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Abstract

In this paper, the granular micromechanics approach proposed by Misra and Poorsolhjouy (2016) is used
to study the dispersive behavior of the granular materials in response to the elastic deformation waves. This
study is motivated by the typical lack of connection between the mathematical models, the parameters
involved, and the physics of granular material. Therefore, extensive parametric studies are done to
understand how each intergranular stiffness coefficient contributes to the dispersive behavior of the
material. Two cases of one dimensional wave propagation problems have been investigated. Case 1 focuses
upon the longitudinal wave propagation in a one dimensional continuum, while case 2 considers the
transverse wave propagation in a one dimensional continuum that has a two-dimensional micro-structure.
Results predict the emergence of frequency band gaps and negative group velocities for certain values of
the parameters involved. Such phenomena can be produced by starting from the micro-structure and
producing a materials for which the inter-granular stiffness parameters are the ones the granular
micromechanics approach predict. This, however, is not a one to one mapping, and therefore, sets of
solutions to achieve a particular behavior might exist. The granular micromechanics, therefore, systematizes

the design process and eliminates ad-hoc manners leading to large data libraries.

Keywords: micromorphic continuum; dispersion; micro-structure; frequency band gaps;

metamaterials; granular micromechanics



1. Introduction

Many engineering and science disciplines such as material development, transportation and
infrastructure systems [1, 2], pharmaceuticals, drug delivery, and natural processes in geophysics
encompass the applications of granular materials, suggesting a necessity to better understand how
such materials behave. Studying elastic wave propagation in granular media results in a better
realization of how these materials react to external actions, and in general, promotes the
understanding of such materials. Granular materials, due to their grain-scale mechano-
morphological properties, have an inherent microstructural characteristic length with which the
wavelength of excitation at high frequencies becomes comparable [3]. As a result, effects of the
micro-mechano-morphology become significant when the material experiences high frequency
loads. Therefore, it becomes important to include information about the material’s micro-structure
in wave propagation studies [4]. Notably, in these cases, the classical wave equation of the form
of a hyperbolic partial differential equation becomes complicated as additional terms are
introduced to account for the micro-mechano-morphology. A previous study on dielectric granular
materials revealed the potential tenability of the range, and location of frequency bandgaps in the
presence of external electric field using straightforward examples [5], but did not analyze
thoroughly the material parameters’ effects on the dispersive behavior of granular media. Such

analysis is pursued in the present paper.

Herein, the granular micromechanics approach proposed in [6] to develop a micromorphic model
is used to study the dispersive behavior of the granular materials in response to the elastic
deformation waves. In granular micromechanics approach, the material representative volume
element (RVE) is modeled as a collection of grains which are interacting with each other through
different inter-granular mechanisms. This approach treats the problem in a statistical sense by
considering mean behavior of grain-pairs [7]. The proposed approach to developing continuum
models provides the framework to describe the average behavior of many types of granular
materials. The approach taken is clearly different from that proposed in the literature by combining
masses, linear springs, rotational springs, beams etc. (see for example [8-10]). Indeed, the ansatz
to this approach can be traced to the work of Piola [11] and Hellinger [12]. Moreover, the necessity
of extended continua including higher gradients of displacements as envisaged by Piola has been

exemplified in the recent works of wave propagation [13-15].



In the continuum description based upon granular micromechanics approach, the material point is
modeled as a granular volume element composed of distinct grains, and grain-pair interactions are
elementary units of the material’s microscopic behavior. The resulting continuum model is similar
to the micro-structure elasticity model of [16] and micromorphic model of [17]. While there are
works in the recent literature that consider wave propagation in micromorphic media [3, 4, 18, 19],
typically, the considered physics has a weak relation to materials with granular micro-structure.
To this extent, the current work is motivated by the lack of connection between the mathematical
models, the parameters involved, and the physics of granular materials. Here we explore this
connection through a theoretical approach, since the complexities of measuring parameters in
experiments are typically unsurmountable and experimental approaches fail to provide a
comprehensive analysis of the behavior of the materials with micro-structures. The paper is

organized as follows.

An overview of the theory is presented in section 2, where the kinematics of the model and the
variational approach to derive the governing equations of motion are introduced. To avoid
complexities, and to be better able to interpret the role of the micro-structure in the dispersive
behavior of the granular materials, we limit our studies to two cases of one dimensional wave
propagation. We perform extensive parametric studies to emphasize the effect of micro- and
macro-scale parameters on the dispersive behavior of the material. Case 1 focuses upon the
longitudinal wave propagation in a one dimensional continuum with granular micro-structure
which is described in section 3. Case 2 considers the transverse wave propagation in a one
dimensional continuum that has a two-dimensional granular micro-structure as described in section
4. Section 5 is devoted to the micro-mechanical implication of the analyses presented in sections
3 and 4, where a connection between the observed behavior and the grain-pair interactions is made.
Furthermore, a discussion on the potential applicability of the theory used here in the design and
fabrication of granular metamaterials with specific material properties for particular purposes is
made. Finally, the summary and conclusion of the present work is embraced in the section 6, where

the possibility for future research is also proposed.

2. Micromorphic Model based upon Granular Micromechanics



The granular micromechanics proceeds from an identification of the grain-scale motions in terms
of the continuum measures and the volume average of grain-pair interaction energies with the
macro-scale deformation energy density. In the current format of granular micromechanics [20],
two grain-scale kinematic measures are defined, one for determining relative displacements and
the other for relative rotations. It is remarkable that the considered grain-scale kinematic measures
represent the combined effect of the grain centroid displacement, spin and size, and do not follow
the decomposition adopted in some previous attempts of micro-macro identifications [21-23].
These grain-scale motions are identified with six set of continuum kinematic measures that include
the macro-scale displacement/rotation gradients, micro-scale displacement/rotations gradients
identified with displacement/rotation fluctuations within a material point, and macro-gradient of
the micro-scale displacement/rotation gradients. The deformation energy density of a material
point is then expressed in terms of the kinematic measures at the two scales and the inter-granular
force measures as well as the continuum stress are defined as conjugates of the kinematic measures.
Subsequently, the relationships are derived between stress and inter-granular forces that include
stretch/compression, tangential, bending and torsional actions as well as for further derivation of
the constitutive relations, variational principle, and balance equations for non-classical
micromorphic model whose parameters can be identified in terms of the grain-scale properties [6,
24, 25]. In what follows, we briefly state the mathematical model and derive the equations of

motion. The reader is referred to [6, 20] for more detailed description.

To develop a continuum model, each material point is considered a representative volume element
(RVE), as shown in Fig. 1. Consider the coordinate system x to be relevant to the global (macro-
scale) model, and attach a local or micro-scale coordinate system x’ to the material point P or the
barycenter of the RVE with its axes parallel to the global coordinate system axes x. The micro-
scale coordinate system is defined such that it is able to distinguish different grains inside the
material point. The displacement of the grains are then not only a function of the coordinates of
the material point P, but also of the micro-scale coordinates of the grain within the material point,

1e.,

¢ =¢(x,x,1), (1



where ¢, is the displacement of grain centroids. Now consider the displacement, ¢, of the centroid
of grain, p, contained within the continuum material point, where the displacement is defined in
[6]. Utilizing the Taylor’s expansion, this displacement can be related to the displacement, ¢, of
the centroid of neighboring grain, n, such that the difference will be the relative displacement, 6;”

, of the two grains, which is given as follows, where we have included only the first and second

order terms in the Taylor series expansion
o =¢" —¢"' =¢" 1 1"ll 2
i _¢i _¢i _¢i,jj+5¢i,jkjk' ()

In Eq. (2), /; is the vector joining the centroids of n and p, and the tensor product /ilx (=Ji) is a
geometry moment tensor. The differentiation in Eq. (2) is with respect to x . In the rest of the paper,
a comma in the subscript means derivation with respect to the position, and dots on the parameters
express derivations with respect to time. Also note that the summation convention over repeated
indices (in the subscript) is implied unless noted otherwise. Following a similar analysis, the

relative rotations of two interacting grains, n and p, denoted by 6, is found as [6]

einp = ejki¢k,jplp , 3)

where e;jx 1s permutation symbol and the differentiation is with respect to x’. We introduce the

decomposition of the displacement gradient field as [6, 20, 26]

Wy:¢i,j:¢i,j_7/g/a (4)

where . is the displacement gradient in the RVE, @U is the macro-scale displacement gradient
which is a constant in a material point, and y, is the relative deformation due to the fluctuations

of the micro-displacement of the grains inside the RVE. This suggests that the micro-deformation

 ;; 1s taken to be homogenous in the RVE but can be non-homogenous in the macro-medium.

The relative displacement of grains p and n can then be decomposed as

5 :ai,jlj —7,l, +%¢i,jkljlk =Y 5"+ 5%, (5)
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With regards to Eq. (6), 5 is due to the average displacement gradient, &,p 0" is due to the
gradients of the fluctuation in grain displacement, y,, and 5 is due to the second gradient term,
¢, ix» which is same as the gradient of the relative deformation, y; .

Macro-scale deformation energy density W of the granular continua can be defined as a function

of the continuum kinematic measures as
w=w (¢(i,_/) Vi D ) ’
(7

where gz(i’ ;18 the symmetric part of the macro-scale displacement gradient. Macro-scale stress

components conjugate to these kinematic measures are obtained as

' 04, 8‘91'/" ’ 871‘/" " a7yzk’

®)

where 7, o, and g, are Cauchy stress, relative stress, and double stress, respectively. Macro-

l'j b
scale deformation energy density can be expressed in terms of micro-scale deformation defined

for the a™ interacting pair as W* (5["“ ,0.", 0,0 ) , such that
1
WZVZWa(é;aM’é;am,aiag’eiau). (9)

In Eq. (9) V' is the volume of the assumed RVE. The intergranular force and moment conjugates

are introduced, using Eq. (9), as

oW
05

ow
=[5 C=Momg, ——m". 10
€ C=Mmg. <= (10)

1

Substituting Eq. (9) in Eq. (8), and using Eq. (6) and Eq. (10), it follows that [6]
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Therefore, the macro-scale stress measures are defined in terms of the inter-granular forces, branch

vector, and the geometry moment tensor.

Defining a local coordinate system for each interacting grain pair, decomposing intergranular
force, moment, displacement, and rotation vectors in their normal and tangential components, and
assuming a quadratic form of W* for linear isotropic elasticity case, the macro-scale constitutive

relationships in the global coordinate system are derived [6] as

_ M _ m _ g u
Ty = Q;,-ugk/ , 0, = Cijkl Vieo My = (Aijklmn + Aijklmn )¢/,mn > (12)
M m g u :
where Cj, and Cj, are fourth rank tensors, and 43, and A4, are sixth rank tensors, defined

as (Refer to [6] for more details)

155>

¢ (13)
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We note here that for many granular systems (including those formed by grain-packings for which
Hertz Law has been used widely [27]), grain-pair interactions are nonlinear and include
dissipation. Nevertheless, understanding linear elastic behavior has practical significance for small
amplitude vibrations, for which a quadratic form of #” can be assumed. In addition, linear elastic
behavior provides a point of departure for exploring more complex phenomena introduced by

nonlinearity and dissipation. In Eq. (13), the four different inter-granular stiffness measures are

defined as K} and G, , where K and G denote the stretch and rotational stiffnesses, respectively,

p=M, m and g; g=n, w. Further in Eq. (13), superscript M denotes macro-stiffness, m denotes the
micro-stiffness, g denotes the second gradient stiffness, and u denotes the rotation terms,
respectively, introduced for each term of the decomposed relative displacement and rotation; and

the subscripts # and w refer to the normal and tangential grain-pair interaction directions.



We now briefly outline the derivation of the balance equations and equations of motion for a
material with granular micro-structure using a variational approach. To this end, we can write for

the variation of the internal potential energy, using Eq. (4) and Eq. (8)
SW =1,06, + 0,57, + 1,08, ;, =7,08, , +0, (b, — 0., )+ 14,58, - (14)

Using Leibniz differentiation rule, we can write Eq. (14) in the form

W =|(7;+0,)56 ] ~(z,+0,) 8 —0,00, +(1,0v;), =ty .00, (15)

>J

The variational of the macro-scale deformation energy functional can be obtained using Gauss’s

divergence theorem of integration and Eq. (15) as

SV o, ),, SpdV — jV( Hyi +0, ) Sy, dV + js(f,.j +0, )1,5pdS + L 1,1, 8y,dS . (16)

vy o

We also define the variational of the external work as

S bV + [ ®,5y,dV +[ 1,64dS+| T,00,ds , (17)

vy

where f; is the non-contact volumic (body) force per unit volume, ¢, is the contact traction defined
as a surface force per unit area, @, is the non-contact volumic (body) double force per unit

volume, and 7}, is the contact double traction defined as double force per unit area.

The kinetic energy density (kinetic energy per unit macro-volume) 7' is defined as

1e1 ,--
T=— — A s 18
7). P (18)

where p' is the micro-scale mass density per unit macro-volume. For a constant p’ in the RVE

and the continuum, we have, for the macro-scale mass density per unit macro-volume,

_1 ' (_p’ r_
p=al,. PV _ij,dv_p. (19)



Therefore, the densities in micro- and macro-scales become identical. Note that for graded

materials with spatially varying densities, one can take p’ to be non-uniform. This assumption
leads to additional terms in the final form of the kinetic energy derived in this paper, and will be
pursued in future publications. Eq. (18), after substituting for ¢, using Eq. (19), and neglecting
higher order inertia terms, can be written as

1 - S
T=Sp. 50 Wb (20)

which is similar to [28], and where d , is defined as follows

1 ! ’ 1
dj.k :_nyxkadV . (21)

V!

In the rest of the paper, we assume the RVE to be cubic with edges 2d parallel to the axes x’. In
such a case, Eq. (21) simplifies to

1
d, =3d'5.

(22)

where &, is the Kronecker delta. From Eq. (22) it is clear that &, is a diagonal matrix with equal

diagonal terms. The total kinetic energy is the integral of the kinetic energy density over the whole

domain, and is written as

y B (23)

vy

Using Eq. (20) and Eq. (23), the variational of the kinetic energy functional is written, after

integration by parts and assuming the values of 5] and y; to be known at 7 =1,,1,, as

o~ . - h 1 2 .. .
5L ! JP 0 J.Vgpdg - %)

0 oy eV

Hamilton principle requires the action functional to be minimum, and is expressed as

N 25)



Substituting Eq. (16), Eq. (17), and Eq. (24) in Eq. (25) results in the balance equations and the

boundary conditions. The balance equations are

(26)
2
Mo +0; + D@, == pdy
and the two natural boundary conditions given in terms of the stress measures are
(7 +0y)m =t sym =T, 7

Finally, equations of motion can be derived, by substituting the constitutive equations, Eq. (12), in
the balance equations, Eq. (26). Assuming volumic (body) forces and volumic double forces to be

absent, the equations of motion are described as

(C’%l + G )akll GV, =Py,
g u m T m I . (28)
(Aijklmn + At )‘//lm,nk +Chtis —CoWu = gpd !

3. Longitudinal wave propagation in a 1D isotropic continuum with granular

micro-structure
3.1. Mathematical Formulation

In what follows, we consider the longitudinal (P) wave propagation in an isotropic one dimensional

infinite continuum in macro- and micro-scale along the x, axis. A schematic of the general

problem has been shown in Fig. 2. Note again that a 1D homogenous isotropic continuum can be,
in general, non-homogenous in the RVE (micro-scale). This inhomogeneity may come from the
mass density distribution, or the variation of grain pair interaction in the medium. The former is
depicted in Fig. 2, while the latter is rather difficult to visualize. As the underlying assumption for
deriving Eq. (31) is having a constant o', our focus in this section is inhomogeneity in grain-pair
interactions. In this case, the twelve equations of motion Eq. (28) reduce to the following two

equations



(P+Q)¢71,11 -0y, = ,0‘.",,

- .. (29)
RW11,11 +Q¢1,1 —Qy,, =1

where the symbols P, O, R, and I have been used for brevity, to represent the macro-scale modulus
. . T |
CM , the micro-scale modulus C}},, the second-gradient modulus 45, , and micro-inertia 3 pd’

, respectively. Solutions of the Eq. (29) are of the form
¢ =4(x,0), l//u:‘//n(xlat)» (30)

in which the kinematic measures ¢, and ¥, are only functions of time and x;. Following Mindlin

[16] and specializing the solutions in Eq. (30) to harmonic plane waves, we will have the following

form for the solution of Eq. (29)
¢ =Re(4ic"™™), ), =Re(B, ™), 31)

where £ is the wave number, o is the angular frequency (to which we refer for the rest of the paper

as frequency), 41/ and B are the amplitudes of the macro displacement and micro displacement

gradient, respectively, and i* =—1. Note that the amplitudes 4i and B can take complex values.

Substituting Eq. (31) into Eq. (29), the set of equations can be rewritten in the following matrix

form
2k2 2k
e [Al}—af[/ll} (32)
C - s
= p1—2 B, B,
P p

where, following [4], we have introduced the velocities, ¢y, c;, and c4, and characteristic time, p as

follows
P+ R I
Cé: Q, 6’12:—’ Cj:g’ pzz—. (33)
P I P 0



Eq. (32) is an eigenvalue problem with the eigenvalue @’ and the eigenvector comprising the
amplitudes of the propagating macro-displacement waves and micro-displacement gradient waves,

respectively. The relationship between the components 41 and By is given, using Eq. (32), as

2 _ 22
B, =4 [uj : (34)

ik
Solving for the eigenvalues @”, Eq. (32) yields the secular equation
a)zz(cg—cj)k2+p2 (a)z—cék2>(a)2—cfk2>. (35)

Eq. (35) is the dispersion relation for the problem under study. A similar form of dispersion relation

can be found, for example in [4, 29]. It is noteworthy that the parameters introduced in this paper
can be identified with those in [4, 29] as follows: @ =(P+Q), B=-A4=0, C=R.Whatis

noteworthy in the present paper is the connection of these parameters with the micro-measures
(such as micro-stiffnesses and grain sizes) relevant for elastic granular systems. This connection
between the continuum models and micro-measures presents a new paradigm for exploring the
micro-mechanical antecedents of phenomena predicted by Eq. (35), which are described in further
in section 5. In very low frequency/wavenumber ranges, higher order terms of frequency and wave

number in Eq. (35) can be neglected and the waves propagate, expectedly, with the macro-scale

velocity Jcé —c’ , related only to the macro-scale moduli and density as L . Although it appears
P

that the effect of micro-structure is seemingly lost in the first part of the right hand side of Eq. (35),
however it is to be noted that the grain—scale effects are reflected in the macro-scale moduli and
density (as seen from Eq. (13) and Eq. (19)). Furthermore, microstructural effects become
increasingly prominent for larger frequencies and wavenumbers through the terms ¢y and ¢; in the
second part of the right hand side of Eq. (35). Clearly, Eq. (35) shows that for very small
frequencies and wavenumbers, fluctuation in grain-pair stiffnesses in the RVE has negligible effect
and wave propagation is controlled by the macro-scale properties, while in larger frequencies and
wavenumbers, the effect of fluctuation in grain-pair stiffnesses on the velocity of propagating
waves become increasingly significant through the micro-moduli, second-gradient moduli and

micro-inertia whose antecedents are further discussed in section 5.



Introducing the dimensionless wave number and frequency

§=pck, n=po, (36)

and dimensionless velocities

0 0
Eq. (35) can be recast in the form
' =(1-73)E+(n* =& ) -r&). (38)
We also introduce the parameter B/, as

Bl!l = pc,B,; . (39)

Now, using Eq. (34), Eq. (36), Eq. (37), and Eq. (39), we can write

(40)

By introducing the dimensionless parameter f defined as the ratio of B/, to A1, we can rewrite

Eq. (40) as
2 2
n-¢
B = . (41)
v
The phase and group velocities can be obtained as follows
@ dw
V,,=;, Vg=%, (42)

where v, is the phase velocity, and v, is the group velocity. Introducing the dimensionless phase

and group velocities, respectively, as



v ==+, v, =-*%, (43)

and using Eq. (36) and (42), we can write Eq. (43) in the form

v, =41 (44)

v = = .
g df

n
A
Also, the mechanical energy transfer ratios associated with the micro-scale and macro-scale
degrees of freedom can be obtained, using Eq. (31), Eq. (33), and Eq. (41) and considering the

time average of the mechanical energy density over a time period as

1 ¢e+1 .

E o7 (h/ +R‘//121,1)dt
E 1 ey . K o

total E , (]l/ + Rl//lzl,l + pg . i dt

B B (vim +vi+vini &) )
B (v +vi+vii& )+ + & - &

Emacro — 1_ Em[cm — 772 + é:z — 7/3152 .
Evi B B(Vim +7i+7n& )+ +E-1&
3.2 Results

From the first of Eq. (37), it is clear that dimensionless velocity y, has lower bound limit of 0 and
upper bound limit of 1. Very small values of y, represent materials in which the micro-stiftness

is negligible compared to their macro-stiffness, and values close to the upper bound level have

large micro-stiffness compared to their macro-stiffness. A value of y,=0.71 corresponds to
approximately equal macro- and micro-stiffness of the material. On the other hand, y, has lower

bound of 0 and an upper bound that can theoretically tend to infinity. For a particular ratio of

macro-density to micro-inertia, larger y, implies a growing dominance of second gradient

behavior. Fig. 3, Fig. 4, Fig. 5, and Fig. 6 show the dispersion curves, phase velocities, group
velocities, and the energy transfer ratios of the micro-scale degree of freedom to the total energy

transferred for different values of », and »,. We observe in the case where second gradient terms

are small (Fig. 3 and Fig. 5), increasing y, and decreasing y, leads to emergence of frequency



band gaps. For y, larger than a certain limiting value the stopband vanishes. The reason for the

vanishing of band gaps can be understood by examining the group velocity plots in Fig 5. We

note that the dimensionless group velocity of the optical and acoustic branches have the values of
0 and /1- 75 (corresponding to group velocities of 0 and ch —c’ ) at small wavenumbers and

asymptotic values of 1 and p, (corresponding to group velocities of co and c1) , respectively.

Therefore, a large value for the group velocity of the acoustic branch in both its small and large
wavenumber ranges is the cause for vanishing band gaps. Complete band gaps emerge when the
asymptote of the acoustic branch at large wavenumbers is a horizontal line. However, band gaps

over a wide range of wavenumbers exist even for non-vanishing small values of y,. The starting

point of the dimensionless frequency range in which the band gap appears varies, but is always

between 0 and 1, while the end point of the dimensionless frequency is fixed at 1, corresponding

to the frequency o =, ,Q , which is a function of the micro-scale properties. Also as y, increases

and y, decreases, size of the band gap grows. Dimensionless phase velocity for the optical branch

starts at infinity and reaches the value of 1 (phase velocity of co) for large wavenumbers regardless

of the value of y, (phase velocity of c1). The acoustic branch has an initial dimensionless phase

velocity of 4 /1 — 7% (phase velocity of /cg — ¢’ ) and therefore, depends solely on the macro-scale
stiffness of the material, while the asymptotic value reaches y, (phase velocity of c1). Therefore,
based on the values of the parameters y, and y, we may have decreasing or increasing phase and

group velocities of the acoustic branch depending on the values of y, and y,.

In materials with very large second gradient properties (, >1), as seen in Fig. 4 and Fig. 6, the

acoustic branch at small wavenumbers starts with the dimensionless phase and group velocities of

1/1 — 77 (corresponding to phase and group velocities «/ cg —c” ), which is similar to the previous
case. However, in this case, the terms containing higher orders of £ and y, in the dispersion

relation become dominant as we evaluate their limit at high wavenumbers. Hence, the asymptotic

slope of the dispersion curve for the optical branch becomes y, (corresponding to the asymptote

® = ¢,k ), and that of the acoustic branch becomes 1 (the asymptote @ = ¢,k with asymptotic phase



and group velocity of ¢;). This means for the cases wherey, >1, the asymptotes of the two

branches switch. Therefore, it is not possible to have stopbands.

We further observe that the energy transfer in 1D granular continuum during wave transmission
occurs via two mechanisms, one governed by the macro-, and the other by the micro-scale degrees
of freedom of the material. According to Fig. 3, in the acoustic branch at small wave numbers,
energy transfer is affected mainly by the macro-scale degree of freedom, while for larger wave
numbers, micro-scale degree of freedom plays the main part in energy transfer. This obviously
shows the hierarchical nature of the wave propagation in micro-structured media. Large values of

y, result in smoother shift from macro to micro-scale degree of freedom mechanism. In the case

of optical wave, at small wavenumbers, the energy transfer is purely governed by the micro-scale
degree of freedom. The model predicts transition of energy transfer mechanism from micro- to
macro-scale, but it is well understood that for such large wavenumbers, the characteristic length
of the excitation can be smaller than the characteristic length of the micro-structure, and hence, the

proposed continuum mechanics theory may not be applicable. Note that when both y, and y, take
very small values (e.g., in Fig. 3 for y, =0.03 and y, =0.0002), we reach the classical wave

propagation through the medium, and the energy transfer is almost completely due to the macro-

scale degree of freedom.

Similar to the case where second gradient terms are small, for the case of large second gradient
terms, energy transfer for small wavenumbers in the optical and acoustic waves are governed
mainly by means of micro and macro-scale degrees of freedom, respectively. As shown in Fig. 6,
for a material with dominant second gradient terms, this behavior continues for higher
wavenumbers as well, which is in contrast to the case of small second gradient terms, where the
energy transfer at the micro-scale tends to disappear and be replaced by macro-scale mechanisms
or vice versa. This decoupling effect in transferring energy in the optical and acoustic branches

becomes more significant for smaller values of y, and larger values of y,.

3.3. Special Cases

For a purely second gradient material, following [30], we begin from the internal potential energy

expression and assume ¥, =4, ;, followed by the variational approach to obtain the governing



equations of motion. Solving for the wave propagation, thereafter, leads to a dispersion curve in
which only one acoustic wave exists. At small wavenumbers, the wave has group velocity of
w/l—;/j , and at large wavenumbers, it follows the asymptote 7 = y,£. Therefore, band gaps do

not exist in second gradient materials. It is noteworthy to mention that one cannot reduce Eq. (29)

to obtain a second gradient material model. Reducing Eq. (29) to obtain the equations of motion

for a second gradient material by assuming v/, :%,1 leads to a dispersion relation for which

solving the equation gives rise to two acoustic waves.

To retrieve the classical wave dispersion relation, we assume y, =0 and y, =0 in Eq. (38). The

result is

n=¢, (46)

which is the non-dispersive relation between the frequency and wavenumber in their dimensionless

form. For this case, there is only one acoustic wave and frequency bandgaps are not possible.

4. Transverse wave propagation in a one dimensional isotropic continuum with

a two dimensional granular micro-structure

4.1. Mathematical Formulation

We now turn our focus on the propagation of a transverse wave in a one dimensional isotropic
continuum lying along x, axis, with a two dimensional micro-structure in x; and x, directions.
A schematic of the general problem is depicted in Fig. 7. Note again that a 1D homogenous
isotropic continuum can be, in general, non-homogenous in the RVE (micro-scale). This
inhomogeneity may come from the mass density distribution, or the variation of grain pair
interaction in the medium. The former is depicted in Fig. 7, while the latter is rather difficult to
picturize. As the underlying assumption for deriving Eq. (31) is having a constant p’, our focus
in this section is inhomogeneity in grain-pair interactions. We therefore assume that the nonzero
kinematic measures are @,,,,¥,,,¥,,,¥,, which are functions of x> and ¢ only. The displacement
equations Eq. (28), after omitting the terms with zero coefficients for an isotropic granular material

using [6], reduces to the following,



(P+0)fn~ O~ Fya =1,

(T+U>wlm +(§ —U);//mz +04,— 0wy, —Fyy =1y

(S —U)l//lz,22 +(1§ + (})l//m’22 +1‘5¢12 —13'1//12 _QW21 =1 (47)
I}z//lm +LSA'1,//22’22 —W{/IH _Zsz =1

SW 1100+ Ny 0y = 200, Wy, = I

A_MA_m_m [ ,m  __ m Yy om _ m
where we have used the symbols P=C;,,, O=C,,,=C,,, F=C),, =C,,, W=}, =C5, ,

5 _m  _ m S _ A8  _ A8  _ A8  _ 48 D _ 48 P 48 5 _ 48
Z=Cpn=Chs S=Abmn =D = A =Amins R=Aimns T=4nm> V=40,

% s u u u u l r 32 .
N=A45},, U=A%5, = A1y == A1y == Ay and 1 = 5'0 d” for brevity.

Eq. (47) entails two uncoupled systems of equations, the first consisting of degrees of freedom
é,.w,,,¥,,, and the second encompassing y,, and y,,. Each system needs to be separately
evaluated. Transverse displacement in macro-scale, therefore, induces only the shear terms in the
micro-scale. Interestingly, and in contrast to the behavior at the macro-scale, a perturbation
imposed in x> direction on the micro-scale leads to not only a dilatational wave in x; direction, but
also a longitudinal shear wave in the x> direction. We note, though, that the focus of the discussion

hereafter will be devoted to only the first system of three coupled equations in Eq. (47).

In this paper, we take all the coefficients in the first three equations in Eq. (47) to be positive. This
is equivalent to assuming that the micro-scale stiffnesses introduced in [6] in normal direction are

greater than their tangential counterparts. Relaxing such an assumption will result in three different

systems of equations, each differing with the others only in the sign of the coefficients S and F ,

however the form of the results remains the same. By assuming solutions of the form
51:51()52’0» Vi :WIZ(XZ’t)’ Vo =¥y (xz,t), (48)

and specializing the solutions in Eq. (48) to plane waves, following [16], we will have

¢ = Re(;llie"(’o‘z_(””), W, = Re(1§12 ei(’orz_“”)), W, = Re:(]§‘21 ei(hz_“”)) , (49)



where k is the wave number, o is the angular frequency, and 121] , l?lz, and f?z] are the amplitudes

of the macro-displacement and two micro-displacement gradients, respectively. Similar to section

3, we use the term “frequency” for @ hereafter.

Substituting Eq. (49) in the first three equations in Eq. (47) leads to the following matrix form of

the governing equations

&k &k &k ) A

koobr(E@+e)e w1 pr(e-a)e 1|l s

~2 ~2 ~2 n|=@ 12 | (50)
y2 P P, A A

kb (&-a)e 1 pi(G ) 1 |E .
| b 25 n

where we have defined the velocities ¢,, ¢,, and ¢, , related to the macro- and micro-stiffnesses,

velocities, ¢,, ¢,, ¢;, and ¢,, related to the second gradient stiffnesses, and characteristic times p,

and p, as
@02=P+Q, @j:Q, @1@:5’ (51)
P P P

A2 f A2 S A2 I’é A2 0

C :—’ :—’ C =—, C =—, 52
1 Ji 2 7 3 7 4 Ji ( )
A I 1

Bi==. hh== (53)

E

Eq. (50) is an eigenvalue problem with the eigenvalue @»* and the eigenvector comprising the
amplitudes of the propagating macro-displacement waves and two micro displacement gradient

waves as its entries, respectively. It is beneficial to introduce the dimensionless parameter

A

A2 A2 T A
¢, D 0



which is the ratio of the material parameters F and Q. In order to have an at least semi positive

definite energy expression, we must have y <I.

We also introduce the dimensionless velocities as follows

o O O, &, c3 o G
7,4_,\25 7/1_,\2’ 72_,\2a 73_,\29 7/4_,\2' (55)

Co Co S Co Co

Using Eq. (54), Eq. (55), and dimensionless wavenumber and frequency
é = i’zéok’ ﬁ = ﬁza) > (56)

we can write the characteristic equation of Eq. (50) as follows

R =& (1— 2 (1 (1428 (72 -7 ))))
7' (7~ )( (72 +72) &) - (75 +72) )
(72 =& ) (3= (71 +70)& )+ 27 (7 =& )(7* = (72 +77) &) (57)
+x4(ﬁ2—$2)(( ANE ) w2 BE (7 (7 471)E)
"= (73

+))

Eq. (57) is the general dispersion relation for the considered problem. Concurrent or hierarchical
micro-structures result in rather similar dispersion relations and have been studied in [3]. Although
the form of the dispersion relation has similarities in terms of the order of the equation, the physics
here addresses shear wave in a 1D granular medium with a 2D micro-structure. We note that for

the case of y,, =0, the matrix in Eq. (50) reduces to a two by two matrix and leads to the physics

of the transverse wave propagation in a one dimensional continuum with one dimensional micro-
structure, which is similar in form to the previous problem of longitudinal wave propagation in a

one dimensional continuum.

A

It is useful to include the relation between the parameters f", S, and R , since all three, for an
isotropic granular material, are linear functions of K¢ and KZ, according to [6]. Solving for R,

and using Eq. (52) and Eq. (55) yields:



A 1., 2.
7s 25712 +§7§- (58)

Similar to the approach taken in section 3, we introduce the parameters

A

B]’2 = 13250812: B;l = ﬁzéole > (59)

and the dimensionless parameters

. é/ . ér
ﬂlz ===, ﬁ2l ==, (60)
4, 4,

Then, using rows 1 and 2 of the matrix in Eq. (50), Eq. (59), and Eq. (60), we can write
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The energy transfer ratio due to the micro- and macro-scale degrees-of-freedom, y,,, ¥,,, and ¢,

, to the total energy, similar to the approach taken in section 3, can be found, respectively, as
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4.2. Results

Similar to section 3, it is easy to verify that 7, has lower bound limit of O and upper bound limit

of 1. Very small values of 7, represent materials in which the micro-stiffness in the corresponding
direction is negligible compared to their macro-stiffness, and values close to the upper bound level
have large micro-stiffness compared to their macro-stiffness. A value of 7, =0.71 corresponds to
approximately equal macro- and micro-stiffness of the material. y represents the ratio of the
micro-scale stiffness in the two directions considered here, and takes values zero to one. On the
other hand, 7,, 7,,7,, and ¥, have lower bound of 0, with an upper bound that theoretically can
tend to infinity. For a particular ratio of macro-density to micro-inertia, larger 7, i=1,2,3,4 implies
a growing dominance of second gradient behavior. Fig. 8 illustrates the dispersion curves, phase,
and group velocities for different values of y,, 7, 7,,7,, and y, and Fig. 9 shows the energy

transfer ratio for the active degrees of freedom here to the total energy transferred by the particular

branch under study for the same parameters used in Fig. 8.



Solving the dispersion relation Eq. (57) for the dimensionless frequency , 77, generally results in
three wave branches in the dispersion curve, one acoustic branch, one optical branch, and a third

branch. The third branch is an optical branch when y <1 (Fig. 8(a) and Fig. 8(c)) and becomes an
acoustic wave when y =1 (Fig. 8(b)). The dimensionless frequencies at which the wave branches

1+ 4° =
Z ,and 7= £

X V4

start, for the acoustic, optical, and the third branch are 7=0, 7=

respectively.

At small wavenumbers, the acoustic wave has dimensionless group velocity of /1-77

(corresponding to the group velocity of , /83 —¢7 ), while the optical wave has dimensionless group

(272 472 4272 + 477
2

as its dimensionless

velocity of 0. The third branch has 0 and a value of

group velocity at the small wavenumbers when y <1 and y =1, respectively. Moreover, the

asymptotes of the dispersion curves for the acoustic wave, optical wave, and the third wave at large

wavenumbers are

A

h=1 (57 72 272) 2l - 72) (7 &

n=2¢; (64)
h=1 (57 72 w272) e 2\(72 72 vl E

Frequency band gaps may appear when the starting point of the optical branches are large
dimensionless frequencies, and when group velocities of the acoustic branches at small and large
wavenumbers are of small values. There also cases (e.g. Fig. 8(c)) that the real part of the frequency
solution of the acoustic branch reduces to zero after a certain wavenumber for a special
combination of the material parameters. In this case, there is a region for which the sign of the
group velocity for the acoustic branch becomes negative and the peak of the pulse propagates
backwards, but the energy flow is always forward [31]. Interestingly, negative group velocity
(NGYV) occurs for those cases in which the asymptotic dimensionless frequency solution for the

acoustic branch given in Eq. (64) takes imaginary values or



P+ 2907, +47 78 =37, +87574 <0, (65)

which for the solutions shown in Fig. 8(c) for the noted material parameters corresponds to
dimensionless wavenumber ~1.5. Inequality in Eq. (65), can be further expressed in terms of grain-

pair second gradient stiffnesses introduced in [6] as follows
4(3KZ +4K2)(Gr +4G!)+3KE (4KS +3K%)<0. (66)

which indicates that the condition for NGV occurrence coincides with the requirement for some
negative grain-pair second gradient stiffnesses. Grain-pair mechanism which would lead to such
conditions are conceivable for granular systems in which the first gradient approximation
overestimates the grain-pair deformation energy, such as those in which grain-pair can have large
relative shear displacement with low deformation energy caused by small resistance to relative
rotations. In addition, it is noteworthy that the overall positive definiteness of energy for the RVE
admits the possibility of negative grain-pair second gradient stiffnesses. Such a possibility is surely

tantalizing and needs to be further explored with the viewpoint of realizing such granular systems.

Further, the inequality in Eq. (65) can be recast, by assuming 7, # 0 and introducing the ratios

Y, =4, and Y, =@ , in the form
V> V2

(03, +473,)(Y}, +2)-3<0, (67)

such that, NGV occurs when Eq. (67) is satisfied. Fig. 10 shows the set of parameters Y, and Y,

, for which the NGV arises. In this figure, white region indicates the sets of parameters for which
NGV occurs, and the green color indicates the sets of parameters for which there is no NGV in the
acoustic branch. It is noteworthy that NGVs for deformation waves in solids have also been
predicted for longitudinal waves in materials with multi-scale micro-structures whose material
properties satisfy certain conditions [32]. Finally, we remark that at higher wavenumbers (beyond
dimensionless wavenumber ~3.4 in Fig. 8(c)), the frequency solution for the acoustic branch

becomes purely imaginary and positive indicating instability.

According to Fig. 9, the energy transferred by the optical wave branch (solid line) is mainly due

to micro-scale degrees of freedom at small wavenumbers, and as the wavenumber increases the



role of the macro-scale degree of freedom becomes apparent. In the cases where there is only one
acoustic branch, the acoustic branch (dashed line) transfers energy by a mechanism largely due to
the macro-scale degree of freedom for small wavenumbers, and as the wavenumber increases, the
role that the micro-scale degrees of freedom play becomes dominant. A difference between the
proportions of energy each microstructural degree of freedom transfers pertains to the value of the

parameter y as it plays the role of a weighting factor for the terms involved in Eq. (54). In the
case when y =1 in Fig. 9(b), the acoustic branch reveals a different behavior. In this case, energy

is transferred completely by the micro-scale degrees of freedom and the macro-scale degree of

freedom plays no role. When y <1 (Fig. 9(a) and Fig. 9(c)), the third branch transfers energy

mostly due to the micro-scale degrees of freedom in the ranges where wavenumber is small. This

follows by an increase in macro-scale degree of freedom share of energy transfer, and eventually

at large wavenumbers, the micro-scale degrees of freedom take over as the degree of freedom v,
becomes dominant. In the case of y =1, the third branch acts as an acoustic branch and the energy

transfer mechanism for such branch follows the behavior of acoustic branch in the case of y <1,
except for the large wavenumber behavior in which the degree of freedom y,, plays the dominant

part.
4.3. Special Cases

To model a material with negligible second gradient terms, Eq. (57) reduces to
7 =& (1-72(1-2°))+ 2 (7" - &) (2 -0 + 20" )+ 7287 (1+ 1), (68)

The parameter y defined in Eq. (54) relates the two material constants F and Q which

themselves are functions of K" and K’ using [6]. Therefore, y can be rewritten as

5K

_ v 69
K" +4K" (69)

x=1



Taking into consideration the assumption made earlier in this section, K" > K"

w2

itis seen that y
reaches the value 0 when K =K and takes the value 1 only when K" =0. In the case of

K" # 0, Eq. (68) can be further simplified, by assuming that y* is negligible, to give
7 =& (1-72)+ 27 1 (7 - &)+ 73877 (70)

Eq. (70) has two solutions where one of the solutions is a wave propagating with negligible value
for its dimensionless group velocity. Therefore, neglecting the mentioned solution, we can reduce

the dispersion relation Eq. (70) to
R =&(1-73), (71)
which is a non-dispersive acoustic wave with constant phase and group velocity of \/é; —¢ .

In the case where K" =0, Eq. (68) reduces to

A

7 =8+ (7 =& )(1-5* + 27" )+ 27787, (72)

which gives rise to one standing (evanescent) wave, one acoustic wave that reaches zero group

A

velocity as wavenumber increases, and one optical wave with an asymptote of 7=¢.

For the case in which the second gradient terms are large, 7, is negligible, and y =1, one must

start from Eq. (47) and let O = F =0. Solution includes three wave branches of
® = C,yk,
1 . . . . o \2 n 0 \2
o= 5\/2(c12 +¢; +2cf)+2\/((cf —cf) +4(022 —cf) )k, (73)

0= %\/2(55 p& +2@j)—2\/((éf &) +a(e —éj)z)k.

According to Eq. (73), the first solution is a classical wave with the constant velocity ¢, depending

on the macro-scale properties which propagates as an acoustic wave. Second and third solutions



are also acoustic waves having constant velocities with the third branch only existing when the

expression under the square root is positive, which is simplified to

~4 A2 A2 A2 A2 ~4 A2 A2
¢, +2¢,¢;, +4¢; ¢, =3¢, +8c,¢, > 0. (74)

Due to its physical nature, ¢, is usually negligible compared to the other two parameters involved.
Therefore, Eq. (74) reduces to ¢, > ¢, . As aresult, for the cases where ¢, is comparatively higher
than ¢, an evanescent wave is expected as the third solution of the dispersion equation. Starting

from Eq. (57) to obtain the solutions for the dispersive behavior, however, leads to a set of three

solutions for which one of the solutions is an optical wave.

For a purely second gradient material, as discussed in section 3, the form of deformation energy
must be appropriately specified and the governing equation must be derived applying the
variational approach. In this case, only one acoustic wave will exist for the considered problem,

whose dispersion relation will be similar to that given in [30].

Finally, assuming that 7, i=4,1,2,3,4 are negligible and y =1, Eq. (57) reduces to the

dispersion relation for the classical wave equation which has a non-dispersive solution similar to

Eq. (46).

5. Micromechanical Implications to Metamaterial Design

To illustrate the effects of the inter-granular stiffness coefficients on the behavior of the systems
studied, we proceed as follows. We assume, as in sections 3 and 4, that the normal components of
the inter-granular stiffness are larger than their corresponding tangential values and they are both

nonnegative.

In section 3 of this paper, we discussed the different behavior the system might exhibit based on

the values the dimensionless velocities y, and y, take. We have shown that y, is bounded
between zero and one, whilst y, can take any nonnegative value. Using Eq. (37), and substituting

for the material parameters computed in [6] we can write



B K(3+2Q") _\/3/7 K¢ (5+20¢) s
Ta= K (3+2Q")+K) (3+2Q" ) "N K (3+2Q")+K) (3+2Q" ) )

where we have introduced ratios of tangential to normal stiffness coefficients as

M m g
S VR, SR VR 14 (76)
K K K

The same approach can also be taken for the dimensionless velocities in the section 4. It is
K (3+20")

straightforward to see that a specific value of y, can be retained if the ratio ——— -
K7 (3+20")

remains constant. For instance, taking the values of Q" and Q" to remain constant, y, retains its
value provided the ratio K /K" is constant (such as for the two sets of K =2,K” =1, and

K =4,K™ =2). The implication is that by changing the micro-stiffness coefficients in certain

predefined manner, similar macro-scale phenomena may be achieved. However, these two sets

will generate two different values for y,, which means that while one part of the phenomena can

be preserved, another associated may not.

Furthermore, Eq. (75) proposes that for a given ratio of macro- and micro-inertia, the parameters

vi= v (KLKLQNQ), = p(KEL K

n n n o

K:l\/I)QgQQmSQM)7 (77)

are purely functions of stiffnesses associated to the introduced kinematic quantities. It is
worthwhile to consider effects arise mainly from elasticity rather than inertia considering that the
grain-pair interactions can vary strongly while the grain density, granular structure and RVE size
remain virtually similar. Now, according to what has been discussed in section 3, emergence of
bandgaps with a certain location and width is dependent on a certain combinations of the

parameters y, and y,. Therefore, to design a structure with a desired bandgap location and width,

a multi-objective optimization problem must be posed. The problem becomes more intricate as we

increase the dimension of the physics involved and add to the desired properties for the design.



An advantage of the proposed continuum model is the availability of the explicit form of the
functions, thereby promising a complete domain to search for possible solutions (see similar
approach exemplified for pantographic material systems in [33]). Such theory based approaches
are in contrast to certain efforts that proceed by postulating a priori certain predetermined sets of
micro-structures [8, 10] or propose to combine micro-elements [34, 35] to achieve an objective
that is circumscribed within a known domain of behaviors without the aid of theories that can
predict possibilities beyond those that are already known. The optimization problem may be
solved using metaheuristic algorithms, such as Genetic Algorithm. There is always possible to
have many different combinations of grain-pair stiffnesses yielding the same result, since the
expressions for the dimensionless velocities are not one-to-one functions. This means that there is
more than one solution to the problem being solved. This is equivalent to stating that many
physically different structures can demonstrate similar behavior when excited, and hence, be
typified in the same category, and be manufactured based on the existing manufacturing processes
and resources. The knowledge obtained from such analyses is particularly useful in the design and
fabrication of metamaterials with specific material properties for particular purposes, e.g. to be
used as wave attenuators or nanoscale energy harvesting devices, as recent studies on granular
crystals have shown [33, 36-39]. The granular micromechanics based continuum model, therefore,
suggests, and predicts, that controlling or varying the inter-granular stiffness coefficients and
micro-structure results in a material for which the behavior it manifests when undergoing different
loading conditions can be tuned, thus providing us with a practical mechanism to make materials
with unusual desired behavior. Linking microstructural properties of the material to its
macroscopic behavior promises optimizing large scale structures in terms of their stiffness to
weight ratios and desired directional properties, which seems infeasible using current approaches
such as discrete element methods, namely due to their substantial computational cost. Since the
dimensionless speeds are responsible for the way the material behaves when subjected to external
actions, and since intergranular stiffness coefficients are the building elements that the
dimensionless speeds are functions of, starting from the micro-scale and proceed with a tailored
micro-structure with desired stiffness coefficients using novel technological advancements will
lead to a material whose behavior is predicted, yet complex and unprecedented, as for instance the

predicted granular materials displaying negative group velocities or frequency band gaps.



6. Summary and Conclusions

In the present paper, two cases of wave propagation in linear elastic granular continua were
studied. Case | investigated a longitudinal wave propagating in a one dimensional infinite
continuum, while case 2 studied a transverse wave propagating in a one dimensional continuum
that has a two dimensional micro-structure. The results obtained are expected to provide a baseline
and point of departure for more complex problems that could involve nonlinearities and
dissipation. For each case, the effect of parameters involved in the dispersion equations was
investigated. For case 1, there are two waves emerging in the dispersion curve, optical and acoustic
branches. Results show that the wave speed for both the branches is dictated by the macro- and
micro-scale properties for the small and large wavenumbers, respectively. The study on energy
transfer mechanism reveals a shift between macro- and micro-scale degrees of freedom for the two
branches as the wavenumber increases. Large values of second gradient terms prevent this shift,
and therefore, lead to the case where the energy in optical wave is mainly transferred by the micro-
scale degree of freedom, and macro-scale degree of freedom leads the energy transfer in the
acoustic wave. For case 2, dispersive behavior of the material gives rise to three wave branches,
one acoustic, one optical, and the third branch being acoustic or optical depending on the value of

the parameter y . As discussed in the paper, the model proposed in [6] reflects, in a sufficient way,

the effect of micro-measures (such as micro-stiffnesses, grain sizes and granular structure) on the
macro-scale motion, accounting for frequency band gaps and negative group velocities. The
results discussed in this paper show that the connection between the micro-measures and the
continuum model can pave a way for exploring the micro-mechanical antecedents of phenomena
observed at macro-scales. The granular micromechanics can thus provide the theoretical
underpinning and an efficient paradigm for designing granular metamaterials with desired
dispersive behavior that may be needed for particular applications. In absence of such a theory,
the possibilities of many predicted behavior would remain concealed and undiscovered. Clearly,
a more expansive model accounting for the electro-magneto-elasticity of the granular materials [5,
40, 41], or dissipation and damage mechanisms [42, 43] that also takes rotation (spin) of the grains
as extra degrees of freedom will reveal more complex features of the granular materials, and hence,
will be pursued in following research. Given that experimental procedures for wave propagation

in complex granular materials are not easily devised, numerical simulations with discrete models



could be potentially utilized to verify the results presented here. The future work will also consider
such discrete models with full dynamic identification procedure between the discrete and

continuum models.
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List of Figures

Fig 1. Schematic of the continuum material point, P, and its granular micro-structure magnified

for better visualization, where the x’ coordinate system is attached to its barycenter.

Fig. 2. Schematic of a 1D continuum in x; direction with granular micro-structure in x1 ~ direction.
A material point in the macro-scale coordinate system is itself a collection of grains that can differ

in micro-density, micro-morphology and micro-mechanical properties.

Fig. 3. Dispersion curves, and ratio of energy transferred by micro-scale degree of freedom to the
total energy for optical and acoustic branches, for different values of y, and y,, where solid lines

and dashed lines represent optical branches and acoustic branches respectively, and lines with #,

4 and O represent y, =0.0002, y, =0.3, and y, =0.7, respectively.

Fig. 4. Dispersion curves, and ratio of energy transferred by micro-scale degree of freedom to the

total energy for optical and acoustic branches, for different values of y, and y,, where solid lines

and dashed lines represent optical branches and acoustic branches respectively, and lines with #,

4 and D represent y, =1, 7, =2, and y, =3, respectively.

Fig. 5. Phase velocities v, , and group velocities v, , for optical and acoustic branches, for different
values of 7, and y,, where solid lines and dashed lines represent optical branches and acoustic

branches respectively, and lines with #, & and O represent y, =0.0002, y, =0.3, and y, =0.7,

respectively.

Fig. 6. Phase velocities v, , and group velocities v, for optical and acoustic branches, for different
values of y, and y,, where solid lines and dashed lines represent optical branches and acoustic
branches respectively, and lines with #, A and O represent y, =1, 7, =2, and y, =3,
respectively.

Fig. 7. Schematic of a 1D continuum in x> direction with granular micro-structure in both x;” and
x>’ directions. A material point in the macro-scale coordinate system is itself a collection of grains
that can differ in micro-density, micro-morphology and micro-mechanical properties.

Fig. 8. Dispersion curves, phase velocities v, , and group velocities v, for the optical branch, the

third branch, and the acoustic branch, respectively, where solid line represents an optical branch,



dash-dotted line represents an acoustic branch, and dashed line is either acoustic or optical (third
branch). (a) A material with properties of 7, =0.71,7,=0.5, 7, =03, 7,=0.1,and y=0.8;(b)
A material with properties of 7,=0.71,7,=0.5, 7,=0.3, 7,=0.1, and y=1; (c) A material
with properties of 7,=0.71,7,=0.2, 7,=0.4, 7,=0.1,and y=0.8.

Fig. 9. Ratio of energy transferred by macro- and micro-scale degrees of freedom to the total
energy for the optical branch, the third branch, and the acoustic branch, respectively, where solid

line represents an optical branch, dash-dotted line represents an acoustic branch, and dashed line

is either acoustic or optical (third branch). Lines with #, A, and O represent energy transferred by

macro-scale degree of freedom ¢, , and micro-scale degrees of freedom ., and ¥, , respectively.
(a) A material with properties of 7,=0.71,7,=0.5, 7,=0.3, 7,=0.1, and y=0.8; (b) A
material with properties of 7, =0.71,7,=0.5, 7,=0.3, 7,=0.1, and y =1; (c) A material with
properties of 7, =0.71,7,=02, 7,=0.4, 7,=0.1,and y=0.8.

Fig. 10 White indicates the sets of parameters for which negative group velocity (NGV) occurs in

the acoustic branch, while green color indicates the sets of parameters for which there is no NGV.
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Fig 1. Schematic of the continuum material point, P, and its granular micro-structure

magnified for better visualization, where the x’ coordinate system is attached to its barycenter.
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Fig. 2. Schematic of a 1D continuum in x; direction with granular micro-structure in x;’

direction. A material point in the macro-scale coordinate system is itself a collection of
grains that can differ in micro-density, micro-morphology and micro-mechanical

properties.
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Fig. 3. Dispersion curves, and ratio of energy transferred by micro-scale degree of freedom to the
total energy for optical and acoustic branches, for different values of y, and y,, where solid
lines and dashed lines represent optical branches and acoustic branches respectively, and lines
with #, & and O represent y, =0.0002, 7, =0.3, and y, =0.7, respectively.
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Fig. 4. Dispersion curves, and ratio of energy transferred by micro-scale degree of freedom to the
total energy for optical and acoustic branches, for different values of y, and y,, where solid
lines and dashed lines represent optical branches and acoustic branches respectively, and lines
with #, & and Orepresent 7, =1, y, =2, and y, =3, respectively.
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Fig. 5. Phase velocities v, and group velocities v, , for optical and acoustic branches, for

different values of y, and y,, where solid lines and dashed lines represent optical branches and

acoustic branches respectively, and lines with *, & and O represent y, =0.0002, 7, =0.3, and

7, =0.7, respectively.
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Fig. 6. Phase velocities v, , and group velocities v, , for optical and acoustic branches, for
different values of y, and y,, where solid lines and dashed lines represent optical branches and

acoustic branches respectively, and lines with *, & and O represent , =1, 7, =2, and y, =3,

respectively.
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Fig. 7. Schematic of a 1D continuum in x> direction with granular micro-structure in both x; " and
x>’ directions. A material point in the macro-scale coordinate system is itself a collection
of grains that can differ in micro-density, micro-morphology and micro-mechanical

properties.
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Fig. 8. Dispersion curves, phase velocities v, and group velocities v, for the optical branch,

the third branch, and the acoustic branch, respectively, where solid line represents an optical

branch, dash-dotted line represents an acoustic branch, and dashed line is either acoustic or
optical (third branch). (a) A material with properties of 7, =0.71,7,=0.5, 7,=0.3, 7,=0.1,
and y =0.8; (b) A material with properties of 7,=0.71,7,=0.5, 7,=0.3, 7,=0.1,and y=1;

(c) A material with properties of 7, =0.71,7,=0.2, 7,=0.4, 7,=0.1,and y=0.8.
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Fig. 9. Ratio of energy transferred by macro- and micro-scale degrees of freedom to the total

energy for the optical branch, the third branch, and the acoustic branch, respectively, where solid

line represents an optical branch, dash-dotted line represents an acoustic branch, and dashed line

1s either acoustic or optical (third branch). Lines with #, A, and D represent energy transferred

by macro-scale degree of freedom ¢, , and micro-scale degrees of freedom v,, and v, ,

respectively. (a) A material with properties of 7, =0.71,7,=0.5, 7,=0.3, 7,=0.1, and

7 =0.8; (b) A material with properties of 7, =0.71,7,=0.5, 7,=0.3, 7,=0.1,and y=1; (¢)

A material with properties of 7, =0.71,7,=0.2, 7, =04, 7,=0.1,and y=0.8.
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Fig. 10. White indicates the sets of parameters for which negative group velocity (NGV)
occurs in the acoustic branch, while green color indicates the sets of parameters for which there

isno NGV.



