A Binary Learning Framework for
Hyperdimensional Computing

Mohsen Imani*, John Messerly*, Fan Wu*, Wang Pi’, and Tajana Rosing*
*Computer Science and Engineering Department, UC San Diego, La Jolla, CA 92093, USA
Department of Computer Science and Engineering, UC Riverside, Riverside, CA 92521
"School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, P.R.China
{moimani, jmesserl, tajana} @ucsd.edu; piwang@pku.edu.cn

Abstract—Brain-inspired Hyperdimensional (HD) computing
is a computing paradigm emulating a neuron’s activity in high-
dimensional space. In practice, HD first encodes all data points to
high-dimensional vectors, called hypervectors, and then performs
the classification task in an efficient way using a well-defined
set of operations. In order to provide acceptable classification
accuracy, the current HD computing algorithms need to map
data points to hypervectors with non-binary elements. However,
working with non-binary vectors significantly increases the HD
computation cost and the amount of memory requirement for
both training and inference. In this paper, we propose BinHD,
a novel learning framework which enables HD computing to be
trained and tested using binary hypervectors. BinHD encodes
data points to binary hypervectors and provides a framework
which enables HD to perform the training task with signifi-
cantly low resources and memory footprint. In inference, BinHD
binarizes the model and simplifies the costly Cosine similarity
used in existing HD computing algorithms to a hardware-friendly
Hamming distance metric. In addition, for the first time, BinHD
introduces the concept of learning rate in HD computing which
gives an extra knob to the HD in order to control the training
efficiency and accuracy. We accordingly design a digital hardware
to accelerate BinHD computation. Our evaluations on four
practical classification applications show that BinHD in training
(inference) can achieve 12.4x and 6.3x (13.8x and 9.9x) energy
efficiency and speedup as compared to the state-of-the-art HD
computing algorithm while providing the similar classification
accuracy.

Index Terms—Brain-inspired computing, Energy-efficiency
classification, Hyperdimensional computing.

I. INTRODUCTION

Deep Learning has risen to prominence in complex and
big data applications. For example, Deep Neural Networks
(DNNs) have provided high classification accuracy for com-
plex image classification tasks [1], [2]. However, high compu-
tational complexity and memory requirement of DNNs hinder
usability to a broad variety of real-life (embedded) applications
where the device resources and power budget is limited [3]—
[5]. For example, in health care we often require learning
algorithms to have a real time control on the patient daily be-
haviour, speech, and bio-medical sensors [6]-[8]. Sending all
data point to the powerful computing environment, e.g., cloud,
cannot guarantee scalability and real-time response. It is also
often undesirable due to privacy and security concerns [9]—
[11]. Thus, we need alternative computing methods that can
run a large amount of data at least partly on the less-powerful
embedded devices.

Brain-inspired Hyperdimensional (HD) computing has been
proposed as a computing method that processes the cognitive
tasks in a more light-weight way [12]. HD performs computa-

978-3-9819263-2-3/DATE19/€)2019 EDAA

tion on ultra-wide words — that is, with very high-dimensional
vectors, or hypervectors. HD works based on the existence
of a huge number of nearly orthogonal hypervectors which
can be combined using well-defined vector space operations.
The mathematics governing the high dimensional space enable
HD to be easily applied to different learning problems [13]-
[19]. The first step in HD computing is to encode/map data
points from the original domain to high-dimensional space. In
training, HD combines the encoded hypervectors in order to
generate a hypervector representing each class. The classifica-
tion task at inference performs by checking the similarity of
an encoded test hypervector with all trained classes.

In this work, we observe that in order to provide acceptable
classification accuracy, the current HD computing algorithms
need to encode data points to hypervectors with non-binary
elements [18], [20]-[23]. This means that even to perform
a single addition between the hypervectors, HD needs to
compute thousands (e.g., 10,000) operations. For example, in
HD computing, the training performs by the accumulation of
several hypervectors. This makes the training operations very
expensive. In addition, to perform iterative training, BinHD
needs to store all encoded hypervectors which significantly
increases the memory footprint. After training, the existing HD
computing algorithms generate a model with non-binarized
class hypervectors. This model forces the HD inference to
use costly Cosine metric for similarity check, which involves
a large amount of non-binarized additions/multiplications. To
reduce the inference cost, prior work tried to binarize the
class hypervectors after the training [20], [21], [24]. Although
this approach simplifies the inference similarity metric to
Hamming distance, we observed that it significantly reduces
the HD classification accuracy on practical applications, e.g.,
11.8% on face recognition application [25].

In this paper, we propose BinHD, a novel framework which
enables HD computing to be trained and tested using binary
hypervectors. BinHD introduces the concept of learning rate in
HD computing by assigning a counter with limited bit-width
to each HD model element. BinHD performs training by the
accumulation of the binary hypervectors which can process
with significantly lower memory footprint and the computation
cost. In inference, BinHD removes the necessity of using a
non-binary model and costly Cosine similarity by creating a
binarized model. This simplifies the HD similarity metric to
hardware-friendly Hamming distance. We accordingly design
a digital hardware to accelerate BinHD computation in both
training and inference. Our evaluation on four practical classi-

126

fication applications shows that BinHD in training (inference)
can achieve on average 12.4x and 6.3x (13.8x and 9.9x)
energy efficiency and speedup as compared to baseline HD
computing algorithm while providing the similar classification
accuracy. In addition, we observe that BinHD can provide up
to 10.8% higher classification accuracy as compared to the
baseline HD computing algorithms [18], [20] using the similar
binary hypervectors.

II. PROPOSED BINHD TRAINING

Here, we proposed BinHD, a framework for binarization of
the HD computation during training and inference. Figure la
shows an overview of BinHD performing the classification
task on high-dimensional space. In BinHD, the first step is
to map/encode all data points from original to a hypervector,
where each element represents using a binary value. Next, the
encoded hypervectors are combined in a training module in
order to create a single binary hypervector representing each
class. In the inference, a test data encodes to high-dimensional
space using the same encoding module used for training.
Finally, the classification task performs by finding a pre-stored
class hypervector which has the highest similarity with the
test hypervector. Since BinHD works with a binary model,
it enables the inference to use hardware-friendly Hamming
distance as a similarity metric. In the following, we explain
the details of the HD functionality.

A. BinHD Encoding

BinHD functionality is independent to the encoding mod-
ule. Here, we consider a general encoding approach which
maps a feature vector F = {f1, fa,..., fu}, with n features
(f; € N) to high-dimensional vector H = {hy, hy,..., hp} with
D dimensions (; € {0,1}P) [12], [18]. Figure 1b shows an
overview of the encoding module. This encoding finds the
minimum and maximum feature values and quantizes that
range into m levels. Then, it assigns a random binary hyper-
vector with D dimension to each quantized level {L,...,L,}.
The level hypervectors are generated such the the neighbor
levels have higher similarity, as their absolute values have
closer distance [18]. In addition, the encoding module assigns
a random binary hypervector to each existing feature index,
{IDy,...,ID,}, where ID € {0,1}”. The encoding can happen
by linearly combining the feature values over different indices,
where a hypervector corresponding to a feature index preserves
the position of each feature value in a combined set:

H = ID\®L, + ID,® Ly+... + ID,®L,.

where H is the (non-binary) encoded hypervector, & denotes
the XOR operation, and L; is the (binary) hypervector cor-
responding to the i-th feature of vector F. The binarization
of the encoded hypervector can happen by comparing each
dimension of H with n/2 value. All dimensions with a smaller
value than n/2 are assigned to 0, while other elements are
assigned to 1.

B. BinHD Training

Binary Vector Accumulation: Assume A and B are two bi-
nary vectors (A,B € {0, I}D), we define a similar accumulator
operation as Sparse Distributed Memory [26], which satisfies
the following constraints:

{A'=A+]B | A,A,B€{0,1}’ | §(A,B)<S(A',B)}

Design, Automation And Test in Europe (DATE 2019)

m
I (D, vector D
Similarity

N (]
l'. D
D—

IV

Minimum Distance

(a) Classification Overview (b) Encoding
Fig. 1. (a) Overview of HD computing performing the classification task. (b)
Functionality of HD encoding module.

Where [+] is a binary addition and &(x) is a function
that calculates the Hamming distance. It means that for all
D dimensional binary vectors A and B, there exists a D
dimensional binary vector A" that is the result of accumulating
A and B with [+]. This satisfies the distance constraint that
A’ is closer in Hamming space to B than it was to A. The
accumulation operation involves representing the accumulator
as both a binary vector and as an integer vector of counters.
The binary vector keeps the current vector values, while the
counter decides to update the binary vector elements during
accumulation. Let us assume the binary addition of A and B
vectors, where A€ is composed of N-bit counters that saturate
at [-2N=1 41, 2¥=1]. While calculating A[+]B, the values of
AC counter and the binary vector update as follows:

40— AS+1 B;i>0 o)l AS >0
f|Af-1 Bi<o "o Af<o0
Counter Update Binary Vector Update

Figure 2 shows an example of the accumulation operation.
The accumulation of A and B binary vectors performs in two
steps. First, a counter update, where A€ updates depending on
B vector elements. The B elements with ”1” value increment
the A€ counter, while 0 elements decrement A€. For the
example shown in Figure 2b, we use N =5, thus counter
values saturates between -15 and +16 range. The second step
is updating the binary vector A, depending on changes on A€.
As Figure 2c shows, the value of the accumulator vector, A,
flips on all dimensions that the counter values changed from
positive to zero/negative or vice versa. We explore the impact
of counter size on Section II-D.

Initial Model Generation: We accumulate all binary en-
coded hypervectors in training dataset to create k binary
prototype vectors {Cj,-,Cy }, where k is number of classes and
C; € {0,1}P. These prototype vectors represent the average
(centroid) of that particular class, with respect to Hamming
space. We can view each class hypervector as a linear combi-
nation of the encoded hypervectors in that class. For example,
i class hypervector can be computed as: C; = ¥ jeclass; Hj-
As we explained, the accumulation of the binary hypervectors
happens by assigning a counter vector to each existing class
(e.g., Cso" for class i"). The counter keeps track of the
number of Os and 1s in each class dimension and assigns C'
dimension to 1 if the number of 1s exceeds Os. After initializa-
tion, the model is ready for the classification. The inference is
performed by taking the Hamming distance between the query
data, and all k class hypervectors. We label the query as a class
with the highest Hamming distance.

127

HD model initialization comes with two advantages: first, by
making a strong assumption about how each class is an average
of the training data, our classifier is no longer a black box
model that requires iterative convergence on the training data,
but a prototype model that can be generated in a single pass.
This initial model often provides acceptable accuracy, and
gradient descent becomes an optional optimization, rather than
a necessary obstacle. Second, for gradient descent, these initial
model vectors give vital information about which dimensions
are the more significant than others, which is information
that would have otherwise been lost through binarization. We
further discuss it on Section II-C.

C. BinHD Model Adjustment

We can significantly reduce the error rate of the initial HD
model by employing gradient descent. We propose an online
stochastic approach to descent. Figure 3 shows the overview
of BinHD functionality during model adjustment. BinHD first
encodes all training data point into high-dimensional binary
vectors (Figure 3a). For each incoming sample of training
data, our approach attempts to classify it by measuring its
Hamming distance with the trained model (Figure 3b). If the
model with the highest Hamming distance matches the correct
label, BinHD ignores updating the model. However, if a train
data point, H, incorrectly matches with HD model, we add
the query to a correct class (C;), while subtracting it from an
incorrect one (C)).

Ci=C[+H & C;=Cj|-]H

Since the query and class hypervectors are both binary, the
addition ([+]) and subtraction ([—]) happen by updating the
corresponding counter array shown in Figure 3c. These coun-
ters update using the accumulation definition introduced in
Section II-B. For example, C;[+]H, increments/decrements the
class counter values on all dimensions that A has 1/0 values.
After updating the counters, BinHD flips the class elements
on all dimensions that their counter values are changed from
positive to zero/negative values or vice versa (Figure 3d). The
model adjustment continues until for a pre-defined number of
iterations (maximum 30 iterations), unless if the accuracy con-
verges earlier. The convergence condition is having less than
€ =0.1% change in accuracy in three consecutive iterations.

BinHD model adjustment has two main advantages as
compared to the existing HD computing algorithms [18], [21].
First, unlike existing approaches which need to store non-
binary encoded hypervectors, BinHD stores binary encoded
hypervectors with significantly lower memory size. Second,
BinHD exploits a binary model with Hamming distance
similarity during retraining, while the computation of prior

Binary Accumulation | Counter Update | Binary Vector Update
| |
s E T T AT T ol [|| ST T AT
A (Binary) (IO 10 1] 0} :l T : SX1fol1[ol1]o]|
| [| | |
A€ Counter[12] 0 [12]-7] 1 [-16F—+X12] 0 [12]-7] 1 |-16]! | } | | }
g ——— e R T PR

| |
o[tTofo[1]0]

:Flipped:

N3 N3
(AT1T1To o o]
Updated A4 Vector

|
B Binary) [0[1[1[1]0[0 F=={-1[H[+1[+1[-1]-1]
|

Binary Accumulation

|
A=A[+B | [1]13]-6]0]-16

| Updated A€ Counter |

Fig. 2. Example of the binary accumulation using counter thresholding.

128

(b) (0
[An] " Query Th]
Add/Subtract

H :

I
Distance

N

‘ 2l |5
| = g
() Elamilehs| | %
l @y =
! g1 &
| = 33
@
1 2| E
[— | 9}
| Binary Model !

,,,,,

Flip Model Dimesnions
Fig. 3. BinHD model adjustment in binarized domain.
N=4 -O-N=6 -A—N=32

96
Lo2
)
© 88
S
=
3
&84

80

0 5 10 15 20 25 30
Iterations

Fig. 4. Impact of the counter size on the BinHD classification accuracy.

work depends on the non-binary model with costly Cosine
similarity [21]. These facts make BinHD an efficient light-
weight classification approach for embedded devices with
limited resources.

D. Controlling the Learning Rate

The learning rate is a crucial parameter in stochastic gra-
dient descent that controls the step size. In most applications,
the learning rate is a floating point value between O and 1
that is multiplied by training samples before they are added or
subtracted from the vector of weights. The intuition is that this
regulates how much individual training samples are allowed
to move the classifier’s hyperplane. Learning rates that are too
small allow for the descent to get trapped in local optima while
learning rates that are too large cause the descent to diverge.

In the Hamming Distance classifier’s, such as BinHD, the
learning rate is more difficult to define. The binary weights of
the model vectors only flip when the counters cross the zero
thresholds. This means that there is no guarantee that adding
a single binary vector to the counters will take any immediate
effect on the model. We choose to define our learning rate as
the average number of bits flipped per accumulation operation.
We modify this rate by saturating the counters with a reason-
able ceiling and increasing the number of counter increments
per accumulation. In fact, the size of a counter determines an
application learning rate.

Figure 4 shows the impact of counter size on the BinHD
classification accuracy during the model adjustment iterations.
The results are reported for activity recognition dataset [27]
using three different counter sizes. BinHD using 32-bit coun-
ters results on average 2-5 bits flipped per accumulation. It
means that the training samples are only allowed to modify the
vector about 0.05% per accumulation. This is unsurprisingly
low since using counters that can accommodate values as
high as 6,213 or as low as -6,213 (the number of training
samples in the set), some dimensions will take thousands of

Design, Automation And Test in Europe (DATE 2019)

Encoding Module Associative Search

Dimension (D)

Pre-stored Class hypervectors

Q MEM Cell MEM Cell s+ [MEM Cell

(A]

Item Memory (m*L)

i

’ Position ID Memory (n*ID)

I
I
I
|]m\]m\ e+ [MEM Cell
i i Ny I i i T o
1 T L 31
: | U U °ct U D bis
: =
~ St
L} | i | U Counter
Encoder | H . - f Class 2
e XOR Array | _ ° ° ° *
- prm |8 5 ..
e (count 1][count2] w.. [countd] & | 2 U
T I I8 g
THR +{ Comp 1 H Comp 2 }- +++—{ Comp D § | :\:& Associative Memory
D | > XOR Array
Query . g

Hypervector

J0jesedwio paseq-aai)

Model Adjustment

Pre-stored Class Hypervectors

| o Update Class Hypervector
1| MEM Cell MEM Cell *e** | MEM Cell

009

Query
Hypervector

Overflowed
Class

Tag
|
I
I

Matched

Driver
Driver

rk2 r kD
Overflow

Matched

Detection

Model Adjustment
Counter Array

Fig. 5. The hardware implementation of BinHD including encoding, associative search, and model adjustment modules.

accumulations to flip. Convergence on the training data will
take hundreds of epochs with such a low learning rate. BinHD
can increase the learning rate by using a smaller counter
size. For example, using counter size equal to 6-bits (N = 6)
increases the learning rate and results in higher classification
accuracy. In fact, 6-bits counter size is equivalent of using a
learning rate of 5%, which results in a faster training. From
the other side, using very small counter size, i.e., 4-bit, is
equivalent to use very large learning rate which increases
accuracy fluctuation and increases the chance of divergence.

III. HARDWARE IMPLEMENTATION

The main computation of HD can perform using three main
blocks: encoding, associative search and counter modules.
Figure 5 shows the details implementation of these three
blocks.

A. Encoding

Figure 5 shows the implementation of encoding module.
Our approach stores all position (/D) and level (L) hypervec-
tors in position and item memory blocks respectively (@).
After access to the feature values in the original domain,
BinHD compares each feature value with the quantized feature
values. Each feature is assigned to a quantized level which it
has a minimum distance with. BinHD reads a level hypervector
from the memory and XORs it with the position hypervector
corresponding to that feature (@). This process can perform
in parallel for all features. The result of XOR operations are
accumulated using D counter blocks and compared with a
threshold value. In BinHD, a threshold value is the half of the
number of features (THR = n/2). This results in generating
an encoded hypervector with D binary elements (@).

B. Training

In the existing HD computing algorithms, the training hap-
pens by accumulating the non-binarized hypervectors, result-
ing in large memory requirement and expensive computational
cost [18]. BinHD implements training by accumulating all
encoded hypervectors corresponding to a class. Since the
encoded hypervectors are binary, this addition happens using
the binary accumulation approach introduced in section II-B.
BinHD uses a counter array for each corresponding class
which keeps track of the number of 0 and 1 bits in each
dimension (Figure 5G). After updating the counter values for
the entire training data, BinHD creates an initial training model

Design, Automation And Test in Europe (DATE 2019)

by assigning any dimensions with positive value to 1, while
counters with zero or negative values are assigned to 0.

C. Associative Search

In inference and model adjustment, the associative search
is the main cost of HD computing where we compare the
similarity of an encoded hypervector with a binarized HD
model. Unlike prior HD computing algorithms that use costly
Cosine as the similarity metric, BinHD performs similarity
check using Hamming distance. BinHD pre-stores the trained
class hypervectors in a memory block (@®). The similarity
check of a query and class hypervectors performs using
an array of XOR gates (@). Each XOR row computes the
Hamming distance similarity of a query and class hypervector.
A counter block has been located at the right side of the array
is responsible to count the number of mismatches in each class.
Finally, a tree-based comparator block identifies a class with
the minimum Hamming distance (@).

D. Model Adjustment

The model adjustment can be implemented using the same
XOR array used for similarity check and a counter array used
for initial training (@). As we explained in section II-C,
BinHD uses a single N-bits counter to keep track of changes
in each dimension of a class hypervector. For example, for
an application with k classes and D dimensions, we require
k x D counters, where each counter corresponds to a single
dimension of a class hypervector. Model adjustment block uses
the same XOR array to check the similarity of a training data
point with the HD model. Depending on the correctness of
match, BinHD implements the model adjustment using the
following steps:

o If an encoded hypervector matches with a correct class,
BinHD continues the search for the next data point without
updating the counter array.

o If an encoded hypervector match with an incorrect class
hypervector, BinHD XORs the query/encoded hypervector
with that class (@). Model adjustment accesses to the class

TABLE 1
DATASETS (n: FEATURE SIZE, k: NUMBER OF CLASSES).
Train Test
n K Size Size Description
ISOLET 617 | 26 | 6,238 1,559 Speech recognition [28]
UCIHAR | 561 12 | 6,213 1,554 Activity recognition(Mobile) [27]
FACE 608 2 522,441 2,494 Face recognition [25]
CARDIO 21 3 1,913 213 Cardiotocograms classification [29]

129

TABLE II
COMPARING THE CLASSIFICATION ACCURACY, TRAINING MEMORY FOOTPRINT, AND MODEL SIZE OF BINHD AND THE BASELINE HD COMPUTING IN
DIFFERENT CONFIGURATIONS.

‘ Classification Accuracy

Training Memory Footprint (MB)
CARDIO | ISOLET UCIHAR FACE CARDIO | ISOLET UCIHAR

Model Size (KB)
CARDIO

Encoding/Model ISOLET UCIHAR FACE FACE
Float/Float HD [18] 93.5% 95.8% 95.3% 99.0% 251 249 898 77 1,015.6 468.7 78.1 117.2
Float/Binary HD [20] 88.1% 91.3% 91.9% 93.8% 251 249 898 77 31.7 14.6 24 3.7
Binary/Binary HD [20] 85.6% 87.3% 83.5% 90.2% 10 13 34 3 31.7 14.6 2.4 3.7
Proposed BinHD 91.5% 95.7% 94.3% 99.5% 10 13 34 3 31.7 14.6 2.4 3.7

hypervector using the same memory block which stored the

trained class hypervectors. Every element of an XOR vector

with 1 (0) bit increments (decrements) the counter value
of the corresponding class. BinHD also updates the counter

values on a class that the data point belongs to by using a

Tag control signal. BinHD XORs the encoded hypervector

with the correct class hypervector. Depending on the result

of XOR, we increment (decrement) the counter values on the
dimensions that XOR results have 0 (1) bit.

During the above update steps, if a sign of a counter
changes, our approach fillips the corresponding dimensions of
class hypervector. This update happens in two steps: detecting
any changes in the counters corresponding to a class by
ANDing their signs signals (@). Second, XORing the sign
signal with the corresponding class and write the results back
to the same memory location (@).

IV. EVALUATION
A. Experimental Setup

We verified the functionality of BinHD using both software
and hardware implementations. In software, we implement HD
training and inference on Intel Core i7 7600 CPU using an
optimized C++ implementation. For a hardware implementa-
tion, we use a standard digital ASIC flow to design dedicated
hardware. We describe HD functionality using RTL System-
Verilog. For the synthesis, we use Synopsys Design Compiler
with the TSMC 45 nm technology library, the general purpose
process with high Vrg cells. We extract its switching activity
during post-synthesis simulations in ModelSim by applying
the test sentences. We compare the BinHD efficiency and
accuracy with the state-of-the-art HD computing algorithm
proposed in [18], [21]. Table I summarizes the evaluated
datasets. The tested benchmarks range from relatively small
datasets collected in a small IoT network, e.g., UCIHAR, to a
large dataset which includes hundreds of thousands of images
of facial and non-facial data.

B. BinHD vs Existing Algorithms

Table II compares the classification accuracy of BinHD
with the baseline HD computing algorithm [18] in three dif-
ferent configurations. First, the baseline HD using non-binary
encoding and non-binary model (Float/Float) which provides
the highest classification accuracy. Second, HD computing
with non-binary encoding and binary model (Float/Binary).
Third, HD computing with binary encoding and binary model
(Binary/Binary) which has the maximum efficiency. Our eval-
uation shows that HD computing in Float/Float configuration
provides on average 6.7% and 9.3% higher classification ac-
curacy as compared to HD in Float/Binary and Binary/Binary
configurations respectively. In fact, naively binarization of the
encoded hypervector or HD model results in a significant drop
in the classification accuracy. In contrast, our proposed BinHD
framework binarizes both encoded and class hypervectors with

130

minimal impact on the classification accuracy. Our evaluation
shows that BinHD can provide the similar accuracy to the
baseline HD in Float/Float configuration (less than 0.6%).

Table II also compares proposed BinHD and the baseline
HD computing algorithms in terms of training memory foot-
print and model size. The baseline HD computing algorithm
encodes data points to non-binary hypervectors, thus they
require large memory footprint during training. BinHD enables
HD computing to work with binarized encoded hypervectors.
Our evaluation shows that BinHD on average requires 24.6x
lower memory footprint as compared to the baseline HD
using non-binary encoded hypervectors. In terms of model
size, BinHD provides the same memory size as HD with
the binarized mode, which is 32x smaller than the baseline
HD with the non-binary model. In summary, BinHD can
provide the memory/computing efficiency of the fully binary
HD (Binary/Binary) as well as the classification accuracy
of the baseline HD with non-binary encoding and model
(Float/Float).

C. BinHD & Counter Size

Table 111 lists the classification accuracy of BinHD when the
counter width increases from 6-bits to 32-bits. Choosing the
width of the counters, like choosing a learning rate, depends
on the dataset size. Choosing a counter that is small does not
provide enough memory for retraining to converge on large
datasets. In another word, accumulating enough changes cause
forgetfulness during the descent. Our results in Table IIT shows
that using counters smaller than 10-bits results in a divergence
of the FACE recognition application. Similarity, the accuracy
of the other applications diverge when the counter is smaller
than 4-bits. Choosing a counter width that is too large will not
give the significant dimensions a high enough probability to
be flipped. Therefore, the gradient descent will choose to fit
the data based on insignificant features, leading to overfitting.
Our evaluation shows that the best counter size is predictable
depending on the dataset size. Depending on the number of
train data, we should select a counter size which provides a
learning rate of 5%. For example, for a large dataset such as
FACE, BinHD requires to use 10-bits counter size, while for
smaller datasets such as ISOLET and UCIHAR using 6-bit
counters provides 5% learning rate.

D. Training Efficiency

Here, we compare the efficiency of BinHD and the baseline
HD computing algorithm with Float/Float configuration which
provides the similar accuracy as BinHD. The baseline HD
encodes data point to the non-binary domain and then adds
the encoded hypervectors in order to create each class hyper-
vector. BinHD simplifies the training operation by performing
accumulation of the binary encoded hypervectors. Figure 6
compares the energy consumption and execution time of
BinHD and baseline HD running on digital hardware. Our

Design, Automation And Test in Europe (DATE 2019)

TABLE III
IMPACT OF THE COUNTER SIZE ON BINHD CLASSIFICATION ACCURACY.
| Counter Size | 5-bits 6-bits 8-bits 10-bits 16-bits 32-bits |
ISOLET 91.7 91.7 91.5 91.2 90.5 89.2
UCIHAR 95.8 95.7 94.3 93.1 93.7 92.5
FACE NA NA NA 94.2 93.1 92.4
CARDIO 99.5 99.5 99.1 97.6 95.8 97.6

evaluation shows that BinHD can provide 6.3x faster and
12.4x higher energy efficiency as compared to the baseline
HD computing algorithm [18], while providing the similar
classification accuracy.

E. Testing and Model Adjustment Efficiency

Figure 7a compares BinHD and the baseline HD computing
algorithm during inference. Since BinHD uses a binary model,
it can exploit a hardware-friendly Hamming distance as the
similarity metric, while the baseline HD using non-binary
model uses costly Cosine for the similarity check. Unlike
Hamming distance, calculating Cosine similarity is so costly as
it involves a large number of non-binary multiplications. Our
evaluation shows that BinHD can achieve 13.8 x higher energy
efficiency and 9.9x speedup as compared to the baseline HD
using non-binary model.

Figure 7b shows the efficiency of BinHD and the baseline
HD computing during a single iteration of model adjustment.
The retraining consists of an associative search and model
update. Similar to the inference, BinHD provides significantly
higher efficiency than the baseline HD computing. This is
because the retraining in HD performs by applying similarity
check to the binary model, while the baseline HD needs
to use costly Cosine similarity on the non-binarized model.
The model update in BinHD can perform using bitwise XOR
operation, while the baseline HD requires to perform non-
binary addition on two class hypervector. Our evaluation
shows that BinHD can achieve on average 13.6 x speedup and
7.8 higher energy efficiency as compared to the baseline HD
computing algorithms.

V. CONCLUSION

In this paper, we proposed a novel framework for bina-
rization of the Hyperdimensional computing algorithm during
training and inference. BinHD encodes data points into binary
hypervectors and performs training using the binary accumu-
lation. In the inference, BinHD creates a binary model which
enables the computation happens using light-weight Hamming
distance similarity check. Our evaluation shows that BinHD in
training (inference) can achieve on average 12.4x and 6.3x
(13.8x and 9.9x) energy efficiency and speedup as compared
to baseline HD computing algorithm while providing the
similar classification accuracy.

ACKNOWLEDGEMENTS

This work was partially supported by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA, and
also NSF grants #1730158 and #1527034.

REFERENCES

[17 O. Russakovsky et al., “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

[2] M. Imani et al., “Bayesian control of large MDPs with unknown dynamics in data-poor
environments,” in NIPS, 2018.

[3] M. Denil et al., “Predicting parameters in deep learning,” in Advances in neural information
processing systems, pp. 2148-2156, 2013.

Design, Automation And Test in Europe (DATE 2019)

| MM Baseline HD [IProposed BinHD |
fgw‘ Ema
E10° E 42
s
2 o
éwz E101
i 10’ EWD

GOEY (R pC a0® GO o enCE ap©

Fig. 6. Execution time and energy consumption of BinHD and the baseline
HD during training.

| B Baseline HD [IProposed BinHD |

10! z10°

= E

o o

E 10 £

[

p 10

2 107" 2

W2 di 492

Al R € o < R € o
\'50\’E \)G\\'\P €pC ol\“‘)\ \'50\‘E \)(:v\\'\PA €pC Qh“o\

= 1 2

S0 510

= £

E 400 H

2 S 100

8 8 10

-1

5" 5

= Q

Q C

i 102 Y102

SOET (R epc® a0® GO (ot enCE a0

(a) Testing (b) Model Adjustment

Fig. 7. Execution time and energy consumption of BinHD and the baseline
HD running (a) a single query in the inference (b) a single iteration of the
model adjustment.

[4] D. Bouris er al., “Fast and efficient fpga-based feature detection employing the surf algo-
rithm.,” in FCCM, vol. 10, pp. 3-10, 2010.

[5] M. Imani et al., “Rapidnn: In-memory deep neural network acceleration framework,” arXiv
preprint arXiv:1806.05794, 2018.

[6] G. Surrel e al., “Online obstructive sleep apnea detection on medical wearable sensors,” IEEE
Transactions on Biomedical Circuits and Systems, no. 99, pp. 1-12, 2018.

[7]1 M. Chen ez al., “Disease prediction by machine learning over big data from healthcare
communities,” IEEE Access, vol. 5, pp. 88698879, 2017.

[8] D. Sopic et al., “Real-time classification technique for early detection and prevention of
myocardial infarction on wearable devices,” in BioCAS, pp. 1-4, IEEE, 2017.

[9] S. Suthaharan, “Big data classification: Problems and challenges in network intrusion predic-
tion with machine learning,” ACM SIGMETRICS Performance Evaluation Review, vol. 41,
no. 4, pp. 70-73, 2014.

[10] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods for
cyber security intrusion detection,” JEEE Communications Surveys & Tutorials, vol. 18, no. 2,
pp. 1153-1176, 2016.

[11] G. Hatzivasilis er al., “Secroute: End-to-end secure communications for wireless ad-hoc
networks,” in ISCC, pp. 558-563, IEEE, 2017.

[12] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors,” Cognitive Computation, vol. 1, no. 2,
pp. 139-159, 2009.

[13] M. Imani et al., “Fach: Fpga-based acceleration of hyperdimensional computing by reducing
computational complexity,” in ASP-DAC, IEEE, 2019.

[14] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed hyperdimensional
coding applied to the analysis of mobile phone use patterns,” IEEE Transactions on Neural
Networks and Learning Systems, vol. PP, no. 99, pp. 1-12, 2015.

[15] M. Imani et al., “Low-power sparse hyperdimensional encoder for language recognition,”
IEEE Design & Test, vol. 34, no. 6, pp. 94-101, 2017.

[16] M. Imani er al., “Exploring hyperdimensional associative memory,” in HPCA, pp. 445-456,
IEEE, 2017.

[17] S.Salamat et al., “F5-hd: Fast flexible fpga-based framework for refreshing hyperdimensional
computing,” in FPGA, ACM, 2019.

[18] M. Imani et al., “Hierarchical hyperdimensional computing for energy efficient classifica-
tion,” in DAC, p. 108, ACM, 2018.

[19] M. Imani et al., “Hdna: Energy-efficient dna sequencing using hyperdimensional computing,”
in BHI, pp. 271-274, IEEE, 2018.

[20] A. Rahimi et al., “A robust and energy-efficient classifier using brain-inspired hyperdimen-
sional computing,” in ISLPED, pp. 64-69, ACM, 2016.

[21] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient speech recognition,” in
ICRC, pp. 1-6, IEEE, 2017.

[22] A. Moin et al., “An emg gesture recognition system with flexible high-density sensors and
brain-inspired high-dimensional classifier,” in ISCAS, pp. 1-5, IEEE, 2018.

[23] S. Gupta et al., “Felix: fast and energy-efficient logic in memory,” in /CCAD, p. 55, ACM,
2018.

[24] Y. Kim et al., “Efficient human activity recognition using hyperdimensional computing,” in
IoT, p. 38, ACM, 2018.

[25] Y. Kim et al., “Orchard: Visual object recognition accelerator based on approximate in-
memory processing,” in ICCAD, pp. 25-32, IEEE, 2017.

[26] Y. Wu et al., “The kanerva machine: A generative distributed memory,” arXiv preprint
arXiv:1804.01756, 2018.

[27] D. Anguita er al., “Human activity recognition on smartphones using a multiclass hardware-
friendly support vector machine,” in IWAAL, pp. 216-223, Springer, 2012.

[28] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.

[29] D. Ayres-de Campos et al., “Sisporto 2.0: a program for automated analysis of car-
diotocograms,” Journal of Maternal-Fetal Medicine, vol. 9, no. 5, pp. 311-318, 2000.

131

