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ABSTRACT

A smart shelving system can visualize stock data in real time
by leveraging item-level RFID tagging so that we can min-
imize out-of-stock and reduce warehousing and labor costs.
The key issue of smart shelving is to locate RFID tags at any
time, especially after misplacing tags. The detection of mis-
placed tags on stationary shelved items is very challenging
due to position ambiguity, phase wrapping, device diversi-
ty, and phase ambiguity. Using a combination of theoretical
analysis, simulation-based prediction and experimental veri-
fication, we propose an effective way of detecting misplaced
tags, called FINDS, that integrates Particle Swarm Optimiza-
tion (PSO), Synthetic Minority Over-sampling TEchnique
(SMOTE) and Density-based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithms to make theoretical
and measured phases consistent with each other, and observe
the phase shifts caused by misplaced tags. FINDS requires
neither antenna movement nor external disturbances. We
have implemented a prototype of FINDS with 20 tags and
evaluated its performance, demonstrating FINDS’s accuracy
to be higher than 0.92 in the case of 2 stationary antennas.
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1 INTRODUCTION

When implemented at the item level, RFID technology can
help ensure the availability of the right product, on the
right shelf, and at the right place, essentially all the time.
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If a product is not on the shelf, customers often give up
the purchase and shop it somewhere else. It is also more
expensive to win back customers than keeping loyal customers
in the store happy. Analysts estimate that the US retail
industry loses approximately US$30 billion annually due to
products not being on the shelves [10]. Stock data feeds from
a smart shelving system can help deliver more personalized,
convenient customer service. Inventory replenishment can
be managed based on real-time transactions data instead of
forecasts based on previous sales during a similar period.

Smart shelving replaces visual checks by the store staff,
and enables consistent shelf-space allocation compliance by
automating shelf-level management of items placement and
leveraging item-level tagging to ensure adherence to supplier
shelf-space allocation. For example, tooth-brushes should
always be placed adjacent to tooth-pastes to maximize cross-
selling opportunities.

The main challenge of smart shelving is to locate, in real
time, passive tags. Prior work on locating tags — that in-
cludes determination of their relative and absolute positions

— is either dynamic or static. The former requires to move

RFID tags or reader antennas in order to monitor/acquire
RF changes as a time series. On the other hand, the latter
requires high-density reference tags for a priori collection of
RSS distributions or an expensive infrastructure (i.e., consist-
ing of multiple reader antennas or synthetic aperture radar)
to analyze the tags’ phase differences. Unfortunately, both
of these approaches have practical limitations when used for
the detection of misplaced tags in smart shelves. First, tags
usually do not move, as items on shelves remain stationary for
most of the time [20]. Second, it is very time-consuming and
tedious to move reader antennas, since the scanning process
usually needs to be continuous and stable [13, 17]. Third,
the requirement of a complex and expensive infrastructure is
unattractive/unsuitable for large-scale deployment and limits
the horizontal expansion of shelves.

To overcome these limitations, we introduce a new cost-
effective and real-time detection scheme for tags in smart
shelves, called FINDS (Find Items on Department store Shelves).
We assume that tags are placed at fixed/predetermined posi-
tions on the shelves as is the case for garment racks or smart
shelves, where the positions of hanging holes and shelving
units are determined and fixed a priori. Although this as-
sumption may limit application scenarios, it covers a large
number of common use-cases and also facilitates FINDS’s
implementation and scalability. Our idea is to make the mea-
sured phase coincide with the theoretical phase, and identify
the phase shifts caused by misplacement of tags. However,
this is still challenging due to: (i) position ambiguity —
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the phase is periodic such that different positions may yield
the same measured phase; (ii) phase wrapping — the mea-
sured phase may contain one or more 27 jumps in order not
to exceed its normal range [0, 27); (iii) device diversity —
the antennas may have different unknown initial phases even
though they are of the same model; (iv) phase ambiguity —
the ImpinJ reader introduces a 7 jump such that the reported
phase can be the true phase or the true phase plus .

We take three main steps to overcome these challenges:
deployment optimization, phase unwrapping, and outlier de-
tection. The deployment optimization maximizes the phase
discrimination between any two positions by determining
the optimal antenna positions, while the phase unwrapping
provides an effective way of eliminating the effect of 27 jumps
by comparing the measured phase with the theoretical phase.
Finally, the outlier detection estimates the systemic error to
calibrate the measured phase, and detects abnormal phase
deviations to identify misplaced tags.

FINDS has four salient features: (i) convenience — the
setting of its parameters mainly depends on numerical cal-
culations, facilitating easy deployment and management; (ii)
scalability — it requires neither pre-collection of RF sig-
nals nor movement of tags/antennas; (iii) flexibility — it
can dynamically adjust the number of antennas according to
the number of tags; (iv) timeliness — it works stably and
reliably even when the sampling time is small.

In summary, we make the following main contributions:

e Conducting a series of experiments to explore the chal-
lenges in detecting misplaced tags on stationary items;

e Development of an effective scheme for identifying mis-
placed tags, called FINDS, for smart shelving, with
respect to position ambiguity, phase wrapping, device
diversity, and phase ambiguity;

e Implementation a prototype of FINDS using ImpinJ
R420 reader and Alien AZ-9346 tags; and

e Extensive evaluation of FINDS, demonstrating high ac-
curacy (>0.85 for 1 antenna and >0.92 for 2 antennas).

The rest of this paper is organized as follows. Section
2 discusses the related work, while Section 3 provides an
overview of FINDS. Section 4 details FINDS and Section 5
evaluates FINDS’s performance via extensive experimentation.
Section 6 discusses the remaining issues and finally, the paper
concludes with Section 7.

2 RELATED WORK

A considerable amount of research has been done on RFID-
based indoor localization. Existing related work can be clas-
sified as dynamic tracking or static positioning.

2.1 Dynamic Tracking

Dynamic tracking collects time-varying RF signals by moving
tags or antennas. Zhang et al. [23] presented a model of
RSS dynamics to track transceiver-free objects. STPP [17]
recognizes the relative positions of tags by observing sudden
phase changes from different tags when the reader antenna
is moved along a known direction. RF-Scanner [13] installs a
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RFID reader on a moving robot to detect misplaced or laid-
down books. OTrack [18] establishes a probabilistic model to
recognize transient critical regions and monitors the order of
tagged goods on an airport baggage carousel. Tagoram [22]
leverages the phase of the backscattered signal, provided by
a COTS RFID reader, for real-time tracking of mobile RFID
tags. Wang et al. [19] proposed active and passive tracking
of mobile antennas and tags, respectively. Both schemes
were based on the Nelder-Mead nonlinear optimization that
minimizes the error. Tagspin [6] emulates a circular antenna
array by uniformly spinning on the edge of a rotating disk and
designs a SAR-based method to pinpoint the target antenna.
CBID [8] estimates Doppler shifts and RSS to detect and track
tag movements and then infer the corresponding customer
behaviors. TagBooth [14] uses RSS to exploit the motion of
tagged commodities and utilizes phase to distinguish subtle
customer actions. Tagwins [5] makes sense of mechanical
rotation using dual tags’ backscatter signals. It leveraged the
relative signal of dual RFID tags to handle system shaking
and proposed a compressive reading technique to recover
the signal. RF-Dial [2] attaches a tag array to the surface of
a specified object, and continuously tracks the translation
and rotation of a tagged object. Katabi et al. [21] extracted
multi-path profiles by the mobile antenna and adapted DTW
to pinpoint a tag’s location.

2.2 Static Positioning

Static positioning analyzes time-invariant RF signals with
the help of reference tags or external disturbances. RADAR
[1] utilizes the RSS gathered at multiple receiver locations to
triangulate the user’s locations. Triangulation is done with
both empirically-determined and theoretically-computed RSS.
LANDMARC [16] utilizes RSS to find k nearest reference tags
of an active target tag, and estimates the target’s position.
Hekimian-Williams et al. [9] exploited the phase difference
between two receiving antennas for localization and tracking.
BackPos [15] infers the differences of distance from the phases
detected by antennas under a triangle constraint and employs
hyperbolic positioning to narrow the tag’s candidate positions.
HMRL [20] leverages the humans’ movements in a region to
explore the order of tags in a 2D space.

Static positioning is much more difficult than dynamic
tracking in which RF signals are a set of points rather than
a group of sequences. Although prior static positioning ap-
proaches are fine-grained, they might be impractical to detect
misplaced tags in smart shelves due to their poor scalability.
Some fundamental issues of static positioning, such as phase
wrapping and antenna diversity, have not yet been addressed.

3 BACKGROUND AND OVERVIEW

We first introduce the technical background of RF phase
and then conduct a series of experiments to explore/identify
challenges in RFID-based positioning with stationary de-
vices. Finally, we present an overview of FINDS, the proposed
detection of misplaced tags.
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3.1 Background

A passive RFID tag communicates via a backscatter radio
link. The tag, without battery, harvests energy from the
reader’s signal. Let d be the distance between the reader
antenna and the tag, then the distance traveled by the signal
will be 2d. The theoretical phase © can be calculated as:

(1)

where A is the wavelength and K an integer. The theoretical
phase is a periodic function with period 27 radians, which
repeats every % in the distance between the tag and the
reader antenna [11].

The measured phase 6 includes a systemic error u, which
is defined as

0= 271'2—)? — 2K,

(2)

As specified in [11], 6 ranges between 0 and 27. Let p =
(0rac + 0ant) mod 2w, where O7a¢ and Oant are the ad-
ditional rotations representing the tag’s reflection charac-
teristics, the reader antenna’s transmit and receive circuits,
respectively.
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Figure 1: 3D shelf space

3.2 Challenges

We conducted a series of experiments with COTS ImpinJ
readers and Alien tags. These experiments were designed
to identify the potential difficulties in positioning tags with
stationary devices. As shown in Fig. 1, we establish a 3D
coordinate system according to the right-hand rule. The
system is oriented counter-clockwise with respect to z-axis.
Both tags and antennas are parallel to the xy-plane. For
simplicity, we only deploy tags in the zy-plane. Note that
the following experimental results are not limited to this
2D deployment of tags, as we observe the effect of the 3D
distances between tag and antenna on the measured phases.
Each tag is interrogated 200 times and the measured phase
is extracted from the tag’s reports. Prior research [15] has
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shown that the phase actually exhibits a stable statistical
structure, which is preserved in the presence of frequency
changes. For easy and clear observation, we chose a fixed
frequency 921.875MHZ, whose corresponding wavelength is
0.325m.

3.2.1 Position Ambiguity. Tags placed at different positions
may yield the same measured phase 6 due to the cycle slip
of phase. According to Eq. (2), 6 should repeat from 0 to 27
every half wavelength (% ~ 0.163). We placed an antenna A;
at (0, 0, 1.2), and two tags 71 and 1% at (-0.037, 0.306, 0) and
(-0.248, 0.681, 0). The distances from A; to 71 and T> are
4t = | AT, || = 1.239 and db = | A, T5|| = 1.402, respectively.
The difference of distance Adil = di—d} = 0.162 is very close
%. Assuming that 0} and 0% are T1’s and T5’s measured
phases from A;, Fig. 2 shows that 61 and 62 almost overlap.
The means of A} and 63 are 1.782 and 1.777, respectively.
We then placed another antenna As at (0, 0.3, 1.2). Dis-
tances from As to Ty and Tb are d? = ||[A2T1|| = 1.284
and d2 = ||1?T2>|| = 1.485, respectively. As Fig. 2 shows,
one can distinguish 67 from 63. The means of 67 and 62
are 0.335 and 2.899, respectively, as the distance difference
Adg’l = d3 — d? = 0.201 is not an integer multiple of %

to

064

Gauss Fitof AT,
Gauss Fitof A|T,|
=Gauss Fitof A,T,

= =Gauss Fitof A,T,

Frequency
o o
N b
h !

o
L
-—

0.0- U T T T
1.0 1.5 20

Phase (radian)

T
25

Figure 2: Position ambiguity

3.2.2 Phase Wrapping. Since the theoretical phase © has a
normal range [0, 27), the measured phase § = © + u may
exceed the range [0, 27) and contain one or more 27 jumps.
In such a case, 6 will be wrapped around to stay within the
normal range [0,27). We placed an antenna A; at (0.6, 0.3,
1.386) and 20 tags in a 4 x 5 array. [4, 24] suggest tags to be
separated from each other by about 0.1m. If tags are too close
to each other, they will suffer mutual coupling/interference
effects. To reduce these effects, we separate two adjacent tags
by 0.15m. Fig. 3 shows that § does not vary with ©. Taking
Ts and Ty as examples, 05 — Of = 4.429 — 2.045 = 2.383,
while 03 — ©g = 4.786 — 0.455 = 4.331. We calculate the
Pearson correlation coefficient for 6 and © to test whether
there is a linear correlation between them. The coefficient of
correlation is 0.429, implying that there is a moderate linear
correlation between 6 and ©.

The 27 jumps in the wrapped 6 must be removed in order
to make 6 usable for further processing. The tag’s 6 presents
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a continuous form in the dynamic tracking. The existence
of a wrap can be easily detected by the difference between
two successive 0’s. If the difference is larger than m, then
subtract 27. If the difference is smaller than —m, then add 27.
Unfortunately, this phase unwrapping may not work correctly
in the case of static positioning. Since both tags and antennas
are placed at fixed positions, each tag’s 6 remains constant
during observation. The difference between two successive
6’s will usually not exceed 0.1 radian [15]. So, in most cases,
no phase wrap can be detected. We regard each tag’s 0 as
a point rather than a time-series sequence, and attempt to
unwrap all § in a tag array. Let 6’ be the “unwrapped” 0,
then Fig. 3 indicates the non-existence of linear correlation
between ¢ and ©. The coefficient of correlation is —0.13.
Using the unwrapping process, we can detect a phase wrap at
0g, because 05 — 0 = 4.429 — 0.208 = 4.221 > 7. To correct

g, we subtract 27 and then get Qé/ —1.854. However,
we still find that 5 — O = —1.854 — 2.045 = —3.899 #

) — O = 4.786 — 0.455 = 4.331. The primary reason for
the failure of unwrapping is that  may be “under-sample”.
If the separation between two adjacent tags is too large, the
difference between their 6’s may reach 7 (or higher), and
hence regarded incorrectly as a true phase wrap, when there
is actually no real phase wrap. To the best of our knowledge,
there has been no previous attempt to address this challenge
with COTS RFID readers.

3.2.3 Device Diversity. Device diversity includes diversities of
tags and the reader antennas. Prior research has shown device
diversity to have a great effect on the phase measurement,
thus leading to a natural question“can we eliminate this
effect by choosing devices of the same model?” We first place
an antenna at (0, 0.447, 1.2) and 60 Alien AZ-9346 tags at
(0, 0, 0) in turn. The measured phase values are long-term
averages. Fig. 4 shows that 6 follows a Gaussian distribution
with mean 5.85 and standard deviation 0.025. This effect of
the measurement error is negligible.

We deployed three Laird S9025PR antennas A1, A2 and As
at (—0.3, 0.073, 1.2) in turn, and utilized them to interrogate
tag T1 placed at (0, 0, 0). These antennas are of the same
model but from different batches. A1 and A>’s batch numbers
are 1316 while As’s batch number is 1245. Fig. 5 shows 6}

T
5.85

Phase (radian)

381

T T
5.90 5.95

T T
2.0 25
Phase (radian)

Figure 4: Tags of the same model Figure 5: Antennas of the same model

very close to 6%, while 63 is very different from the other two.
The means of 01 and 63 are shown to be 3.108 and 1.523,
respectively. We can also see that As is more precise than A,
since the standard deviation of 63 is much smaller than that
of 01. These results indicate that even same-model antennas
do not always yield consistent measurements. In order to
improve system flexibility and scalability, we need to reduce
the effect of antenna diversity.
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Figure 6: Basic FINDS framework

3.3 Overview of FINDS

The problem of detecting misplaced tags can be viewed as a
special type of static positioning. We assume that tags are
placed at a set of fixed positions as in clothing or unmanned
shelves. Our basic idea is to calibrate the measured phases
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and detect the abnormal phase shifts caused by misplaced
tags. FINDS neither collects signal fingerprints (RSS or phase)
a priori nor tracks signal changes to handle a cold start, i.e.,
it does not assume all tags initially placed at the right place.

As shown in Fig. 6, FINDS consists of input, misplacement
detection, and output. The input includes tag IDs, phase
measurements, and tag placement. The misplacement detec-
tion consists of (antennas) deployment optimization, phase
unwrapping, and outlier detection, which are designed to
address the challenges identified in Section 3.2. The output
is the tag IDs and the positions of misplaced tags.

Specifically, FINDS takes several steps to detect misplaced
tags. First, it optimizes the deployment of antennas to reduce
position ambiguities. It later collects tag IDs and phase mea-
surements by interrogating tags. It then obtains the expected
positions of tags from the pre-determined tag placement, fol-
lowed by the calculation of theoretical phases corresponding
to the expected positions. Next, it detects and corrects phase
wraps according to a simple yet effective check, comparing
the measured and the theoretical phases. Finally, it elimi-
nates the effect of systemic errors and detects the anomalous
phase shifts caused by misplaced tags.

4 DETECTION OF MISPLACED TAGS

We first describe how to detect misplaced tags and then
present its technical details.

4.1 Deployment Optimization

Suppose there are n syt antennas and nrac tags, and let ©F
be the theoretical phase of tag T; (i, y:, 2;) from antenna As
(z°,y°,2°%), where i € {1,...,nrac} and s € {1,...,nant}.
According to Eq. (1), ©7 is determined by the distance be-
tween As and T;, df = Hm” Assuming that the anten-
na array topology is pre-fixed, let an arbitrary antenna A,
(z",y", 2") be the reference point of the antenna array as
shown in Fig. 7. The position of T; relative to As, m can
then be written as:

AT,

(szo—A::(szO—Xr*ArAs

T s T

T; T 7’ —x
= w| - |y |- |v—-v|, (3)
2 2" 25 =27

The position of T;, ﬁ (@4, s, zi]T, relates to the store layout,
and thus usually remains unaltered. The position of As rela-
. T s r s r s 1T

tive to Ar, Ay As [2° —2",y° —y",2° — 2"]", depends on the
relative positions of antennas which also remains unaltered.
Therefore, AsT; [zi —z°,y; — y°, 2 — zs]T depends only on
O—A: [",y", 2"]T. So, ©; can be viewed as a function of OA,.
denoted by ©3(OAL).

Example: As shown in Fig. 7, we translate A, and A,
without rotation. Since A, and A are treated as a rigid
body, if A, moves to A, then A, will be at A% such that

T T
oA’ =04+ AL A, _OA +AA Then, we have A.T, =
5? OA _5777 Abbothﬁandfl A, are
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Figure 7: Antenna movement

= (40T, —

unaltered, if OA; is measured, then @S(OA
OA, — A, Aq|)) mod 2.

For any two arbitrary tags T; and T3, if we exchange their
pos1t10ns the amphtude of phase shift is A©7 (OA ) =

|©; (OA ) —©;5(0 r)| for each of them. Con51der1ng NANT
antennas, we define the phase shift resulting from the ex-

change of T; and Tj, A©; ;(OA,), as

A0,,(0A7) = max{AG]; (04N}, (4)
where s € {1,...,n4 NT} In practice, we can select any two

distinct tags and exchange their positions. There are CyT4¢

such combinations. We enumerate A©; ; (OA ) for all pairs
of tags, and define the minimum phase shift due to the tag
misplacement, A@(OA ), a

s

AB(OA]) = min{Aei,J-(@)}, ()

—
where ¢,5 € {1,...,nrag}. Then, AO(OA,) is maximized
to achieve the max-min fairness and avoid the worst results:

———x
OA, = = arg max A@(OA ). (6)
OA,
Finally, we utilize the Particle Swarm Optimization (PSO)
algorithm [12] to find the optimal position of A,.
Example: To investigate the optimal minimum phase shift

— =
AO(OA, ), we set the number of tags nrag ranging from
10 to 30 and the number of antennas nanyr ranging from
1 to 3. Two adjacent tags are separated by 0.15m and two

— S
adjacent antennas by 0.45m. Fig. 8 shows that A©(OA, )
increases with nanr, but decreases when nrac increases.

— %
For example, AO(OA, ) for nrac = 20 increases by 1.34
radians when n 4y increases from 1 to 3. On the other hand,

— %«
AO(OA, ) for nant = 3 decreases from 1.97 to 1.01 when
nrac increases from 10 to 30.

4.2 Phase Unwrapping

The phase unwrapping is to restore a wrapped phase to a

“correct” form that is free from 27 jumps. Let 6; be the

measured phase of tag T; from antenna A, and p; be the
systemic error caused by both tag T; and antenna A,;. We
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Figure 8: Optimal phase shift

subtract Eq. (1) from Eq. (2) to get:
©; —0; =2n(k—K) — (7)

Since ©; € [0,27) and 67 € [0,27), we have ©f — 0] €
(—2m, 27). Considering the sign of ©F — 0; leads to the fol-
lowing two cases.

Case 1: Assuming 67 — 6 € (—2m,0], there are two sub-
cases to consider: ©; — 07 > —2m and ©; — 0] < 0.

2n(k — K) —
2n(k — K) —

wi > —2m

2n(k — K) > ui; — 27 > —2m
2n(k — K) < pi < 2m

N k—K>-1
k—K<1

=k=K (8)

Case 2: Assuming ©; — 0; € (0,27), there are two sub-
cases: ©F — 607 > 0 and ©F — 0] < 27.

. ok — K) — i > 0
L[ 2k —K)>pi >0
2n(k — K) < pi + 27 < 4w
N k—K>0
k—K<2
=k=K+1 9)
We can substitute for k in Eq. (7) using Egs. (8) and (9),
yielding:
s_ [ 07 —ui 07 <07
6i_{0$+27r—uf o1 > 0 (10)

We define the unwrapped 65, 67 '

, as:
s _ | 6 CHEH
b _{ 0 421 O > 0. (11)

According to Eq. (11), we unwrap 6; as shown in Fig. 3.
From Fig. 9, the change of Hf/ is consistent with that of ©3.
The relation coefficient increases to 0.988, implying a strong
linear correlation between Gf/ and O;. As Of/ = O + pj, this
result also indicates that p; is relatively stable.

Figure 9: Unwrapping & calibration

383

Figure 10: Phase shift

Example: Let us consider T and T3 as an example. From
Fig. 3, @8 = 4.786 > 6} = 0.455. By Eq (11), we add 27 and

get 98 = 6 739 and then we have 96 — O} =4.429 —2.045 =
2.384 ~ 01 — OL = 6.739 — 4.786 = 1.953.

4.3 Outlier Detection

Our experimental results in Fig. 5 show that the antennas of
the same model may have different initial phase rotations. Let
us extend that to the more general case where different types
of antennas are used. Before detecting misplaced tags, we
estimate u; to calibrate 0;. We re-write Eq. (11) to calculate

wi as:

i =0 o=

As we have already shown that pj, albeit with some fluctua-
tions, is stable, we can simplify the operation by deploying
nrer reference tags and define the estimated systemic error,
ns, as:

63
07

—e:
+ 27 — ©F

o7
o7

<07

Sep. (12

MREF

>,

j=1

13
NREF (13)

where j € {1,...,nrer} and nrer < nrac. We replace u;
with ° and calibrate 6 to approximate ©F. The calibrated
0s, 603", can be defined as:

{0

0; + 21 — s
Fig. 9 shows that 8" coincides with ©53.

Suppose A, is at the optimal position and ¢ is the real
value. We consider two cases of T;: Case 1 — if T; is at the
right position then ;] — ©; = ©; — ©; = 0; Case 2 —if T} is
at T}’s position then 6 — ©F = 0; - 67 > A@(O—A:*). We
then define the estimated phase shift of T, A@i, as:

03
03

> p

< v, (14)

A®; = max{|0; (15)

where s € {1,...
of T; by:

SMA NT}. Then, we detect the misplacement

AB; > aAB(0OA, ), (16)
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Figure 11: Coefficient

— %
where aAO(OA, ) is the threshold for detecting misplaced
tags, and « is the coefficient to control the false detection
rate.

Accuracy Rate
oS o
S o

o
)

antenna
antennas

alpha
o

20
# of Tags

25 30

Figure 12: Coefficient vs. tags

4.4 Parameter Setting

We utilize both false positive rate, fp, and false negative
rate, fn, to evaluate the detection accuracy. fp (f») is the
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number of false positives (negatives) divided by the total
number of detections. The accuracy rate, p, can be calculated
as 1 — fp, — fn. Either f, or f, is caused by the error in
estimating pf, denoted as €7, which can be defined as pf — ps.
Such an error is difficult to predict due to its many causes such
as sampling, measurement, and modeling errors. It is essential
to choose an appropriate a to tolerate the uncertainty caused
by 5.

Theoretically, we should set a within (0, 1] in order to cover
the worst-case condition. In practice, A@(O—AT) *) is very small
when nrac is large or nanr is small. In such a case, we may
need a larger o to balance between f, and f,. Fig. 8 shows

that A@(OAT*) is only 0.15 for nanT = 1 and nrac = 20.
Fortunately, the majority of AG; ;(OA, ) is much larger than

A@(OAT*). From Fig. 10, AO, ; (OAT*) has the mean of 1.99
(95% CI: 1.81-2.18) for nant = 1 and nrag = 20. In other

words, the mean of AO; ; (OAT*)7 denoted as AO;; (OAT*)7

is 13x larger than A@(OAT*), indicating the existence of
room for adjusting c.

Since €; is unpredictable, we utilize the Synthetic Minority
Over-sampling TEchnique (SMOTE) algorithm [3] to create
“synthetic” €7, and conduct simulations to predict the effect of
« on p. In particular, we generate the synthetic €; as follows:
(i) compute the error in each reference tag; (ii) compute the
difference between errors under consideration and the nearest
neighbors; (iii) randomly select a reference tag T} and choose
one of its k nearest neighbors, T,,. Let €; and ¢},,, be the
errors in T, and Ty, then the synthetic €; can be generated
by:

g; = ¢&; + Clenn — €7l

(17)
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where (¢ is a random number within [0, 1]. With the synthetic
s, we can further generate synthetic 63" . If T} is placed at
the right position, then 6" = ©F +¢5. If T} is at T}’s position,
then 63" = 07 +¢€;.

S9025PR

Figure 13: Experimental setup

In our simulation, we randomize the order of tags and
define the misplacement ratio, r. This ratio is the number of
misplaced tags divided by the total number of tags. The range
TAe(0A,)
by 0.1. The observation interval of the misplacement ratio,
Ar, is 0.2. Figs. 11a-11c show that f, decreases and f,
increases as « increases. fp is observed to decrease from 0.537
to 0.152 while f,, increases from 0.008 to 0.048 for r = 0.4
and nayT = 1, when « increases from 1 to 6. We also observe
that the increase of nan7 helps reduce f,. For &« = 1 and
r = 0.2, fp decreases from 0.27 to 0 when nanT increases
from 2 to 3. Another interesting observation is the existence
of a balancing point where p is insensitive to r. Such a point
is 0.75, 0.91 and 0.92 for nanr =1, 2 and 3, respectively.
The corresponding « is 6, 1.5 and 0.9, respectively. Based on
this observation, we calculate the variance of p for different
r values. For given nanT and nrag, p is determined by «,
denoted by p(a). Let p(a) be the expected value of p(a),
then the optimal o, o, is defined as:

(i) —p<a>)}

We ran simulations to find a® and its corresponding p(a*).
Fig. 12 shows that o™ contributes to the stability of p(a*). As

nrac increases, p(a*) stays above 0.9 (0.75-0.83 for nanr =
1, 0.91-0.93 for nant = 2 and 0.91-0.99 for nanT = 3),

of a is (0, J] At each step, « is incremented

1
Ar

o = arg min {Ar Z

=1

(18)
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although it decreases sightly. We have also observed that o™
increases dramatically from 1.8 to 10.9 when nra¢ increases
from 10 to 30. The reason for this is that A@(O—A:*) becomes
very small, as shown in Fig. 8. If nra¢ keeps increasing, «
will reach its maximum. In such a case, only larger na N can
maintain the performance. We will in Section 5 verify the
setting of o and compare the measured and the simulated
results.

- N

Tis Tir Tis Ts Tz

Tu T Tia M
% T, To  Tu
( / T, LE! Ta Ts

Figure 14: Tag placement

Because of the complexity of the environment, we recom-
mend the adjustment of system parameters (« and nant)
to improve the noise tolerance of FINDS. For example, the
setting of a considers all possible cases of the misplacement (r
ranges from 0 to 1). However, in real situations, r is unlikely
to be greater than 0.5. We can further increase p or reduce
fp by omitting rare cases.

—— 1antenna
min: 0.15

max: 5.37
mean: 1.99

81959% CI: 1.81-2.18

——<— 2 antennas
0.6

w min: 0.83 &
8 max: 6.26
0.4 |mean: 3.06
95% Cl: 2§3_27 +— 3 antennas
min: 1.54
0.2
; max: 6.07
mean: 4.02

0.0 95% CI: 3.82-4.22

Phase Shift (radian)

Figure 15: CDF

5 EXPERIMENTAL EVALUATION

We now describe the implementation and evaluation of a
FINDS prototype.

5.1 Implementation

We implemented a prototype of FINDS using an ImpinJ reader
in model R420, three Laird antennas in models A9028L30NF
and S9025PR, and 20 Alien tags in model AZ-9346. The
reader operates at 921.875MHz by default, and hence the
wavelength is 0.325m. To account for device diversity, we
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Figure 16: Calibration for 1—3 antennas

choose a Laird A9028L30NF antenna and two Laird S9025PR,
antennas from different batches 1245 and 1316. During the
measurement, the antennas and tags are viewed as the points
located at their geometric centers.

As shown in Fig. 13, three antennas are separated by
0.45m to form an L-shape array. Let A; be the reference an-
tenna. Suppose A;’s coordinate is (z', 3, 2%), A2’s and A3’s
coordinates are (z' + 0.45,¢y", ") and (z',y' 4 0.45, 2%), re-
spectively. The antenna’s transmission power is set to 30mW.
We command the reader to immediately report phases and
EPC numbers after a round of antenna scheduling. Fig. 13
also shows the deployment of 20 tags with spacing of 0.15m
in a 4 x 5 array. For ease of calculation, 7T} is assumed to
be at (0, 0, 0). The row—column layout of tags is shown in
Fig. 14. Although we do not evaluate the performance of
FINDS in the 3D tag deployment, we verify its effectiveness
while varying antenna positions. The movement of antennas
along the z-axis is equivalent to moving tags along the z-axis.

The distance between antenna and tag is measured with a
distance laser meter with accuracy of 0.001m. The tag array’s
leveling accuracy is checked by a 2-line laser level.

5.2 Evaluation

Our experiments are designed to measure the false detection
rate of misplaced tags, including deployment, unwrapping
and detection.

5.2.1 Deployment. We optimize the deployment of antennas.
Let Ay (z*,y', 2') be the reference point of antennas. The
PSO algorithm is used to find the optimal value of the objec-
tive function (Eq. (6)) subject to the constraints ' € [0, 0.6],
y' € [-0.3,0.3] and 2! € [1.5,3]. These constraints need
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Figure 17: Detection

to account for the range of reader antennas [15]. The op-
timal vﬂe)*O—A;* is affected by the number of antennas
nant. OA; is [0.016,—0.084,1.5]T, [0.532, —0.075,1.939]"
and [0.229, 0.225, 1.585]T for nant is 1, 2 and 3, respectively.
Thus, A@(O—A:*) increases from 0.15 to 1.542 when nant
increases from 1 to 3. We plot the CDF of the phase shift
caused by exchanging T; and T}, A@i,j(O—A:*), in Fig. 15.
There are C2° = 190 combinations of 2 tags out of 20 tags.
The mean of Aei’j(ﬁ:*) is 1.99 (95% CI: 1.81-2.18), 3.05
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Figure 18: Verification

(95% CI: 2.84-3.27), and 4.02 (95% CI: 3.82-4.22) for nant
is 1, 2 and 3, respectively.

5.2.2 Unwrapping. We unwrap and calibrate the measured
phase. After optimally deploying antennas, we measure the
phase of each tag. A tag is interrogated 200 times and the
average is recorded. Then, we unwrap the measured phase
values by using Eq. (11). We randomly select 5 of 20 tags
as reference tags. We use Egs. (13) and (14) to estimate
the systemic errors and calibrate the measured phase values.
Figs. 16a—16c show that the measured systemic error is rel-
atively stable, albeit with some fluctuations. As described
in Section 4.4, these fluctuations are the main culprit for
false detections. Considering the case of nanT = 2, the max-
imum and minimum values of the measured systemic error
related to A; are plg = 1.68 and pug = 0.13, respectively.
The possible reason for this error is that T3¢ is farther away
from A;’s geometrical centerline than Ts. The EM may be
emitted from Ap’s edge, instead of its geometrical center,
yielding a larger measurement error [15]. Another interesting
observation is that A’s estimated systemic error, &, may
vary with the position of As. For example, ,uAl changes from
0.84 to 1.81 when A; moves from (0.532, -0.075, 1.939) to
(0.229, 0.225, 1.585). This observation suggests that z! might
not be predictable due to the measurement error.

5.2.3 Detection. We first detect phase outliers. As shown
in Fig. 14, we exchange 4 pairs of tags {T1,Ts}, {T5,T15},
{Ts,T13} and {Ti7,T19}. We detect misplaced tags by In-
equality (16) and set the coefficient a to 1. For example,
we caﬂ;gtch Ts when nayrt = 3 because AO5 = 5.78 >
AB(OA, ) = 1.54. Fig. 17 shows that all misplaced tags
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with 1-3 antennas

can be detected when nanrt = 3, while missing Ts when
nant = 2. We also notice that Tis, placed at the right
position, is regarded as misplaced when nanyr = 2 due to
AO16 = 0.85 > A@(O—A:*) = 0.83, which turns out to be a
false positive. The possibility of false positives may increase
as nant decreases. There are 4 negatives, T7, Ty, T11 and
Tso, that yield positive test outcomes when nanr = 1. We
can reduce the false positive rate, fp,, by using a* obtained
from simulation. As shown in the figure, f, decreases to 0
if v is set to the optimal value, 6. However, this is achieved
at the cost of increasing the false negative rate f, from 0 to
0.15.

7

Accuracy Rate

AN

/ Expected [l Measured (2 antennas)
Expected [l Measured (3 antennas)
RSS

T T
10 30
# of Tags

Figure 19: Accuracy vs. # of tags

Let us verify the parameter setting. As suggested in Section
4.4, if npac = 20, then o™ is 6, 1.5 and 0.9 for nanr =1,
2 and 3, respectively. The misplacement ratio r increases
from 0 to 1 with an increment of 0.2. For each increment of
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r, we repeat the experiment 10 times and randomly shuffle
tags each time. Figs. 18a-18c show the accuracy ratio p
under various conditions. Overall, the measured values of
p adequately fit the expected values of p. For nayr = 1
and r = 0.2, the measured value of p achieves 0.89, which
is higher by 0.15 than the expected value. When nanr =2
or 3, then f, is virtually invisible. Fig. 18c shows f, = 0
Vr. The trend of the change of f, is opposite to that of f,.
Fig. 18a shows that f, increases from 0.03 to 0.2 when r
increases from 0.2 to 0.8. We also compare FINDS with the
RSS-based fingerprinting (RSS). Fig. 18a shows FINDS to
outperform RSS in the majority of cases. For r = 0.2, p of
FINDS is almost twice that of RSS. In fact, RSS might not be
reliable for positioning static tags, if the centimeter precision
is required. Similar results have also been reported in [20].
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Figure 20: Effect of disturbances

We now vary the number of tags. We set r to 0.2 and
nrac to 10 and 30. As already shown in Fig. 12, when nrag
increases from 10 to 30, «* is 1.8 and 0.7 for nanr = 1; 6
and 0.9 for nant = 2; and 10.9 and 3 for nanT = 3. We
randomly shuffle tags before each experiment. Fig. 19 shows
that p of FINDS is 0.93, 1 and 0.92 for nanT = 2 when nrac
increases from 10 to 30, which is almost 3x higher than that
of RSS. These results suggest that the increase of nrag has
little effect on p if « is selected properly.

5.3 Improvement

We can improve FINDS further by considering additional
factors, such as human-activity-induced disturbances and
sampling time/duration before detection.

5.3.1 Disturbances. FINDS is always running in the back-
ground, assuming that both tags and antennas are stationary.
We introduce three types of disturbances, which do not in-
clude shoppers’ activities, such as picking up and turning
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Figure 21: Resolution of phase ambiguity

items: (i) Standing — a person stands about 0.1m behind the
tag array; (ii) Walking-Behind — a person walks back and
forth behind the tag array; (iii) Walking-Front — a person
walks back and forth in front of the tag array. The param-
eters used in this experiment are nanr = 1, nrag = 20
and o = o™ = 6. The placement of tags is the same as that
in Fig. 14. We randomly select a tag 7Ty and examine its
reports in log files. We would like to point out that the re-
ported phase, denoted as '3, is not the same as the measured
phase 3 [15]. To obtain 63, we need to change 65 = 27 — 63.
Fig. 20 shows that ‘83 fluctuates wildly under human-activity-
induced disturbances, especially when a person walks nearby
tags. The phase variation is mostly due to phase ambiguity
and frequency shift.

Phase ambiguity is introduced by the device. As described
in the low-level user data support for ImpinJ readers [11],
the reader’s processing of received signal introduces a 7 jump
such that the reported phase can be the true phase or the
true phase plus 7. As shown in Fig. 20, ‘63 for No Disturb
is either 1.7 or 4.8. This figure also illustrates that phase
ambiguity is much more severe under dynamic disturbances
(Walking-Behind and Walking-Front) than under static dis-
turbance (Standing). In practice, we may regard the true
phase not simply as the minimum due to the phase wrapping
described in Section 3.2.2. For example, if the true phase is 7,
we expect to obtain two values 7 and 27, but there could be
three or more values, because a value near 27 may flip to 0
due to the effect of thermal noise. It would become even more
complicated if the true phase is close to 27. In such a case, 27
is neither minimum nor majority. To eliminate this ambiguity,
we utilize the Density-based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm [7] to find the most common
phase. Such an algorithm contains a pre-processing proce-
dure for unwrapping phases near boundaries. In particular, if
both 0 and 27 are reported, the minority is wrapped. Fig. 20
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shows that DBSCAN is effective in picking the true 63. After
resolving the phase ambiguity, FINDS can obtain a relatively
stable 0. Fig. 21 illustrates that 63 shifts 0.51 and 0,01 for
non-DBSCAN and DBSCAN, respectively, in the case of
Walking-Front. As shown in the figure, DBSCAN improves
FINDS’s capability of resisting human-activity-induced distur-
bances. The estimated phase shift A@g for non-DBSCAN is
higher than the threshold a*A@(O—A:*) =6 x0.151 =0.91
in the presence of disturbance, while that for DBSCAN is
always lower than the threshold in all cases.

The shift of the resonance frequency is caused by nearby
objects. As shown in Fig. 21, in case of Walking-Behind, 63
still shifts 0.53 even though the phase ambiguity has been
resolved. The effect of frequency shift is difficult to eliminate,
but FINDS can reduce its sensitivity to errors by deploying
more antennas.

Overall, FINDS can work in complex environments. Fig. 22
shows that, although only one antenna is used, p of FINDS
with DBSCAN remains above 0.8 in all cases.

5.3.2  Sampling Duration/Time. FINDS is designed to detect
misplaced tags in real time, i.e., it has a very short sampling
time before each detection. We count the number of reports
from each tag within 100 seconds. Fig. 23 shows that the
number of reports increases linearly with the sampling time.
On average, the number of reports increases at the rate of 5
per second. We set the sampling time to 5 and 10 seconds,
and continuously observe p within 60 seconds. Fig. 24 shows
the limited effect of sampling time on the mean p. Under the
same condition of DBSCAN not being used and Walking-
Behind, the mean of p increases slightly from 0.67 to 0.68
when the sampling time decreases from 10 to 5 seconds. The
possible reason for this is that 7 jumps appear randomly
during sampling.

Another notable observation is that DBSCAN not only
increases the mean of p, but also decreases the variance of p.
Under dynamic disturbances, the standard deviation of p for
DBSCAN is a half of that for non-DBSCAN.

6 DISCUSSION

Our motivation for removing the inconsistency between mea-
sured and theoretical phases is to evaluate and optimize the

Figure 23: # of reports vs. time
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Figure 24: Sampling time

performance of FINDS through numerical calculations. Some
basic principles and algorithms of FINDS can also be used in
other applications. For instance, we can deploy some reference
tags at known positions, and then estimate systemic errors
by the unwrapping, which could be helpful for positioning or
tracking tags at unknown positions.

There still exist some uncertainties in FINDS (as our exper-
imental results showed) that need to be investigated further:
(i) measurement error — a small angular deviation may result
in a large distance measurement error; (ii) inter-tag interfer-
ence — a phase shift occurs when tags are placed too close to
each other; (iii) reference tags — the number and positions
of reference tags may affect the estimation of systemic errors;
(iv) multi-path effects — shelves made of metal or backed
against a wall may have a strong scattering.

In future, we would like to use a tag grid, which is similar
to the Amsler grid used in eye examinations, for detecting and
calibrating the phase shifts caused by distance measurement
€errors.

7 CONCLUSION

In this paper, we have first identified and addressed the
challenges in positioning static tags, and then developed a
simple yet practical approach, FINDS, for detecting misplaced
tags in smart shelves. FINDS is more efficient and scalable
than the state-of-the-art, as it requires only a few stationary
antennas. We have also implemented a prototype of FINDS
with COTS RFID products and conducted comprehensive
experiments. Our evaluation has shown FINDS to achieve >
0.92 accuracy only with 2 antennas. Thus, FINDS has great
potential for various RFID applications.
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