding to ḡij to obtain

∆Γ̄
i
jk =

1

2
∆ḡil(∂kḡlj + ∂jḡlk − ∂lḡjk) +

1

2
ḡil(∂k∆ḡlj + ∂j∆ḡlk − ∂l∆ḡjk).

 (A.5)

This in turn gives the useful perturbed derivative identities

∆(D̄)iS = 0, (A.6)

∆(D̄)iS = ∆ḡijD̄jS, (A.7)

∆(D̄2)S = ∆ḡij∂i∂jS −∆ḡijΓ̄l
ij∂lS − ḡij∆Γ̄l

ij∂lS (A.8)

∆(D̄)iV
j
= ∆Γ̄i

jkVk, (A.9)

∆(D̄)iVj = ∆Γ̄k
ijVk, (A.10)

∆(D̄)iV j
= ∆ḡikD̄kV j + ḡik∆Γ̄ j

klV
l, (A.11)

∆(D̄)kFij = −∆Γ̄m
kiFmj −∆Γ̄m

kjFim, (A.12)

∆(D̄)kFij
= ∆Γ̄i

kmFmj
+∆Γ̄ j

kmFim, (A.13)

for any scalars S with perturbation ∆S, vectors V i, with perturbation ∆V i , and tensor Fij, with 

perturbation ∆Fij. The parenthesis in expressions such as ∆(D̄2)S  refer to the perturbation on 

just the derivative operator.
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Then we can compute the perturbation to the spatial Ricci tensor as

∆R̄ij = ∂m∆Γ̄m
ij −

1

2
(∂i∆Γ̄m

mj + ∂j∆Γ̄m
mi)

+∆Γ̄m
ij Γ̄

n
nm −∆Γ̄m

inΓ̄
n
mj + Γ̄m

ij∆Γ̄n
nm − Γ̄m

in∆Γ̄n
mj

 (A.14)

and ∆R̄ can then be computed using equation (A.4).

Meanwhile, the perturbation to L̄βij, defined in equation (15), is

∆(L̄β)ij = ∆(D̄)iβ j + D̄i∆β j +∆(D̄) jβi + D̄ j∆βi

−
2

3
∆ḡijD̄kβ

k
−

2

3
ḡij(∆(D̄)kβ

k + D̄k∆β)k.
 (A.15)

For simplicity, we can group the terms with the background derivative operators operating on 

∆βi, defining

∆(L̄β)ij = (L̄∆β)ij + (∆L̄β)ij, (A.16)

where

(L̄∆β)ij ≡ D̄i∆β j + D̄ j∆βi −
2

3
ḡijD̄k∆βk, (A.17)

and

(∆(L̄)β)ij ≡ ∆(D̄)iβ j +∆(D̄) jβi −
2

3
∆ḡijD̄kβ

k −
2

3
ḡij∆(D̄)kβ

k. (A.18)

Finally, the perturbation to Āij, defined in equation (14), is

∆Āij
= 7

ψ6∆ψ

2αψ
((L̄β)ij

− ūij)−
ψ7

2(αψ)2
∆C((L̄β)ij

− ūij)

+
ψ7

2αψ
(∆(L̄β)ij

− ∆̄u
ij
).

 (A.19)

The perturbations to the source terms given in equations (4)–(7) are

∆ρ ≡ ∆nanbTab + na∆nbTab + nanb∆Tab, (A.20)

∆Si ≡ −∆gijnaTaj − gij∆naTaj − gijna∆Taj, (A.21)

∆Sij ≡ ∆giagjbTab + gia∆gjbTab + giagjb∆Tab,
 (A.22)

∆S ≡ ∆gijSij + gij∆Sij. (A.23)

For a vacuum background (Tab  =  0), these terms simplify to give

∆ρ ≡ nanbψ
acψbd∆Tcd = nanb∆Tab, (A.4)

∆Si ≡ −gijna∆Taj, (A.25)

∆Sij ≡ ∆Tij, (A.26)

∆S ≡ gij∆Sij. (A.27)

Note that all of the above terms use the background variables without applying a conformal 

transformation.
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Appendix B. Reconstructing the perturbed spacetime metric

In this appendix, we detail how to reconstruct the (non-conformal) spatial metric, ∆gij , and 

its time derivative, ∂t∆gij , from the perturbed extended conformal thin sandwich variables 

solved for in section 2.2. This in turn allows us to construct the perturbation to the spacetime 

metric, ∆ψab, and its time derivative, ∂t∆ψab.

We obtain, perturbing equation (8)

∆gij = ψ4∆ḡij + 4ψ3∆ψḡij, (B.1)

and

∆gij = ψ−4∆ḡij − 4ψ−5∆ψḡij. (B.2)

For uij, we perturb equation (10) to give

∆uij = ψ4∆ūij + 4ψ3∆ψūij, (B.3)

which is in turn related to ∂t∆gij  through perturbing equation (9) to give

∆uij = ∂t∆gij −
2

3
∆gij(−αK + Diβ

i)

−
2

3
gij(−∆αK +∆(D)iβ

i
− α∆K + Di∆βi).

 (B.4)

Finally, the perturbed extrinsic curvature ∆Kij can be reconstructed from ∆K  and the 

solved variables following equations (12) and (13) as

∆Kij = ∆Aij +
1

3
(∆gijK + gij∆K), (B.5)

where

∆Aij = ψ−2∆Āij − 2ψ−3∆ψĀij. (B.6)

In addition to ∆gij  and ∂t∆gij , some applications, such as computing the black hole shadow, 

require the perturbation to the full spacetime metric ψab → ψab +∆ψab and its time derivative 

∂t∆ψab. We thus construct the spacetime metric perturbation as

∆ψab =

(
−2α∆α+∆βmβ

m + βm∆βm ∆βi

∆βj ∆gij

)

. (B.7)

For the time derivative, given by applying the chain rule to the terms in equation (B.7), we 

need to specify the time derivatives of βi , α, ∆βi, and ∆α. For the background case, we can 

freely specify ∂tβ
i
= 0 and ∂tα = 0 [12]. We can apply the same principle to the perturbed 

data, and freely set ∂t∆α = 0 and ∂t∆βi = 0. For a stationary background (∂tψab = 0, where 

∂t is a linear combination to Killing vector fields), we obtain

∂t(∆βmβ
m + βm∆βm)

= ∂t(∆gmiβ
iβm + gmi∆βiβm + gmiβ

i∆βm)

= ∂t∆gmiβ
iβm,

 (B.8)

and thus

∂t∆ψab =

(
∂t∆gijβ

iβ j ∂t∆gijβ
j

∂t∆gijβ
i ∂t∆gij

)

. (B.9)
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