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Abstract— We consider the problem of false data injection
attacks modeled as additive disturbances in various parts of a
general LTI feedback system and derive necessary and sufficient
conditions for the existence of stealthy unbounded attacks. We
also consider the problem of characterizing the worst, bounded
and stealthy attacks. This problem involves a maximization of
a convex function subject to convex constraints, and hence,
in principle, it is not easy to solve. However, by employing a
`∞ framework, we show how tractable Linear Programming
(LP) methods can be used to obtain the worst attack design.
Moreover, we provide a controller synthesis iterative method to
minimize the worst impact of such attacks and test its efficacy
in a power system component.

I. INTRODUCTION

Real world incidents and research papers have shown that
stealthy attacks can be carefully designed to cause significant
damage in control systems. Recent work on security of cyber-
physical systems from a control-theoretic perspective has
been focused on the characterization of feasible attacks and
proposing ways for detection and/or improving the resiliency
of the control system subject to such attacks. The type of at-
tacks studied can be generally split into two categories: static
attacks (attacks that do not take into account the dynamics
of the system and/or do not affect the states of the system
directly) or dynamic attacks. Attacks under each category
can be classified as stealthy or not stealthy depending on
the assumptions and the detection methods used. Examples
of static attacks include attacks on the power system state
estimators [1], where a carefully designed bias can be added
to the sensor measurements without being detected by the
commonly used statistical detection methods. Another work
on static attacks is by [2] and [3] where they showed that
the states of the system cannot be accurately reconstructed
if half of the sensors are attacked. Both papers propose
computationally intensive methods to reconstruct the states
when less than half of the sensors are attacked. Their work
was extended by [4] where the authors provide a framework
to to reconstruct the states that is robust to additive and
multiplicative modeling errors. On the other hand, research
work related to dynamic attacks include [5] where the authors
provide necessary and sufficient conditions for the existence
of unbounded stealthy actuator and/or sensor attacks. In

N. H. Hirzallah is a PhD candidate with the Electrical and Com-
puter Engineering Department, University of Illinois, Urbana, IL, USA.
hirzall2@illinois.edu

P. G. Voulgaris is with the Aerospace Engineering Department
and the Coordinated Science Laboratory, University of Illinois, Ur-
bana, IL, USA, and with Khalifa University, Abu Dhabi, UAE.
voulgari@illinois.edu

This work was supported in part by the National Science Foundation
under NSF awards CMMI-1663460, ECCS-1739732.

addition they proposed dual rate control to detect unbounded
stealthy actuator attacks (zero dynamics attacks). In [6] the
authors inject a random signal (unknown to the attacker)
into the system to detect replay attacks at the expense of
increasing the cost of the LQG controller. In [7] the case
for finding the worst bias constant (steady state) attack has
been considered and a tractable procedure to compute it has
been developed where the energy of the detection signal
was considered as a measure of stealthiness. In [8] optimal
attacks are computed on a LQG systems that minimize the
K-L divergence between the true and falsified state estimates
such that the attack impact is above a specified a limit,
showing that the optimal attacks are additive white noise. In
[9] optimal actuator attacks are designed using the minimum
principle that maximizes a quadratic cost related to the error
between the healthy (un-attacked) system and the attacked
system while minimizing the attack cost, without including
any stealthiness requirement.

In this work, we consider signal attacks where the general
problem from the attacker’s perspective is to find the attack
input d = {d(k)} so that it is stealthy while inflicting the
maximum damage on the performance variable z = {z(k)}.
We showed in our previous work [5] that unbounded attacks
for LTI systems are related to the unstable zeros and/or poles
of the open loop system. However, in this paper we consider
the problem of characterizing the worst, bounded and stealthy
attacks. This problem involves a maximization of a convex
function subject to convex constraints. We propose different
attack resource constraints to make the problem more prac-
tical. More specifically, we assume that the attacker has a
finite time window {0, 1, . . . , ta} to attack the system and
inflict the maximum damage before the attack is over, and
we attempt to solve the following three attack scenarios:
Scenario 1 : Attacker can attack in a finite time window
up to t = ta, his goal is to inflict the maximum damage
anywhere (before or after ta) while remaining stealthy for all
t. Scenario 2 : Attacker can attack in a finite interval up to
t = ta, his goal is to inflict the maximum damage anywhere
(before or after ta) while remaining stealthy for t ≤ ta (does
not care if detected after the attack is over). Scenario 3 :
Attacker can attack in a finite interval up to t = ta, his
goal is to inflict the maximum damage at t ≤ ta while
remaining stealthy for t ≤ ta. We show that by employing a
`∞ framework, tractable Linear Programming (LP) methods
can be used to compute the worst attack for the above three
scenarios.

Our work is closely related to [7], [10], [8], [9], [11], [12]
and [13]. However, we don’t assume a constant d such as in
[7] where they assume the system is in steady state. In addi-

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 4527



tion, the work in the mentioned references does not address
attack impact and stealthiness after the attack is concluded,
and relate to either a specific detection method (e.g. residual
detectors) which assumes certain thresholding mechanisms
that may be stochastic, or to a specific controller in use.
We plan to investigate these problems in a more general
input-output fashion that does not depend on the particular
controller used, and in a totally deterministic worst case
scenario. In other words, the assumed noise thresholds are
based on the existence of a worst case magnitude bounded
noise. In this sense, the noise is allowed to “conspire” with
the attacker to keep the detection signals within what is
assumed normal operation.

In the second part of this paper, we build on the worst
attack design problem and provide a novel K-d controller
synthesis iterative method to minimize the performance cost
without increasing the impact of the worst attack. Each
iteration is a LP and alternates between finding the worst
attack d for a given controller K, and finding the next K
that minimizes the performance cost while keeping a non-
increasing upper bound on the worst case impact inflicted by
d.

Some standard notation we use is as follows: Z+, Rn,
Cn and Rn×m denote the sets of non-negative integers, n-
dimensional real vectors, n-dimensional complex vectors and
n×m dimensional real matrices, respectively. For any Rn or
Cn vector x we denote x′ its transpose and |x| := maxi

√
x2i

where x′ = [x1, x2, ..., xn]; for a sequence of real n-
dimensional vectors, x = {x(k)}k∈Z+

we denote ||x||∞ :=
supk |x(k)|; for a sequence of real n × m dimensional
real matrices G = {Gk}k∈Z+ we denote its z-transform
G(z) :=

∑∞
k=0Gkz

−k; and if viewed as the pulse response
of the LTI system G then ||G||1 = sup||x||∞≤1 ||Gx||∞. We
will also be using the standard notions for zeros and coprime
factorizations of a LTI system G (e.g., [14], [15], [16].)

II. PROBLEM SETUP

We consider the case of a general signal attack d on a
closed loop system of Figure 1. Let Φ(K) describe the effect
of d on the performance variable z and on the monitoring

signal ψ, i.e. let Φ =

[
Φzd
Φψd

]
=: d 7→

[
z
ψ

]
. The monitoring

signal ψ consists of the measured output y and the control
signal u; it can however contain any other information that is
recorded and measured, e.g., reference inputs. In this setup,
we assume that there may be other external disturbances and
noise inputs which are “normal”, i.e., not malicious attackers,
which are not shown in the figure. Also, all the formulation
deals with discrete-time systems and signals.

The attacker’s goal can be stated in general as

max
d
‖z‖∞

s.t. ‖ψ‖∞ ≤ θ,
(1)

where θ is an alarm threshold, associated with the afore men-
tioned normal set of disturbances. In our previous work [5],
we established exact conditions for stealthiness of unbounded
actuator and sensor attacks which can totally destroy the

Fig. 1: General setup of input-output maps.

system. These attacks are ultimately related to the open
loop plant P , and for LTI systems in particular, to the non-
minimum phase (unstable) zeros and unstable poles of P .
We note, as pointed in [5], that unstable zeros can also be
due to the sampled data implementation of controllers.

In this general setup of Figure 1, we elaborate on the
existence of stealthy unbounded attacks using an input-
output approach. In particular, considering a left coprime
factorization ([14], [15], [16]) for the part of the generalized
system that connects inputs to the measured output y =
Pydd+ Pu in the open loop, we have

[Pyd P ] = M̃−1[Ñyd Ñ ]

Using a left coprime factorization for the stabilizing con-
troller K = Y X−1 we can express

ψ =

[
y
u

]
=

[
X
Y

]
W−1M̃Pydd =

[
X
Y

]
W−1Ñydd.

where W = M̃X− ÑY . Since W is stable and, by stability
of the closed loop, has a stable inverse W−1 we have that
the detectability of d depends on the unstable zeros of Ñyd:
unbounded stealthy attacks d are possible if and only if Ñyd
has unstable zeros.

For actuator only attacks

Pyd = P = M̃−1Ñ =⇒ Ñyd = Ñ

while for sensor only attacks

Pyd = I = M̃−1M̃ =⇒ Ñyd = M̃.

Hence, this shows how the unstable zeros of P (which
are the unstable zeros of Ñ ) and the unstable poles of P
(which are the unstable zeros of M̃ ) relate to the actuator
and sensor attacks considered in [5]. Multirate sampling can
potentially remove unstable zeros of Ñyd as it was shown
in [5] for unbounded actuator attacks, but it cannot work for
total sensor unbounded attacks.

In the following we consider the case of bounded in
magnitude (and time) attacks with various levels of stealth.
The question we want to address is how to compute the
worst possible bounded attacks and how to defend against
such attacks by a suitable controller design.

III. COMPUTATION OF WORST ATTACK

We consider the problem of computing the worst case
attack in (1) when the attacker has a finite time window
{0, 1, . . . , ta} to attack the system. In addition, we require
the attack to remain stealthy after the attack is over. This
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allows for repeatedly attacking the system without triggering
monitoring signal alarm.

Specifically, consider the optimization problem in (1),
we are interested in finding the worst, stealthy, bounded
(in magnitude and time) attack. Assume the LTI closed
loop system Φ(K) is stable and let tzd and tψd be design
parameters related to the decay rate of the pulse responses
of of Φzd and Φψd respectively. These parameters determine
the time windows that the attacker cares for impact and
stealthiness respectively. Suppose the intruder can only attack
the system during a finite interval {0, 1, . . . , ta}, with attack
magnitude less than or equal to α. Then, a corresponding
problem of interest can be formulated as

max
d
‖z‖[0,ta+tzd]∞

s.t. ‖ψ‖[0,ta+tψd]∞ ≤ θ,
|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .

(2)

where ‖z‖[0,ta+tzd]∞ = max
0≤k≤ta+tzd

= |z(k)|, and similarly

‖ψ‖[0,ta+tψd]∞ = max
0≤k≤ta+tψd

= |ψ(k)|.
The system of equations governing the output z when

subjected to the attack input d for each instance of time
are given by



z(0)
z(1)

...
z(ta)

z(ta + 1)
...

z(ta + tzd)


=



Φzd(0) 0 0 · · ·
Φzd(1) Φzd(0) 0 · · ·

...
...

...
...

Φzd(ta) Φzd(ta − 1) Φzd(ta − 2) · · ·
Φzd(ta + 1) Φzd(ta) Φzd(ta − 1) · · ·

...
...

...
...

Φzd(ta + tzd) Φzd(ta + tzd − 1) Φzd(ta + tzd − 2) · · ·





d(0)
d(1)

...
d(ta)

0
...
0


(3)

where d(k) = 0 for t > ta. The objective is to find the se-
quence {d(k)}, k = {0, . . . , ta} that maximizes ‖z‖[0,ta+tzd]∞
such that ‖ψ‖[0,ta+tψd]∞ ≤ θ. This corresponds to selecting
the optimal row in (3) to be maximized and finding the
optimal d that would maximize this row. In view of the
above, the following proposition is obvious.

Proposition 1: Problem (2) can be formulated as the fol-
lowing optimization problem:

max
d,n∈{0,1,...,ta+tzd}

n∑
k=0

Φzd(n− k)d(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)d(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta + tψd,

|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .
(4)

After finding the worst case attack d̂, the worst case impact
can be obtained by computing

∥∥∥Φzdd̂
∥∥∥
∞

.

Note also that an optimal d̂ can always be selected so

that
∣∣∣ n∑
k=0

Φzd(n − k)d̂(k)
∣∣∣ =

n∑
k=0

Φzd(n − k)d̂(k), thus the

expression for the cost in (4).

Remark 2: The objective function looks for the optimal
row in the set {0, . . . , ta + tzd}. We can always choose a
sufficiently long tzd, determined by the decay rate of Φzd
and the bound α on d, to ensure that we capture the worst
case ‖z‖∞ = sup

tzd

‖z‖[0,ta+tzd]∞ .

Remark 3: Note that the first set of constraints ensures the
monitoring signal ψ is below a threshold level (‖ψ‖∞ ≤ θ)
during and after the attack interval. Since we assume that
Φψd is stable and that d(k) = 0 for t > ta, if tψd is chosen
long enough, depending on the decay rate of Φψd and the
bound α, one can guarantee that d is undetectable for all t.
Therefore, to guarantee stealthiness for all t it is sufficient to
enforce the monitoring constraints up to ta + tψd. The last
set of constraints ensures the attack is bounded and decays
to zero at the end of the attack interval.

Remark 4: Remarks 2 and 3 basically state that for a
priori computable tzd and tψd, problems (2) and (4) solve
the following problem

max
d
‖z‖∞

s.t. ‖ψ‖∞ ≤ θ,
|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .

(5)

Remark 5: Problem (4) is LP for a fixed n (fixed row)
which can be solved efficiently. Fixing n transforms the ob-
jective function to a linear function under linear (polytopic)
constraints. However, one has to solve (in principle) ta+ tzd
LPs.

In the sequel, we consider certain cases which simplify
further the computations. Specifically, we consider the prob-
lem of computing the worst case attack when the attacker has
a finite time window k = {0, . . . , ta} to attack the system
such as in Proposition 1. However, in this case we assume
that the intruder does not mind being detected after the attack
is over, i.e., stealthiness constraints are checked up to t = ta
only. The following corollary describes how to construct the
optimal d.

Corollary 6: Consider the optimization Problem in (2)
with tψd = 0 (finite stealthiness interval). Then, its solution
can be obtained by solving

max
d,n∈{ta,...,ta+tzd}

n∑
k=0

Φzd(n− k)d(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)d(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta,

|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .

(6)

Proof: We will prove that the optimal row to be
maximized is in the set {z(ta), . . . , z(ta + tzd)}. Let d̂ be
the worst attack that maximizes µ =: ‖z‖[0,ta+tzd]∞ found by
solving for the maximum impact over all the rows of (3)
where the stealthiness constraints are enforced up to t = ta.
Assume that d̂ was found by maximizing any row before
z(ta) calling it row i. Since the stealthiness constraints are
imposed only up to ta and Φ(K) is LTI, we can delay d̂ by
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Fig. 2: A simplified automatic voltage regulator block dia-
gram.

ta − i steps (shift d̂ to the right) so that ‖z‖[0,ta+tzd]∞ = µ
is achieved by maximizing the row z(ta) without violating
the stealthiness constraints. In addition, we cannot shift the
attack beyond z(ta) since d̂(k) = 0 for t > ta. As a
result, maximizing ‖z‖[0,ta+tzd]∞ is equivalent to maximizing
‖z‖[ta,ta+tzd]∞ for tψd = 0.

Remark 7: The optimization problem in (6) differs from
the problem in (4) in two ways: First, the stealthiness
constraints set in (6) is a subset of the set in (4), since in
(6) the objective is to remain stealthy only during the attack
interval, where in (4) the stealthiness condition is enforced
at all times. Therefore, the attack designed using Corollary 6
yields worse impact in the `∞ sense than the attack designed
using Proposition 1. The second difference is in the objective
function where in (4) we have to maximize each row in (3)
to find the worst attack (i.e., ta + tzd LPs), while in (6)
we only need to maximize the last rows associated with
[z(ta), . . . , z(ta + tzd)]

′ (i.e., tzd + 1 LPs). An immediate
corollary is as follows.

Corollary 8: Let tzd = tψd = 0, i.e., the attacker cares
to inflict maximum damage in the window up to ta while
does not care for stealthiness after ta. Then, the optimal d
is obtained by solving the following single LP

max
d

ta∑
k=0

Φzd(ta − k)d(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)d(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta,

|d(k)| ≤ α, k = 0, 1, . . . , ta.

(7)

The above corollary states that computing the worst attack
when the attack impact and stealthiness constraints are
desired to be inside the attack interval only is equivalent
to solving (6) for n = ta.

Remark 9: If Φψd is non-minimum phase and α is not
specified, then the optimization problems in Corollary 6 and
Corollary 8 will yield unbounded zero dynamics attacks [5].

IV. EXAMPLES - WORST ATTACK COMPUTATION

In this section we work on an example of a real power
system component and compute the worst attack for different
scenarios.

A. Automatic Voltage Regulator

The automatic voltage regulator (AVR) or the generator
excitation control, specifies the terminal voltage magnitude

of a synchronous generator by controlling the reactive power.
A simplified block diagram of a linearized AVR is shown
in Figure 2 [17]. An increase in the reactive power load
of the generator results in a drop in the voltage magnitude
across its terminals. The voltage drop is sensed by a potential
transformer which then is rectified and compared to the ref-
erence voltage magnitude. The error signal is then amplified
and raises the generator terminal voltage by controlling the
excitation field. For a set of typical system parameters KA =
10, τA = 0.1,KE = 1, τe = 0.4,KG = 1, τG = 1,KR =
1, τR = 0.05 as in Figure 2. We consider actuator attacks
as depicted in Figure 2 and seek to find the attack with the
worst impact on VF (excitation voltage) while keeping the

monitoring vector ψ =

[
y
u

]
below a noise level threshold

θ. Let K be a suitable controller for the system and let

P = S KA

1 + τAs

KE

1 + τEs

KG

1 + τGs

KR

1 + τRs
H and

PF = S KA

1 + τAs

KE

1 + τEs
H

(8)

Then closed loop system Φ(K) describing the effect of d on
z = VF and the monitoring vector ψ is given by

Φ(K) =

[
Φzd
Φψd

]
=: d 7→

zy
u

 =


PF

1 + PK
P

1 + PK
PK

1 + PK


Given K = 0.1z−0.09

z−1 , then Φ(K) becomes[
Φzd
Φψd

]
=


0.8423z4−1.162z3−0.1551z2+0.5433z−0.06808
z5−3.186z4+3.794z3−2.043z2+0.4705z−0.03522

0.01114z4+0.05639z3−0.03266z2−0.03337z−0.001502
z5−3.186z4+3.794z3−2.043z2+0.4705z−0.03522
(1.11z4+5.75z3−2.59z2−2.99z−0.135)×10−3

z5−3.186z4+3.794z3−2.043z2+0.4705z−0.03522


sampled at T = 0.1 seconds. We note that the has Φψd an

unstable zero at z = 1.42. We compute the attack for 3 cases.
In the first case we employ Proposition 1 to compute the
worst attack for an attack interval {0, . . . , ta} that is stealthy
for all t. In the second case, we compute the worst attack
for an attack interval {0, . . . , ta} using Corollary 6, i.e.,
stealthiness requirement for t ≤ ta only. In the third case, we
compute the worst attack using Corollary 8, i.e., max

d
z(ta)

where the stealthiness requirement holds for t ≤ ta only.
For all cases, we fix ta = 500 (corresponding to 5 seconds),
θ = 0.1, α = 100. Figures 3a, 3b and 3c show the computed
worst attack signals for cases 1, 2 and 3 with their impact
on the performance variable z and and monitoring signal ψ.
Case 1 was obtained by maximizing z(260) (corresponding
to 2.6 seconds), case 2 was obtained by maximizing z(520)
(corresponding to 5.2 seconds) and case was obtained by
maximizing z(500) (corresponding to 2.6 seconds). We note
that the maximum impact on z in case 2 is larger than in
case 3 which in turn is larger than in case 1, confirming
remark 7. We also show in Figure 4a a plot for the maximum
impact on z for all ta for case 1. This is obtained by
iterating ta ≥ 0 and solving (4) until ‖z‖∞ stops increasing.
We note from Figure 4a that ‖z‖∞ stops increasing after
ta = 200 (corresponding to 2 seconds). As a result, for
this example and for ta ≥ 200, solving (4) is equivalent
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Fig. 3: Worst attack computation with the effect of d on z, y and u.
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Fig. 4: Worst impact, stealthy for all t, i.e., case 1.

to solving (1). Furthermore, we show in Figure 4b how of
the worst impact yielded by the optimization problem in 4
changes with changing the sampling and hold time (T ). It
is not clear from the figure if a direct relationship between
‖z‖∞ and T exists. This is because although for a faster a
rate, the cardinality of the attack sequence for a fixed time
interval increases allowing for extra optimization variables,
however the number of stealthiness constraints also increases
reducing the set of feasible solutions.

V. CONTROLLER DESIGN FOR RESILIENCY - K-d
ITERATION

In view of the previous discussion, a controller design
procedure can be formulated based on LP. In particular, given
a desired `1 performance level γ for attacks d, find K such
that ‖Φzd(K)‖1 ≤ γ, and to ensure that for a given attack
level characterized by ‖d‖∞ ≤ α, where α is an attack
resource parameter, the “undetected loss” of the closed loop
given by

µα := max
d
‖Φzd(K)d‖∞ s.t. ‖Φψd(K)d‖∞ ≤ θ, ‖d‖∞ ≤ α

remains below a desired level µ. Computing µα for a given
K corresponds to the problem of computing the worst d of
the previous section. A synthesis procedure can be developed
by a “K-d” type of iteration:
• Given Ki with ‖Φzd(Ki)‖1 = γi find di from:

µi := max
d
‖Φzd(Ki)d‖∞

s.t. ‖Φψd(Ki)d‖∞ ≤ θ, ‖d‖∞ ≤ α.

• Given di find Ki+1 from:

γi+1 := min
K
‖Φzd(K)‖1 s.t. ‖Φzd(K)di‖∞ ≤ µi

• At each iteration i the problem is a LP with

γi ≤ γi−1 ≤ γ0, µi ≤ γi ‖di‖∞ , ‖di‖∞ ≤ α.

The above formulation guarantees that the upper bound
on the attack impact (i.e. µi) is non-increasing with each
iteration.

VI. EXAMPLES - CONTROLLER DESIGN FOR RESILIENCY

In this section we build on the AVR example in Section
IV-A sampled at T = 0.1 seconds and seek to design a
controller that minimizes the performance variable z while
possibly minimizing the the impact of the worst attack d.
Similar to section IV-A we start with a simple PI controller
represented by the transfer function K1 = 0.1z−0.09

z−1 . We use
controller parametrization for stable transfer functions to set
up the controller optimization problem. As a result, The maps
Φzd and Φψd are given by

[
Φzd
Φψd

]
=: d 7→

zy
u

 =


PF

1 + PK
P

1 + PK
PK

1 + PK
.

 =

[
PF (1− PQ)
P (1− PQ)

PQ

]

where Q =
K

1 + PK
and P is the open loop transfer function

of the AVR system given in (8) along with PF , both sampled
at T = 0.1 seconds. The controller synthesis problem is
carried on the affine parameter Q in the time domain using
the following formulation:
• Given Ki with ‖Φzd(Ki)‖1 = γi find di from:

µi = max
d,n∈{0,1,...,ta+tzd}

n∑
k=0

Φzd(n− k)d(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)d(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta + tψd,

|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .
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TABLE I: γi and µi for each iteration.

Iteration i γi = ‖Φzd(Ki)‖1 µi = ‖Φzd(Ki)di‖∞
1 64.6449 3.8008
2 37.0244 2.0107
3 36.9109 0.5704
4 36.9109 0.5704
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Fig. 5: Controller synthesis using K-d iteration. Iteration 1.
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Fig. 6: Controller synthesis using K-d iteration. Iteration 4.

• Given di find Ki+1 from:

γi+1 := min
q
‖pF ∗ (1− p ∗ q)‖1

s.t. ‖pF ∗ (1− p ∗ q) ∗ di‖∞ ≤ µi
‖q‖∞ ≤ β
q(t) = 0, t ≥ tq

where p = {p(k)}, pF = {pF (k)} and q = {q(k)} are
the pulse responses of P , PF and Q respectively, and tq
and β are design constraints for shaping the controller. The
problem is solved for the following parameters: ta = 500,
tq = 500, θ = 0.1, α = 100, and β = 100. Table I shows
the outcome of the controller synthesis iterative procedure.
From the table we see that at each iteration we improved the
performance and reduced the impact of the worst d until no
further improvement is feasible. Figures 5 and 6 show the
results of the first and last iteration of the controller design
process. Figures 5a, 6b plot the computed worst attack d and
it’s impact on the variables z, y and u. While Figures 5b,
6a plot the optimized controller parameter impulse response
q, and the effect of the previous d on the variables z, y
and u governed by the new controller (i.e. Φzd(Ki+1)di
and Φψd(Ki+1)di). We note that for iteration 1 although

‖Φzd(K1)d1‖∞ = ‖Φzd(K2)d1‖∞, however d1 is no longer
optimal for the next iteration because ‖Φψd(K2)d1‖∞ ≥ θ
as seen in Figure 5b.

VII. CONCLUSIONS

We considered the problem of computing worst case
bounded stealthy false data injection attacks for LTI sys-
tems. We considered different attack resource constraints and
stealthiness intervals. This problem involves a maximization
of a convex function subject to convex constraints, and it was
shown that it can be cast as a series of LP problems under
`∞ framework. A search algorithm is constructed to solve the
set of LPs (not provided here for space limitations) and was
used to compute the worst stealthy attacks on AVR systems.
Furthermore, we provided an iterative controller synthesis
procedure that alternates between computing worst attacks
and designing optimal controllers that enhance performance
and minimize the impact of worst attacks. We used this
method to design a controller for the AVR system that
resulted in a substantial decrease in the worst impact inflicted
by the worst attack.
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