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Abstract
We present a scheme for generating first-order metric perturbation initial
data for an arbitrary background and source. We then apply this scheme
to derive metric perturbations in order-reduced dynamical Chern—Simons
gravity (dCS). In particular, we solve for metric perturbations on a black
hole background that are sourced by a first-order dCS scalar field. This gives
us the leading-order metric perturbation to the spacetime in dCS gravity.
We then use these solutions to compute black hole shadows in the linearly
perturbed spacetime by evolving null geodesics. We present a novel scheme
to decompose the shape of the shadow into multipoles parametrized by the
spin of the background black hole and the perturbation parameter £2. We
find that we can differentiate the presence of a pure Kerr spacetime from a
spacetime with a dCS perturbation using the shadow, allowing in part for a
null-hypothesis test of general relativity. We then consider these results in the
context of the event horizon telescope.
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1. Introduction

Einstein’s theory of general relativity (GR) has passed all precision tests to date [1]. In
particular, model-independent tests using binary black hole merger data from the Laser
Interferometry Gravitational Wave Observatory (LIGO) are consistent with GR at the 96%
confidence level [2—4].

However, at some length scale GR must be reconciled with quantum mechanics in a theory
of quantum gravity. Black holes and black hole binaries probe the strong-field, non-linear,
high-curvature regime of gravity, and thus observations of these systems might contain signa-
tures of quantum gravity. Our goal is to predict these signatures.

We know from the first LIGO detections that deviations from GR are small, and thus rather
than considering black holes in a fully quantum theory, we can calculate their properties in
effective field theories (EFTs). These theories involve adding perturbative quantum-gravity-
motivated terms to the Einstein—Hilbert action of general relativity. Since these theories are
classical, we can hope to apply the numerical tools used to study GR (a classical theory) to
these quantum-gravity-motivated theories.

One such EFT is dynamical Chern—Simons gravity (dCS), which modifies the action of
GR through the inclusion of a scalar field coupled to spacetime curvature [5]. In particular,
this theory has motivations in string theory [6], loop quantum gravity [7, 8], and inflation [9].
The full effective field theory, however, most likely does not have a well-posed initial value
formulation [10]. However, we can expand the theory around general relativity in order to
guarantee a well-posed system of equations at each order [11]. This is in part justified by the
first LIGO detection, which found deviations from GR in black hole systems to be small [3].
In a previous study, we investigated the leading-order behavior of the dCS scalar field in a
binary black hole system, quantifying the amount by which gravitational waves in dCS gravity
would differ from those in pure GR [11].

In this study, we numerically compute metric perturbations in dCS. In other words, we cal-
culate to leading order the modifications to a pure GR spacetime due to the presence of the dCS
scalar field. Such modifications will be required , for example, as initial data to perform binary
black hole simulations involving a dCS metric perturbation. We thus produce and test a formal-
ism for generating metric perturbation initial data based on the extended conformal thin sand-
wich formalism (see [12] for a review). Previous studies have considered such modifications,
but we present the first such formalism that can be used in the binary black hole case [13-18].

In addition to LIGO, an instrument coming online that will have the power to probe the
strong-field regime of gravity is the event horizon telescope (EHT). The primary goal of this
instrument (a very long baseline interferometry array of radio telescopes) is to image black
hole event horizons, including those of Sgr A*, the black hole at the center of the Milky Way
galaxy, and the black hole of the center of the M87 galaxy [19, 20]. The EHT in part has the
power to image the black hole shadow, a dark region on the image corresponding to angles at
which no photons reach the observer, because of light-bending and the presence of an event
horizon. The shadow, for a black hole with a given mass and spin, has a precise shape pre-
dicted by GR, and thus deviations from this shape can be used to test the theory [21, 22]. Since
the paths of photons are determined by the spacetime itself, resolving the shadow corresponds
to directly probing the metric of the spacetime, and hence is a metric test of GR. Moreover,
predictions for black hole shadows exist in other theories of gravity. Thus one can go beyond
performing a null-hypothesis test of GR and instead test specific theories. Additionally,
since the mass of Sgr A* is ~10° M, whereas the masses of black holes observed by LIGO
are ~10 M, the EHT probes gravity on a wholly new scale [23].
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Given dCS metric perturbations, our goal is to compute the black hole shadow in a dCS-
modified spacetime, and quantify the effects (including degeneracies) on the shape of the
shadow as a function of mass, spin, and the dCS coupling parameter. We can then estimate
whether the EHT would be able to resolve these deviations.

1.1. Roadmap and conventions

This paper is organized as follows. In section 2, we derive and provide all of the equations for
the formalism for generating metric perturbation initial data. In section 3, we specifically
apply this formalism to black holes in dCS gravity, presenting convergent initial data results.
In section 4, we present results using stationary dCS metric perturbation initial data to calcu-
late black hole shadows. We conclude in section 5.

We set G = ¢ = 1 throughout. Quantities are given in terms of units of M, the ADM mass
of the system. Latin letters in the beginning of the alphabet {a,b,c,d ...} denote 4D space-
time indices, while Latin letters in the middle of the alphabet {i,j,k, ...} denote 3D spatial
indices. 14, refers to the spacetime metric, while g;; refers to the spatial metric from a 3 + 1
decomposition with corresponding timelike unit normal one-form n, (see [12] for a review of
the 3 + 1 ADM formalism).

2. Solving for general metric perturbation initial data

2.1. Overview

In standard numerical general relativity, initial data is often generated using the extended
conformal thin sandwich formalism [24-28]. A thorough review of this method is presented
in [12] and a derivation is presented in [29]. This formalism decomposes the 3 + 1 ADM
Hamiltonian and momentum constraints, as well as the equation for the time derivative of the
extrinsic curvature, to generate a set of elliptic equations to numerically solve for initial data.

Recall that in the 3 + 1 decomposition, the constraints and time derivative of the extrinsic
curvature are given as

R+ K* — K;KY = 167p, (D)
D;(KY - g'K) = 8x¥', ©)

9K = a(R; — 2K;K*; + KK;;) — D:Dja

1 . . . (3)
— 8’/TO£(SU — Eg,»j(S —p)+8 OKij + K 0; 8" + Kij0:8%,

where g;; is the spatial metric with corresponding covariant derivative D;, « is the lapse, and
[ is the shift. Kj; is the extrinsic curvature with trace K, and R;; is the spatial Ricci tensor with
trace R. The matter terms p, S S, and § are defined with respect to the stress—energy tensor
T.» and timelike unit normal one-form n, as

p= nany T, 4
S'= —g"n"T,, 5)
S = Giagip T (6)
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S = ¢Sy, )
where the time-space components of the spatial metric are given via g,, = ¥, + ngny, for
spacetime metric .

The extended conformal thin sandwich formalism involves writing the spatial metric in
terms of a conformal metric g;; as

gi =¥z, (8)

where v is known as the conformal factor. Additionally, the time derivative of the spatial
metric is decomposed as

2 .

wj = 0igij — gg,'j(—ozK + Dif"), ©)
where the function u;; is related to the time derivative of the conformal metric as

wy = iy, (10
with

uj = 0,8 (11)

In this formalism, the extrinsic curvature is decomposed into traceless and trace parts as
1
Ky = Ay + 38K, (12)

where Aj; is the traceless part of Kj;, and is conformally transformed as

Ay =4y, (13)
with

A

AV = w((Lﬁ)U — i), (14)

(L)' =D'B+ DB’ — %g"fbkﬂ". (15)

Here, D; refers to the covariant derivative with respect to the conformal metric, g;;.
Having defined all of these quantities, we can now recast equations (1)—(3) to give an ellip-
tic equation for the conformal factor,

~ | | 1 I

DM — QYR — S K 4 gy TAAY = 2wy, (16)
an elliptic equation for the shift,

_ . o _ . 4 _ . .

(ALB) — (LB)DjIna = aD;(a~'a") + gdw6D’K + 16wax''s', (17)
and an elliptic equation for o),

D (o) = (Lo P AAD + K 4 R

8 v 12 8 (18)

+2mp*(p +28)) — V9K + ¢’ B'DK.
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H_ere, a= w‘6a is the densitized lapse, R is the conformal Ricci scalar computed for g;;, and
(ALB)! is the vector Laplacian (see [12]).
In the extended conformal thin sandwich formalism, we are freely allowed to specify

’Free data : gy, i, K, O,K |, (19)
and solve for the variables
| Solved data : ¢, 5, at) | (20)

We are interested in solving for initial data for linear metric perturbations of the form

wab — wab + Awab (21)

In order to solve for perturbed initial data, we will perturb the extended conformal thin sand-
wich equations. Our overall goal is to perturb each of these equations to linear order, which
will give us elliptic equations for the perturbed variables with the same principal part as the
background equations. Throughout, we will denote by AX the first-order (linear) perturbation
to some variable X. We perturb each of the variables as

P =Y+ A, (22)
B — B+ AB, (23)
a) = a4+ (el + Aar)), (24)

and solve for A, the perturbation to the conformal factor, AB, the perturbation to the shift,
and

AC = Alap) = aAy) + Aag), (25)

the perturbation to the lapse times the conformal factor.
The equations will additionally involve perturbing metric quantities to first order, such as

8 — &j + Agi, (26)
wj — Wi + Anyj, (27)
K — K+ AK, (28)
0K — 0K + 0;AK, (29)

where Az = 0;Ag;;. We outline these terms in more detail in appendix A.
Much like we have the solved data and free data in the extended conformal thin sandwich
formalism, we will have

’ Perturbed free data : Agy;, Au;, AK, O,AK |, (30)

and

’ Perturbed solved data : Ay, AS, AC ‘ 3D
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2.2. Perturbed initial data formalism

We now perturb equations (16)—(18) to obtain elliptic equations for A, A3, and AC. Each
of these equations involves the perturbations to the extended conformal thin sandwich quanti-
ties. For example, the equations will include the first-order perturbation to A7 (defined in equa-
tion (14)), denoted AAY. We leave the derivations of the perturbations to all of the extended
conformal thin sandwich quantities to appendix A, and present the perturbations to the elliptic
equations for A, A3, and AC here.

2.2.1. Perturbed equations. Perturbing equation (16) yields an elliptic equation for A). We
obtain

0=—D*A¢ — A(D*)p

+ lAsz + lqmz’e + iw‘*sz + lqﬂmk
8 8 12 6 32)
+ %WSAMUAU _ %¢*7(Mij;sff + Ay ALY

— 2m(S* A + ¥ Ap),

where D?Aq) is the principal part of this perturbed equation.
Perturbing equation (18) yields an elliptic equation for AC. Since this equation is longer,
we will do it piece by piece, splitting the original expression as

_ 7 _g= =i 5 1
0= —D*(arh) + o) <1/;8AijA” + 'K+ R)
N 8 12 8

Principal part
Non-matter terms (3 3 )

—° 9K + 1’ BDiK + a2mip* (p + 25) .

Non-matter terms Matter terms

Perturbing the matter terms, we obtain
A(C Matter terms) = 2w (ACY* (p + 28) + dapyp? A (p + 28) + ayp* (Ap + 2A8)). (34)
Next, perturbing the non-matter terms, we obtain

A(C Non-matter terms) = AC (%1/}78;1,;,-;&” + %¢4K2 + éR)

+agp(~TAYAGAT + Ly (ARAT + Ay AR0)
+ %w%w@ + %z/)“KAK + %AR)
— 50" AYOK — P 8,AK
+ 5¢*AYB DK + ¢’ AB'DK + 1’ B'D:AK. 5
Finally, for the perturbation to the principal part, we obtain
A(C Principal part) = —D*(AC) — A(D*)(a)), (36)

where the first term gives us the principal part for the perturbed equation. We combine these
terms into an overall elliptic equation for AC

A(C Principal part) + A(C Non-matter terms) + A(C Matter terms) = 0,
37)
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where the perturbed terms are given in equations (34)—(36).
In order to complete our system of equations, we perturb equation (17) to obtain an equa-
tion for AS'. In practice, we solve the momentum constraint with the principal part

_ 1 - .
—avD: | —(LR)Y
ot ’(aw( 8) ) (38)
where the momentum constraint has been rewritten using as
_ 1 - .
= —ayD; < LG ’f)
J w ( )

. 1/1 _ DjOZ’L/J 4 o)

D’ — AD; —D'K
+ Djui i) — s + 30
+ 16m¢w3si. (39)

For simplicity, we split up equation (39) as
— oD, ( Ls )
J w ( )
Principal part

= . lda) - D az/; 4 o)

+D;u’ — AUD; i) — + - —DK
’ P ap 39
Non-matter terms

+16manpp’st. (40)
N————’

Matter terms

Perturbing the matter terms, we obtain
A(B' Matter terms) = 167 (ACY*S" + 3app> ApS' + anpn)® AS'). (41)
Perturbing the non-matter terms gives

A(B" Non-matter terms) = A(D);#’ + D; A"

- 14:?80 0Dy + 112a¢ AGATD,
- S (AADY £ ATDAY)
Dy aY Djayp
A2 pACtaiAC
B CTE
AAC.,  hav
+37 DK =3z AeDK
4%%( (D)’K + D'AK). (42)

Finally, perturbing the principal part gives
. _ 1 _ " _ "
A(' Principal part) = — a)D; <a¢((LA,8)’/ + (A(L)ﬁ)”))

(LB)" ~ 7oy AC =
o DiAC— (Lﬁ)JWD-

— AD),(LB)" +
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Our overall elliptic equation for A3 is

A(' Principal part) + A(3’ Non-matter terms) + A (3’ Matter terms) = 0,
(44)
where the perturbed terms are given in equations (41)—(43).

Thus, we have derived a set of three second-order, elliptic equations for A, AC, and AS'.
We solve equation (32) for A, equation (37) for AC, and equation(44) for Af'. The princi-
pal parts of all of these equations are the same as in the unperturbed extended conformal thin
sandwich equations. Thus, for numerical solutions, we can reuse the preconditioning matrices
and linearized operators that are used in the unperturbed equations. The specific details of the
numerical computation can be found in [25].

2.2.2. Reconstructing perturbed data. Given solutions of the equations from the previous
section for Ay, AC, AB', as well as the perturbed free data and background data, we now
wish to reconstruct Ag;;, the full perturbed spatial metric, and 9,Agj;, its time derivative. This
allows us to construct A, the perturbation to the spacetime metric, and its time derivative,
0; A, We detail this procedure in appendix B.

2.2.3. Constraint satisfaction. Writing down the perturbed initial data equations is only the
first half of the problem. In practice, we need to make sure that solving them produces data
that satisfies the Hamiltonian and momentum constraints. In the unperturbed case, we simply
check that equations (1) and (2) are satisfied. In the perturbed case, since we are computing
a linear perturbation, we do not expect the full, non-linear constraints to be satisfied. Rather,
the first-order linearization of these constraints should hold. We thus perturb these constraints
to give

AH = AR+ 2KAK — AK;KY — K;AKY — 167 Ap, (45)
for the perturbed Hamiltonian constraint, and
AM; = Ag™(D;Kyi — DiKj)

. 46
+ g™ (A(D);jKy — A(D)Kj + DjAKy; — D;AKy) — 8TAS; (46)

for the perturbed momentum constraint. Constraint-satisfying perturbed initial data will thus
have AH = 0 and AM; = 0.

In practice, these conditions will never be exactly satisfied, but we can check that these
quantities tend toward zero with increasing numerical resolution. In our case, we use a spec-
tral code [30], and thus the constraint violation converges to zero exponentially. In order to
give meaning to the level of constraint violation, we normalize each constraint by the magni-
tude of the fields contained therein.

2.3. Boundary conditions

Before solving elliptic equations for metric perturbations for a generic source AT, we must
impose boundary conditions. Specifically, we must impose conditions on A, AC, and AS
at spatial infinity (R — o0). In our spectral code [30], we excise the black hole singularities
from the computational domain via a surface that conforms to the apparent horizon (or is
slightly inside the apparent horizon) [31]. Thus, for a background containing a black hole, we
must specify boundary conditions on the excision surface. In the case of a black hole binary,
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there are two such excision surfaces, one for each hole, and thus we must specify boundary
conditions on each of them.

Let us now consider the boundary conditions we would impose in the case where the
background spacetime contains a single black hole. First, the matter distribution, and hence
the source of the perturbation, should decay at least as fast as 1/R? as R — oo. Thus, we can
choose the conditions

A'¢|r—)<>o = 0, (47)
AB, 00 =0, (48)
ACs00 = 0. (49)

These conditions agree with the perturbed boundary conditions for an isolated black hole
spacetime given in [24, 25]. In practice, we extend the (finite) outer domain to R = 10'* M,
more than sufficient to satisfy these conditions.

For conditions on the inner boundaries, which correspond to apparent horizons, we impose
the set of apparent horizon boundary conditions for ¢, a, and 3’ given in [24, 25]. The condi-
tions ensure that the surface has zero expansion, and has a desired value for the spin. In our
case, we can perturb these apparent horizon boundary conditions to give conditions on A,
AC, and AB'.

Specifically, for the unperturbed boundary conditions, the condition on % corresponds to
setting the expansion of the surface to be zero, the condition on 3’ corresponds to setting the
spin and also setting the shear of the null rays on the horizon to be zero, while the condition
on « is physically unconstrained and can be set with a Dirichlet condition. The condition on
1 takes the form

_ 1 ¢* o 3o
0=—-P0On)—B ——(Cy)(LP" —u") + —=CYg;K,
O — B + g -r (G (LAY —u) + 17 C'g, (50)
where
N = gijﬁlfj, (51)
_ gl
pi=- 52
N (52)
with 7’ being the normal vector to the inner boundary, and
Cl =gV — PP/, (53)
N N L

When perturbing this condition, we must consider what to do with the perturbation to 7'.
If we set A#i' = 0, then the excision surface corresponds to a horizon for the background, and
the overall shape of the surface is not perturbed. By choosing a non-zero A#', we can, for
example, set the expansion of the background metric plus the first-order metric perturbation
to zero, and hence have the surface correspond to a linearly perturbed horizon. In this study,
we set An’ = 0 for simplicity.



Class. Quantum Grav. 36 (2019) 054001 M Okounkova et al

Perturbing equation (50), we thus obtain

0= —AP9p) — P'O;jAv) — ABy) — BAY
1¢3A S
5 (G — )
1
- 8 (ay)?
1 y* - 3
+ g (AC)LH i)
2 s - s
8ay "’
¢3

szw ij = ij = } N

AC(Cy) (LB — u”)

+

,(/}3
+ 12

on the excision surface, where

Cig;AK (55)

1 .
AN = = A (56)

ap = A8
N

~ ol
_ %AN, (57)

ACT = Ag¥ — AP'P/ — PPAP/, (58)
1 o
AB = — -5 AN(CY) (95 NN

1 iN(as Tl
+ m(AC’)(ajni — Fijn;)

1 ; _
+ — (CH(—=ATL#).
4N v (59)
Next, the background boundary condition on B takes the form

1 iygh

R (60)
on the inner boundary. Here, &' is the vector
&€ =0X +Q,Y +Q.7, (61)

where ); corresponds to the components of the orbital angular momentum, and X', ¥, and Z'
have the form

X' =(0,-2z), (62)
Y = (2,0, —x), (63)
Z' = (—y,x,0). (64)

10
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Now, when we perturb this condition, we must consider how to perturb €2;. Setting this to a
non-zero value gives a spin to the metric perturbation as well.

Perturbing equation (60), we thus obtain

O—Aﬁ+31Aw%ﬂaw
= 0 N
1 i Ag¥

nAgY "

v N

- Ag (65)
on the excision surface, where A¢ iis the vector
AL = AQX + AQ Y + AQZ'. (66)

The Dirichlet boundary condition on «, meanwhile, can be perturbed to give a Dirichlet
boundary condition on AC. However, we are already solving equation (55) for A, and thus
to uncouple these equations, we can instead try to drive A« to some desired value Aapesired
on the excision surface via the Dirichlet condition

0=AC— (Awa + wAaDesired)- (67)

We can generalize the isolated black hole case to a binary black hole case, by applying
equations (55) (65) and (67) to each excision surface corresponding to a horizon, and applying
a boost in the case of an initial velocity.

2.4. Summary

Thus, in order to generate metric perturbation initial data given some source ATy, and back-
ground spacetime metric 1),,, we solve the elliptic equations given in section 2.2.1 for As,
AC, and AB'. We then apply the formulae in section 2.2.2 to construct A1), the perturbed
spacetime metric for these variables. For the case where the background is an isolated black
hole, we can apply the perturbed version of the horizon boundary conditions on A, AC, and
A given in section 2.3. In order to generate stationary data on an isolated black hole back-
ground, we choose A(2; in equation (65) to be equal to the €); of the background.

Note that, as outlined in section 2.1, we have the freedom to choose Ag;;, Auy;, AK, and
0,AK. To simplify the calculation in the isolated black hole case, we choose Ag;; = 0, and
thus Ag; = 4v° Avpg;;. For stationarity, we choose Ai;; = 0 and §,AK = 0 to set as many
time derivatives to zero as possible. We similarly choose AK = 0.

3. Solving for metric perturbations in dCS

3.1. Order reduction scheme

We now turn to applying the method for solving for metric perturbation initial data outlined in
section 2 to isolated black holes in dynamical Chern—Simons (dCS) gravity. The dCS action
for a metric 1, and scalar field ¥ is given by

1
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2
/ d'x/— (mzp‘R - %(aﬁ)z - %6219 *RR) , (68)

where £ is a coupling constant with dimensions of length,

“RR = "R“Rapea (69)
is the Pontryagin density, where "R = %e“bef R, is the dual of the Riemann tensor and
evcd = —labcd) /=1 is the fully-antisymmetric Levi-Civita tensor, and my, is the Planck
mass.

Varying the action in equation (68), we obtain a sourced wave equation for the scalar field,

09 — mp1€2

*RR, (70)

where [ = V,V“is the d’ Alembertian operator. For the metric, we obtain a corrected Einstein
field equation

myGap + mpil>Cap = Tap, (71)
where T, is the kinetic stress—energy tensor of 9,

Ty = V9V — %chww, (72)
and

Cab = €cte(aV Re) VO + "R (1) V.V 0. (73)

Note that C,;, contains third derivatives of the metric, and thus these equations of motion
must likely not have a well-posed initial value problem [10]. However, in the perturbation
limit we can solve these equations of motion using an order reduction scheme, expanding the
metric and scalar field in powers of a parameter ¢ that counts powers of £2:

o0
Yo =V + YY), (74)
k=1
9= Z eg®. (75)
k=0

The key is that at each order of this scheme, we will obtain equations of motion with the same
principal part as GR. Perturbing around GR is justified in part by the first LIGO detection,
which showed that deviations from GR in black hole systems are small [3].

At zeroth order in €, we obtain for our equations of motion

MGl ®] = T, (76)

O0»O = o, (717)

where T,S;)) is the stress—energy tensor constructed from 9(%). Since the zeroth order scalar field

has no source, we can take ¥(®) = 0. This is turn means that the equation for the metric at
zeroth order is a pure GR Einstein field equation.

12
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At first order, meanwhile, we obtain the equation
Mp1
8
for the first-order scalar field 19(1), and the equation

0@y = 22 *RR)©) (78)

MG [h V] = —mu?CS) + 1)) (79)

for the first-order metric perturbation, where G, is the Einstein—Hilbert operator of the back-
ground acting on the metric perturbation. Here, C‘Eg) is the background value of the tensor
defined in equation (73), and Té;) is the first-order perturbation to the stress—energy tensor

given in equation (72). However, both Ca(lg) and Té,i) are linear in 19(0), which vanishes, and
hence —mplﬁcgg) + Té;), the RHS of equation (79) vanishes, leaving an unsourced metric

perturbation,
mGap[hV] = 0. (80)

Thus, at first order in €, A" = 0, there is no modification to the metric, and the scalar field is
governed by equation (78). Indeed, in [11], we evolved this el system on a binary black hole
background.

We now turn to order £2, where we obtain a metric perturbation sourced by 9(1). Specifically,
we obtain

MG [h?] = —mu®C) V] + 75 O, 90, (81)

Here, the first term on the right-hand side is the perturbed C-tensor formed from the back-
ground metric and the non-vanishing first-order scalar field ¥(!) (and hence is non-zero). The
second term is the second-order perturbation to the stress—energy tensor, quadratic in 9!, and
hence also non-zero.

To simplify the equations and to more easily use the results of the previous section, it is
useful to define a new variable ¥ by

9 = %42\1/, (82)
which gives, at first-order
OU = "RR. (83)

Here all metric variables now correspond to the background (in other words, *RR = [ *RR) ©) for
example). Similarly, let A, correspond to the second-order metric perturbation by defining

54

W) = 7 M. (84)
The equation for the metric perturbation is thus
Gap[Atbas] = Ty (), (85)
where
1
Top (¥) = —Cap(¥) + 5T (). (86)

We can then write the C-tensor and matter terms in the form
Cab(\ll) = Ecde(anRb)cve\I/ + *Rc(ab)dvcvd‘y, (87)

13
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1 .
Tap(¥) = VaUVp¥ — 240V VU, (88)

The first term of C,;, vanishes when working on a vacuum GR background.

Thus, A, is governed by the Einstein tensor and is a perturbation off a GR background
of the form 1, — ap + Ay, With source T;if. Comparing this to equation (21), we can thus
use the formalism developed in section 2 to solve for A, sourced by Tj;f on a black hole
background.

3.2. Scalar field initial data

Before solving for A, however, we need a scalar field ¥ on a black hole background that
obeys equation (83). Moreover, in order to obtain stationary data for A1),;,, we require that ¥
is stationary. Rather than attempting to find an analytical solution, we use the numerical solu-
tion for ¥ computed using the methods in [32]. This solution is valid for any spin. However,
this solution is expressed in Boyer-Lindquist coordinates, which are singular at the horizon,
and thus we transform to Kerr—Schild coordinates. The transformation to Kerr—Schild coordi-
nates is given, e.g. in [33].

We check that the solution for W is constraint satisfying, and moreover that it is stationary.
Note that the solution given in [32] has its own inherent resolution in terms of the number
of radial and angular basis functions. Including more radial basis functions in this solution
increases its stationarity. We interpolate the solution onto our grid, generally with a different
resolution.

Given this solution for ¥, we then construct the perturbed source terms of equations (A.20)—
(A.23) using AT, = T computed from ¥ via equation (86).

3.3. dCS metric perturbation results

Given these source terms, we then apply the formalism developed in section 2 to solve for
A,y We verify that our results are convergent by checking the perturbed constraints given
in section 2.2.3. We solve for the data on a set of nested spherical shells extending from
the apparent horizon to R = 10'* M, all with equal numbers of spectral collocation points.
Figure 1 presents the behavior of the normalized, perturbed Hamiltonian and momentum
constraints with increasing resolution. The figure shows the exponential convergence of the
constraints to zero as the numerical resolution increases. Higher spins in Kerr—Schild coor-
dinates require more grid points to fully resolve the solution, and thus have a slower level of
convergence. Recall likewise that we wish to solve for stationary initial data. In practice, the
stationarity converges with increasing resolution. However, at the same numerical resolution,
a lower spin will have a greater stationarity, as measured by || Ag;|/||g;]l, than a higher spin.
Thus, when comparing quantities across spins in practice, we choose resolutions that give the
same level of non-stationarity to mitigate these spin-dependent effects.

In summary, we have constraint-satisfying data for the second-order metric perturbation in
order-reduced dCS gravity. In figure 2, we plot the profiles for the scalar field ¥ as well as the
conformal factor Ap.

The extended conformal thin sandwich formalism can potentially suffer from ill-posedness
and non-uniqueness problems if the equations do not have a positive-definite linearization
[34, 35]. In our case, however, we do not see the appearance of non-unique solutions.
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4. Physics with dCS metric perturbations

We now consider what physics we can extract from these solutions for A1, in dCS.

4.1. Regime of validity

To second order, the perturbed metric takes the form

YVap — Yap + €2A¢ab (89)

where £? determines the amplitude of the metric perturbation. For the perturbative scheme to
be valid, we require that ||ty = ||e2A%., where |||| denotes the L2 norm of the field. The
values of &2 that satisfy this condition define the regime of validity. We can measure this value
of €2 by comparing the magnitudes of v,, and A, as

2 _ "/}ab
=01 (I ) 90)

Here the ratio is taken pointwise on the domain, we have chosen a constant 0.1 for the com-
parison, and we find a global minimum (the minimum is close to the horizon, where the
perturbation is the largest). We plot the results in figure 3, where for lower spins larger values
of 2 are allowed. Recall that £ counts powers of ¢2/GM , and thus we can map this regime of
validity result to ¢ as well.

4.2. Black hole shadows

One application of this initial data framework is to study modifications to the black hole
shadow. Observing black hole shadows explores an entirely new scale of gravitational curva-
ture and thus can test GR in a wholly new way [23]. Since looking at the shadow effectively
involves observing the behavior of test particles (photons) moving on geodesics in the space-
time, observing the shadows of stationary black holes serves as a metric test of GR.

4.2.1. EHT capabilities and previous work. Let us first review the capabilities of the event
horizon telescope (EHT) for detecting black hole shadows. The EHT is a very long baseline
interferometry array of radio telescopes around the world that aims to generate images of the
black hole at the center of the Milky Way galaxy, Sgr A*, as well as that of the M87 galaxy,
with horizon-scale resolution. Electromagnetic images show not the actual horizon, but the
region external to the light ring at 3GM/c?, which serves as a probe of the black hole shadow
[20]. Resolving Sgr A* requires an angular resolution of O(10) microarcseconds (yas) [22].
Once complete, the array should have resolutions of up 23 pas at 230 GHz and 15 pas at 345
GHz [19]. The size of Sgr A*’s visible event horizon is predicted to be ~50 pas [36], with the
photon ring contributing to 1-10% of the total flux [37].

Actually predicting what black hole images will look like for Sgr A* and M87, however,
requires simulating the matter around the black hole using GRMHD simulations (see [22]
for a review). However, as the shadow only depends on the black hole spacetime, the shadow
is not affected by the presence of matter [38]. Nevertheless, observing the shadow free from
obscuration due to the accretion onto the black hole (and gravitational lensing thereof) is a
technical challenge. Additionally, interstellar scattering affects the resolution of the image
[22]. In this study, we only consider null rays and the scalar field around a black hole other-
wise in vacuum when probing the shadow, and thus do not include the matter effects.
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Figure 1. Convergence of the perturbed constraints with resolution for a metric
perturbation A, on a Kerr background with given dimensionless spin . We evaluate
the constraints on the entire numerical grid. The horizontal axis is the number of radial
basis functions N times angular basis functions N, in a representative subdomain of
our numerical grid. As this number increases, the constraint violation exponentially
converges to zero. Higher-spin black holes require more grid points to achieve the same
level of constraint satisfaction in the metric perturbation as lower-spin black holes, just
as for the unperturbed background spacetime.

How well can the edge of the shadow be detected? Psaltis ef al [38] took advantage of
the fact that the black hole shadow produces some of the steepest gradients in an image, and
applied various edge-finding algorithms to locate the shadow. In practice, thus, it is possible to
extract to an extent an edge corresponding roughly to the black hole shadow to within ~9%,
assuming a given scattering kernel.

How well can current algorithms measure the properties of the black hole shadow of Sgr
A*? figure 13 of Psaltis et al [22] shows a combined posterior distribution for the black hole
quadrupole moment ¢ and the black hole spin a for a hypothetical observation of Sgr A*. If
the black hole is Kerr, then there should be a unique point in this space for each mass and spin
on the curve ¢ = —a®. EHT observations give a wide curve in the ¢g-a space, while constraints
from spin measurements from stars and pulsars around Sgr A* provide tighter constraints.
Nevertheless, the spin in this posterior can only be predicted to an accuracy of o, ~ 0.1.

Previous studies have calculated (without considering matter effects) black hole shadows
in alternative theories of gravity (see [36] and [22] for a review). Additionally, [39] reviews the
detectability of effective deviation parameters from otherwise GR predictions.

4.2.2. Computing the shadow. We now compute the second-order deviation to the black hole

shadow in order-reduced dynamical Chern—Simons gravity. Recall that we have solved for a
metric perturbation A1, around an isolated black hole of a given spin. We can then add it
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Figure 2. Plot of the numerical solution for ¥ from [32] (left) and perturbed conformal
factor At (right) on a spin x = 0.6 black hole background, shown in the y-z plane.
Note that the solution is axisymmetric about the z-axis.
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Figure 3. Evaluation of the regime of validity as given by equation (90), for various
values of spin. The top region is not allowed by perturbation theory, while the bottom
region is allowed. The stars denote the values of x at which we have evaluated
equation (90). We can compare this to the regime of validity figure given in [32].

to the background metric 1), via a coupling parameter €2 that lies in the regime of validity
outlined in section 4.1. The overall metric is thus

gzn = wab + EZA%b- (91)

We compute the dCS black hole shadow in this metric, which will be correct to second order.
Note that since we have solved for stationary data, we only need to evolve geodesics on one
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time slice to trace the shadow, as all of the slices will be the same. Note also that since the
shadow is a physical observable, we do not need to worry about gauge effects.

To probe the shadow, we use the geodesic integration methods (and corresponding code)
outlined in [40] and [41]. We refer the reader to those papers for a technical discussion.
Schematically, we start geodesics from a camera some C = O(10) M away from the black
hole, and integrate them backwards in time. The geodesics that make it to past null infinity
(which we approximate as a distance of 2C from the black hole in order to avoid integrating
geodesics to infinity) are labeled as not in the shadow, while the geodesics that converge onto
the horizon determine the edge of the shadow. The code has built-in refinement, and with
increasing resolution more geodesics are added along the shadow edge.

4.2.3. Analyzing the shadow. We now present a novel way to analyze the black hole shadow
as computed from evolving null geodesics. Note that there exist previously-proposed methods
of analyzing the shadow [42]. Given the shadow edge in the x-y plane of the camera (also
known as the image plane), parameterized as two functions x(6) and y(6) where 6 is the angle
about some chosen center, we can Fourier decompose the shadow edge as

N
x(0) = ao + Z ay cos(nb), (92)
n=1
N
¥(0) =bo+ Y bysin(nb), (93)
n=1

up to some number N of fitting coefficients. We define a measure of the power in each Fourier

mode as
o =1/a:+ b2 (94)

In this procedure, one must take precautions in defining the axes and the origin for 6.
Suppose we have an image of a black hole shadow. For simplicity, assume that the spin axis
has no component normal to the plane of the camera, but has some arbitrary orientation in that
plane. Given such an image, we can find a line about which the image has a reflection sym-
metry. Let this be the x-axis (in the case of x = 0, we can take any axis).

Next, we need to define an origin {xo, yo } in the x-y plane from which to measure the angle
6. For yo, we can simply choose yg = 0 since we have defined y = 0 to be the axis of reflec-
tion symmetry. For xy, however, we need to be more careful. In the x = 0 case, for example,
one can choose an xj such that the decomposition has an artificially non-zero n = 2 multipole.
Thus, we choose xg to be the point at which the value of f, is minimized. We show the result
of this procedure in figure 4.

We also check that the values of the coefficients given in the decomposition (94) converge
with resolution. We show a quantitative convergence analysis in figure 5. We check conv-
ergence for each shadow we analyze, for a given x and &2.

The n = 0 multipole refers to the coordinate location of the shadow center in the plane
of the camera, which is not gauge-invariant and hence not meaningful. The n = 1 multipole
corresponds to the ‘size’ of the shadow, and is proportional to both the mass of the black hole
and the distance to the camera. Thus, the value of the n = 1 multipole is not meaningful as
there is a mass-distance degeneracy. However, dividing all of the n > 1 multipoles f, by fi
gives normalized values that are independent of the mass and distance, and in the €2 = 0 case,
only dependent on the dimensionless spin. We have verified this numerically by changing the
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Figure 4. Results of our procedure for designating the center (and hence the origin for
the angle ) of a black hole shadow for x = 0.9 and > = 0. We find the central value
of x by minimizing the recovered n = 2 multipole for each trial value. Here, we plot in
the dashed black line the optimal value of x. We see that when x is chosen to minimize
n =2, it also minimizes the artificial » = 0 multipole. Note that the minimum value of
the n = 2 multipole is finite, as the shadow shape is non-spherical. Additionally, we
plot the difference between the n = 1 multipole and its maximum value, finding that
it attains the maximum near but not at the optimum center value as the shape is not
exactly spherical.

mass of the black hole, and checking that the normalized n > 1 coefficients remain the same.
We thus focus out attention on the n > 1 multipoles normalized by f}, which have physical
meaning.

Now, in the presence of a nonzero €, we still apply this same procedure (orienting on the
axis of reflection symmetry, finding the center by minimizing f>, then dividing through by f1).
Note that in this case, we expect the higher multipoles to have a different dependence on y and
now . We will need to observe at least two multipoles to perform a consistency check with the
€ = 0 case, or to estimate € and x if we find € # 0.

4.2.4. Results. Let us now analyze the black hole shadow using the procedure outlined in
this section for various dimensionless spins X of the background black hole and perturbation
parameters £2. In accordance with the feasibility study shown in figure 13 of [22], we concen-
trate our attention on spins of x = 0.6. In figure 6, we plot the black hole shadow for x = 0.6
for €2 = 0 (i.e. the shadow as predicted by GR) and £ = 0.05, the maximal value allowed by
the regime of validity. Additionally, we plot the GR shadows for x = 0.7 and x = 0.9 black
holes. We see that shifting the spin away from 0.6 has a greater effect than adding a dCS per-
turbation. Given the o, ~ 0.1 spread in the recovered spin for the trial EHT measurement in
[22], it is informative to compare the effect of increasing x by 0.1 versus increasing & to its
maximum valid value at a given . We see that the effect increasing £ on the visual shape of
the shadow is less than the effect from increasing x.
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Figure 5. Convergence of the shadow multipoles with resolution for a spin x = 0.9
black hole for €2 = 0. For each multipole (n =1 to n = 5), we plot the normalized
difference of the value of the multipole from the highest resolution value (denoted as
1), as a function of resolution. Here, the x-axis corresponds to the number of geodesics
that converge onto the horizon when integrated backwards in time, and hence are used to
image the black hole shadow. As we increase this resolution, the normalized differences
from the highest resolution value decrease. We see that the higher multipoles, which
take more geodesics to resolve, converge more slowly than the lower multipoles.

We can quantitatively analyze the shape of the shadow by considering the values of f/fi
and f3/fi, the two dominant normalized multipoles. Considering again spins around x = 0.6,
we plot the values of these multipoles with increasing £2 in figures 7(a) and (b). We see that,
for a given spin, as we increase €2, the values of f>/f; and f3/f; linearly deviate away from the
£2 = 0, GR prediction. Since the shadow, with the mass normalized away, is dependent only
on  and €2 in dCS, we can map

{x.e*} = { LAY (95)

for each choice of y and €.

While the mapping shown in equation (95) is unique for each {x, e?} pair, it may not be
invertible. In other words, degeneracies may exist such that a given pair { f>/f,f3/f1} can be
generated by more than one combination of {, ?}. In particular, this degeneracy can spoil a
GR null hypothesis test using the shadow. Suppose there exists a spin y, and 2 # 0 combina-
tion such that the corresponding f>/f; and f3/f values are equal to those of a x, and €5 = 0
shadow. Then, we would not be able to distinguish a black hole with a dCS perturbation from
a Kerr black hole with a different spin.

We explore this potential degeneracy in figure 8. Using the €2 = 0 values of f/f; and
J3/f1 for various spins, we trace out a curve in this multipolar parameter space. This curve is
solely parametrized by spin , and any deviation away from this curve corresponds to some
additional, non-Kerr effects. We call this the ‘Kerr’ curve. Then, considering x = 0.6 and
neighboring spins, we consider the effect of adding an &2 = 0.05 dCS perturbation. We see
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Figure 6. Visualization of black hole shadows. The x- and y-axes correspond to
camera coordinates for a camera resolving the black hole, and thus are not physically
meaningful. The shape of each shadow has been normalized by its overall ‘size’ as
given by the n = 1 multipole. Likewise, each shadow has been centered according the
procedure described in this paper. We plot the shadow for spin of x = 0.6, with dCS
perturbation parameters €2 = 0 and 2 = 0.05, the maximum allowed within the regime
of validity. Zooming in, we see a difference in the two shadows. However, increasing
the spin to x = 0.7 without a dCS perturbation (and even x = 0.9) has a stronger effect
on the shape of the shadow. We have checked that increasing the resolution of the
shadow by integrating more geodesics has a smaller effect than aforementioned the
physical effects.

that in the presence of €2 # 0, the multipolar values deviate away from the Kerr curve. In
other words, we do not have a y-¢> degeneracy. This in turn makes a GR null-hypothesis test
possible using dCS shadows. On the other hand, we can also see from the figure that it may be
difficult to distinguish various {, €2 # 0} pairs. However, since € is a universal parameter,
observing more and more black hole shadows in practice should statistically narrow the value.

Let us now consider these results in the context of the EHT capabilities outlined in sec-
tion 4.2.1. We claim, given our investigation of the shape of the shadow, that precisely quanti-
fying x and &2 for Sgr A*, for example, may be infeasible with the current EHT resolution.
Given that observations can yield a spread of as much as 0.2 in the spin, and given that we
have seen that dCS effects for the maximum allowed values of €* are smaller than a 0.1
increase in the spin, it will be difficult to observe such a deviation with the EHT. However,
increasing the resolution of EHT shadow edge observations will allow us to perhaps probe
these small effects, in part to perform an analysis to check for € = 0 consistency, or at least
bound large values of €%

Suppose that an external measurement of the mass of Sgr A* was available. Because the
size of the shadow on the camera depends not only on mass but also on distance, we would
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Figure 7. Values of the f, (left panel) and f3 (right panel) coefficients of the black hole
shadow, as calculated using the methods outlined in section 4.2.3. Each coefficient is
normalized by f;, which corresponds to the size of the shadow. Each dashed line shows
the €2 = 0 value of the coefficient, corresponding to an unperturbed GR black hole,
for spins x = 0.5, x = 0.6, and x = 0.7 (as labeled on the plot). Since the shadow
in GR becomes less spherical with increasing spin, it is consistent that the f, and f3
coefficients, which correspond to non-spherical multipoles, increase with spin. For each
spin, we also plot the values of the multipoles when we introduce a dCS perturbation of
the form t)g, + 2Av),. As we increase € (up to a value given by the regime of validity
of perturbation theory), we see that these coefficients increase as well, in a power-law
fashion. We have checked that increasing the resolution of the shadow by integrating
more geodesics leads to convergent results for the multipoles, and does not affect the
results on the scale presented here.

need to have a measurement of the distance of Sgr A* as well. In this case, we would not need
to normalize all of f.| coefficients by f}, since the mass would be known. However, the f;
multipole is independent of spin, and thus a deviation of the f; multipole predicted from an
independent measurement of the mass and distance of Sgr A* could point to a non-GR signa-
ture. Such an analysis was performed, for example in [38].

On the other hand, suppose there were an independent measurement of the spin of Sgr A*
from pulsars [43], with tighter constraints than the example shown in [22]. If x was known
precisely from pulsar measurements, then we would simply use the value of the dominant
multipole f3 to observe deviations from the predicted value in the case of €2 = 0. Figure 7(b)
shows the value of f3 away from its predicted GR value for a spin of x = 0.6, for example.
Knowing precisely the value of x would thus allow us to constrain the value of £2 in the £’—f3
space. However, we must be careful in noting that this would only serve as a null-hypothesis
test of GR, as inferring x from pulsar measurements (presently) assumes that GR is the under-
lying model.

5. Conclusion

In this paper, we have presented a method for numerically generating metric perturbation
initial data (section 2), applied it to dynamical Chern—Simons gravity (section 3), and investi-
gated black hole shadows in the presence of dCS metric perturbations (section 4).

The metric perturbation initial data computation is fully general, meaning that given some
metric perturbation source, background spacetime, and boundary conditions (as well as speci-
fying a choice of the free data), we can produce constraint-convergent first-order metric per-
turbation results. In particular, we can easily extend the dCS initial data results for a single
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Figure 8. Normalized black hole shadow coefficients of the n = 2 (x-axis) and n =3
(y-axis) multipoles. These correspond to the dominant non-spherical multipoles. The
figure explores degeneracies in the x-¢ space. In the (left) panel, we plot the coefficient
values for €2 = 0 for a variety of spins from y = 0.5 to ¥ = 0.7. We additionally plot
a curve (dashed line) that we have fit for all of the € = 0 coefficient values over a
broader range of spins (y = 0.1to x = 0.9). This line is the Kerr curve in the f,-f3 space.
In the (right) panel, we introduce dCS perturbations. We plot again the Kerr curve,
and consider coefficient values for spins of 0.58, 0.6, and 0.62. We see that when we
introduce a dCS perturbation of strength 2 = 0.05, the values of the coefficients deviate
from the Kerr curve. The fact that the perturbed values do not lie on the Kerr curve gives
us a handle on the amount of degeneracy in the x-¢ space. We have checked that these
effects are convergent with increasing the resolution of the shadow by integrating more
geodesics.

black hole presented in this paper to the binary case. We can also, for example, apply this ini-
tial data formalism to explore linear versus non-linear metric perturbations in a standard Kerr
spacetime, as our metric perturbation data is constraint-satisfying to first order (for example,
to compare to the metric perturbation data used in [44] and [45]).

Future work in this program involves evolving dCS initial metric perturbations. This is
done following the order-reduction scheme (see section 3.1 and [11]), which guarantees well-
posedness, as each order in the scheme has the same principal part as the general relativity
background. One possibility is to evolve a single spinning black hole to see if it is stable. A
second is for the binary black hole case. There, we can evolve the metric perturbation sourced
by the dCS scalar field and generate perturbed gravitational waveforms, thus performing the
next step of the program outlined in [11].
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Appendix A. Perturbed extended conformal thin sandwich quantities

In this appendix, we derive the first-order perturbations to all of the extended conformal thin
sandwich quantities, which enter into equations (32), (37) and (44).
First, the perturbation to the inverse of the conformal spatial metric is

AgY = —g"* 2" Agn.

(A.1)
We can use this to obtain the useful identities
. — Av.V/ 1+ 5. J
AV; = AgyV’! + g; AV, (A2)
AF" = AgigiF' + guAgiF7 + 818 AFY, (A.3)
— AGVF.. 1 5V "
AF = Ag'F;; + g AFy, (Ad)

for vectors V' with perturbation AV' and tensor Fj; with trace F and perturbation AF};.
The covariant derivative operator D will also have a perturbation. We perturb the Christoffel
symbols corresponding to g;; to obtain

_. | 1
AT, = EAgll(akglj + 08 — 0igix) + Egll(akAglj + ;A% — O1AgjK)-

A.S

This in turn gives the useful perturbed derivative identities "
A(D),S =0, (A.6)

A(D)'S = Ag'D;S, (A7)

A(D*)S = AgY8,9;S — Ag'T};0,S — gYAT};0,S (A.8)

A(D);V/ = ATy VE, (A.9)

A(D);V; = AL}V, (A.10)

A(D)'V! = Ag*Dy VI + g* AT} V!, (A.11)

A(D)Fjj = —ATJFyj — Al_“kijim, (A.12)

A(D)F7 = AT, F™ + AT F™, (A.13)

for any scalars S with perturbation AS, vectors Vi, with perturbation AV and tensor F ii» with
perturbation AF;;. The parenthesis in expressions such as A(D?)S refer to the perturbation on
just the derivative operator.
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Then we can compute the perturbation to the spatial Ricci tensor as

P Tm 1 m Tm
ARy = 0, AT — 2 (BATY; + AT}
+ AP, — ATET" 4+ TATY, — THATY,

ij~ nm in— mj

and AR can then be computed using equation (A.4).
Meanwhile, the perturbation to LBY, defined in equation (15), is

A(LB)Y = A(D)'B7 + D'AB/ + A(D)/ B + D/AB

2 2 _
- gAg’JDkB" - gg’J(A(D)kB" + Dy AB)K.

(A.14)

(A.15)

For simplicity, we can group the terms with the background derivative operators operating on

A, defining

A(LB)" = (LAB)” + (ALB)”,
where

(LAS)T = DIAS + DIAB - 2D,
and

(MDY = ADYB! + ADYH ~ SAFDS — S AD)S

Finally, the perturbation to A%, defined in equation (14), is

S AYOAY ¥’ N
AAY =17 20 (LB —u’) — WAC((LB)J —u’)
7/}7 7 a\ij U
+ g (MEB)Y - &),

The perturbations to the source terms given in equations (4)—(7) are

Ap = Angnpy T + ng Anp T + ngny AT,
AS' = —Ag'n"T,; — g7 AnT, — g'nAT,,
AS; = Agiagin T + 81D T + iagp AT,
AS = AgijSij + gijAS,j.

For a vacuum background (7,;, = 0), these terms simplify to give
Ap = napp PP AT,y = nn® AT,
AS = —gijn“ATaj,
AS; = ATy,

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
(A21)

(A.22)

(A.23)

(A4)
(A.25)
(A.26)

(A.27)

Note that all of the above terms use the background variables without applying a conformal

transformation.
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Appendix B. Reconstructing the perturbed spacetime metric

In this appendix, we detail how to reconstruct the (non-conformal) spatial metric, Ag;;, and
its time derivative, 9;Ag;;, from the perturbed extended conformal thin sandwich variables
solved for in section 2.2. This in turn allows us to construct the perturbation to the spacetime
metric, A1,y and its time derivative, 9, A -

We obtain, perturbing equation (8)

Agj = P Agy + 447 Adgy, (B.1)
and
Al = Agy — 4 Aygl. (B.2)
For u;;, we perturb equation (10) to give
Auy = P Aty + 4° Ay, (B.3)

which is in turn related to 9;Ag; through perturbing equation (9) to give

2 .
Auy = 0, Agij — gAg,-j(—aK + D;3")
(B.4)

2 . .

Finally, the perturbed extrinsic curvature AKj; can be reconstructed from AK and the
solved variables following equations (12) and (13) as

1
AKjj = A + 5 (AgiK + gAK), (B.5)
where
AAy =2 AA; = 20 AAy,. (B.6)

In addition to Ag;; and 0,Ag;;, some applications, such as computing the black hole shadow,
require the perturbation to the full spacetime metric ¥,;, — 1, + A, and its time derivative
0;Av),,. We thus construct the spacetime metric perturbation as

—2aAa + ABLS™ + BaAB™ AB; )
Aﬂj Agij .

For the time derivative, given by applying the chain rule to the terms in equation (B.7), we
need to specify the time derivatives of B, o, ABE, and Ac. For the background case, we can
freely specify 8,3 = 0 and d,a = 0 [12]. We can apply the same principle to the perturbed
data, and freely set 9,Aa = 0 and §,A3" = 0. For a stationary background (9,2, = 0, where
0, is a linear combination to Killing vector fields), we obtain

Ay, = ( (B.7)

Oi(ABuS™ + BuAL™)
= 0/(AgmiB'B" + gmiABB” + gmiB'AB™) (B.8)
= 0,0gmiBB",
and thus
O AgyBB O AgyB >
0, Aty = : _ B.9
N 2
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