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Abstract  

Wave propagation in granular materials is known to be dispersive.  Micromorphic continuum 

model based upon granular micromechanics [1] has the ability to describe this dispersion behavior.  

In this paper we show that the dispersive behavior can be modulated by using electric field when 

the grains have dielectric properties.  To this end, we apply the recently enhanced model that 

incorporates electro-elastic coupling by connecting microstrain to electric dipole and quadrupole 

densities due to bound charges in dielectric grains [2].  We particularly investigate the effect of 

induced polarization that arises due to an imposed electric field.  Two cases of dielectric one 

dimensional infinite rods with the same micromorphic properties have been studied, where case 1 

and 2 are in null and nonzero external electric fields, respectively. Parametric studies are performed 

to understand the contribution of the polarizability (dipole effect), intrinsic quadrupole density, 

and external electric field on the dispersive behavior of granular media.  Results predict an acoustic 

and an optical branch in the dispersive curve. Polarizability and external electric field are mainly 

affecting small wavenumber behavior of the wave branches, while quadrupole density alters the 

behavior of the material at large wavenumbers. A possibility of altering the optical branch to an 

acoustic branch is also observed, for which instability or attenuation occurs depending upon the 

direction of the imposed electric field with respect to the wave propagation direction.  We find that 

the location and the width of the frequency band gaps can be altered using external electric field. 

The possibility of creating or removing frequency band gaps is also shown to exist. The extended 

theory accounting for electro-elasticity can therefore be utilized as a tool to analyze existing 

granular media, or to design granular metamaterials, as it systematizes the design process and 

eliminates ad-hoc manners leading to large data libraries. 

Keywords: Granular micromechanics; Micromorphic continua; electro-elasticity; tunable 

metamaterial; frequency band gaps; wave dispersion. 

 

  



1. Introduction 

Granular solids are ubiquitous and impact diverse areas of engineering and science such as material 

development, transportation and infrastructure systems [3, 4], pharmaceuticals and drug delivery, 

and natural processes in geophysics, with applications including, but not limited to wave 

attenuation and energy harvesting devices, as recent studies on granular crystals have shown [5-

8]. The granular micromechanics based micromorphic continuum model introduced in [1] has the 

ability to describe and predict natural or synthetic granular materials (metamaterials) behavior and 

can be used as a tool to design and analyze granular materials.  The proposed continuum model 

also provides the freedom to describe the average behavior of many micro-structures that are being 

currently proposed by combining masses, linear springs, rotational springs, beams etc. (see for 

example [9-11]). Extending this model to account for electro-elasticity coupling seems essential 

because of the numerous potential engineering applications which include sensors, actuators, 

acoustic metamaterials, and ultra-sound imagers [12-14]. This extended theory is not only 

beneficial to give a comprehensive description of the involved physics resulting in a particular 

effect, but also crucial as a tool for developing new materials with desired behavior. To describe 

electro-elasticity effects in granular materials and  granular metamaterials it is necessary to take 

into account the coupling of the mechanical deformation and electric charge displacements in the 

material’s internal (micro-) structure [2, 15, 16]. A micromorphic theory of electro-magnetic non-

conducting (dielectric) materials has recently been published [2], having cast a consistent 

continuum description of polarization and magnetization. In this paper, the granular 

micromechanics based micromorphic continuum model [1] equipped with the electro-elasticity 

coupling effect developed for non-conducting materials introduced in [2] is used to study the 

dispersive behavior of the granular materials in response to the elastic deformation waves 

subjected to a constant electric field in a quasi-electro-static case. Using this theory, the classical 

linear hyperbolic partial differential wave equation becomes intricate because of the additional 

terms introduced to account for the micro-mechano-morphology and electro-elasticity coupling. 

An understanding of the effects of the electro-elasticity coupling on the behavior of granular 

materials proves indispensable for both describing the behavior of existing natural granular 

materials, and designing metamaterials with desired objectives. 

 



The paper is organized as follows. An overview of the theory is presented in section 2, where the 

kinematics of the model and the variational approach to derive the governing equations of motion 

are introduced. To avoid complexities, and to be better able to interpret the effects of the electro-

elasticity in the dispersive behavior of the granular materials, we limit our studies to two cases of 

longitudinal wave propagation in one dimensional infinite rods. Section 3 describes the analysis 

for two cases with equal microstructural properties. Cases 1 and 2 are in null and nonzero external 

electric fields, respectively. We perform extensive studies to emphasize the effect of micro- and 

macro-scale parameters on the dispersive behavior of the material.  Section 4 is devoted to the 

summary of the work done in this paper, along with a discussion on the potential applicability of 

the theory used here in the design and fabrication of metamaterials with specific material properties 

for particular purposes. 

 

2. Micromorphic Model based upon Granular Micromechanics 

The granular micromechanics proceeds from an identification of the grain-scale motions in terms 

of the continuum measures and the volume average of grain-pair interaction energies with the 

macro-scale deformation energy density, in an approach reminiscent of developments in 

continuum modeling presented by Piola [17].  In the current format of granular micromechanics 

[18], two grain-scale kinematic measures are defined, one for determining relative displacements 

and the other for relative rotations. It is remarkable that the considered grain-scale kinematic 

measures represent the combined effect of the grain centroid displacement, spin and size, and do 

not follow the decomposition adopted in some previous attempts of micro-macro identifications 

[19, 20]. These grain-scale motions are identified with six set of continuum kinematic measures 

that include the macro-scale displacement/rotation gradients, micro-scale displacement/rotations 

gradients identified with displacement/rotation fluctuations within a material point, and macro-

gradient of the micro-scale displacement/rotation gradients.  The deformation energy density of a 

material point is then expressed in terms of the kinematic measures at the two scales and the inter-

granular force measures as well as the continuum stress are defined as conjugates of the kinematic 

measures. Subsequently, the relationships are derived between stress and inter-granular forces that 

include stretch/compression, tangential, bending and torsional actions as well as for further 

derivation of the constitutive relations, variational principle, and balance equations for non-



classical micromorphic model whose parameters can be identified in terms of the grain-scale 

properties [1, 21, 22]. 

To develop a continuum description, each material point is considered a volume element (VE), 

as shown in Figure 1.  Let the coordinate system, x, be considered in the global (macro-scale) 

model, and attach a local or micro-scale coordinate system, x’, to the material point P or the 

barycenter of the VE with its axes parallel to the global coordinate system axes. The micro-scale 

coordinate system is defined such that it is able to distinguish different grains inside the material 

point. The displacement of the grains are then not only a function of the coordinates of the material 

point P, but also of the micro-scale coordinates of the grain within the material point, i.e., 

( , )i i x x              (1) 

where 
i  is the displacement of grain centroids.  Now consider the displacement, p

i , of the 

centroid of grain, p, contained within the continuum material point, where the displacement is 

defined in [1]. Utilizing the Taylor’s expansion, this displacement can be related to the 

displacement, 
n

i , of the centroid of neighboring grain, n, such that the difference will be the 

relative displacement, 
np

i , of the two grains, which is given as follows, where we have included 

the first and second order terms in the Taylor series expansion,  

, ,

1

2

np p n n n

i i i i j j i jk j kl l l                 (2) 

where lj is the vector joining the centroids of n and p.  Following a similar analysis, the relative 

rotations of two interacting grains, n and p, denoted by 
i  is found as [1] 

,

np

i jki k jp pe l            (3) 

where eijk is permutation symbol. Note that the summation convention over repeated indices (in 

the subscript) is implied unless noted otherwise. 

By introducing the decomposition of the displacement gradient field into an average field, ,i j , 

and a fluctuation field, ij , as [1, 23] 



, ,ij i j i j ij                (4) 

the relative displacement of grains p and n can be decomposed as 

, ,

1

2

np M m g

i i j j ij j i jk j k i i il l l l                   (5) 

Conjugate to each gradient term in Eq. 2 and 4, stress measures may be defined.  Similarly 

force/moment measures conjugate to each grain-scale relative displacement/rotation term in Eq. 2 

and 4 may be introduced (see [1]).  Furthermore, for linear elasticity, the micro-scale deformation 

energy is formulated as quadratic functions of the grain-pair kinematic measures introduced in Eq. 

2 and 4, which requires introduction of four different inter-granular stiffness measures defined as

;p u

q qK G  where K and G denote the stretch and rotational stiffnesses, respectively, p=M, m and g; 

q=n, w; M denotes macro-stiffness; m denotes the micro-stiffness; g denotes the second gradient 

stiffness; u denotes the rotation; and the subscripts n and w refer to the normal and tangential grain-

pair interaction directions. The macro-scale constitutive moduli tensors, CM, Cm, Ag, and Au are 

then obtained in terms of these inter-granular stiffness measures. 

To account for the electro-elasticity coupling effect, bound charge micro-density  ,x x   

representing the bound charges in dielectric grains, is introduced. The charge density  , which is 

a volume average of the charge micro-density, is zero for dielectric materials, but this does not 

prevent the existence of nonzero electric dipole density p and quadrupole density Q, defined as 

functions of micro-deformation [2]. Polarization as a function of dipole and quadrupole densities 

is introduced, and subsequently, electric displacement can be defined in the usual manner [2]. The 

energy density coming from the electric field can be accounted for using a micro-density Lorentz 

force. To this end, the mean dipole density of a VE of granular media is estimated in the form 

(0)

i ip E  [24] where 
(0)

iE  is the constant electric field vector and   is the equivalent 

polarizability constant related to the number of grains in the VE and the grains intrinsic dipole, 

while the quadrupole density is estimated in terms of quadrupole intrinsic to the dielectric grains 

in an analogy to the microinertia  [2].  Thus formulated electric energy density with added terms 

to account for the electro-elasticity coupling in terms of polarization is then used, and 



subsequently, the principle of stationary action can be applied to find the governing equations of 

motions. For an electrostatic case, the governing equations then take the form: 

  (0)

, , , ,

1

2

M m m

ijkl ijkl k lj ijkl kl j k ik jk ikj iC C C E Q               (6a) 

 

 

, ,

(0) (0) (0) (0)

, ,

g u m m

jkilmn jkilmn lm ni jklm l m jklm lm

j k k l k jl jl kl jk

A A C C

E E E E Q I

  

     

  

    
      (6b) 

(0)

, , , 0ii l il i lm il imE Q               (6c) 

where the noncontact mechanical volumic forces and double forces are assumed to be absent,   

and I are the overall density and micro-inertia [1], respectively, of the granular medium, Q  is the 

mean quadrupole density in the representative volume element, and   is the scalar electric 

potential [2]. This term arises from separation of the electric field in the present quasi-electrostatic 

case as (0)E E    where 
(0)E  is the fixed applied field and the scalar potential   is 

responsible for the dynamic contribution. The micro-inertia depends on the representative volume 

element (RVE). The micro-volume can consist of one or more grains, depending on the assumed 

RVE. In practice, an RVE is a collection of grains that can be stacked to develop the whole 

structure. Therefore, the RVE size depends on the granular fabric tensor, and intergranular 

interaction mechanism. If the granular structure is homogenous in both fabric tensor (geometrical 

aspect) and grain-pair interactions, the RVE can be assumed to have only one grain (for example 

a 2D hexagonal structure with no defects and with equal grain-pair interaction in every direction, 

such as [25]). However, taking an RVE with only one grain results in loss of degrees of freedom 

introduced in the micromorphic theory, and the theory simplifies to the classical continuum 

mechanics theory. The governing equations Eqs. 6 have been derived using an energy approach 

where the virtual work of electrical body forces derived from the Lorentz force in the 

micromorphic description of polarization have been included in a micromorphic continua obtained 

from granular micromechanics based homogenization framework. Eq. 6a and 6b are displacement 

equations of motion derived in [1] with terms accounting for the electro-elasticity coupling, and 

Eq. 6c represents the Gauss’s law. The Ampere’s law in the quasi-static case decouples from the 

governing equations Eq. 6. 



 

3. Longitudinal wave propagation in a one dimensional granular rod 

3.1. Mathematical Formulation 

In what follows, we consider the longitudinal (P) wave propagation along x1 axis in an isotropic 

one dimensional infinite rod formed of dielectric grains. In this case, the solutions of Eq. 6 are of 

the form 

   1 1 1 11 11 1 11 11 1( , ), , , ,x t x t x t              (7) 

 and the governing equations in Eq. 6 reduce to 

  (0)

1 ,11, 1 11 ,111 111, 11 1

1

2
P Q Q E Q              (8a) 

(0) (0) (0) (0) (0)

11,11 1,1 11 1 1 1 ,1 1 1 11 11 ,11 11R Q Q E E E E E Q I                   (8b) 

(0)

,11 1 11,1 11 11,11 0E Q               (8c) 

where the symbols of P, Q, and R, following [26], have been used for brevity, and have the values 

of 1111

MC , 1111

mC , and 111111

gA ,  respectively, and 11Q  is the mean quadrupole density in the 

representative volume element. 

The solution for the system of partial differential equations in Eq. 8 consists of two parts – the 

general and the particular, satisfying the homogenous and the non-homogenous forms of Eq. 8, 

respectively.  The homogenous solution is formed of the plane wave functions.  The particular 

solution depends upon the term, 
(0) (0)

1 1E E , a body force induced by the electric field independent 

of 1  and 11 , and does not contribute to the eigen solutions.  Therefore, we focus only upon the 

general solution of Eq. 8. Specializing the solutions in Eq. 8 to plane waves [23], and only 

considering progressing waves, and accounting for  the coupling between electric potential and 

mechanical deformation for a coherent plane-wave problem, we will have the following oscillatory 

form for the solutions of Eq. 8 



     1 1 1( ) ( ) ( )

1 1 11 11Re e , Re e , Re ei kx t i kx t i kx tAi B C             (9) 

where k is the wavenumber,   is the frequency, iA1 and B11 are the amplitudes of the macro-

displacement and micro-displacement gradient, respectively, and C is the amplitude of the 

potential function. Substituting for   from Eq. 9 in Eq. 8c gives 

(0)

1
11

E
C Q i B

k

 
   
 

         (10) 

Using Eq. 9 and 10, we can rewrite Eq. 8a and 8b in the following matrix form 

 

 

2
2 2 3 2 2 2 23
0 3

1 12

2 2 2
2 2 2 3 3 11 11
1 22 2 2 2 2 2

2 2

1

A

A A

c dd
c k k i k c c k

A A

c c B Bk
c c k

p p c p c p





 

 
   

   
     
         
 

     (11) 

where, following [26], we have introduced the velocities c0, c1, and cA, characteristic time, p, 

written as 

2 2 2 2

0 1, , ,A

P Q R Q I
c c c p

I Q 


           (12) 

as well as a new velocities c2 and c3 and the parameter d as 

(0)2 2
2 2 2 2 21
2 3 2, , A

EQ Q
c c d p c c

I 
           (13) 

We remark that c3 has the dimension of velocity due to the use of Heaviside-Lorentz units, and has 

been introduced so as to inherit the sign of the applied electric field.  Further, it is noteworthy that 

parameter d is not independent, and interestingly takes the dimension of kinematic viscosity 

(length squared per time).  From Eq. 11, utilizing the parameters defined in Eq. 12 and 13, we get 

the following secular equation in terms of the eigenvalues 2 , 

     
 2 2 2

32 2 2 2 2 2 2 2 2 2 2 2 2 2 4 33
0 3 0 1 2 2 2 2 2

A

A

c c dd
c c c k p c k c c k k i k

c p

  
   

 
          
 
 

(14) 



Eq. 14 is the dispersion equation for a one dimensional infinite rod formed of dielectric grains, 

such that it is endowed with dipole and quadrupole densities in an electrostatic condition with 

constant external electric field. In the absence of external electric field, the dispersion is a function 

of quadrupole density. Such observation arises from the assumption made in this work that the 

dipole density is directly related to, while the quadrupole density is independent of the external 

electric field [2].The corresponding eigenvectors from Eq. 11 comprise the amplitudes of the 

propagating macro-displacement waves and micro-displacement gradient waves (modes of 

vibration), respectively. The relationship between the eigenvector components A1 and B11 are given 

as  

 

 

2 2 2

0
11 1 2

2 2 2 2 33
3

2 2
A

c k
B A

c d d
c c k i k k






 
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  
    
 

       (15) 

for a physically admissible eigenvalue 2  which ensures the existence of non-null fields.   

Similar to the approach taken in [26],  we introduce the dimensionless wavenumber and frequency 

0pc k             (16a) 

p              (16b) 

We also define dimensionless velocities and a dimensionless term corresponding to the parameter 

d as follows 

1
1

0 0

(0)

32 1
2 3

0 0

22

0

,

,

A
A

A

c cQ R

c P Q c P Q I

cc EQ

c I cP Q P Q

Q Qd

pc P Q I


 


 


  

   
 

   
 

  


       (17) 

Using Eq. 16 and 17, Eq. 14 can be recast in the form 

     
 2 2 2

32 2 2 2 2 2 2 2 2 2 2 4 33
3 1 2 2

1
2 2

A

A

i
    

            


 
          
 
 

 (18) 



Eq. 18 is the dimensionless form of the dispersion relation in Eq. 14. We introduce the parameter 

11 0 11B pc B             (19) 

and the dimensionless parameter 

11

1

B

A



            (20) 

Now Eq. 15 can be written, using Eq. 16, 17, 19, and 20, as 

 

2 2

2
2 2 2 2 33

3
2 2

A i

 


  
     




  

       (21) 

Further, the phase and group velocities can be obtained as follows 

,p g

d
v v

k dk

 
            (22) 

where pv  is the phase velocity, and gv  is the group velocity. Using Eq. 16, the dimensionless form 

of the phase and group velocities can be written, respectively, as 

,p g

d

d

 
 

 
            (23) 

Further, the mechanical energy transfer ratios associated with the micro- and macro-scale degrees 

of freedom can be obtained, using Eq. 9, 12, 13, and 21 and considering the time average of the 

mechanical energy density over a time period 

 

 
 

 

2 2 2

11 11 11,1

2 2 2 2 2

11 11 11,1 1 1,1

2 2 2 2 2 2 2

1

2 2 2 2 2 2 2 2 2 2 2

1

1

2
1

2

t T

tmicro

t T
total

t

A A A

A A A A

I Q R dt
E T

E
I Q R P dt

T
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      

          





 



   

 


    



      (24a) 
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2 2 2 2
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1

1macro micro A
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E E

E E

   

          

 
  
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    (24b) 



3.2. Results: 

From Eq. 17, it is clear that A  has lower bound limit of 0 and upper bound limit of 1. Very small 

values of A  represent materials in which the micro-stiffness is negligible compared to their 

macro-stiffness, and values close to the upper bound level have large micro-stiffness compared to 

their macro-stiffness. A value of 0.71A   corresponds to approximately equal macro- and micro-

stiffness of the material. On the other hand 1 , 2 , and   have lower bound of 0 and an upper 

bound that can theoretically tend to infinity. 3  can be any negative or positive value, depending 

on the sign of the external electric field. For a particular ratio of macro-density to micro-density, 

larger 1  implies a growing dominance of second gradient behavior, while large values of 2  and 

  imply significant quadrupole effect. Large value for the magnitude of 3  imply large external 

electric field, and large   suggest large polarizability.  

To illustrate the effect of the electro-elasticity we study 2 cases with equal micromorphic 

properties. Case 1 is in a null external electric field, while case 2 is under the effect of a nonzero 

external electric field. The particular values used for the involved parameters have been chosen to 

be of the same order of material properties used in [1, 2], except that the electric field and 

polarizability have been chosen larger in order to facilitate visual comparison. For both cases, the 

parameters chosen are 
17.1 10A

  , 
3

1 5 10   , 
4

2 7.6 10   , and 21.0 10   , except that 

for case 1, 3 0   and for case 2, 3 3.9  . The dispersion curves for both cases 1 and 2 are plotted 

in Figure 2. Figure 2 implies that the optical branch for case 1 starts at the dimensionless frequency 

1, while optical branch for the case 2 starts at a value less than unity. This value can be obtained 

by introducing 0   in Eq. 18, which gives, for the optical branch, 

  
2

3

2
1 1

A


  


            (25) 

Eq. 25 corresponds to the frequency 
   2 2

3

2 2

1A

A

c c

p c

 


 
 . Therefore, the starting 

dimensionless frequency for the optical branch is only related to the external electric field and the 

polarizability, with quadrupole density having no effect [27] (considering mechanical 



micromorphic properties to be fixed). Clearly, the starting point of the optical wave is 

dimensionless frequency of 1 when either   or 3  vanishes, and can be less or greater than 1 

based on whether the value for   is less or greater than unity. However, usual values of   are 

orders of magnitude smaller than unity. Theoretically, there is a possibility that the expression 

under the square root in Eq. 25 becomes negative, hence resulting in an imaginary dimensionless 

frequency with zero real part. The condition for such a possibility is as follows: 
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which simply is the area inside a circle with center of 
1

,0
2

 
 
 

 and the radius of 
1

2
 in a coordinate 

system with a horizontal axis   and a vertical axis 
3

A


 (See Figure 3). In cases where the external 

electric field is positive (the directions of external electric field and propagating wave are the same) 

and Eq. 26 is satisfied, the imaginary part of the frequency takes positive values, suggesting 

instability. If the external electric field is negative, attenuation occurs.  

Dimensionless group velocities of the optical branches at small wavenumbers in both cases are 

zero, therefore, electro-elasticity coupling has no effect on the group velocity of the optical branch 

at small wavenumbers (See Figure 4a). However, the acoustic branches in cases 1 and 2 have 

different group velocities at small wavenumbers. Keeping only lower order terms of dimensionless 

frequency and wavenumber in Eq. 18 results in the dimensionless group velocity of 
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). 

This value, keeping the mechanical properties constant (as is for the cases 1 and 2), is a function 

of only the electric field and polarizability.  For vanishing values of the external electric field, case 

1 and 2 behave equally at small wavenumbers for the acoustic branch. Quadrupole density, on the 

other hand, plays no noticeable role in the group velocity of the acoustic branch at small 

wavenumbers. 



The asymptotes of both the optical and the acoustic branches may be found by keeping only higher 

order terms of the dimensionless frequency and wavenumber in Eq. 18, which, after solving for 

the dimensionless frequency, gives 
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1 2 1 2

2
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or 
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. Obviously, asymptotes are functions of 

quadrupole density, but polarizability and the external electric field are not appearing in their 

expression. The coefficients of   in Eq. 26 show the dimensionless group and phase velocities for 

both cases 1 and 2 at large wavenumbers, as depicted in Figure 4a and b.  For the case where 2  

(and  ) are negligible, Eq. 26 simplifies to 

1,                (27) 

(corresponding to asymptotes 0c k   and 1c k  ), which are the asymptotes for a granular 

material similar to cases 1 and 2, but without dipole and quadrupole densities (only elasticity). 

According to Figure 4c and 4d, at small wavenumbers, in both cases 1 and 2, micro-scale degree 

of freedom is the dominant term playing role for energy transfer in the optical branch, while at 

large wavenumbers, the macro-scale degree of freedom becomes dominant. For the acoustic 

branch, micro- and macro-scale degrees of freedom carry almost equal energy at small 

wavenumbers and the micro-scale’s portion increases for larger wavenumbers. External electric 

field increases micro-scale degree of freedom’s energy transfer. This shift, however, is not 

significant for the two cases studied. 

A consequence of electro-elasticity coupling effect can be clearly seen in Figure 2 where the band 

gap appears to change size and location as a function of external electric field. It is possible, 

theoretically, to make band gap emerge for a micro-structure that does not exhibit band gap, by 

using particular value of external electric field (without changing the microstructure and/or dipole 

and quadrupole densities). The inverse is also true; band gaps can be removed from the dispersion 

behavior of a granular medium by choosing appropriate value for external electric field. These two 



cases have been shown in Figure 5, where only changing external electric field creates (Figure 5a) 

or removes (Figure 5b) frequency band gaps. Such behavior suggests micro-structures that can be 

tuned based on the desired response and application. If the directions of external electric field and 

propagating wave are the same, one must pay heed to the rise of instability introduced by the large 

electric field value. Considering a stable material with specified polarizability and quadrupole 

density, effect of the positive external electric field on the emergence of instability is illustrated in 

Figure 6. The material constants used in the four cases of Figure 6 are similar to the case 2 of 

Figures 2 and 4, except for the dimensionless parameter 3  related to the external electric field. 

Four different positive values of the parameter 3  have been considered and the real and imaginary 

parts of the dimensionless frequency in the dispersion curve have been plotted, respectively, in 

Figure 6a and 6b. Clearly, increasing positive external electric field shifts the band gap to smaller 

frequencies and decreases the dimensionless frequency at which the optical branch starts. Also, as 

discussed before, a large value of positive external electric field causes the optical wave to become 

an acoustic wave (depicted in Figure 6 for the cases 3 6   and 3 8  ). Such a transition leads to 

complex frequencies of acoustic wave branch, which have negligible or zero real parts and large 

values of positive imaginary parts, implying instability caused by the positive external electric 

field. The instability pertains to the growing of amplitude of the acoustic wave branch with time. 

Numerical studies suggest a critical point where the instability arises. Figure 7 shows the real and 

imaginary parts of the dimensionless frequency at dimensionless wavenumber 1 as a function of 

3 for the optical and acoustic branches (shown in Figure 7a and 7b, respectively). The parameters 

used are the same as that used in case 2 except for the parameter 3  which is taken to be a variable 

here. According to Figure 7a, the optical branch has a zero imaginary part of the dimensionless 

frequency and the real part of the dimensionless frequency reduces as the positive external electric 

field increases. The acoustic wave shown in Figure 7b illustrates a critical point 3 5.01  .The real 

part of the acoustic branch decreases with an increase in the external electric field intensity until it 

reaches zero at the critical point, and remains zero afterwards. The imaginary part of the 

dimensionless frequency starts from zero until it reaches the critical point, and obtains positive 

values for 3  beyond the critical point. Clearly, any value taken for 3  greater than the critical 

point results in the emergence of instability. Each set of material parameters results in a different 

critical point, and must be accounted for when designing or analyzing the granular media or 



metamaterials. Since finding possible microstructures for the required desired behavior of the 

granular medium/metamaterial usually needs optimization algorithms, an inequality constraint to 

prevent instability can be imposed on the solutions by having the square of the expression of the 

dimensionless frequency as a function of 3  for the acoustic branch be nonnegative. As mentioned 

before, for the case where the directions of external electric field and propagating wave are 

opposite (negative external electric field), there is no instability. In this case, the imaginary part of 

the frequency in the acoustic branch becomes negative, suggesting attenuation. 

4. Summary and Conclusions 

In the present paper, we have investigated the electro-elasticity coupling effect in the dispersive 

behavior of a one dimensional infinite medium composed of dielectric grains placed in a constant 

electric field. The results were compared with a similar granular medium with zero external electric 

field. Based on the discussion in section 3, polarizability and electric field affect the dispersion 

curve at small wavenumbers, while quadrupole density is responsible for a change in asymptotes 

of the two branches at large wavenumbers. Therefore, frequency band gaps may emerge by the 

electro-elasticity coupling, and by the same token, may be removed from a dispersion curve 

already exhibiting band gaps. The optical wave may also be altered to behave as an acoustic wave. 

However, a constraint on the value of the external electric field must be insured to prevent 

instabilities (refer to Figure 3). The studied problem consider a rod formed of dielectric grains 

which has no rigid body motion. This assumption yields symmetry in forward and backward waves 

propagating in the medium. Therefore, we only studied the forward wave propagation. It has been 

shown that for a moving medium the dispersion becomes asymmetric, leading to different 

dispersive behavior in the forward and backward propagating waves [28, 29]. Such asymmetry for 

granular structures will be investigated in future works. 

Based on the results and discussion presented in the paper, certain combination of the material 

constants can lead to a particular class of behavior that is suitable for a purpose of interest. This 

combination is not unique, and there might be many combinations yielding the same result, thus 

suggesting a not one-to-one relation between the material constants and the behavior. An 

advantage of the proposed continuum model is the availability of the explicit form of the functions, 

thereby promising a complete domain of constants to search for possible solutions (see similar 

approach exemplified for pantographic material systems in [30]). Such theory-based approaches 



are in contrast to certain efforts that proceed by postulating a priori certain predetermined sets of 

microstructures [9, 11] or propose to combine micro-elements [31, 32] to achieve an objective that 

is circumscribed within a known domain of behaviors without the aid of theories that can predict 

possibilities beyond those that are already known. The granular micromechanics model extended 

to account for the electro-elasticity coupling can thus provide an efficient paradigm for analyzing 

natural granular materials, or designing tunable metamaterials with desired dispersive behavior 

that may be needed for particular applications. 
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Figure 1- Schematic of continuum material point, P, with its granular microstructure and the 

coordinate systems x and x’(from [18])  
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Figure 2- Dispersion curve for cases 1 and 2. Case 1 is depicted by blue lines (marked with 

triangles), and case 2 by red lines (marked with asterisks). Solid lines and dashed lines represent 

optical and acoustic branches, respectively. 
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Figure 3- Instability criterion for a positive external electrical field, where any point inside the 

circle leads to instability.  
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Figure 4- (a) Dimensionless group velocity for cases 1 and 2. (b) Dimensionless phase velocities 

for cases 1 and 2.  (c) Energy transfer ratio associated with the micro-scale degree of freedom to 

the total energy transferred by the wave, for cases 1 and 2. (d) Energy transfer ratio associated 

with the macro-scale degree of freedom to the total energy transferred by the wave, for cases 1 

and 2. Case 1 is depicted by blue lines (marked with triangles), and case 2 by red lines (marked 

with asterisks). Solid lines and dashed lines represent optical and acoustic branches, respectively. 
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Figure 5- Real and imaginary parts of the dimensionless frequency in the dispersion relation for 

both optical and acoustic branches where solid and dashed lines represent optical and acoustic 

branches, respectively. Lines marked with triangle (blue lines) show cases without external 

electric field and lines marked with asterisk (red line) show the effect of external electric field in 

electro-elasticity coupling (a) emergence of frequency band gap. Material parameters chosen are 

1 2 30.71, 0.3, 0.00076, 3.9, 1.01A          , where for the case with zero external 

electric field the parameter 3  is zero (b) removing frequency band gap. Material Parameters 

chosen are 1 2 30.71, 0.005, 0.00076, 7.8, 0.01A          , where for the case with zero 

external electric field the parameter 3  is zero. 
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Figure 6- Dispersion curve for four different cases of external electric field (that is proportional 

to 3 )  where (a) shows the real part of the frequency and (b) shows the imaginary part of the 

frequency in the dispersion curve. Solid and dashed lines represent optical and acoustic branches, 

respectively. The parameters used are equal to case 2 except for 𝛾3 which is taken to be variable. 
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Figure 7- Real and imaginary parts of the dimensionless frequency at dimensionless wavenumber 

1 as a function of 𝛾3 for (a) the optical branch and (b) the acoustic branch. The parameters used 

are equal to case 2 except for 𝛾3 which is taken to be variable. 
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