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Abstract  

In this paper, the granular micromechanics approach proposed by Misra and Poorsolhjouy (2016) is used 

to study the dispersive behavior of the granular materials in response to the elastic deformation waves. This 

study is motivated by the typical lack of connection between the mathematical models, the parameters 

involved, and the physics of granular material. Therefore, extensive parametric studies are done to 

understand how each intergranular stiffness coefficient contributes to the dispersive behavior of the 

material. Two cases of one dimensional wave propagation problems have been investigated. Case 1 focuses 

upon the longitudinal wave propagation in a one dimensional continuum, while case 2 considers the 

transverse wave propagation in a one dimensional continuum that has a two-dimensional micro-structure. 

Results predict the emergence of frequency band gaps and negative group velocities for certain values of 

the parameters involved. Such phenomena can be produced by starting from the micro-structure and 

producing a materials for which the inter-granular stiffness parameters are the ones the granular 

micromechanics approach predict. This, however, is not a one to one mapping, and therefore, sets of 

solutions to achieve a particular behavior might exist. The granular micromechanics, therefore, systematizes 

the design process and eliminates ad-hoc manners leading to large data libraries. 

 

Keywords: micromorphic continuum; dispersion; micro-structure; frequency band gaps; 

metamaterials; granular micromechanics 

 

  



1. Introduction 

Many engineering and science disciplines such as material development, transportation and 

infrastructure systems [1, 2], pharmaceuticals, drug delivery, and natural processes in geophysics 

encompass the applications of granular materials, suggesting a necessity to better understand how 

such materials behave. Studying elastic wave propagation in granular media results in a better 

realization of how these materials react to external actions, and in general, promotes the 

understanding of such materials. Granular materials, due to their grain-scale mechano-

morphological properties, have an inherent microstructural characteristic length with which the 

wavelength of excitation at high frequencies becomes comparable [3]. As a result, effects of the 

micro-mechano-morphology become significant when the material experiences high frequency 

loads. Therefore, it becomes important to include information about  the material’s micro-structure 

in wave propagation studies [4]. Notably, in these cases, the classical wave equation of the form 

of a hyperbolic partial differential equation becomes complicated as additional terms are 

introduced to account for the micro-mechano-morphology. A previous study on dielectric granular 

materials revealed the potential tenability of the range, and location of frequency bandgaps in the 

presence of external electric field using straightforward examples [5], but did not analyze 

thoroughly the material parameters’ effects on the dispersive behavior of granular media. Such 

analysis is pursued in the present paper. 

Herein, the granular micromechanics approach proposed in [6] to develop a micromorphic model 

is used to study the dispersive behavior of the granular materials in response to the elastic 

deformation waves. In granular micromechanics approach, the material representative volume 

element (RVE) is modeled as a collection of grains which are interacting with each other through 

different inter-granular mechanisms. This approach treats the problem in a statistical sense by 

considering mean behavior of grain-pairs [7].  The proposed approach to developing continuum 

models provides the framework to describe the average behavior of many types of granular 

materials.  The approach taken is clearly different from that proposed in the literature by combining 

masses, linear springs, rotational springs, beams etc. (see for example [8-10]).  Indeed, the ansatz 

to this approach can be traced to the work of Piola [11] and Hellinger [12].  Moreover, the necessity 

of extended continua including higher gradients of displacements as envisaged by Piola has been 

exemplified in the recent works of wave propagation [13-15]. 



In the continuum description based upon granular micromechanics approach, the material point is 

modeled as a granular volume element composed of distinct grains, and grain-pair interactions are 

elementary units of the material’s microscopic behavior.  The resulting continuum model is similar 

to the micro-structure elasticity model of [16] and micromorphic model of [17].  While there are 

works in the recent literature that consider wave propagation in micromorphic media [3, 4, 18, 19], 

typically, the considered physics has a weak relation to materials with granular micro-structure.  

To this extent, the current work is motivated by the lack of connection between the mathematical 

models, the parameters involved, and the physics of granular materials. Here we explore this 

connection through a theoretical approach, since the complexities of measuring parameters in 

experiments are typically unsurmountable and experimental approaches fail to provide a 

comprehensive analysis of the behavior of the materials with micro-structures.  The paper is 

organized as follows. 

An overview of the theory is presented in section 2, where the kinematics of the model and the 

variational approach to derive the governing equations of motion are introduced. To avoid 

complexities, and to be better able to interpret the role of the micro-structure in the dispersive 

behavior of the granular materials, we limit our studies to two cases of one dimensional wave 

propagation.  We perform extensive parametric studies to emphasize the effect of micro- and 

macro-scale parameters on the dispersive behavior of the material.  Case 1 focuses upon the 

longitudinal wave propagation in a one dimensional continuum with granular micro-structure 

which is described in section 3. Case 2 considers the transverse wave propagation in a one 

dimensional continuum that has a two-dimensional granular micro-structure as described in section 

4. Section 5 is devoted to the micro-mechanical implication of the analyses presented in sections 

3 and 4, where a connection between the observed behavior and the grain-pair interactions is made. 

Furthermore, a discussion on the potential applicability of the theory used here in the design and 

fabrication of granular metamaterials with specific material properties for particular purposes is 

made. Finally, the summary and conclusion of the present work is embraced in the section 6, where 

the possibility for future research is also proposed.  

 

2. Micromorphic Model based upon Granular Micromechanics 



The granular micromechanics proceeds from an identification of the grain-scale motions in terms 

of the continuum measures and the volume average of grain-pair interaction energies with the 

macro-scale deformation energy density.  In the current format of granular micromechanics [20], 

two grain-scale kinematic measures are defined, one for determining relative displacements and 

the other for relative rotations. It is remarkable that the considered grain-scale kinematic measures 

represent the combined effect of the grain centroid displacement, spin and size, and do not follow 

the decomposition adopted in some previous attempts of micro-macro identifications [21-23]. 

These grain-scale motions are identified with six set of continuum kinematic measures that include 

the macro-scale displacement/rotation gradients, micro-scale displacement/rotations gradients 

identified with displacement/rotation fluctuations within a material point, and macro-gradient of 

the micro-scale displacement/rotation gradients.  The deformation energy density of a material 

point is then expressed in terms of the kinematic measures at the two scales and the inter-granular 

force measures as well as the continuum stress are defined as conjugates of the kinematic measures. 

Subsequently, the relationships are derived between stress and inter-granular forces that include 

stretch/compression, tangential, bending and torsional actions as well as for further derivation of 

the constitutive relations, variational principle, and balance equations for non-classical 

micromorphic model whose parameters can be identified in terms of the grain-scale properties [6, 

24, 25]. In what follows, we briefly state the mathematical model and derive the equations of 

motion. The reader is referred to [6, 20] for more detailed description. 

To develop a continuum model, each material point is considered a representative volume element 

(RVE), as shown in Fig. 1.  Consider the coordinate system x to be relevant to the global (macro-

scale) model, and attach a local or micro-scale coordinate system x’ to the material point P or the 

barycenter of the RVE with its axes parallel to the global coordinate system axes x. The micro-

scale coordinate system is defined such that it is able to distinguish different grains inside the 

material point. The displacement of the grains are then not only a function of the coordinates of 

the material point P, but also of the micro-scale coordinates of the grain within the material point, 

i.e., 

( , , )i i x x t   ,          (1) 



where 
i  is the displacement of grain centroids. Now consider the displacement, p

i , of the centroid 

of grain, p, contained within the continuum material point, where the displacement is defined in 

[6]. Utilizing the Taylor’s expansion, this displacement can be related to the displacement, n

i , of 

the centroid of neighboring grain, n, such that the difference will be the relative displacement, np

i

, of the two grains, which is given as follows, where we have included only the first and second 

order terms in the Taylor series expansion  

, ,

1

2

np p n n n

i i i i j j i jk j kl l l        .        (2) 

In Eq. (2), lj is the vector joining the centroids of n and p, and the tensor product ljlk (=Jjk) is a 

geometry moment tensor. The differentiation in Eq. (2) is with respect to x’. In the rest of the paper, 

a comma in the subscript means derivation with respect to the position, and dots on the parameters 

express derivations with respect to time. Also note that the summation convention over repeated 

indices (in the subscript) is implied unless noted otherwise. Following a similar analysis, the 

relative rotations of two interacting grains, n and p, denoted by 
i  is found as [6] 

,

np

i jki k jp pe l  ,          (3) 

where eijk is permutation symbol and the differentiation is with respect to x’. We introduce the 

decomposition of the displacement gradient field as [6, 20, 26] 

, ,ij i j i j ij      ,          (4) 

where ij  is the displacement gradient in the RVE, ,i j  is the macro-scale displacement gradient 

which is a constant in a material point, and ij  is the relative deformation due to the fluctuations 

of the micro-displacement of the grains inside the RVE. This suggests that the micro-deformation 

ji  is taken to be homogenous in the RVE but can be non-homogenous in the macro-medium.  

The relative displacement of grains p and n can then be decomposed as 

, ,

1

2

np M m g

i i j j ij j i jk j k i i il l l l            ,       (5) 



where 

, ,

1
, ,

2

M m g

i i j j i ij j i i jk j kl l l l        .       (6) 

With regards to Eq. (6), M

i  is due to the average displacement gradient, 
,i j , m

i  is due to the 

gradients of the fluctuation in grain displacement, 
ij , and g

i  is due to the second gradient term, 

,i jk , which is same as the gradient of the relative deformation, 
,ij k . 

Macro-scale deformation energy density W of the granular continua can be defined as a function 

of the continuum kinematic measures as 

 ( , ) ,, ,i j ij i jkW W    ,         

 (7) 

where ( , )i j  is the symmetric part of the macro-scale displacement gradient. Macro-scale stress 

components conjugate to these kinematic measures are obtained as 

( , ) ,

, ,ij ij ijk

i j ij ij ij k

W W W W
  

   

   
   
   

,      (8) 

where ij , ij , and ijk  are Cauchy stress, relative stress, and double stress, respectively. Macro-

scale deformation energy density can be expressed in terms of micro-scale deformation defined 

for the αth interacting pair as  , , ,M m g u

i i i iW         , such that  

 
1

, , ,M m g u

i i i iW W
V

    



   

 .        (9) 

In Eq. (9) V   is the volume of the assumed RVE. The intergranular force and moment conjugates 

are introduced, using Eq. (9), as 

; , ,i

i

W
f M m g







 


, u

iu

i

W
m







.       (10) 

Substituting Eq. (9) in Eq. (8), and using Eq. (6) and Eq. (10), it follows that [6] 



1 1 1
, ,M m g u

ij i j ij i j ijk i jk l jil kf l f l f J m e l
V V V

       

   

  
 

        
    .  (11) 

Therefore, the macro-scale stress measures are defined in terms of the inter-granular forces, branch 

vector, and the geometry moment tensor. 

Defining a local coordinate system for each interacting grain pair, decomposing intergranular 

force, moment, displacement, and rotation vectors in their normal and tangential components, and 

assuming a quadratic form of Wα for linear isotropic elasticity case, the macro-scale constitutive 

relationships in the global coordinate system are derived [6] as 

  ,, ,M m g u

ij ijkl kl ij ijkl kl ijk ijklmn ijklmn l mnC C A A         ,     (12) 

where 
M

ijklC  and 
m

ijklC  are fourth rank tensors, and 
g

ijklmnA  and 
u

ijklmnA  are sixth rank tensors, defined 

as (Refer to [6] for more details) 

1 1
, ,

1 1
, .

M M m m

ijkl ik l j ijkl ik l j

g g u u

ijklmn il mn jk ijklmn pq mlq jip k n

C K l l C K l l
V V

A K J J A G e e l l
V V

   

 

   

 

 
 

 
 

 

 
     (13) 

We note here that for many granular systems (including those formed by grain-packings for which 

Hertz Law has been used widely [27]), grain-pair interactions are nonlinear and include 

dissipation.  Nevertheless, understanding linear elastic behavior has practical significance for small 

amplitude vibrations, for which a quadratic form of Wα can be assumed.  In addition, linear elastic 

behavior provides a point of departure for exploring more complex phenomena introduced by 

nonlinearity and dissipation.  In Eq. (13), the four different inter-granular stiffness measures are 

defined as
p

qK  and 
u

qG , where K and G denote the stretch and rotational stiffnesses, respectively, 

p=M, m and g; q=n, w. Further in Eq. (13), superscript M denotes macro-stiffness, m denotes the 

micro-stiffness, g denotes the second gradient stiffness, and u denotes the rotation terms, 

respectively, introduced for each term of the decomposed relative displacement and rotation; and 

the subscripts n and w refer to the normal and tangential grain-pair interaction directions.  



We now briefly outline the derivation of the balance equations and equations of motion for a 

material with granular micro-structure using a variational approach. To this end, we can write for 

the variation of the internal potential energy, using Eq. (4) and Eq. (8) 

 , ( , ) ( , ) , ,ij ij ij ij ijk i jk ij i j ij i j i j ijk i jkW                    .   (14) 

Using Leibniz differentiation rule, we can write Eq. (14) in the form 

      ,, ,,
ij ij i ij ij i ij ij ijk ij ijk k ijj kj

W                   
 

.   (15) 

The variational of the macro-scale deformation energy functional can be obtained using Gauss’s 

divergence theorem of integration and Eq. (15) as 

     ,,ij ij i ijk k ij ij ij ij j ijk k ijjV V S S
W dV dV n dS n dS                      . (16) 

We also define the variational of the external work as 

ext i i ij ij i ij ij
V V S S

W f dV dV t dS T dS            ,     (17) 

where if  is the non-contact volumic (body) force per unit volume, it  is the contact traction defined 

as a surface force per unit area, ij  is the non-contact volumic (body) double force per unit 

volume, and ijT  is the contact double traction defined as double force per unit area. 

The kinetic energy density (kinetic energy per unit macro-volume) T is defined as 

1 1

2
i i

V
T dV

V
 


 

 
,          (18) 

where   is the micro-scale mass density per unit macro-volume. For a constant   in the RVE 

and the continuum, we have, for the macro-scale mass density per unit macro-volume, 

1

V V
dV dV

V V


  

 


     

   .        (19) 



Therefore, the densities in micro- and macro-scales become identical. Note that for graded 

materials with spatially varying densities, one can take   to be non-uniform. This assumption 

leads to additional terms in the final form of the kinetic energy derived in this paper, and will be 

pursued in future publications. Eq. (18), after substituting for i , using Eq. (19), and neglecting 

higher order inertia terms, can be written as 

1 1

2 2
i i jk ij ikT d     ,         (20) 

which is similar to [28], and where jkd  is defined as follows 

1
jk j k

V
d x x dV

V 
  

 
.          (21) 

In the rest of the paper, we assume the RVE to be cubic with edges 2d parallel to the axes x’. In 

such a case, Eq. (21) simplifies to 

21

3
jk jkd d  ,           (22) 

where jk  is the Kronecker delta. From Eq. (22) it is clear that jkd  is a diagonal matrix with equal 

diagonal terms. The total kinetic energy is the integral of the kinetic energy density over the whole 

domain, and is written as 

V
T TdV  .           (23) 

Using Eq. (20) and Eq. (23), the variational of the kinetic energy functional is written, after 

integration by parts and assuming the values of j  and ij  to be known at 0 1,t t t , as 

1 1 1

0 0 0

21

3

t t t

i i ij ij
t t V t V

Tdt dVdt d dVdt           .      (24) 

Hamilton principle requires the action functional to be minimum, and is expressed as 

 
1

0

0
t

ext
t

T W W dt    .         (25) 



Substituting Eq. (16), Eq. (17), and Eq. (24) in Eq. (25) results in the balance equations and the 

boundary conditions. The balance equations are 

 
,

2

,

,

1
,

3

ij ij i ij

ijk k ij ij ij

f

d

  

   

  

  

         (26) 

and the two natural boundary conditions given in terms of the stress measures are 

  ,ij ij j i ijk k ijn t n T     .         (27) 

Finally, equations of motion can be derived, by substituting the constitutive equations, Eq. (12), in 

the balance equations, Eq. (26). Assuming volumic (body) forces and volumic double forces to be 

absent, the equations of motion are described as 

 

 

, ,

2

, ,

,

1
.

3

M m m

ijkl ijkl k lj ijkl kl j i

g u m m

ijklmn ijklmn lm nk ijkl k l ijkl kl ij

C C C

A A C C d

  

    

  

   
      (28) 

3. Longitudinal wave propagation in a 1D isotropic continuum with granular 

micro-structure 

3.1. Mathematical Formulation 

In what follows, we consider the longitudinal (P) wave propagation in an isotropic one dimensional 

infinite continuum in macro- and micro-scale along the 
1x  axis. A schematic of the general 

problem has been shown in Fig. 2. Note again that a 1D homogenous isotropic continuum can be, 

in general, non-homogenous in the RVE (micro-scale). This inhomogeneity may come from the 

mass density distribution, or the variation of grain pair interaction in the medium. The former is 

depicted in Fig. 2, while the latter is rather difficult to visualize. As the underlying assumption for 

deriving Eq. (31) is having a constant  , our focus in this section is inhomogeneity in grain-pair 

interactions. In this case, the twelve equations of motion Eq. (28) reduce to the following two 

equations  



 

1

1,11 11

1,11 1,1 1 1

,

1

1

1

1

,

,P

R Q Q

Q Q

I  

  





  

  
         (29) 

where the symbols P, Q, R, and I  have been used for brevity, to represent the macro-scale modulus 

1111

MC , the micro-scale modulus 1111

mC , the second-gradient modulus 111111

gA , and micro-inertia 
21

3
d

, respectively. Solutions of the Eq. (29) are of the form 

 1 1 1 11 11 1( , ), ,x t x t     ,         (30) 

in which the kinematic measures 1  and 11  are only functions of time and x1. Following Mindlin 

[16] and specializing the solutions in Eq. (30) to harmonic plane waves, we will have the following 

form for the solution of Eq. (29) 

   1 1( ) ( )

1 1 11 11Re e , Re ei kx t i kx tAi B     ,      (31) 

where k is the wave number,   is the angular frequency (to which we refer for the rest of the paper 

as frequency), A1i and B11 are the amplitudes of the macro displacement and micro displacement 

gradient, respectively, and 
2 1i   . Note that the amplitudes Ai and B can take complex values. 

Substituting Eq. (31) into Eq. (29), the set of equations can be rewritten in the following matrix 

form 

2 2 2

0

1 122 2 2

1
11 112 2

1

Ac k c k
A A

p c kk
B B

p p



 
    

     
     

,        (32) 

where, following [4], we have introduced the velocities, c0, c1, and cA, and characteristic time, p as 

follows 

2 2 2 2

0 1, , , .A

P Q R Q I
c c c p

I Q 


           (33) 



Eq. (32) is an eigenvalue problem with the eigenvalue 2  and the eigenvector comprising the 

amplitudes of the propagating macro-displacement waves and micro-displacement gradient waves, 

respectively. The relationship between the components A1 and B11 is given, using Eq. (32), as 

2 2 2

0
11 1 2

A

c k
B A

c k

 
  

 

.          (34) 

Solving for the eigenvalues 2 , Eq. (32) yields the secular equation 

    2 2 2 2 2 2 2 2 2 2 2

0 0 1Ac c k p c k c k       .      (35) 

Eq. (35) is the dispersion relation for the problem under study. A similar form of dispersion relation 

can be found, for example in [4, 29]. It is noteworthy that the parameters introduced in this paper 

can be identified with those in [4, 29] as follows:   ˆ ˆˆˆ , ,P Q B A Q C R       . What is 

noteworthy in the present paper is the connection of these parameters with the micro-measures 

(such as micro-stiffnesses and grain sizes) relevant for elastic granular systems. This connection 

between the continuum models and micro-measures presents a new paradigm for exploring the 

micro-mechanical antecedents of phenomena predicted by Eq. (35), which are described in further 

in section 5.  In very low frequency/wavenumber ranges, higher order terms of frequency and wave 

number in Eq. (35) can be neglected and the waves propagate, expectedly, with the macro-scale 

velocity 2 2

0 Ac c , related only to the macro-scale moduli and density as 
P


. Although it appears 

that the effect of micro-structure is seemingly lost in the first part of the right hand side of Eq. (35), 

however it is to be noted that the grain–scale effects are reflected in the macro-scale moduli and 

density (as seen from Eq. (13) and Eq. (19)). Furthermore, microstructural effects become 

increasingly prominent for larger frequencies and wavenumbers through the terms c0 and c1 in the 

second part of the right hand side of Eq. (35). Clearly, Eq. (35) shows that for very small 

frequencies and wavenumbers, fluctuation in grain-pair stiffnesses in the RVE has negligible effect 

and wave propagation is controlled by the macro-scale properties, while in larger frequencies and 

wavenumbers, the effect of fluctuation in grain-pair stiffnesses on the velocity of propagating 

waves become increasingly significant through the micro-moduli, second-gradient moduli and 

micro-inertia whose antecedents are further discussed in section 5. 



Introducing the dimensionless wave number and frequency 

 0 ,pc k p    ,          (36) 

and dimensionless velocities 

1
1

0 0

,A
A

c cQ R

c P Q c P Q I


    

 
.       (37) 

Eq. (35) can be recast in the form 

    2 2 2 2 2 2 2 2

11 A            .       (38) 

We also introduce the parameter 
11B  as  

11 0 11B pc B  .           (39) 

Now, using Eq. (34), Eq. (36), Eq. (37), and Eq. (39), we can write 

2 2

11 12

A

B A
 

 


  .          (40) 

By introducing the dimensionless parameter   defined as the ratio of 
11B  to A1, we can rewrite 

Eq. (40) as 

2 2

2

A

 


 


 .           (41) 

The phase and group velocities can be obtained as follows 

,p g

d
v v

k dk

 
  ,          (42) 

where pv  is the phase velocity, and gv  is the group velocity. Introducing the dimensionless phase 

and group velocities, respectively, as 



0 0

,
p g

p g

v v

c c
   ,          (43) 

and using Eq. (36) and (42), we can write Eq. (43) in the form 

,p g

d

d

 
 

 
  .          (44) 

Also, the mechanical energy transfer ratios associated with the micro-scale and macro-scale 

degrees of freedom can be obtained, using Eq. (31), Eq. (33), and Eq. (41) and considering the 

time average of the mechanical energy density over a time period as 
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


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    (45) 

3.2 Results 

From the first of Eq. (37), it is clear that dimensionless velocity 
A  has lower bound limit of 0 and 

upper bound limit of 1. Very small values of 
A  represent materials in which the micro-stiffness 

is negligible compared to their macro-stiffness, and values close to the upper bound level have 

large micro-stiffness compared to their macro-stiffness. A value of 0.71A   corresponds to 

approximately equal macro- and micro-stiffness of the material. On the other hand, 
1  has lower 

bound of 0 and an upper bound that can theoretically tend to infinity. For a particular ratio of 

macro-density to micro-inertia, larger 
1  implies a growing dominance of second gradient 

behavior. Fig. 3, Fig. 4, Fig. 5, and Fig. 6 show the dispersion curves, phase velocities, group 

velocities, and the energy transfer ratios of the micro-scale degree of freedom to the total energy 

transferred for different values of 
A  and 

1 . We observe in the case where second gradient terms 

are small (Fig. 3 and Fig. 5), increasing 
A  and decreasing 

1  leads to emergence of frequency 



band gaps. For 
1  larger than a certain limiting value the stopband vanishes.  The reason for the 

vanishing of band gaps can be understood by examining the group velocity plots in Fig 5.  We 

note that the dimensionless group velocity of the optical and acoustic branches have the values of 

0 and 21 A  (corresponding to group velocities of 0 and 2 2

0 Ac c ) at small wavenumbers and 

asymptotic values of 1 and 
1  (corresponding to group velocities of c0 and c1) , respectively. 

Therefore, a large value for the group velocity of the acoustic branch in both its small and large 

wavenumber ranges is the cause for vanishing band gaps. Complete band gaps emerge when the 

asymptote of the acoustic branch at large wavenumbers is a horizontal line.  However, band gaps 

over a wide range of wavenumbers exist even for non-vanishing small values of 
1 . The starting 

point of the dimensionless frequency range in which the band gap appears varies, but is always 

between 0 and 1, while the end point of the dimensionless frequency is fixed at 1, corresponding 

to the frequency 
Q

I
  , which is a function of the micro-scale properties. Also as 

A  increases 

and 
1  decreases, size of the band gap grows. Dimensionless phase velocity for the optical branch 

starts at infinity and reaches the value of 1 (phase velocity of c0) for large wavenumbers regardless 

of the value of 
1  (phase velocity of c1). The acoustic branch has an initial dimensionless phase 

velocity of 21 A  (phase velocity of 2 2

0 Ac c ) and therefore, depends solely on the macro-scale 

stiffness of the material, while the asymptotic value reaches 
1  (phase velocity of c1). Therefore, 

based on the values of the parameters 
A  and 

1  we may have decreasing or increasing phase and 

group velocities of the acoustic branch depending on the values of 
A  and 

1 . 

In materials with very large second gradient properties (
1 1  ), as seen in Fig. 4 and Fig. 6, the 

acoustic branch at small wavenumbers starts with the dimensionless phase and group velocities of 

21 A  (corresponding to phase and group velocities 2 2

0 Ac c ), which is similar to the previous 

case. However, in this case, the terms containing higher orders of   and 
1  in the dispersion 

relation become dominant as we evaluate their limit at high wavenumbers. Hence, the asymptotic 

slope of the dispersion curve for the optical branch becomes 
1  (corresponding to the asymptote 

1c k  ), and that of the acoustic branch becomes 1 (the asymptote 
0c k   with asymptotic phase 



and group velocity of 
0c ). This means for the cases where

1 1  , the asymptotes of the two 

branches switch. Therefore, it is not possible to have stopbands.  

We further observe that the energy transfer in 1D granular continuum during wave transmission 

occurs via two mechanisms, one governed by the macro-, and the other by the micro-scale degrees 

of freedom of the material. According to Fig. 3, in the acoustic branch at small wave numbers, 

energy transfer is affected mainly by the macro-scale degree of freedom, while for larger wave 

numbers, micro-scale degree of freedom plays the main part in energy transfer. This obviously 

shows the hierarchical nature of the wave propagation in micro-structured media. Large values of 

1  result in smoother shift from macro to micro-scale degree of freedom mechanism. In the case 

of optical wave, at small wavenumbers, the energy transfer is purely governed by the micro-scale 

degree of freedom. The model predicts transition of energy transfer mechanism from micro- to 

macro-scale, but it is well understood that for such large wavenumbers, the characteristic length 

of the excitation can be smaller than the characteristic length of the micro-structure, and hence, the 

proposed continuum mechanics theory may not be applicable. Note that when both 
A  and 

1  take 

very small values (e.g., in Fig. 3 for 0.03A   and 
1 0.0002  ), we reach the classical wave 

propagation through the medium, and the energy transfer is almost completely due to the macro-

scale degree of freedom. 

Similar to the case where second gradient terms are small, for the case of large second gradient 

terms, energy transfer for small wavenumbers in the optical and acoustic waves are governed 

mainly by means of micro and macro-scale degrees of freedom, respectively. As shown in Fig. 6, 

for a material with dominant second gradient terms, this behavior continues for higher 

wavenumbers as well, which is in contrast to the case of small second gradient terms, where the 

energy transfer at the micro-scale tends to disappear and be replaced by macro-scale mechanisms 

or vice versa.  This decoupling effect in transferring energy in the optical and acoustic branches 

becomes more significant for smaller values of 
A  and larger values of 

1 . 

3.3. Special Cases 

For a purely second gradient material, following [30], we begin from the internal potential energy 

expression and assume ,ij i j  , followed by the variational approach to obtain the governing 



equations of motion. Solving for the wave propagation, thereafter, leads to a dispersion curve in 

which only one acoustic wave exists. At small wavenumbers, the wave has group velocity of 

21 A , and at large wavenumbers, it follows the asymptote 
1   . Therefore, band gaps do 

not exist in second gradient materials. It is noteworthy to mention that one cannot reduce Eq. (29) 

to obtain a second gradient material model. Reducing Eq. (29) to obtain the equations of motion 

for a second gradient material by assuming 
11 1,1   leads to a dispersion relation for which 

solving the equation gives rise to two acoustic waves. 

To retrieve the classical wave dispersion relation, we assume 0A   and 
1 0   in Eq. (38). The 

result is 

  ,            (46) 

which is the non-dispersive relation between the frequency and wavenumber in their dimensionless 

form. For this case, there is only one acoustic wave and frequency bandgaps are not possible. 

4. Transverse wave propagation in a one dimensional isotropic continuum with 

a two dimensional  granular micro-structure 

4.1. Mathematical Formulation 

We now turn our focus on the propagation of a transverse wave in a one dimensional isotropic 

continuum lying along 
2x  axis, with a two dimensional micro-structure in 1x  and 2x  directions. 

A schematic of the general problem is depicted in Fig. 7. Note again that a 1D homogenous 

isotropic continuum can be, in general, non-homogenous in the RVE (micro-scale). This 

inhomogeneity may come from the mass density distribution, or the variation of grain pair 

interaction in the medium. The former is depicted in Fig. 7, while the latter is rather difficult to 

picturize. As the underlying assumption for deriving Eq. (31) is having a constant  , our focus 

in this section is inhomogeneity in grain-pair interactions. We therefore assume that the nonzero 

kinematic measures are 1 11 22 12 21, , ,,      which are functions of x2 and t only. The displacement 

equations Eq. (28), after omitting the terms with zero coefficients for an isotropic granular material 

using [6],  reduces to the following, 
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     (47) 

where we have used the symbols 
1212

ˆ MP C , 
1212 2121

ˆ m mQ C C  ,
1 2112221

ˆ m mCF C  , 
1 2222111

ˆ m mCW C  , 

1 2211122
ˆ m mCZ C  , 

122212 212122 112222 222112
ˆ g g g gS A A A A    , 

212212
ˆ gR A , 

122122
ˆ gT A , 

112112
ˆ gV A , 

222222
ˆ gN A , 

122122 212212 122212 212122
ˆ u u u uA A A AU      , and 

21

3
I d   for brevity. 

Eq. (47) entails two uncoupled systems of equations, the first consisting of degrees of freedom 

1 12 21, ,   , and the second encompassing 
11  and 

22 . Each system needs to be separately 

evaluated. Transverse displacement in macro-scale, therefore, induces only the shear terms in the 

micro-scale.  Interestingly, and in contrast to the behavior at the macro-scale, a perturbation 

imposed in x2 direction on the micro-scale leads to not only a dilatational wave in x2 direction, but 

also a longitudinal shear wave in the x2 direction.  We note, though, that the focus of the discussion 

hereafter will be devoted to only the first system of three coupled equations in Eq. (47). 

In this paper, we take all the coefficients in the first three equations in Eq. (47) to be positive. This 

is equivalent to assuming that the micro-scale stiffnesses introduced in [6] in normal direction are 

greater than their tangential counterparts. Relaxing such an assumption will result in three different 

systems of equations, each differing with the others only in the sign of the coefficients Ŝ  and F̂ , 

however the form of the results remains the same. By assuming solutions of the form 

   1 1 2 12 1 2 21 22 21( , ), , , ,x t x t x t        ,      (48) 

and specializing the solutions in Eq. (48) to plane waves, following [16], we will have 

     2 2 2( ) ( ) ( )

1 1 12 12 21 21
ˆ ˆ ˆRe e , Re e , Re e

i kx t i kx t i kx t
Ai B B

      
   ,   (49) 



where k  is the wave number,   is the angular frequency, and 
1Â , 

12B̂ , and 
21B̂  are the amplitudes 

of the macro-displacement and two micro-displacement gradients, respectively. Similar to section 

3, we use the term “frequency” for   hereafter. 

Substituting Eq. (49) in the first three equations in Eq. (47) leads to the following matrix form of 

the governing equations 
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   
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 
 

,    (50) 

where we have defined the velocities 0ĉ , ˆ
Ac , and ˆ

Bc , related to the macro- and micro-stiffnesses, 

velocities, 1̂c , 2ĉ , 3ĉ , and 4ĉ , related to the second gradient stiffnesses, and characteristic times 1p̂  

and 2p̂  as  

2 2 2

0

ˆ ˆˆ ˆ
ˆ ˆ ˆ, , ,A B

P Q Q F
c c c

  


           (51) 

2 2 2 2

1 2 3 4
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T S R U
c c c c

I I I I
           (52) 

2 2

1 2
ˆ ˆ, .

ˆ ˆ

I I
p p

FQ
            (53) 

Eq. (50) is an eigenvalue problem with the eigenvalue 2  and the eigenvector comprising the 

amplitudes of the propagating macro-displacement waves and two micro displacement gradient 

waves as its entries, respectively. It is beneficial to introduce the dimensionless parameter 

2 2
2 1

2 2

2

ˆˆ ˆ

ˆˆ ˆ
B

A

c p F

c p Q
    ,          (54) 



which is the ratio of the material parameters F̂ and Q̂ . In order to have an at least semi positive 

definite energy expression, we must have 1  . 

We also introduce the dimensionless velocities as follows 

22 2 2 2
2 2 2 2 231 2 4

1 2 3 42 2 2 2 2

0 0 0 0 0
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A

cc c c c

c c c c c
          .     (55) 

Using Eq. (54), Eq. (55), and dimensionless wavenumber and frequency 

2 0 2
ˆ ˆˆ ˆ ˆ,p c k p    ,          (56) 

we can write the characteristic equation of Eq. (50) as follows 
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    (57) 

Eq. (57) is the general dispersion relation for the considered problem. Concurrent or hierarchical 

micro-structures result in rather similar dispersion relations and have been studied in [3]. Although 

the form of the dispersion relation has similarities in terms of the order of the equation, the physics 

here addresses shear wave in a 1D granular medium with a 2D micro-structure. We note that for 

the case of 21 0  , the matrix in Eq. (50) reduces to a two by two matrix and leads to the physics 

of the transverse wave propagation in a one dimensional continuum with one dimensional micro-

structure, which is similar in form to the previous problem of longitudinal wave propagation in a 

one dimensional continuum. 

It is useful to include the relation between the parameters T̂ , Ŝ , and R̂ , since all three, for an 

isotropic granular material, are linear functions of g

nK  and g

wK , according to [6]. Solving for R̂ , 

and using Eq. (52) and Eq. (55) yields: 
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    .          (58) 

Similar to the approach taken in section 3, we introduce the parameters 

12 2 0 12 21 2 0 21
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and the dimensionless parameters 
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Then, using rows 1 and 2 of the matrix in Eq. (50), Eq. (59), and Eq. (60), we can write 
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      (61) 

The energy transfer ratio due to the micro- and macro-scale degrees-of-freedom, 12 , 21 , and 1

, to the total energy, similar to the approach taken in section 3, can be found, respectively, as 
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            (63) 

4.2. Results 

Similar to section 3, it is easy to verify that ˆ
A  has lower bound limit of 0  and upper bound limit 

of 1. Very small values of ˆ
A  represent materials in which the micro-stiffness in the corresponding 

direction is negligible compared to their macro-stiffness, and values close to the upper bound level 

have large micro-stiffness compared to their macro-stiffness. A value of ˆ 0.71A   corresponds to 

approximately equal macro- and micro-stiffness of the material.   represents the ratio of the 

micro-scale stiffness in the two directions considered here, and takes values zero to one. On the 

other hand, 1̂ , 2̂ , 3̂ , and 4̂  have lower bound of 0, with an upper bound that theoretically can 

tend to infinity. For a particular ratio of macro-density to micro-inertia, larger î , i=1,2,3,4 implies 

a growing dominance of second gradient behavior. Fig. 8 illustrates the dispersion curves, phase, 

and group velocities for different values of A , 1 , 2 , 4 , and  , and Fig. 9 shows the energy 

transfer ratio for the active degrees of freedom here to the total energy transferred by the particular 

branch under study for the same parameters used in Fig. 8. 



Solving the dispersion relation Eq. (57) for the dimensionless frequency , ̂ , generally results in 

three wave branches in the dispersion curve, one acoustic branch, one optical branch, and a third 

branch. The third branch is an optical branch when 1   (Fig. 8(a) and Fig. 8(c)) and becomes an 

acoustic wave when 1   (Fig. 8(b)). The dimensionless frequencies at which the wave branches 

start, for the acoustic, optical, and the third branch are ˆ 0  , 

21
ˆ







 , and 

21
ˆ







 , 

respectively. 

At small wavenumbers, the acoustic wave has dimensionless group velocity of 2ˆ1 A  

(corresponding to the group velocity of 2 2

0
ˆ ˆ

Ac c ), while the optical wave has dimensionless group 

velocity of 0. The third branch has 0 and a value of 

2 2 2 2

1 2 3 4
ˆ ˆ ˆ ˆ2 4 2 4

2

     
 as its dimensionless 

group velocity at the small wavenumbers when 1   and 1  , respectively. Moreover, the 

asymptotes of the dispersion curves for the acoustic wave, optical wave, and the third wave at large 

wavenumbers are 
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     (64)  

Frequency band gaps may appear when the starting point of the optical branches are large 

dimensionless frequencies, and when group velocities of the acoustic branches at small and large 

wavenumbers are of small values. There also cases (e.g. Fig. 8(c)) that the real part of the frequency 

solution of the acoustic branch reduces to zero after a certain wavenumber for a special 

combination of the material parameters. In this case, there is a region for which the sign of the 

group velocity for the acoustic branch becomes negative and the peak of the pulse propagates 

backwards, but the energy flow is always forward [31]. Interestingly, negative group velocity 

(NGV) occurs for those cases in which the asymptotic dimensionless frequency solution for the 

acoustic branch given in Eq. (64) takes imaginary values or   



4 2 2 2 2 4 2 2

1 1 2 1 4 2 2 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 4 3 8 0            ,       (65) 

which for the solutions shown in Fig. 8(c) for the noted material parameters corresponds to 

dimensionless wavenumber ~1.5. Inequality in Eq. (65), can be further expressed in terms of grain-

pair second gradient stiffnesses introduced in [6] as follows 

    4 3 4 4 3 4 3 0g g u u g g g

n w n w w n wK K G G K K K     .      (66) 

which indicates that the condition for NGV occurrence coincides with the requirement for some 

negative grain-pair second gradient stiffnesses. Grain-pair mechanism which would lead to such 

conditions are conceivable for granular systems in which the first gradient approximation 

overestimates the grain-pair deformation energy, such as those in which grain-pair can have large 

relative shear displacement with low deformation energy caused by small resistance to relative 

rotations. In addition, it is noteworthy that the overall positive definiteness of energy for the RVE 

admits the possibility of negative grain-pair second gradient stiffnesses. Such a possibility is surely 

tantalizing and needs to be further explored with the viewpoint of realizing such granular systems. 

Further, the inequality in Eq. (65) can be recast, by assuming 2
ˆ 0   and introducing the ratios 

1 4
12 42

2 2

ˆ ˆ
,  and 

ˆ ˆ

 

 
    , in the form 

  2 2 2

12 42 124 2 3 0       ,         (67) 

such that, NGV occurs when Eq. (67) is satisfied. Fig. 10 shows the set of parameters 12  and 42

, for which the NGV arises. In this figure, white region indicates the sets of parameters for which 

NGV occurs, and the green color indicates the sets of parameters for which there is no NGV in the 

acoustic branch. It is noteworthy that NGVs for deformation waves in solids have also been 

predicted for longitudinal waves in materials with multi-scale micro-structures whose material 

properties satisfy certain conditions [32]. Finally, we remark that at higher wavenumbers (beyond 

dimensionless wavenumber ~3.4 in Fig. 8(c)), the frequency solution for the acoustic branch 

becomes purely imaginary and positive indicating instability. 

According to Fig. 9, the energy transferred by the optical wave branch (solid line) is mainly due 

to micro-scale degrees of freedom at small wavenumbers, and as the wavenumber increases the 



role of the macro-scale degree of freedom becomes apparent. In the cases where there is only one 

acoustic branch, the acoustic branch (dashed line) transfers energy by a mechanism largely due to 

the macro-scale degree of freedom for small wavenumbers, and as the wavenumber increases, the 

role that the micro-scale degrees of freedom play becomes dominant. A difference between the 

proportions of energy each microstructural degree of freedom transfers pertains to the value of the 

parameter   as it plays the role of a weighting factor for the terms involved in Eq. (54). In the 

case when 1   in Fig. 9(b), the acoustic branch reveals a different behavior. In this case, energy 

is transferred completely by the micro-scale degrees of freedom and the macro-scale degree of 

freedom plays no role. When 1   (Fig. 9(a) and Fig. 9(c)), the third branch transfers energy 

mostly due to the micro-scale degrees of freedom in the ranges where wavenumber is small. This 

follows by an increase in macro-scale degree of freedom share of energy transfer, and eventually 

at large wavenumbers, the micro-scale degrees of freedom take over as the degree of freedom 21  

becomes dominant. In the case of 1  , the third branch acts as an acoustic branch and the energy 

transfer mechanism for such branch follows the behavior of acoustic branch in the case of  1  , 

except for the large wavenumber behavior in which the degree of freedom 21  plays the dominant 

part. 

4.3. Special Cases 

To model a material with negligible second gradient terms, Eq. (57) reduces to 

       2 2 2 4 2 2 2 2 2 4 2 2 2 2 2 4ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 1A A                        .  (68) 

The parameter   defined in Eq. (54) relates the two material constants F̂  and Q̂  which 

themselves are functions of m

nK  and m

wK  using [6]. Therefore,   can be rewritten as 

5
1

4

m

w

m m

n w

K

K K
  


.          (69) 



Taking into consideration the assumption made earlier in this section, m m

n wK K , it is seen that    

reaches the value 0  when m m

w nK K  and takes the value 1 only when 0m

wK  . In the case of 

0m

wK  , Eq. (68) can be further simplified, by assuming that 4  is negligible, to give 

   2 2 2 2 2 2 2 2 2 2 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1 2A A               .      (70) 

Eq. (70) has two solutions where one of the solutions is a wave propagating with negligible value 

for its dimensionless group velocity. Therefore, neglecting the mentioned solution, we can reduce 

the dispersion relation Eq. (70) to 

 2 2 2ˆˆ ˆ1 A    ,          (71) 

which is a non-dispersive acoustic wave with constant phase and group velocity of 2 2

0
ˆ ˆ

Ac c . 

In the case where 0m

wK  , Eq. (68) reduces to 

  2 2 2 2 4 2 2 2 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1 2 2 A              ,       (72) 

which gives rise to one standing (evanescent) wave, one acoustic wave that reaches zero group 

velocity as wavenumber increases, and one optical wave with an asymptote of ˆ̂  . 

For the case in which the second gradient terms are large, ˆ
A  is negligible, and 1  , one must 

start from Eq. (47) and let ˆ ˆ 0Q F  . Solution includes three wave branches of 
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     (73) 

According to Eq. (73), the first solution is a classical wave with the constant velocity 
0ĉ  depending 

on the macro-scale properties which propagates as an acoustic wave. Second and third solutions 



are also acoustic waves having constant velocities with the third branch only existing when the 

expression under the square root is positive, which is simplified to 

4 2 2 2 2 4 2 2

1 1 2 1 4 2 2 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 4 3 8 0c c c c c c c c     .        (74) 

Due to its physical nature, 
4ĉ  is usually negligible compared to the other two parameters involved. 

Therefore, Eq. (74) reduces to 
1 2
ˆ ˆc c . As a result, for the cases where 

2ĉ  is comparatively higher 

than 
1̂c , an evanescent wave is expected as the third solution of the dispersion equation.  Starting 

from Eq. (57) to obtain the solutions for the dispersive behavior, however, leads to a set of three 

solutions for which one of the solutions is an optical wave. 

For a purely second gradient material, as discussed in section 3, the form of deformation energy 

must be appropriately specified and the governing equation must be derived applying the 

variational approach.  In this case, only one acoustic wave will exist for the considered problem, 

whose dispersion relation will be similar to that given in [30].  

Finally, assuming that ˆ , ,1,2,3,4i i A   are negligible and 1  , Eq. (57) reduces to the 

dispersion relation for the classical wave equation which has a non-dispersive solution similar to 

Eq. (46). 

 

5. Micromechanical Implications to Metamaterial Design 

To illustrate the effects of the inter-granular stiffness coefficients on the behavior of the systems 

studied, we proceed as follows. We assume, as in sections 3 and 4, that the normal components of 

the inter-granular stiffness are larger than their corresponding tangential values and they are both 

nonnegative.  

In section 3 of this paper, we discussed the different behavior the system might exhibit based on 

the values the dimensionless velocities 
A  and 

1  take. We have shown that 
A  is bounded 

between zero and one, whilst 
1  can take any nonnegative value. Using Eq. (37), and substituting 

for the material parameters computed in [6] we can write 
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where we have introduced ratios of tangential to normal stiffness coefficients as 

, , .
M m g

M m gw w w

M m g

n n n

K K K

K K K
              (76) 

The same approach can also be taken for the dimensionless velocities in the section 4. It is 

straightforward to see that a specific value of 
A  can be retained if the ratio 

 
 

3 2
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M M
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K
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 
 

remains constant. For instance, taking the values of M  and m  to remain constant, 
A  retains its 

value provided the ratio /M m

n nK K  is constant (such as for the two sets of 2, 1M m

n nK K  , and 

4, 2M m

n nK K  ). The implication is that by changing the micro-stiffness coefficients in certain 

predefined manner, similar macro-scale phenomena may be achieved. However, these two sets 

will generate two different values for 
1 , which means that while one part of the phenomena can 

be preserved, another associated may not. 

 Furthermore, Eq. (75) proposes that for a given ratio of macro- and micro-inertia, the parameters 

1 1( , , , ), ( , , , , , ),m M m M g m M g m M

A A n n n n nK K K K K              (77) 

are purely functions of stiffnesses associated to the introduced kinematic quantities. It is 

worthwhile to consider effects arise mainly from elasticity rather than inertia considering that the 

grain-pair interactions can vary strongly while the grain density, granular structure and RVE size 

remain virtually similar. Now, according to what has been discussed in section 3, emergence of 

bandgaps with a certain location and width is dependent on a certain combinations of the 

parameters 
1  and 

A . Therefore, to design a structure with a desired bandgap location and width, 

a multi-objective optimization problem must be posed. The problem becomes more intricate as we 

increase the dimension of the physics involved and add to the desired properties for the design.  



An advantage of the proposed continuum model is the availability of the explicit form of the 

functions, thereby promising a complete domain to search for possible solutions (see similar 

approach exemplified for pantographic material systems in [33]).  Such theory based approaches 

are in contrast to certain efforts that proceed by postulating a priori certain predetermined sets of 

micro-structures [8, 10] or propose to combine micro-elements [34, 35] to achieve an objective 

that is circumscribed within a known domain of behaviors without the aid of theories that can 

predict possibilities beyond those that are already known.  The optimization problem may be 

solved using metaheuristic algorithms, such as Genetic Algorithm. There is always possible to 

have many different combinations of grain-pair stiffnesses yielding the same result, since the 

expressions for the dimensionless velocities are not one-to-one functions. This means that there is 

more than one solution to the problem being solved. This is equivalent to stating that many 

physically different structures can demonstrate similar behavior when excited, and hence, be 

typified in the same category, and be manufactured based on the existing manufacturing processes 

and resources. The knowledge obtained from such analyses is particularly useful in the design and 

fabrication of metamaterials with specific material properties for particular purposes, e.g. to be 

used as wave attenuators or nanoscale energy harvesting devices, as recent studies on granular 

crystals have shown [33, 36-39]. The granular micromechanics based continuum model, therefore, 

suggests, and predicts, that controlling or varying the inter-granular stiffness coefficients and 

micro-structure results in a material for which the behavior it manifests when undergoing different 

loading conditions can be tuned, thus providing us with a practical mechanism to make materials 

with unusual desired behavior. Linking microstructural properties of the material to its 

macroscopic behavior promises optimizing large scale structures in terms of their stiffness to 

weight ratios and desired directional properties, which seems infeasible using current approaches 

such as discrete element methods, namely due to their substantial computational cost. Since the 

dimensionless speeds are responsible for the way the material behaves when subjected to external 

actions, and since intergranular stiffness coefficients are the building elements that the 

dimensionless speeds are functions of, starting from the micro-scale and proceed with a tailored 

micro-structure with desired stiffness coefficients using novel technological advancements will 

lead to a material whose behavior is predicted, yet complex and unprecedented, as for instance the 

predicted granular materials displaying negative group velocities or frequency band gaps. 

 



6. Summary and Conclusions 

In the present paper, two cases of wave propagation in linear elastic granular continua were 

studied.  Case 1 investigated a longitudinal wave propagating in a one dimensional infinite 

continuum, while case 2 studied a transverse wave propagating in a one dimensional continuum 

that has a two dimensional micro-structure.  The results obtained are expected to provide a baseline 

and point of departure for more complex problems that could involve nonlinearities and 

dissipation.  For each case, the effect of parameters involved in the dispersion equations was 

investigated. For case 1, there are two waves emerging in the dispersion curve, optical and acoustic 

branches. Results show that the wave speed for both the branches is dictated by the macro- and 

micro-scale properties for the small and large wavenumbers, respectively. The study on energy 

transfer mechanism reveals a shift between macro- and micro-scale degrees of freedom for the two 

branches as the wavenumber increases. Large values of second gradient terms prevent this shift, 

and therefore, lead to the case where the energy in optical wave is mainly transferred by the micro-

scale degree of freedom, and macro-scale degree of freedom leads the energy transfer in the 

acoustic wave. For case 2, dispersive behavior of the material gives rise to three wave branches, 

one acoustic, one optical, and the third branch being acoustic or optical depending on the value of 

the parameter  . As discussed in the paper, the model proposed in [6] reflects, in a sufficient way, 

the effect of micro-measures (such as micro-stiffnesses, grain sizes and granular structure) on the 

macro-scale motion, accounting for frequency band gaps and negative group velocities.  The 

results discussed in this paper show that the connection between the micro-measures and the 

continuum model can pave a way for exploring the micro-mechanical antecedents of phenomena 

observed at macro-scales.  The granular micromechanics can thus provide the theoretical 

underpinning and an efficient paradigm for designing granular metamaterials with desired 

dispersive behavior that may be needed for particular applications.  In absence of such a theory, 

the possibilities of many predicted behavior would remain concealed and undiscovered.  Clearly, 

a more expansive model accounting for the electro-magneto-elasticity of the granular materials [5, 

40, 41], or dissipation and damage mechanisms [42, 43] that also takes rotation (spin) of the grains 

as extra degrees of freedom will reveal more complex features of the granular materials, and hence, 

will be pursued in following research.  Given that experimental procedures for wave propagation 

in complex granular materials are not easily devised, numerical simulations with discrete models 



could be potentially utilized to verify the results presented here.  The future work will also consider 

such discrete models with full dynamic identification procedure between the discrete and 

continuum models. 
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List of Figures 

Fig 1. Schematic of the continuum material point, P, and its granular micro-structure magnified 

for better visualization, where the x’ coordinate system is attached to its barycenter. 

Fig. 2. Schematic of a 1D continuum in x1 direction with granular micro-structure in x1’ direction. 

A material point in the macro-scale coordinate system is itself a collection of grains that can differ 

in micro-density, micro-morphology and micro-mechanical properties. 

Fig. 3. Dispersion curves, and ratio of energy transferred by micro-scale degree of freedom to the 

total energy for optical and acoustic branches, for different values of A  and 1 , where solid lines 

and dashed lines represent optical branches and acoustic branches respectively, and lines with , 

, and  represent 1 0.0002  , 1 0.3  , and 1 0.7  , respectively. 

Fig. 4. Dispersion curves, and ratio of energy transferred by micro-scale degree of freedom to the 

total energy for optical and acoustic branches, for different values of A  and 1 , where solid lines 

and dashed lines represent optical branches and acoustic branches respectively, and lines with , 

, and  represent 1 1  , 1 2  , and 1 3  , respectively. 

Fig. 5. Phase velocities p , and group velocities g , for optical and acoustic branches, for different 

values of A  and 1 , where solid lines and dashed lines represent optical branches and acoustic 

branches respectively, and lines with , , and  represent 1 0.0002  , 1 0.3  , and 1 0.7  , 

respectively. 

Fig. 6. Phase velocities p , and group velocities g , for optical and acoustic branches, for different 

values of A  and 1 , where solid lines and dashed lines represent optical branches and acoustic 

branches respectively, and lines with , , and  represent 1 1  , 1 2  , and 1 3  , 

respectively. 

Fig. 7. Schematic of a 1D continuum in x2 direction with granular micro-structure in both x1’ and 

x2’ directions. A material point in the macro-scale coordinate system is itself a collection of grains 

that can differ in micro-density, micro-morphology and micro-mechanical properties. 

Fig. 8. Dispersion curves, phase velocities p , and group velocities g  for the optical branch, the 

third branch, and the acoustic branch, respectively, where solid line represents an optical branch, 



dash-dotted line represents an acoustic branch, and dashed line is either acoustic or optical (third 

branch). (a) A material with properties of ˆ 0.71A  , 1̂ 0.5  , 2
ˆ 0.3  , 4

ˆ 0.1  , and 0.8  ; (b) 

A material with properties of ˆ 0.71A  , 1̂ 0.5  , 2
ˆ 0.3  , 4

ˆ 0.1  , and 1  ; (c) A material 

with properties of ˆ 0.71A  , 1̂ 0.2  , 2
ˆ 0.4  , 4

ˆ 0.1  , and 0.8  . 

Fig. 9. Ratio of energy transferred by macro- and micro-scale degrees of freedom to the total 

energy for the optical branch, the third branch, and the acoustic branch, respectively, where solid 

line represents an optical branch, dash-dotted line represents an acoustic branch, and dashed line 

is either acoustic or optical (third branch). Lines with , , and  represent energy transferred by 

macro-scale degree of freedom 1 , and micro-scale degrees of freedom 21  and 12 , respectively. 

(a) A material with properties of ˆ 0.71A  , 1̂ 0.5  , 2
ˆ 0.3  , 4

ˆ 0.1  , and 0.8  ; (b) A 

material with properties of ˆ 0.71A  , 1̂ 0.5  , 2
ˆ 0.3  , 4

ˆ 0.1  , and 1  ; (c) A material with 

properties of ˆ 0.71A  , 1̂ 0.2  , 2
ˆ 0.4  , 4

ˆ 0.1  , and 0.8  . 

Fig. 10 White indicates the sets of parameters for which negative group velocity (NGV) occurs in 

the acoustic branch, while green color indicates the sets of parameters for which there is no NGV. 
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direction. A material point in the macro-scale coordinate system is itself a collection of 

grains that can differ in micro-density, micro-morphology and micro-mechanical 

properties. 

  



 

Fig. 3. Dispersion curves, and ratio of energy transferred by micro-scale degree of freedom to the 

total energy for optical and acoustic branches, for different values of A  and 1 , where solid 

lines and dashed lines represent optical branches and acoustic branches respectively, and lines 

with , , and  represent 1 0.0002  , 1 0.3  , and 1 0.7  , respectively. 

  



 

Fig. 4. Dispersion curves, and ratio of energy transferred by micro-scale degree of freedom to the 

total energy for optical and acoustic branches, for different values of A  and 1 , where solid 

lines and dashed lines represent optical branches and acoustic branches respectively, and lines 

with , , and  represent 1 1  , 1 2  , and 1 3  , respectively.  
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1 0.7  , respectively. 

  



 

Fig. 6. Phase velocities p , and group velocities g , for optical and acoustic branches, for 

different values of A  and 1 , where solid lines and dashed lines represent optical branches and 

acoustic branches respectively, and lines with , , and  represent 1 1  , 1 2  , and 1 3  , 

respectively. 
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Fig. 8. Dispersion curves, phase velocities p , and group velocities g  for the optical branch, 

the third branch, and the acoustic branch, respectively, where solid line represents an optical 

branch, dash-dotted line represents an acoustic branch, and dashed line is either acoustic or 

optical (third branch). (a) A material with properties of ˆ 0.71A  , 1̂ 0.5  , 2
ˆ 0.3  , 4

ˆ 0.1  , 

and 0.8  ; (b) A material with properties of ˆ 0.71A  , 1̂ 0.5  , 2
ˆ 0.3  , 4

ˆ 0.1  , and 1  ; 

(c) A material with properties of ˆ 0.71A  , 1̂ 0.2  , 2
ˆ 0.4  , 4

ˆ 0.1  , and 0.8  . 

  



 

Fig. 9. Ratio of energy transferred by macro- and micro-scale degrees of freedom to the total 

energy for the optical branch, the third branch, and the acoustic branch, respectively, where solid 

line represents an optical branch, dash-dotted line represents an acoustic branch, and dashed line 

is either acoustic or optical (third branch). Lines with , , and  represent energy transferred 

by macro-scale degree of freedom 1 , and micro-scale degrees of freedom 21  and 12 , 

respectively. (a) A material with properties of ˆ 0.71A  , 1̂ 0.5  , 2
ˆ 0.3  , 4

ˆ 0.1  , and 

0.8  ; (b) A material with properties of ˆ 0.71A  , 1̂ 0.5  , 2
ˆ 0.3  , 4

ˆ 0.1  , and 1  ; (c) 

A material with properties of ˆ 0.71A  , 1̂ 0.2  , 2
ˆ 0.4  , 4

ˆ 0.1  , and 0.8  . 



  

Fig. 10. White indicates the sets of parameters for which negative group velocity (NGV) 

occurs in the acoustic branch, while green color indicates the sets of parameters for which there 

is no NGV. 


