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A Unified Framework for Decentralized Control Synthesis
Mohammad Naghnaeian, Petros G. Voulgaris, and Nicola Elia

Abstract— This paper deals with the problem of decentralized
control synthesis. We seek to find structured controllers that are
stably realizable over the underlying network. We address the
problem using an operator form of discrete-time linear systems.
This allows for uniform treatment of various classes of linear
systems, e.g., Linear Time Invariant (LTI), Linear Time Varying
(LTV), or linear switched systems. We combine this operator
representation for linear systems with the classical Youla
parameterization to characterize the set of stably realizable
controllers for a given network structure. We show that if the
structure satisfies certain subspace like assumptions, then both
the stability and performance problems can be formulated as
convex optimization and more precisely as tractable model-
matching problems. Furthermore, we show that the structured
controllers found from our approach can be stably realized over
the network.

I. INTRODUCTION

Modern large-scale cyber-physical systems are composed
of many interconnected subsystems that are usually spread
over a large geographic area and communicate over a net-
work. Many difficulties arise when designing a centralized
controller for such systems due to communication delays, the
structure of the underlying communication network, scalabil-
ity, etc. Due to these issues, there has been a shift towards
designing decentralized controllers, in which subcontrollers
are designed and implemented for each subsystem and they
can communicate over the network.

Decentralized, structured and distributed controller design
has attracted the renewed attention of many researchers over
the last 15 years or so. Several new developments occurred
using state space methods (e.g., in the LMI framework [1],
[2]) which suit quadratic criteria but could generally lead
to suboptimal solutions. On the other hand, input-output
approaches using the Youla-parametrization were found to
be very powerful in providing truly optimal solutions for
several classes of structured problems by reducing them to
convex problems over the Youla parameter, encompassing a
variety of criteria, including nonquadratic (e.g., [3], [4], [5],
[6], [7]).
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In the input-output, or transfer function, domain, the sta-
bilizing controllers are parametrized by the so-called Youla
parameter, and the search for the optimal Youla parameter
is carried out over the space of stable systems. Here, the
order of the Youla parameter or that of the controller
is not assumed a priori. However, unlike the state-space
approaches, the realizability of the controller over the un-
derlying communication network may become an issue, if
not taken directly into account as pointed out in [8], [9].
That is, although the controller transfer function structure
is compatible with the underlying network communication
graph, it may lead to an internally unstable realization, i.e., a
non-minimal realization with unstable pole zero cancellations
(e.g., [10], [11] and [12]). Certain alternative input-output
approaches have recently been proposed (e.g., [13] and
references therein) that hold the potential to handle certain
optimal and stably realizable structured design, by convex
programming without resorting to Youla-parametrization. A
potential drawback is the need to solve an exact model-
matching problem, i.e., equations that, if possible to satisfy,
may require infinite support of the LTI maps involved.

In this paper, we propose a unified way to synthesize
stably realizable controllers with respect to any measure of
performance, e.g., l1, l2, or l∞ induced norms. Our approach
is based on utilizing a state-space based operator form of
the system and combining it with the ideas in the Youla-
parameterization. This has been developed initially in the
context of switching system analysis and design in [14], [15],
and as it turns out, it fits well for optimally solving structured
problems if and only if they are stably realizable. Although
the reader can focus on the LTI case as a concrete example,
these methods are general and hold for LTV systems as well.

II. PRELIMINARIES

In this paper, R and Z denote the sets of real numbers and
integers, respectively. The set of n-tuples x = {x (k)}n−1k=0

where x (k)s are real numbers is denoted by Rn. For any
x ∈ Rn, its l∞ and lp norms are defined as ‖x‖∞ =

maxk∈{0,1,...,n−1} |x (k)| and ‖x‖p =
(∑n−1

k=0 |x (k)|p
) 1

p

,
respectively. Let g = {g (k)}∞k=0 be a sequence where
g (k) ∈ Rn. Then, the l∞ and lp norm of this sequence
are defined as ‖g‖∞ = supk∈Z+

‖g (k)‖∞ and ‖g‖p =(∑∞
k=0 ‖g (k)‖pp

) 1
p

whenever they are finite. The set of
Rn-valued sequences whose lp norm (l∞ norm) is finite is
denoted by lnp (ln∞). Given two normed spaces (X, ‖.‖X)
and (Y, ‖.‖Y ) and a linear operator T : X → Y , its induced
norm is defined as ‖T‖X−Y := supf 6=0

‖Tf‖Y
‖f‖X

. Whenever
both vector spaces are X , we use the notation ‖T‖X-ind.
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Also, we may use ‖T‖ without any subscript if the result
holds for any induced norm.

Any linear causal map T : x ∈ lp → y ∈ lq , for 1 ≤
p, q ≤ ∞, can be thought of as an infinite dimensional lower
triangular matrix,

T =


T0,0 0 0 · · ·
T1,1 T1,0 0 · · ·
T2,2 T2,1 T2,0

...
...

. . .

 . (1)

Given a sequence g = {g (k)}∞k=0, the delay or shift operator
Λ is defined by

Λkg =

0, ..., 0︸ ︷︷ ︸
k zeros

, g (0) , g (1) , ...

 ,

and, with a slight abuse of notation, Λ−kg =
{g (k) , g (k + 1) , ...}. A linear causal map T is called
time-invariant if it commuted with the delay operator, i.e.
ΛT = TΛ. If T is a Linear Time-Invariant (LTI), it is fully
characterize by its impulse response denoted by {T (k)}∞k=0.
In this case, its infinite dimensional matrix representation is
given by

T =


T (0) 0 0 · · ·
T (1) T (0) 0 · · ·
T (2) T (1) T (0)

...
...

. . .

 .
The standard delay operator is denoted by Λ. More precisely,
for any k ∈ Z+ and any sequence g = {g (0) , g (1) , ...},

Λkg =

0, ..., 0︸ ︷︷ ︸
k zeros

, g (0) , g (1) , ...

 ,

A LTI system has the state-space representation of

G :

{
x (t+ 1) = Ax (t) +Bu (t)
y (t) = Cx (t) +Du (t)

, with x (t0) = x0,

(2)
where u (t) ∈ Rm, x (t) ∈ Rn, y (t) ∈ Rp, and x0 ∈ Rn are
input, state, output, and the initial condition of the system and
A, B, C, and D are matrices with appropriate dimensions
for all t ∈ Z+. Given a matrix S, we define Ŝ to be the
diagonal operator

Ŝ =

 S 0 · · ·
0 S
...

. . .

 . (3)

Using this notation, we can define diagonal operators Â, B̂,
Ĉ, and D̂ and rewrite (2) as

G :

{
x = ΛÂx+ ΛB̂u+ x̄0

y = Ĉx+ D̂u
, (4)

where x̄0 =

0, ..., 0︸ ︷︷ ︸
t0 zeros

, x0, 0, 0, ...

, x = {x (t)}∞t=0, y =

{y (t)}∞t=0, u = {u (t)}∞t=0, and Λ is the delay operator. The

above representation of G is referred to as the operator form.
One can also write time delay systems in the operator form.
Consider the system given by

H :

{
x (t+ 1) =

∑N
i=0Aix (t− i) +

∑N
i=0Biu (t− i)

y (t) =
∑N
i=0 Cix (t− i) +

∑N
i=0Diu (t− i)

,

with initial condition x0 = {x (k)}0k=−N . Define Ā =∑N
i=0 ΛiÂi. Similarly, we define B̄, C̄, and D̄. Then, the

time-delay system can be written in the operator form as

H :

{
x = ΛĀx+ ΛB̄u+ x̄0

y = C̄x+ D̄u
. (5)

Throughout this paper, we prefer to write the systems in the
operator form (5) as it allows for treating various classes of
systems (e.g. time-delay, switching, and LTV systems [14])
in a unified way. Henceforth, we consider the systems that
have operator forms as in (5). Such systems can be seen as

a mapping from
(
x̄0
u

)
to
(
x
y

)
. For this system, we

adopt the following definitions of stability and gain.
Definition 1: Given two normed spaces (U , ‖.‖U ) and

(X , ‖.‖X ), we say that the system H in (5) is U to X

stable if it is a bounded operator from
(
x̄0
u

)
∈ X × U

to
(
x
y

)
∈ X × X . More precisely, H is U to X stable

if, for some γ1, γ2 ≥ 0, ‖x‖X ≤ γ1 ‖x̄0‖X + γ2 ‖u‖U and
‖y‖X ≤ γ1 ‖x̄0‖X + γ2 ‖u‖U whenever ‖x̄0‖X and ‖u‖U
are finite.

Definition 2: Given two normed spaces (U , ‖.‖U ) and
(X , ‖.‖X ), and a U to X stable system H , its gain is defined
as ‖H‖U−X = sup u 6=0

x0=0

‖y‖X
‖u‖U

.

For simplicity, we let X and U to be the same (but possibly
with different dimension) lp spaces.

III. BASIC SETUP

A standard practice for designing a distributed controller
for subsystems communicating over a given network is to
aggregate all subsystems into one system P and design a
controller for this system. The controller must be designed
in a way so that it can be implemented as subcontrollers com-
municating over the given network. The aggregate system,
in the operator form, can be written as

P :

 x = ΛĀx+ ΛB̄1w + ΛB̄2u+ x̄0
z = C̄1x+ D̄11w + D̄12u

y = C̄2x+ D̄12w,
, (6)

where x, y, and z are the states, measurements, and the
regulated output; w and u are the exogenous and control
inputs; and, Ā, B̄i, C̄j , D̄ij , for i.j ∈ {1, 2} are bounded
operators.

Example 3: Consider a network with N subsystems. Each
2483
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subsystem is given by

xi (t+ 1) = Aixi (t) +Bi1wi (t) +Bi2ui (t) (7)

+

N∑
j=1

Bij3 ηij (t) ,

zi (t) = Ci1xi (t) +Di
11wi (t) +Di

12ui (t) ,

yi (t) = Ci2xi (t) +Di
21wi (t) ,

νji (t) = Cji3 xi (t) +Dji
31wi (t) , j = 1, 2, ..., N,

where xi, yi, and zi are the states, measured output, and
regulated output of the ith subsystem; νji is the signal that
the ith subsystem communicates to the jth subsystem and
ηij is the signal that ith subsystem receives through its
communication link with the jth subsystem. We let Bij2 =
Cji3 = Dji

31 = 0 if there is no communication link between
ith and jth subsystems. Furthermore, due to the delay in the
communication links, we set

ηij (t) = νij (t− τ ij) , (8)

where τ ij ∈ Z≥0 is delay in communication from jth to ith

subsystem. Substituting (8) in (7), the ith subsystem, in the
operator form, can be written as

xi = Λ

Âixi +

3∑
j=1

Λτ ij Âijxj


+Λ

B̂i1wi +

3∑
j=1

ΛijB̂ij1 wj

+ ΛB̂i2ui,

where Âij = B̂ij3 Ĉ
ij
3 and B̂ij1 = B̂ij3 D̂

ij
31. Based on the

above expression, it can be easily seen that for properly
defined operators Ā, B̄i, C̄i, D̄ij , for i ∈ {1, 2}, the aggregate
system can be written as in (6).

The structure of the network is reflected in the coefficient
operators involved in (6), e.g., as sparsity patterns [12]. Given
a fixed network consisting of N nodes (subsystems) and a
set of N inputs ξ = [ξi] to, and N outputs ζ = [ζi] from,
these N nodes, let S denote the set of all input-output maps
(or, transfer functions in the LTI case) T from ζ to ξ, i.e.,
ξ = Tζ that can be obtained from this network. That is, the
input-output aggregation of all subsystem (or, subcontroller)
dynamics, interconnected via the network, form an element T
in S and, conversely, any element in S can be implemented,
stably or unstably, as subsystems communicating over the
given network. Consider the following example:

Example 4: Nested network: An example of a nested net-
work is given in Figure 1. We adopt the notations introduced
in Example 3. It can be easily verified that the aggregate
system is given by (6) where Ā =

{
Ā (0) , Ā (1) , 0, 0, ...

}
,

B̄1 =
{
B̄1 (0) , B̄1 (1) , 0, ...

}
, B̄2 =

{
B̄2 (0) , 0, ...

}
, C̄j ={

C̄j (0) , 0, ...
}

, D̄ij =
{
D̄ij (0) , 0, ...

}
with

Ā (0) = diag
{
A1, A2, A3

}
,

B̄j (0) = diag
{
B1
j , B

2
j , B

3
j

}
,

C̄j (0) = diag
{
C1
j , C

2
j , C

3
j

}
,

?

6

P1

-

6

P2 P3

-

6

Λ Λ

? ?

6 6
u1 u2 u3y1
w1 z1 w2 w3

y2 y2
z2 z2

ν21 η21 ν32 η32

Fig. 1. A simple nested network.

D̄ij (0) = diag
{
D1
ij , D

2
ij , D

3
ij

}
,

and for i, j ∈ {1, 2}

Ā (1) =

 0 0 0
B21

3 C
21
3 0 0

0 B32
3 C

32
3 0

 ,
B̄1 (1) =

 0 0 0
B21

3 D
21
31 0 0

0 B32
3 D

32
31 0

 .
In this example, the structure of the network is reflected
on the impulse response of the coefficient operators, e.g.
Ā. The terms in the impulse response of Ā are lower
triangular, which conforms with the flow of communication
from subsystem 1 to subsystem 2 and then to subsystem 3.
And the sparsity structure in Ā (0) and Ā (1) is because each
subsystem has immediate access to its own measurement
signal but communicates with its neighbors with a delay.
For this network, the set S is the space of all systems P
whose impulse response {P (k)}∞k=0 satisfies the following
conditions: P (k) is lower triangular for k = 2, 3, ..., P (0)
is diagonal, and

P (1) =

 ∗ 0 0
∗ ∗ 0
0 ∗ ∗

 ,
where ∗ stands for a possibly non zero entry. Or, in transfer
function terms,

P [λ] =

 ∗ 0 0
λ∗ ∗ 0

λ2∗ λ∗ ∗

 ,
where P [λ] =

∑∞
k=0 λ

kP (k) is the λ-transform. Accord-
ingly, if K is a controller for P within the same communi-
cation network, K[λ] should also be of the same form, i.e.,
K ∈ S.

The set S is fully characterized by the underlying network.
In this paper, given a (stabilizable and detectable in the usual

sense) generalized plant P =

[
Pzw Pzu
Pyw Pyu

]
as in (6), we

are interested in finding the controllers K ∈ S that are
also stably realizable over the network. We should point out
that even if K belongs to S and stabilizes P in the usual
centralized sense, i.e., if[

I Pyu
K I

]
(9)
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K11

K21

K31

-
y1

-

-

-

u1

Λν21

-
y2

-

-
η21

K22

K32

0 0

0 0

0I

I

-

- Λν32
-

-

-u2

η32

-
y3

IIK33
-u3

subcontroller 1 subcontroller 2

subcontroller 3

Fig. 2. Controller in Example 5 implemented over the network.

has a stable inverse, it does not mean that the controller K
can automatically be realized stably, although we can imple-
ment it as the interconnection of subcontrollers consistent
with the network. Unless we guarantee that the implementa-
tion of K does not have internal hidden unstable modes, the
closed-loop may not be stable. This is because a stabilizing
controller in a centralized sense, by design, guarantees the
boundedness (stability) of the measured output and control
input, y and u. Also, under the detectability assumption of
the plant, the boundedness of y and u translates to that
of x and z in (6). However, one cannot infer that the
signals travelling between the subcontrollers are bounded.
Therefore, in designing a controller that is implementable
over the network in a stable way, one needs to investigate and
guarantee the boundedness of the signals travelling between
the subcontrollers.

Example 5: Consider the nested network in Example 4
and let K ∈ S be a stabilizing controller in the centralized
sense as in (9). Since K = {K (k)}∞k=0 ∈ S, it can be
partitioned as

K =

 K11 0 0
ΛK21 K22 0
Λ2K31 ΛK32 K33

 .
One way to implement this controller over the network is
illustrated in Figure 2. By definition, the signals y, z, and
u are bounded when w and x̄0 are bounded. However,
as mentioned above, it is not guaranteed that the signals
travelling between the subcontrollers, i.e. ν21 and ν32, are
bounded. Therefore, special attention should be paid to the
stable implementability of structured controllers.

Accordingly, we define the set SK ⊆ S to be the set of
stabilizing controllers K that can be stably implemented over
the network without loosing stability, i.e., the subcontrollers
communicate bounded signals provided that the measured
outputs, y, and control inputs, u, are bounded.

More precisely, the closed-loop system, in the operator
form, is given by

Gcl :


x =

[
I − Λ

(
Ā+ B̄2KC̄2

)]−1×[
Λ
(
B̄1 + B̄2KD̄12

)
w + x̄0

]
z =

(
C̄1 + D̄12KC̄2

)
x+

(
D̄11 + D̄12KD̄12

)
w

y = C̄2x+ D̄12w,
u = KC̄2x+KD̄12w.

.

(10)
The closed-loop system in (10), can be thought of as a

linear operator from
(
x̄0
w

)
to signals x, y, z, and u.

In conjunction with Definition 1, we adopt the following
definition for stabilizing controllers which are also stably
implementable.

Definition 6: A controller K : y → u ∈ SK is said to be
stabilizing the plant P (6) if the closed loop system (10) is
a bounded operator from x̄0 and w to x, y, z, and u.

We note that from now on, when we say K stabilizes P
we refer to K that are stably implementable, i.e., K ∈ SK .

In this paper, given a structure S, we develop necessary
and sufficient conditions in terms of convex problems under
which it is possible to find optimal structured controllers
K ∈ SK that are stably implementable over the network.

A typical S of interest consists of controllers with certain
sparsity or delay patterns. More generally, we assume that S
is a subspace that satisfies the following:

Assumption 7: The set S is delay-invariant, contains iden-
tity, and is closed under addition and multiplication, i.e.,
I ∈ S , ΛS ∈ S and for any X,Y ∈ S , X + Y ∈ S and
XY ∈ S.

Assumption 8: The set S contains the coefficient operator
Ā and C̄2

(
I − ΛĀ

)−1
ΛB̄2. Furthermore, for any X ∈ S,

it holds that Ā+ B̄2X ∈ S and Ā+XC̄2 ∈ S.
Assumption 9: We assume B̄2 and C̄2 have respectively

trivial right and left null spaces.
In the next section, we synthesize the state feedback

controller that is stably implementable over the network.
A useful result, which can be proved using the Youla
parametrization as in [14], is as follows:

Lemma 10: A linear system, with operator form as in (5),
is stable if and only if there exists a stable system Q such
that one of the following conditions holds:∥∥Ā (I + ΛQ)−Q

∥∥ < 1,∥∥(I +QΛ) Ā−Q
∥∥ < 1.

IV. STATE FEEDBACK PROBLEMS

In this section, we focus on the state-feedback problems
when the set S satisfies Assumptions 7 and 8. The output-
feedback problems is the subject of our future research where
similar type of approach can be utilized to deal with such
problems. Given a state-feedback controller K ∈ S : x→ u,
the closed system is given by

Gcl :

 x = Λ
(
Ā+ B̄2K

)
x+ ΛB̄1w + x̄0

z =
(
C̄1 + D̄12K

)
x+ D̄11w

u = Kx
. (11)
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Our first result states the necessary and sufficient condition
for the existence of a stabilizing controller that is also stably
implementable over the network.

Theorem 11: There exists a stabilizing K ∈ SK if and
only if there exist stable systems Q ∈ S and Z ∈ S such
that ∥∥Ā (I + ΛQ) + B̄2Z −Q

∥∥ < 1. (12)

In this case,
K = Z (I + ΛQ)

−1
. (13)

Proof: First, suppose K ∈ SK is stabilizing. That is
the closed loop system (11) is a stable map from x̄0 and w
to x, z, and u. In particular, for w = 0 in (11), we have

x =
[
I − Λ

(
Ā+ B̄2K

)]−1
x̄0,

u = K
[
I − Λ

(
Ā+ B̄2K

)]−1
x̄0.

Therefore,
[
I − Λ

(
Ā+ B̄2K

)]−1
and

K
[
I − Λ

(
Ā+ B̄2K

)]−1
are stable maps. Define

operators Q :=
(
Ā+ B̄2K

) [
I − Λ

(
Ā+ B̄2K

)]−1
and Z := K (I + ΛQ). These operators are stable and
belong to the set S since they can be rewritten as

ΛQ = −I +
[
I − Λ

(
Ā+ B̄2K

)]−1
=

∞∑
t=1

[
Λ
(
Ā+ B̄2K

)]t
,

Z = K
[
I − Λ

(
Ā+ B̄2K

)]−1
,

and Λ
(
Ā+ B̄2K

)
∈ S, by Assumptions 7 and 8, if K ∈ S.

It is easy to verify that for Q and Z defined above the left
hand side of (12) vanishes, i.e., Ā (I + ΛQ)+B̄2Z−Q = 0,
and hence (12) holds.

Conversely, suppose (12) is satisfied for some stable
Q,Z ∈ S and K is given as in (13). We need to show that
K is stabilizing and stably implementable over the network.
From (12), there exists a stable system T with ‖T‖ < 1
such that

(
Ā+ B̄2K

)
(I + ΛQ) − Q = T . Then, direct

calculation shows that the closed-loop Gcl :
(
x̄T0 , w

T
)T →(

xT , zT , uT
)T

is given by

Gcl :

 H1 H1ΛB̄1

H2 H2ΛB̄1 + D̄11

H3 H3ΛB̄1

 ,
where

H1 = (I + ΛQ) (I − ΛT )
−1
,

H2 =
[
C̄1 (I + ΛQ) + D̄12Z

]
(I − ΛT )

−1
,

H3 = Z (I − ΛT )
−1
.

Since ‖T‖ < 1, we have
∥∥∥(I − ΛT )

−1
∥∥∥ ≤ 1

1−‖T‖ and hence
the mappings H1, H2, H3, and Gcl are stable. It remains
to show that K, given in (13), can be stably implemented.
Notice that, K : y → u can be written as

K :

{
ξ = y − ΛQξ
u = Zξ

. (14)

Since Q and Z are stable and belong to S, they are
implementable over the network. However, in order for K to

be stably implementable, one needs to make sure that ξ is a
bounded signal if y and u are. By the way of contradiction,
suppose ξ is not bounded while y and u are. Then, from
(12), we have

Ā (I + ΛQ) ξ + B̄2Zξ −Qξ = Tξ,

for some T with ‖T‖ < 1. Premultiplying this expression
by Λ and using (14), we obtain

ΛĀy + ΛB̄2u+ ξ − y = ΛTξ,

where we used ΛQξ = y − ξ. This implies

ξ = (I − ΛT )
−1 (

I − ΛĀ
)
y − (I − ΛT )

−1
ΛB̄2u. (15)

Notice that the right hand side of (15) is bounded while
we assumed ξ was unbounded. This is a contradiction and
completes the proof.

A. Control Synthesis

In this section, we address the problem of finding a stably
implementable controller that minimizes the input-output
gain of the closed-loop. In this context, it is conventional
to only consider the gain from w to z in (10). For state-
feedback, this problem amounts to solving the following
minimization:

inf
K∈SK

‖Gcl (P,K)‖ ,

where

Gcl (P,K) =(
C̄1 + D̄12K

) [
I − Λ

(
Ā+ B̄2K

)]−1
ΛB̄1 + D̄11.

Theorem 12: Let γ be a positive real number. Then, the
following conditions are equivalent:

i) There exists a stabilizing controller K ∈ SK and
‖Gcl (P,K)‖ < γ.

ii) For any δ ∈ [0, 1), there exist stable systems Q ∈ S
and Z ∈ S such that (16)-(18) hold.

iii) There exist some δ ∈ [0, 1) and stable systems Q ∈
S and Z ∈ S such that (16)-(18) hold.

ρ ≤ δ, (16)∥∥Ā (I + ΛQ) + B̄2Z −Q
∥∥ ≤ ρ, (17)∥∥[C̄1 (I + ΛQ) + D̄12Z
]

ΛB̄1 + D̄11

∥∥
+

ρ

1− δ
∥∥C̄1 (I + ΛQ) + D̄12Z

∥∥∥∥B̄1

∥∥ < γ.

(18)

In either case, a controller is given by

K = Z (I + ΛQ)
−1
. (19)

Proof: Note that iii) is a special case of ii). That is, ii)
implies iii) since if for any value of δ ∈ [0, 1), conditions
(16)-(18) hold, they should also hold for particular value of
δ, for example δ = 1

2 . Thus, to prove this theorem, it remains
to show that i) implies ii) and iii) implies i).

i)⇒ii): First, suppose there exists a controller K ∈ SK
such that ‖Gcl (P,K)‖ < γ. Define Q and Z as given in the
proof of Theorem 11. Similarly to the proof of Theorem 11,
one can argue about the stability of Q and Z. Furthermore,
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Q and Z belong to the set S and direct calculation shows
that (17) is satisfied with ρ = δ = 0. It remains to show (18).
To this end, notice that for the Q and Z defined in (??)-(??)
and ρ = δ = 0, the left hand side of (18) reduces to∥∥∥(C̄1 + D̄12K

) [
I − Λ

(
Ā+ B̄2K

)]−1
ΛB̄1 + D̄11

∥∥∥
= ‖Gcl (P,K)‖ ,

which is less than γ and hence (18) holds.
iii)⇒i): Suppose (16)-(18) hold for some Q,Z ∈ S,

δ.ρ ∈ [0, 1). Then the stability and implementability of the
controller follows from Theorem 11. It remains to show that
‖Gcl (P,K)‖ < γ. Notice that, for K defined in (19), the
closed loop-map can be rewritten as

Gcl (P,K) =
[
C̄1 (I + ΛQ) + D̄12Z

]
ΛB̄1 + D̄11

+
[
C̄1 (I + ΛQ) + D̄12Z

]
ΛT (I − ΛT )

−1
ΛB̄1,(20)

where T = Ā (I + ΛQ) + B̄2Z − Q. From (17), we have
‖T‖ ≤ ρ < 1 and consequently from (20) one obtains

‖Gcl‖ ≤
∥∥[C̄1 (I + ΛQ) + D̄12Z

]
ΛB̄1 + D̄11

∥∥
+

ρ

1− δ
∥∥C̄1 (I + ΛQ) + D̄12Z

∥∥∥∥B̄1

∥∥ ,
where we used

∥∥∥ΛT (I − ΛT )
−1
∥∥∥ ≤ ρ

1−ρ ≤
ρ

1−δ . Notice
that the right hand side of the above expression is less than
γ from (18). and hence the proof is complete.

Remark 13: From condition ii) of the theorem, one can fix
δ ∈ [0, 1) without loss of generality. In this case, the feasibil-
ity of (16)-(18) can be cast as optimization in (ρ,Q,Z). This
is, in general, not a convex problem. However, for a fixed
ρ, (16)-(18) become convex in Q and Z. In fact, they form
the so-called model matching problems and their solutions
can be tractably computed with arbitrary accuracy through
utilizing Finite Impulse Response (FIR) approximation of Q
and Z. Therefore, the feasibility of (16)-(18) can be cast
as a line search for ρ ∈ [0, δ], which can be carried out
efficiently via a bisection algorithm, together with model
matching optimization Q and Z.

Remark 14: Alternatively, one can solve the convex opti-
mization

min
Q,Z

1

ε

∥∥Ā (I + ΛQ) + B̄2Z −Q
∥∥

+
∥∥[C̄1 (I + ΛQ) + D̄12Z

]
ΛB̄1 + D̄11

∥∥ ,
where ε > 0 is small. Suppose, (Q∗, Z∗) is
a solution of this optimization. Then, g1 :=∥∥[C̄1 (I + ΛQ∗) + D̄12Z

∗]ΛB̄1 + D̄11

∥∥ and g2 :=

g1 + ρ∗

1−ρ∗
∥∥C̄1 (I + ΛQ∗) + D̄12Z

∗
∥∥∥∥B̄1

∥∥ are lower
and upper bounds on ‖Gcl (P,K∗)‖ provided that
ρ∗ :=

∥∥Ā (I + ΛQ∗) + B̄2Z
∗ −Q∗

∥∥ < 1.
Remark 15: From condition ii) of the theorem, one can

set δ = 0 without loss of generality. In this case, (16)
implies that ρ = 0. Hence, the abovementioned combination
of the line search and model-matching optimizations reduces
only to model matching ones. The resulting model matching
problems, however, are exact model matching problems and
their solutions may not be in general not in the span of FIR
Q and Z systems.

V. CONCLUSION

In this paper, we proposed a framework to synthesize
structured controllers that can be stably realized over the
network. This framework is unifying in the sense that various
linear system, e.g., LTI, LTV, and linear switched systems,
can be treated analogously with respect to any measure of
performance, e.g., l1, l2, or l∞ induced norms. Our approach
is based on utilizing an operator representation of the system
and combining it with the classical Youla-parameterization.
We formulated the stability and performance problems as
tractable model-matching convex optimization. Furthermore,
the controllers can be stably realized over the network.
Although, we presented the results for state-feedback, our
approach can be extended to output-feedback problems as
well.
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