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A unified input-output approach for networked control problems with
decentralized and selfish optimality

Petros G. Voulgaris and Nicola Elia

Abstract—1In this paper, we take an input-output approach
to enhance the study of cooperative multiagent optimization
problems that admit decentralized and selfish solutions, hence
eliminating the need for an interagent communication network.
The framework under investigation is a set of n independent
agents coupled only through an overall cost that penalizes the
divergence of each agent from the average collective behavior.

In the case of identical agents, or more generally agents with
identical essential input-output dynamics, we show that optimal
decentralized and selfish solutions are possible in a variety of
standard input-output cost criteria. These include the cases of
{1, 02, s induced, and H: norms for any finite n. Moreover,
if the cost includes non-deviation from average variables, the
above results hold true as well for ¢;, /2, {-, induced norms
and any n, while they hold true for the normalized, per-agent
square H2 norm, cost as n — oo.

We also consider the case of nonidentical agent dynamics
and prove that similar results hold asymptotically as n — oo
in the case of /> induced norms (i.e., #.,) under a growth
assumption on the 7., norm of the essential dynamics of the
collective.

I. INTRODUCTION

The study of networked systems has become a main area
of research in recent years and there is a plethora of open
questions pertaining to various aspects such as structural
properties like controllability/observability [1], [2] and [3],
performance, or noise and uncertainty amplification [4], [5],
[6], distributed controller design [9] —[13] among others.

In this paper we are interested in originally disconnected
multi-agent systems that share a common social cost. The
cost represents an input-output performance measure of the
overall system where performance is measured as a function
of the distance of each agent’s output from the corresponding
average output of the collective. This second characteristic
is similar to that of cost functions used in Mean Field games
e.g., [18], [15], [14], [19],[17], [20].

In general, the optimal controller is expected to be dis-
tributed over the network which requires each agent to ex-
change information with all the others agents. For this reason,
such optimal controller is called centralized. However, this
solution does not scale well when the number of agents,
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n, is large. Hence it is of interest to know when decen-
tralized solutions are a good approximation of the optimal
centralized ones. Some answers are available in specific,
state-space based, problem formulations. For example, the
approximation method used in the 5 norm minimization
of spatially invariant systems [7] shows that the optimal
controller has exponentially decaying tails in the spatial
domain and hence it can be approximated by a local one by
truncating the tails. In the mean field approaches (e.g., [15]),
a decentralized suboptimal strategy is obtained by replacing
the actual average measurements with a deterministic input
representing the mass behavior. This input under appropriate
assumptions is shown to well approximate, in the limit of
large n, the expected value of the average measurement
signals, and can be computed independently by each agent.

In this paper, we focus on input-output approaches to
investigate how decentralization, and hence lack of commu-
nication, between a large number of dynamically decoupled
LTI agents affects the overall closed loop performance,
captured by input-output norms that encode deviation from
some average type of behavior. In particular, we present a
unified and streamlined approach that enriches with insights
and expands our initial developments in [22], [23] for a
variety of standard input-output norms.

For the case of identical agents, we show that optimality is
achieved by decentralized and selfish solutions in the cases
of /1, £+ induced, H,, and Ho norms for any finite n.
Moreover, if the cost includes non-deviation from average
variables, the above results also hold true for ¢, /o, induced
and H., norms for any n. For the normalized, per-agent
square Ho norm, they also hold true as n — oo. By a
decentralized and selfish solution we mean that each agent
can totally disregard its deviation from average, i.e., the
social coupling, and perform an optimization of its own local
regulated variables based on its own local measurements.
This turns out to be optimal for the collective. In fact, this
is also the case for nonidentical agents which have the same
essential input-output dynamics and hence the underlying
model matching problems become identical. For the case of
nonidentical essential dynamics, we prove that similar results
hold asymptotically as n — oo in the case of {5 induced
norms (i.e., H~o) under a sublinear growth assumption on
the Ho, norm of the essential dynamics of the collective.

The paper is organized as follows. In section 2, a basic
norm minimization problem is posed in terms of a Youla-
Kucera (Y-K) parametrization of all stabilizing, possibly
centralized, controllers. In section 3, we proceed to its
solution as well as to the solutions of more complicated
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versions for the case of identical agents. In section 4, we
analyze the case of nonidentical agents and conclude in
section 5.

Some basic notation is as follows. For a real se-

quence M = {M(k)}?2, we use the ¢1-norm |[M||; :=
> IM(K)|, the £2 or Ho norm || M| == [, M(k)?]Y/2,
and the loo-norm ||M||s := supy|M (k)| . For a real

sequence of matrices M = [M,;] = {M(k)};2, we use
the ¢;-induced norm ||M||y; := max; Y, [|M;;||1; the loo-
induced norm |[M|[o; = max; >, |[M;j[1 and the (5 or
Ha norm ||M| == [32, ;||My;][3)'/2. These norms will be
used for norms of LTI systems when viewed in terms of
their pulse response. If M is a transfer function ||M ||y, =
SUpP,, Omax| M (€7¥)], where opax stands for the maximum
singular value; we note that H, is the ¢s-induced norm of
the map M. Also, in the discussions that follow we often
use the || o || notation generically up to a point before we
clearly specify what are the norms that the results apply.

II. PROBLEM DEFINITION

We consider n dynamically decoupled systems {G;}7 ;.
Each G; has control input wu;, measurement output y;,
disturbance w; and regulated variable z;. Let z = ®w where
z = [zi]1<i<n, W = [w;il1<i<n are respectively the vectors
of regulated and disturbance signals, and ® is the closed
loop when each G; is in feedback with its corresponding
controller K;. We allow at this point each K; to be connected
to the other controllers K, thus the overall controller K,
given by the relation v = Ky where y and u are the
concatenated measurements and control signals y; and w;
respectively, can be a full matrix. For any K that stabilizes
the overall system of G;’s the corresponding ® can be
obtained via a Youla-Kucera parametrization as

db=w—z=H-UQV

where H = diag(Hy,...,Hy,), U = diag(Uy,...,U,),
V = diag(V4,...,V,) are diagonal stable systems the ele-
ments of which can be obtained from standard factorizations
of the individual G;’s. The system () is also stable but can
be a full matrix of stable systems [Q;;]1<i, j<n. In view of
this we have

- U1QuWi
—UzQ21 1

~U1Q12V2

P — —UsQ20Va - (1)

We are interested in optimizing system’s performance
with respect to a variable that measures deviations from
population average. In this sense, defining

1
€=z —Z, Z:= ﬁ(zl + 4 2n), e:=leili<i<n
we are interested in the map
UV:=wrre

which can be expressed as
1 -
Uv=(1--11"0=

n

with

_ 1 _
O=-1170 = [19;...19,)]
n

where 1 is a vector of 1’s and

- 1 1
©j = Hj = —(U1QuV; + U2Q2;Vj + - + UnQn;jVj)
We let T denote the operator T 2 (I—
T? =T and T1 = 0.
A basic problem of interest is to find the controller to
minimize some norm of W i.e.,

1117). Note that

v = inf || @)

In later sections we consider more elaborate problems
which involve norms of other than deviation form average
signals. Also, since the case of MIMO problems follow the
same path, and to avoid unnecessary complexity, we will
assume that both w; and z; are scalar signals.

III. IDENTICAL SYSTEMS

We first consider the case where the systems G; are

identical in which case H; = H, U; = U, and V; = V

for all i = 1,...n. Looking at a fixed 7,
_ 1. __ _
¢, =-H-UQ;V
n
where 1
Qj = E(Qlj + -+ Qnj)
and hence
Vi =H-UQ;V —(;H-UQ;V)
= 2=L(H - U[;25(Qj; — Q;)]V)

and for any ¢ # j

= —*(H U[ (Qj —Qi;)V)
Because of symmetry the following can be argued about
the optimizing Q.
Lemma 1: For Problem (2) it is enough to search for @
with structure

qg O 0 0 0 0
0 0 0
Q= -
: . .0 : - .0
0 ... 0 g o ... 6 0
or we can write () in a compact form
Q=1Iq—101".

the diagonal part of ), (which depends on q) represents the
decentralized part of the controller. While the second term,
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function of 6 represents the part of the controller that couples
all nodes.
Let

@’ = ir;f I[f ()l 3)

where - o
flg):==H-UqV

then, the following can be claimed.

Proposition 1: Consider Problem (2). Then, decentralized
control K¢ obtained by solving Problem (3) optimizes
performance in Problem (2). Moreover, ©¥° = k° where
k=|I— %11T||.

Note for the various choices of norms we have that

k=m-1)Y2%1; 2(n—1)/n; 2(n—1)/n
respectively for the
Ho; Heoo; ¢1-induced; fo-induced

norm performance. The above expressions for x can be
easily obtained by direct computation; the case of the H .,
norm follows from the fact that op,ax[al — %lblT} =
max(|al, |a — b]) (e.g., [21].)

Summarizing, the above result says that Problem (3),
although the the cost function couples the nodes, is com-
pletely solved by each agent independently where each agent
minimizes its own local cost disregarding the mass average
Z.

We next study the extension of the above result to con-
strained and two-block problems.

A. Constrained Problems

Herein we consider the same problem as above with the
addition of a norm constraint. In particular, if we let £ = Zw
be an additional signal of interest with = the corresponding
closed loop map, we are considering

o ,__ :

v Qi\\lgﬁﬁ'y

where v > 0 is a positive constant, and the norms in the

cost and constraints are the same, for simplicity. The map =

can capture regular, not necessarily deviation from average,

signals such as absolute control actions (not relative to the

mass average). For instance, in the case of stable systems G

with £ = u as the signal of interest, = = (). In general, we
will have that

|19 )

E=H: - UQVe

where He = diag(Hg,...,He), U = diag(Us,...,Us),
Ve = diag(Vg, ..., Vg) are, as in before in expressing ®, di-
agonal stable systems the elements of which can be obtained
from standard factorizations of the individual G;’s; as before,
@ can be a full matrix of stable systems [Q;;]i<i j<n-

Define now - o
9(q) == He — Ueq Ve

and
@’ := inf
allg(@)]I<y

£ ()| (5)

with f(q) = H — UqV as before. Then, the following can
be claimed.
Theorem 1: Consider Problem (4).

1) In the cases of /;-induced and /..-induced norms,
decentralized control K° obtained by solving Problem
(5) optimizes performance in Problem (4) for each n.
Moreover, we have 1° = 2¢°(n — 1)/n.

2) In the case of H .., decentralized control K° obtained
by solving Problem (5) optimizes performance in Prob-
lem (4) for each n, with optimal cost ¢° = ¢°.

3) In the in the case of H,, decentralized control K°
obtained by solving Problem (5) optimizes a normal-
ized by the number of agents performance in Prob-
lem (4) asymptotically as n increases in the sense
limp o0 7 (1°)? = (%)% = 0.

Remark 1: We see that the decentralized results of Propo-
sition 1 directly extends to the constrained case when the /1,
{+ and Ho norm are considered. In these settings, we say
that the controllers are decentralized do not depend on n and
are selfish, as they do not care about the social objective.
It is interesting that selfishness is socially optimal in these
cases. In the case of Hy norm, the optimal controllers are
centralized (or require to measure a signal about the mass
behavior) and depend on n. However, in the limit of large n,
the decentralized selfish controller is asymptotically optimal
in terms energy per agent.

Remark 2: If the norm constraint ||Z|| < « is in terms of
induced /1, o, or H then solving Problem (5) with || f(q)||
in any norm, including Ho, will lead to a decentralized
controller for finite n.

B. 2-Block Problems

In the previous section we considered constrained prob-
lems. As a consequence, single norm minimization problems
of the form

. v
will| 2] ©

lead to similar results (see Appendix). In particular, the corre-
sponding problem to solve to obtain an optimal decentralized
solution for the case of ¢;-induced is

inf =)+ @),

For the case of /,.-induced, it is

[ 50

or, equivalently,

intmax(2 = )l g (o))

For the case of H, and Hs, the corresponding problems
are respectively

o 20 o w200

5978



In all the above, if ¢° represents an optimal solution the
corresponding decentralized controller is obtained by using
Q° = diag(q°,...,q°). We note for the Ho case these
controllers are optimal only asymptotically as n — oo.

IV. NONIDENTICAL SYSTEMS
A. Systems with Identical Inner Factors

Herein we consider the possibility of having different
dynamical systems G;, yet the Y-K parametrization leads
to identical model matching problems. There are a number
of problems of this sort that can be related to different G;’s.
For example, in relation to the previous section, suppose that
® is such that H; = --- = H, = H and {U;} and {V;},
while not the same, have common inner and co-inner factors
Uand V respectively. That is, U; = UX, and V; = Y;V
with U, V inner and co-inner and X;, Y; outer and co-
outer respectively. Then, by defining a new variable Z :=
diag(X1, ..., X,)Qdiag(Y1,...,Y,) the problem reverts to
the solution for identical systems.

1) A stable systems example: Suppose we are interested in
a weighted sensitivity map ® = W (I — GK)~! where G :=
diag(G,...,G,) with the G;’s being stable, SISO, and
having the same unstable zeros, and W := diag(W,..., W)
is a stable weight. Factoring out the unstable zeros of each
G; we can represent G; = BX; with B inner and X; outer.
Then, letting H = W and U = W B, minimizing ||¥|| can
be done by decentralized control that can be obtained by
solving

¢’ =if||H-UZ||
A

with Q% = (X;)~1Z° corresponding to the optimal Z°
solution.

2) Constrained and 2-block problems: Similar results
hold for the constrained and 2-block problems of the last
subsection whenever the corresponding model matching ex-
pressions are the same. Consider, for example, the previous
case where we impose a constraint on the complementary
sensitivity = = GK (I —GK) ™! of the form ||Z|| < . Then,
following the notation of the previous subsection, H ¢ =0,
Ue = U and Vg = 1. The problem to solve is therefore

= inf

_inf  ||[H-UZ|| (7)
Z:|UZ||<y

with Q% = (X;)~1Z° corresponding to the optimal Z°
solution, which is decentralized.

B. Strongly Nonidentical Systems

By strongly nonidentical we refer to the case that the
factorizations involved are not providing identical model
matching problems. Herein we consider the case of noniden-
tical systems G; where the norm of interest is the {5-induced,
i.e., the Ho norm.

Furthermore, we impose a uniform bound v > 0 on ||Q]]
for all n (or, on ||®|| for that matter) to guarantee that the
closed loop is ¢, stable for the infinite agent case as n — oo

(string stability). We also continue to consider scalar w;’s to
ease the exposition. Recall

1
U=(I--11"% =To.
n

The problem of interest is

Y°:= inf

= 1] (8)
QlQlI<y

We are further assuming that ||H;||, ||U;|| and ||V;]| are
uniformly bounded by # for all n.

For a given M < n let IT; represent the Mth truncation
operator i.e, Iy ¥ = [V;;]1<; j<ar for M < n. Then,

s

19 = [[TTar .

Now

1
Oy =Tyd —Uy—-1170
n

Lemma 2: Assuming

Uy - U]l < yun® ©)

for some v, > 0 and 0 < p < 1 it holds that

1
||HA1711T®H — 0
n

as m — oo.

We note that assumption (9) provides a condition on the
growth of the norm of the collective. It is easy to show that
this condition is satisfied for the case of identical systems.
Indeed, if U; = U all i then

[T Un]ll = val[U]|
which is satisfies (9) for p = 1/2 and 7, = ||U]|.
Let

HUnr = inf HHMH*HMUZHMVH (10)

[1Z]|<~

and let Z°™ be optimal ! for the above problem and let

oM =TIy H — Ty UZ2M Ty V
We note Z°M is decentralized (diagonal) and the same
holds for &M . Let
oM —T,,0oM

where

1
TM = (I — MlMlMT)

and 1y is a vector of 1’s of dimension M. Let also

1 = limsup pps
M —o00
we assume existence to avoid standard technicalities that do not change
the results and replace optimal with arbitrarily close to optimal in case when
existence is not guaranteed
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Fig. 1.  Agents’s states in response to noisy inputs with a common
sinusoidal component. Decentralized controller for 30 agents

then the following holds.

Theorem 2: Under assumption (9) we have
lim ¢° = pu°
n—roo

and an arbitrarily close to optimal decentralized controller
can obtained by Z>M for sufficiently large M.

V. EXAMPLES
In this section. we present two examples in support of the
results. We consider H ., problems.
A. Agents with identical dynamics

We first consider identical agents. Each agent, ¢, is a single
integrator (adder). The model for each open loop agent is

yi(k) = —xi(k) +vi(k)

where w; represents input noise, v; a disturbance input, and
u is the control input. As indicated in Section III-B, we
compute the optimal H ., controller for each agent, according
to the following generalized single agent plant.

zi(k) = —xi(k) +vi(k)
&Gi(k) = wu(k)
yi(k) = —zi(k) +vi(k)

where the controller must minimize the H., norm from

Y wflile keepiné e control input ”small”.

The optimal Ho, norm is 1.9021. The optimal controller
is a static gain K; = 0.61803 mapping y; to u;.

An optimal centralized controller for 2 agents that solves
Problem (6), is given by

w; 2 L
‘] to ! l The cost focuses on rejecting v from
t

0.34515 240.2056 —0.27288 z—0.006807
KG) = | 8y e
—0.27288 401118 0'34515z+0‘1118

which has the parallel structure, and the same optimal norm
1.9021. Figure 1 shows the state response of each agent (for
30 agents) using the decentralized optimal controller K j.. =

I K;, when v has a common sinusoidal component. We see
that the common component in v is reasonably tracked by s
(rejected from y.s.) The optimal H, norm for n = 30 for
both decentralized and centralized controllers is still 1.9021
as predicted by the theory.

B. Agents with non identical dynamics

Here we consider each agent having the following dynam-
ics.

ri(k+1) = zu(k) +xi(k)
SL‘ZQ(k + 1) = a:i21:i2(k) + wz(k) + bzuz(k)
yi(k) = —za(k)+vi(k)

where a; € [0,2] and b; € [0, 1], uniformly distributed. As
before, each agent computes its own selfish H., controller
for the generalized plant

l'zl(k + 1) = l'zl(k) + l'zg(k)

Tio(k+1) = apzi(k)+wi(k) + bjui(k)
2k) = (k) 4 (k)
§i(k) = wi(k)
yi(k) = —za(k) +vi(k)

The optimal controller has order 2. We considered 50
agents. We applied this decentralized selfish solution K., =
diag{K;} i =1,...,50 and computed the H, norm to the
closed loop multi agent plant

zo(k+1) = aza(k) +wi(k) + bu(k)
z(k) = —Tx1(k)+ To(k)
§(k) = u(k)
y(k) = —z1(k) +v(k)

where a = diag{a;} and b = diag{b;} i = 1,...,50, u =
K4ecy and the vector signals are the stacking of the signals
of each agent 1.

Note that z now measures the deviation from the average
of all agents.

The H., norm using the decentralized selfish solution
turned out to be 13.1455. While the optimal centralized
solution leads to a norm equal to 13.1422, which is very
close to the cost with decentralized controller as predicted.

Figure 2 and 3 show the response of the two closed loop
systems when v has a common sinusoidal component. Note
that the decentralized closed loop response is naturally “rea-
sonably” tracking the common sinusoidal “low frequency”
input while obtaining a norm close to optimal with respect
to variations from average. The optimal centralized solution,
does not directly react to averages by construction. Thus, it
is not surprising that the tracking performance of a common
sinusoidal input is not as good.

VI. CONCLUDING REMARKS

By considering a network of dynamically decoupled LTI
agents with performance measured in terms of a variety
input-output norms that capture deviation from some aver-
age type of behavior, we presented a unified input-output
approach to analyze issues related to the question of when
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Fig. 2. Agents’s responses to noisy inputs with a common sinusoidal
component. Decentralized controller for 50 nonidentical agents

agents' states
°
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Fig. 3. Agents’s responses to noisy inputs with a common sinusoidal
component. Optimal centralized controller for 50 nonidentical agents

a selfish behavior is socially optimal. For identical agents
it was shown that complete decentralization and selfish
behavior does not degrade optimal performance in the /1, /.
induced, H, and Hs norms for any finite n. Moreover, if the
cost includes non-deviation from average variables, the above
results hold true as well for ¢, ¢~ induced and H ., norms
and any n, while they hold true for the normalized, per-agent
square Hs norm, cost as n — oo. We also consider the case
of nonidentical agent dynamics and prove that similar results
hold asymptotically as n — oo in the case of ¢y induced
norms (i.e., Hoo) under a sublinear growth assumption on
the Ho, norm of the essential dynamics of the collective.
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