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Abstract. We study F -signature under proper birational morphisms π : Y −→ X, showing
that F -signature strictly increases for small morphisms or if KY 6 π∗KX . In certain cases,
we can even show that the F -signature of Y is at least twice as that of X. We also provide
examples of F -signature dropping and Hilbert-Kunz multiplicity increasing under birational
maps without these hypotheses.

1. Introduction

Kunz showed that a local ring (R,m,k = kp) of positive characteristic is regular if and
only if F e

∗R is a free R-module, [Kun69]. The F -signature is a measure of singularities that
simply states the percentage of F e

∗R that is free (measured in terms of a rank of a maximal
free summand). F -signature was implicitly introduced by K. Smith and M. Van Den Bergh
[SVdB97] and formally defined by C. Huneke and G. Leuschke in [HL02], although it wasn’t
shown to exist until [Tuc12].

In this paper we study the behavior of F -signature under birational morphisms. Our main
result is as follows.

Main Theorem (Theorem 4.5, Theorem 3.2). Let X be a strongly F -regular variety of dimen-
sion n over an algebraically closed field k of characteristic p > 0. Suppose π : Y −→ X is a
proper birational morphism from a normal variety Y and fix a point y ∈ Exc(π) with π(y) = x.
Suppose additionally that either:

(a) π is small, i.e. π is an isomorphism outside a set of codimension at least two in Y , or;
(b) The canonical divisor KX is Q-Cartier and for every exceptional divisor E containing y,

we have that coeffE(KY −π∗KX) 6 0. For instance, if all discrepancies are non-positive.

Then we have

s(OX,x) < s(OY,y).
Furthermore, if X is not Gorenstein at x and π : Y −→ X is a small morphism obtained as

the blowup of either OX(KX) or OX(−KX), then

2 · s(OX,x) 6 s(OY,y).

The first part of our main theorem is a characteristic p > 0 analog of a result on normalized
volume by Y. Liu and C. Xu [LX17, Corollary 2.11]. We thank both Y. Liu and C. Xu for
inspiring discussions about the relation between F -signature and normalized volume, also see
[LLX18, Theorem 6.14] and [Liu18].
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We finally note that the condition that the blowup of OX(KX) (respectively of OX(−KX)) is
small can be interpreted as requiring that the graded ring S = OX⊕OX(KX)⊕OX(2KX)⊕ . . .
is generated in degree 1 (respectively that OX ⊕ OX(−KX) ⊕ OX(−2KX) ⊕ . . . is generated
in degree 1). Note that smallness of ProjS −→ X is equivalent to the finite generation of S by
[KM98, Lemma 6.2]. On the other hand, if S is generated in degree 1, then S is in fact the
Rees algebra of OX(KX) (respectively OX(−KX)). This condition is satisfied in surprisingly
many rings, including determinantal rings [BV88, Corollary 7.10, Theorem 8.8].

For comparison, in [CST16], Javier Carvajal-Rojas and the final two authors of this paper
studied the behavior of F -signature under finite morphisms (showing that it went strictly up
in a controllable way) and used their results to show that the étale fundamental group of the
punctured spectrum of a strongly F -regular singularity was finite. This was a characteristic
p > 0 analog of [Xu14], and was later shown to imply Xu’s result by [BGO17]. Note Xu’s proof
also used ideas related to volume.

In Section 5, we provide examples showing that the F -signature can decrease outside of the
hypotheses of the main theorem. We also show that the Hilbert-Kunz multiplicity can increase
in that setting as well.

Acknowledgements: We thank Yuchen Liu, Anurag K. Singh, and Chenyang Xu for valuable
conversations. We also thank Harold Blum and Takumi Murayama for sharing with us an
alternative proof of Lemma 4.2. We thank the referee for many useful comments.

2. Preliminaries

All schemes and morphisms of schemes considered in this paper will be separated and all
rings and schemes will be Noetherian. Rings and schemes of prime characteristic p > 0 will be
assumed to be F -finite (meaning that the Frobenius map is a finite map).

We are dealing with F -signature in this paper and so we recall its definition. First some
notation. If R is a ring of characteristic p > 0 and M is an R-module, we use F e

∗M to denote
M viewed as an R-module under the action of e-iterated Frobenius. For any R-module M , we
use frk(M) to denote the free-rank of M , or in other words the maximal rank of a free R-module
appearing in a direct sum decomposition of M , M = R⊕frk(M)⊕N . On the other hand, if R is a
domain, we use rk(M) to denote the (generic) rank of M , that is rk(M) = dimK(R)(M⊗RK(R))
where K(R) denotes the fraction field of R.

Inspired by the fact that for an F -finite local ring (R,m), F e
∗R is a free R-module if and only

if R is regular, we make the following definition which measures how free F e
∗R is, asymptotically.

Definition 2.1 (F -signature, [HL02]). Suppose that R is an F -finite domain. The F -signature
of R is defined to be

s(R) = lim
e−→∞

frk(F e
∗R)

rk(F e
∗R)

.

This limit exists by [Tuc12] and [DPY16], also see [PT18]. Furthermore, by [DPY16, Theorem
B], s(R) = min

m⊆R
{s(Rm)} where m runs over maximal ideals of R. Hence, for any Noetherian

integral F -finite scheme X we can define

s(X) = min
x∈X

s(OX,x).

It is clear that 0 6 s(R) 6 1 and it is a fact that s(R) = 1 if and only if R is regular by
[HL02] and [DPY16]. Furthermore, s(R) > 0 if and only if R is strongly F -regular by [AL03]
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and [DPY16]. For our purposes, it will be important to recall that strongly F -regular rings are
Cohen-Macaulay and normal.

One common tool used to study F -signature are Frobenius degeneracy ideals. In particular,
if (R,m) is an F -finite local ring, for each e > 0, following [AE05], we define

Ie = {a ∈ R | φ(F e
∗ (aR)) ⊆ m, for all φ ∈ HomR(F e

∗R,R) }.
It is not difficult to see, [AE05, Yao06] that

s(R) = lim
e−→∞

λR(R/Ie)

pe dim(R)

where λR(•) denotes the length of the module •. We refer the reader to [HL02, Pol18, PT18,
Tuc12] for additional properties of F -signature.

Since we are going to study the behavior of F -signature under birational maps, we need to
understand how maps like F e

∗OX −→ OX (for example, picking out a summand), extend to
birational maps. Suppose X is an F -finite normal and integral scheme. We first notice that
φ : F e

∗OX −→ OX induces a map F e
∗K(X) −→ K(X) (simply by tensoring with the fraction field

of X). If π : Y −→ X is a birational map, we obtain an induced map φ̃ : F e
∗OY −→ K(Y ) (since

the fraction fields of X and Y are isomorphic). It is natural to ask whether

φ̃(F e
∗OY ) ⊆ OY

in which case we say that φ extends to a map on Y , φ̃ : F e
∗OY −→ OY . On the other hand,

each φ : F e
∗OX −→ OX induces a Q-divisor ∆φ > 0 such that (1− pe)(KX + ∆φ) ∼ 0, see [BS12,

Section 4].
For a proper birational map π : Y −→ X with Y normal, we may pick canonical divisors KY

and KX that agree wherever π is an isomorphism. When working on charts or at stalks of Y
and X, we continue to use these fixed canonical divisors KY and KX .

Lemma 2.2. Suppose that X is an F -finite normal scheme and that π : Y −→ X is a finite type
birational map from a normal scheme Y with fixed KY and KX as above. A map φ : F e

∗OX −→
OX extends to a map φ̃ : F e

∗OY −→ OY as above if and only if KY − π∗(KX + ∆φ) 6 0.
Furthermore, all φ : F e

∗OX −→ OX extend to Y if either of the following two conditions are
satisfied.

(a) π is small, in other words there is a set W ⊆ X of codimension > 2 such that π−1(W )
also has codimension > 2 in Y and π : Y \ π−1(W ) −→ X \W is an isomorphism.

(b) KX is Q-Cartier and KY − π∗KX 6 0.

Proof. The first statement is [BS12, Lemma 7.2.1] (notice that ∆φ̃ > 0 if and only if φ extends

to a map on Y ). For (a), notice that KY − π∗(KX + ∆φ) = −π−1∗ ∆φ 6 0. Condition (b) is
immediate. �

3. Finitely generated canonical and anti-canonical algebras

Before handling the case of more general blowups, we consider the case of a small proper
birational map obtained by blowing up either the canonical or anti-canonical local algebra under
the special assumption that those algebras are standard graded.

Lemma 3.1. (cf. [San15, Proposition 3.10]) Suppose that (R,m,k) is an F -finite strongly
F -regular local ring which is not Gorenstein. Then we can write

F e
∗R = R⊕ae ⊕ ω⊕beR ⊕Me
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where Me has no free R or ωR-summands. Furthermore lim
e−→∞

be
rk(F e

∗R)
= s(R) and in particular

lim
e−→∞

ae
be

= 1.

Proof. Consider a split surjection F e
∗R −→ ω⊕beR . Then the induced map HomR(ω⊕beR , ωR) −→

HomR(F e
∗R,ωR) remains split. Moreover, HomR(F e

∗R,ωR) ∼= F e
∗ HomR(R,ωR) ∼= F e

∗ωR and
HomR(ω⊕beR , ωR) ∼= R⊕be . Therefore be is no more than frk(F e

∗ωR). Conversely, if we set
ce = frk(F e

∗ωR) and consider a split surjective map F e
∗ωR −→ R⊕ce then the induced map

HomR(R⊕ce , ωR) −→ HomR(F e
∗ωR, ωR) remains split. Moreover, HomR(R⊕ce , ωR) ∼= R⊕ce and

HomR(F e
∗ωR, ωR) ∼= F e

∗ HomR(ωR, ωR) ∼= F e
∗R. Therefore ce = frk(F e

∗ωR) is no more than be
and so the two numbers coincide. In particular, be = frk(F e

∗ωR) and in conclusion

lim
e−→∞

be
rk(F e

∗R)
= lim

e−→∞
frk(F e

∗ωR)

rk(F e
∗R)

= s(ωR) = s(R) rk(ωR) = s(R).

The equality of s(ωR) and s(R) rk(ωR) is the content of [Tuc12, Theorem 4.11] �

Theorem 3.2. Suppose that an F -finite local ring (R,m) is not Gorenstein and that either

(a) S =
⊕

nR(nKR) is generated as a graded ring in degree 1 or that
(b) S =

⊕
nR(−nKR) is generated as a graded ring in degree 1.

Set Y = ProjS with π : Y −→ SpecR the induced map. Then we have s(Y ) > 2s(R).

Proof. The statement is trivial if R is not strongly F -regular since then s(R) = 0. Hence we
may assume that R is strongly F -regular. In the case that S =

⊕
nR(nKR), we have that the

small morphism π : Y −→ SpecR is the blowup of R(KR) and hence KY is Cartier. In the case
that S =

⊕
nR(−nKR) we have that Y is the blowup of R(−KR) and so −KY is Cartier, but

then the inverse KY is Cartier too.
Consider the split surjection

F e
∗R −→ R⊕ae ⊕ ω⊕beR

guaranteed by Lemma 3.1. We pull back via π∗ and reflexify and we obtain a split surjection

F e
∗OY −→ O⊕aeY ⊕OY (KY )⊕be .

However, OY (KY ) is locally free and hence the result follows since be grows at the same rate as
ae again by Lemma 3.1. �

4. Behavior under more general blowups

We now come to the proof of the more general case. Throughout this section we work with
varieties over an algebraically closed field k of positive characteristic p. We begin with several
lemmas.

Lemma 4.1. (cf. [LM09, Lemma 3.9]) Let X be a projective variety, x ∈ X a closed point of
dimension n, and A an ample Cartier divisor on X. For all 1� ε > 0 there exists δ > 0 such
that

hi(X,OX(kA)⊗mdεkex ) = 0 for i > 0, and

h0(X,OX(kA))− h0(X,OX(kA)⊗mdεkex ) > δ · kn

for all k � 1.
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Proof. Let µ : X ′ −→ X be the blowup of X along mx, with mx · OX′ = OX′(−E). Since −E
is µ-ample, for a sufficiently large integer m > 1 we have that mµ∗A − E is ample on X ′.
Shrinking ε if necessary, we may assume mε < 1 and thus dεkem 6 k for k � 0. Since

kµ∗A− dεkeE = (k − dεkem)µ∗A− dεke(mµ∗A− E),

by Fujita vanishing [Laz04, Chapter 1.4.D, Theorem 1.4.35 and Remark 1.4.36] (using that µ∗A
is nef) we have that

H i(X ′,OX′(kµ∗A− dεkeE) = 0 for i > 0.

Recalling that

µ∗(OX′(−dεkeE)) = mdεkex , Rjµ∗(OX′(−dεkeE)) = 0 for j > 0

provided k � 1 as shown [Laz04, Lemma 5.4.24]. It follows that

H i(X,OX(kA)⊗mdεkex ) = H i(X ′,OX′(kµ∗A− dεkeE)) = 0 for i > 0

when k � 1 by the vanishing above. In particular this holds for i = 1, and hence from the
short exact sequence

0 −→ OX(kA)⊗mdεkex −→ OX(kA) −→ OX,x/mdεkex −→ 0

we have

h0(X,OX(kA))− h0(X,OX(kA)⊗mdεkex ) = dimk(OX,x/mdεkex ) = PX,x(dεke)

where PX,x is the Hilbert-Samuel polynomial of OX,x. Thus, choosing 0 < δ < εn

n!
e(OX,x) gives

h0(X,OX(kA))− h0(X,OX(kA)⊗mdεkex ) = PX,x(dεke) >
δ

εn
(dεke)n > δkn

for k � 1. �

Lemma 4.2. (cf. [LX17, Lemma 2.9]) Let Y be a normal projective variety of dimension n
over a field k of prime characteristic p > 0, and L a nef and big Cartier divisor on Y . Let
y ∈ Y be a closed point of an irreducible curve C satisfying (L ·C) = 0. Then there exists ε > 0
so that

h1(Y,OY (kL)⊗mk
y) > εkn for k � 1.

The following proof was provided to us by Takumi Murayama. We will provide an alternative
(and somewhat longer) proof below.

Proof. Let ψ : Ŷ −→ Y be the normalized blowup of Y along my and let myOŶ = OŶ (−E). Let

Ĉ be the strict transform of C in Ŷ , in which case Ĉ · E > 0. Let A be a very ample Cartier
divisor on Ŷ so that the Q-Cartier divisor ψ∗L− E + δA is not ample for 1� δ > 0 since

(ψ∗L− E + δA) · Ĉ = −E · Ĉ + δA · Ĉ,
which is negative for all 1� δ > 0.

Fix 1� δ > 0. Since ψ∗L−E + δA is not ample and ψ∗L−E = ψ∗L−E + δA− δA there
exists some i > 0 and ε > 0 such that

hi(Ŷ ,OŶ (m(ψ∗L− E))) > εmn

for all m� 0 by [Mur18, Theorem B]. By [Laz04, Lemma 5.4.24], for k � 0 we have

hi(Ŷ ,OŶ (k(ψ∗L− E)) = hi(Y,OY (kL)⊗mk
y)).
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But if i > 2 then the exact sequence of cohomology derived from twisting the short exact

0 −→ mk
y −→ OY −→ OY /mk

y −→ 0

by kL shows

hi(Y,OY (kL)⊗mk
y)) = hi(Y,OY (kL))

for all i > 2. By [Laz04, Theorem 1.4.40]

hi(Y,OY (kL)) = O(kn−i).

Therefore it is only possible for hi(Y,OY (kL) ⊗ mk
y)) > εkn for all m � 0 when i = 1 which

completes the proof of the lemma. �

The above proof of Lemma 4.2 provides an alternative proof to [LX17, Lemma 2.9]. One
would need to replace the reference of [Mur18, Theorem B] with [dFKL07, Theorem A]. Nev-
ertheless, we present a second proof of Lemma 4.2 which closely resembles the proof of [LX17,
Lemma 2.9]. We suspect the alternative proof will be of independent interest.

Lemma 4.3. Suppose V is a normal projective variety, and D is a Q-Cartier Q-divisor with
non-negative Iitaka dimension that is not nef. Let Z ⊆ V be an irreducible curve such that
D · Z < 0. Let g : W ′ −→ V be a regular alteration dominating the blowup of IZ such that
g−1(Z) has simple normal crossings. Then τ(W ′,m ‖ g∗D ‖) vanishes along g−1(Z) for all
integers m� 1. In particular, if D is big, every irreducible component of g−1(Z) is contained
in the non-nef locus of g∗(D).

Proof. Replacing D with a positive multiple, we may assume that D is a Cartier divisor. Let
µ : V ′ −→ V be the normalized blowup of IZ , with IZOV ′ = OV ′(−E) and f ′ : W ′ −→ V ′ the
induced map factoring g, so that the divisor E ′ = (f ′)∗E has simple normal crossing support.

Let g : W ′ ν−→ W
f−→ V be the Stein factorization of g (in other words, W := Spec g∗OW ′), so

that we have a commutative diagram

W ′ f ′ //

ν
��

g

!!

V ′

µ

��
W

f
// V

where f is finite, ν is birational, and W is normal. Since f is finite, f−1({Z}) is a union of finitely
many irreducible curves Z1, . . . , Zr that dominate Z. Note that, if C ⊆ W ′ is an irreducible
curve that dominates Z, we have by the projection formula that (g∗D)·C = (deg g|C)(D·Z) < 0.

Given m > 1, consider the asymptotic test ideal τ(W ′,m ‖ g∗D ‖) ⊆ OW ′ . If H is a very
ample divisor on W ′ and A = KW ′ + (dimW ′ + 1)H, then

OW ′(m(g∗D) + A)⊗ τ(m ‖ g∗D ‖)
is globally generated for all m > 1 by [Mus13, Theorem A]. Therefore, if C ⊆ W ′ is an
irreducible curve that is not contained in the zero locus of τ(W ′,m ‖ g∗D ‖), then

(4.1) (m(g∗D) + A) · C > 0.

Thus, if C dominates Z, and hence (g∗D) ·C < 0 similarly to the above, we must have that C
is contained in the zero locus of τ(W ′,m ‖ g∗D ‖) for all m > −(A · C)/((g∗D) · C). Note this
condition on m comes from negating (4.1) and solving for m.
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Consider a component E ′i of E ′ that dominates Z. A general complete intersection curve C
on E ′i then dominates Z, and thus τ(W ′,mi ‖ g∗D ‖) must vanish along C for some mi � 1. As
we vary the complete intersection that defines C, the condition on mi does not change. Thus,
in fact, τ(W ′,mi ‖ g∗D ‖) must vanish along all of E ′i.

Supposing now that E ′i is a component of E ′ that maps to a point of Z, we again wish to show
that τ(W ′,mi ‖ g∗D ‖) must vanish along all of E ′i for mi � 1. We have that E ′i necessarily
also maps to a point of Zs ⊆ f−1(Z) ⊆ W for some s. Note that some component of E ′ must
dominate Zs (since ν is surjective and ν−1(Zs) ⊆ Supp(E ′)) and ν−1(Zs) is connected as W is
normal. In light of the previous paragraph, it suffices to show τ(W ′,mi ‖ g∗D ‖) must vanish
along all of E ′i for mi � 1. We may assume that E ′i intersects another component E ′j of E ′

along which τ(W ′,mj ‖ g∗D ‖) is known to vanish for some mj � 0.
Take a general complete intersection curve C ⊆ E ′i that meets E ′j in at least one point P ,

which we may assume to be a smooth point of C. We know that

OW ′(lmj(g
∗D) + A)⊗ τ(W ′, lmj ‖ g∗D ‖)

is globally generated for any l > 1. Thus, whenever τ(W ′, lmj ‖ g∗D ‖) does not vanish
along C, we can find an effective divisor F ∼Z (lmj(g

∗D) +A) not containing C that vanishes
along τ(W ′, lmj ‖ g∗D ‖). Let us consider what happens when we restrict F to C. Note that
since E ′i maps to a point of Z, so too does C ⊆ E ′i, whence (g∗D) · C = 0. Furthermore,
τ(W ′,mj ‖ g∗D ‖) ⊆ OW ′(−E ′j) by assumption, so we have that

τ(W ′, lmj ‖ g∗D ‖) ⊆ τ(W ′,mj ‖ g∗D ‖)l ⊆ OW ′(−lE ′j)
for all l > 1 by subadditivity [HY03, Theorem 4.5]. Thus, F must vanish at least to order l at
P , so that

A · C = (0 + A) · C = F · C > l.

But A does not depend on l, so this is impossible, and so τ(W ′, lmj ‖ g∗D ‖) vanishes along C.
Fix l > A · C and set mi = lmj. It follows τ(W ′,mi ‖ g∗D ‖) must vanish along C and hence
also E ′i, as desired.

Thus, taking m′ sufficiently large and divisible, we conclude from above that

τ(W ′,m′ ‖ g∗D ‖) ⊆ OW ′(−E ′red)

so that τ(W ′,m ‖ g∗D ‖) vanishes along g−1(Z) = E ′red for all integers m� 1. In particular, if
D is big, every irreducible component E ′i of g−1(Z) is contained in the non-nef locus of g∗(D)
by [Mus13, Theorem 6.2]. �

Lemma 4.4. (cf. [dFKL07, Proposition 1.1] and [Mur18, Proposition 4.5]) Suppose that V is a
normal projective variety and Z ⊆ V is an irreducible curve. Let L and E be Cartier divisors,
with L big and E effective. Assume L · Z = 0, that E does not contain Z and that E · Z > 0.

If 0 < γ1 < γ2 are real numbers such that L − γ2E remains big, then there exists ε > 0

and a positive integer c such that b(|kL − mE|) ⊆ I
bεkc−c
Z for all integers m and k such that

γ1k 6 m 6 γ2k.

Proof. Without loss of generality, we assume that the base field k = k is uncountable. Using
[dJ96, Theorem 4.1], we may take a regular alteration g : W ′ −→ V dominating the blowup of
IZ such that g−1(Z) has simple normal crossings. Let µ : V ′ −→ V be the normalized blowup of
IZ , with IZOV ′ = OV ′(−G) and f ′ : W ′ −→ V ′ the induced map factoring g so that g = µ ◦ f ′.
For any t ∈ Q∩ [γ1, γ2], L− tE is big and (L− tE) ·Z = −t(E ·Z) < 0. Applying Lemma 4.3, it
follows that every irreducible component g−1(Z) is contained in the non-nef locus of g∗(L−tE).
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Thus, if (f ′)∗G = G′ =
∑
aiG

′
i so that (g−1(Z))red = G′red, it follows from [Mus13, Theorem

6.2] that

ordG′i(‖ g
∗L− tg∗E ‖) = inf

l>1
tl∈Z

1

l
ordG′i

(
b(|l(g∗L− tg∗E)|)

)
> 0

for all t ∈ Q ∩ [γ1, γ2] and any i. Since the asymptotic order of vanishing ordG′i(‖ − ‖) is

continuous on the open cone of big divisors in N1(X)R by [Mus13, Theorem 6.1], there exists
an ε′ > 0 so that

ordG′i(‖ g
∗L− tg∗E ‖) > ε′

for all t ∈ [γ1, γ2] and any i. In particular, we have that

ordG′i
(
b(|kg∗L−mg∗E|)

)
> kε′

for all integers m, k satisfying γ1k 6 m 6 γ2k. In this case, setting a = maxi ai (the largest
coefficient of (f ′)∗G) and ε = ε′/a gives

b(|kg∗L−mg∗E|) ⊆ OW ′(−bεkcG′).
Since (f ′)∗|kµ∗L−mµ∗E| ⊆ |(kg∗L−mg∗E)|, we have

b(|kµ∗L−mµ∗E|) · OW ′ ⊆ b(|kg∗L−mg∗E)|) ⊆ OW ′(−bεkcG′)
and pushing forward along f ′ gives

b(|kµ∗L−mµ∗E|) · (f ′)∗OW ′ ⊆ (f ′)∗OW ′(−bεkcG′) = OV ′(−bεkcG) · (f ′)∗OW ′ .
Thus, using that OV ′ is normal and OV ′ ⊆ (f ′)∗OW ′ is a finite and hence integral extension,
we see

b(|kµ∗L−mµ∗E|) ⊆ (OV ′(−bεkcG) · (f ′)∗OW ′) ∩ OV ′ = OV ′(−bεkcG)

from [HS06, Propositions 1.5.2 and 1.6.1]. On the other hand, we have H0(V,OV (kL−mE)) =
H0(V ′,OV ′(kµ∗L−mµ∗E)) again by normality, and in particular

b(|kL−mE|) · OV ′ = b(|kµ∗L−mµ∗E|).

Pushing forward along µ : V ′ −→ V then gives b(|kL−mE|) ⊆ I
bεkc
Z . Using [HS06, Proposition

5.3.4] there exists a positive integer c so that I`Z ⊆ I`−cZ for all integers ` > c, and the result
now follows. �

Second proof of Lemma 4.2. We may assume that k = k is an uncountable field of prime char-
acteristic. Let ψ : Ŷ −→ Y be the normalized blowup of Y along my, with my · OŶ = OŶ (−E).

Take Ĉ to be the strict transform of C in Ŷ , noting that Ĉ is not contained in E and Ĉ ·E > 0.
We have that ψ∗L is big with ψ∗L · Ĉ = L ·C = 0. Moreover for some sufficiently large integer
` > 0 we have that `ψ∗L− E is also big. Set γ2 = 1/` and choose 0 < γ1 < γ2.

Consider the long exact sequence

. . . −→ H1(Y,OY (kL)⊗mk
y) −→ H1(Y,OY (kL)⊗mk

y) −→ H1(Y,OY (kL)⊗mk
y/m

k
y) = 0

where the vanishing holds since (mk
y)/m

k
y is a skyscraper sheaf with support contained in {y}.

Using this sequence and the fact that Rjψ∗OŶ (−kE) = 0 for j > 0 and sufficiently large k (as
−E is ψ-ample), we have

(4.2) h1(Y,OY (kL)⊗mk
y) > h1(Y, ψ∗OŶ (kψ∗L− kE)) = h1(Ŷ ,OŶ (kψ∗L− kE))

for all k � 1. Consider now the differences

∆k(m) := h1(Ŷ ,OŶ (kψ∗L− (m+ 1)E))− h1(Ŷ ,OŶ (kψ∗L−mE))
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for k > m > 0. If m� 1, and using that OŶ (ψ∗L)|E = OE and OŶ (−E)|E ∼ OE(1) is ample,
we have that

h1 (E,OŶ ((kψ∗L−mE)|E)) = h1(E,OE(m)) = 0

using Serre vanishing. Thus, if m > γ1k and k � 1, it follows that ∆k(m) > 0. On the other
hand, if additionally γ2k > m > γ1k, we have from Lemma 4.4 that there is some ε′ > 0 and a
positive integer c so that

b(|kψ∗L−mE|) ⊆ I
bε′kc−c
Ĉ

.

Thus, if ŷ ∈ Ĉ ∩ Supp(E) is a closed point, we have an inclusion

(4.3)
Im
(
H0(Ŷ ,OŶ (kψ∗L−mE)) −→ H0(E,OŶ (kψ∗L−mE)|E)

)
⊆ H0(E,OE(m)⊗m

bε′kc−c
ŷ ).

Choosing 0 < ε′′ < ε′/γ2, we have that for k � 1,

(4.4) bε′kc − c > ε′k − c− 1 > ε′′γ2k + 1 > ε′′m+ 1 > dε′′me.
Shrinking ε′′ further if necessary, by Lemma 4.1 there exists δ > 0 such that

∆k(m) = h0(E,OE(m))− rk
(
H0(Ŷ ,OŶ (kψ∗L−mE)) −→ H0(E,OŶ (kψ∗L−mE)|E)

)
> h0(E,OE(m))− h0(E,OE(m)⊗m

bε′kc−c
ŷ ) by (4.3)

> h0(E,OE(m))− h0(E,OE(m)⊗m
dε′′me
ŷ ) by (4.4)

> δmn−1

for all γ1k 6 m 6 γ2k and k � 1. Thus, we compute

h1(Ŷ ,OŶ (kψ∗L− kE)) =

 k−1∑
m=dγ1ke

∆k(m)

+ h1(Ŷ ,OŶ (kψ∗L− dγ1keE))

>
dγ2ke−1∑
m=dγ1ke

∆k(m) (since the dropped ∆k(m) > 0)

>
dγ2ke−1∑
m=dγ1ke

δmn−1

> δ(dγ1ke)n−1(dγ2ke − dγ1ke)
> δ(dγ1ke)n−1(γ2k − 1− γ1k)

> δγn−11 (γ2 − γ1)kn − δγn−11 kn−1

for all k � 1. Thus, choosing ε < δγn−11 (γ2 − γ1) implies that

εkn < δγn−11 (γ2 − γ1)kn − δγn−11 kn−1 6 h1(Ŷ ,OŶ (kψ∗L− kE))

for k � 1. Therefore by (4.2),

h1(Y,OY (kL)⊗mk
y) > h1(Ŷ ,OŶ (kψ∗L− kE)) > εkn

for all k � 1 as desired. �

Now we come to the main theorem of the section.



10 LINQUAN MA, THOMAS POLSTRA, KARL SCHWEDE, AND KEVIN TUCKER

Theorem 4.5. Let X be a strongly F -regular variety of dimension n over an algebraically
closed field k of characteristic p > 0. Suppose π : Y −→ X is a proper birational morphism from
a normal variety Y and fix a point y ∈ Exc(π) with π(y) = x. Suppose additionally that either:

(a) π is small, i.e. π is an isomorphism outside of a set of codimension at least two in Y ,
or;

(b) The canonical divisor KX is Q-Cartier and for every exceptional divisor E containing y,
we have that coeffE(KY − π∗KX) 6 0. For instance, this holds if all the discrepancies
are non-positive.

Then we have s(OX,x) < s(OY,y).

Proof. If k is not uncountable then we base change by the field obtained by adjoining uncount-
ably many indeterminants to k and then taking its algebraic closure. Any closed points on the
original varieties will correspond to points on the base-changed varieties, and their signatures
will not change by [Yao06, Theorem 5.4]. Thus we may assume that k is uncountable and
algebraically closed.

Set R = OX,x and S = OY,y so that we have a local inclusion R ⊆ S. By the assumption
that π is either small or has non-positive discrepancy at y, it follows that p−e-linear map on R
extends naturally to a p−e-linear map on S, see Lemma 2.2. Consider the Frobenius degeneracy

ideals ISe of S used to define the F -signature Section 2, so that s(OY,y) = lim
e−→∞

1

pne
`(S/ISe ), and

similarly for the Frobenius degeneracy ideals IRe of R. Set Je = ISe ∩ R. Observe that, if mR

can be generated by d elements, we have

mdpe

R ⊆ m
[pe]
R ⊆ Je ⊆ IRe .

Indeed, the first inclusion is standard by looking one monomial in the generators at a time. The

second inclusion follows from the fact that m
[pe]
R ⊆ m

[pe]
S ⊆ ISe . For the last inclusion, suppose

that r ∈ R \ IRe . Then we know there exists a p−e-linear map φ on R so that φ(r) = 1. But

then φ extends to S, and we still have φ(r) = 1, so that r 6∈ ISe . Note also that J
[p]
e ⊆ Je+1, so

that lim
e−→∞

1

pne
`(R/Je) exists and is at least as large as s(R) = s(OX,x), see [PT18, Theorem B].

Let us take suitable projective closures of X, Y such that π extends to a birational morphism
between normal projective varieties. Note that conditions (a) or (b) from the statement of the
theorem will not necessarily hold on the entire compactifications, however we will not need
this. Let M ′ be an ample line bundle on X. By Lemma 4.1, for all 1 � ε′ > 0, i > 0 and

k � 1 we have H i(X, (M ′)⊗k ⊗ m
dε′ke
R ) = 0. Taking ` � 1 so that 1/` < ε′, it follows that

H i(X, (M ′)⊗`dp
e ⊗mdpe

R ) = 0 for i > 0 and e� 1. Setting M = M ′⊗`d, and using that Je/m
dpe

R

is supported only at x ∈ X, it follows that

H1(X,M⊗pe ⊗mdpe

R )� H1(X,M⊗pe ⊗ Je),

H i(X,M⊗pe ⊗mdpe

R )
∼=
−→ H i(X,M⊗pe ⊗ Je) for i > 2.

and hence H i(X,M⊗pe ⊗ Je) = 0 for i > 0 and e� 1. Thus we have

(4.5) lim
e−→∞

1

pen
h0(X,M⊗pe ⊗ Je) =

1

n!
volX(M)− lim

e−→∞
1

pne
`(R/Je).

On the other hand, since X is strongly F -regular at x, so too is Y at y and it follows from the

proof of the positivity of the F -signature that there is some e0 with ISe ⊆ mpe−e0

S for all e � 1
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([BST11, Theorem 3.21], cf. [PT18, Section 5 and the Second proof of Theorem 5.1]). We have
the following relations

H1(Y, π∗M⊗pe ⊗ ISe )� H1(Y, π∗M⊗pe ⊗mpe−e0

S ),

H i(Y, π∗M⊗pe ⊗ ISe )
∼=
−→ H i(Y, π∗M⊗pe) for i > 2.

Since hi(Y, π∗M⊗pe) = O(pe(n−1)) for i > 0 as π∗M is nef [Laz04, Theorem 1.4.40], we have that

lim sup
e−→∞

1

pen
h0(Y, π∗M⊗pe ⊗ ISe )

=
1

n!
volY (π∗M)− s(OY,y) + lim sup

e−→∞
1

pen
h1(Y, π∗M⊗pe ⊗ ISe )

>
1

n!
volX(M)− s(OY,y) + lim sup

e−→∞
1

pen
h1(Y, π∗M⊗pe ⊗mpe−e0

S ).

By Lemma 4.2 applied with L = π∗M⊗pe0 , there exists an ε > 0 so that

h1(Y, π∗M⊗pe ⊗mpe−e0

S ) = h1(Y, L⊗(p
e−e0 ) ⊗mpe−e0

S ) > εp(e−e0)n

for all e� 1, so that

(4.6) lim sup
e−→∞

1

pen
h0(Y, π∗M⊗pe ⊗ ISe ) >

1

n!
volX(M)− s(OY,y) +

ε

pne0
.

Observe that π∗I
S
e ⊆ π∗OY = OX and so Je = π∗I

S
e which implies that

lim sup
e−→∞

1

pen
h0(Y, π∗M⊗pe ⊗ ISe ) = lim

e−→∞
1

pen
h0(X,M⊗pe ⊗ Je).

Thus combining (4.6) and (4.5) we have

1

n!
volX(M)− lim

e−→∞
1

pne
`(R/Je) >

1

n!
volX(M)− s(OY,y) +

ε

pne0

whence it follows

s(OY,y) > lim
e−→∞

1

pne
`(R/Je) +

ε

pne0
> s(OX,x).

This completes the proof. �

5. Examples of prime characteristic invariants and blow-ups of isolated
singularities

In this section we observe that, without the hypothesis (a) or (b), the conclusion of Theo-
rem 4.5 may not hold even if π : Y −→ X is the blow-up of an isolated singularity. We provide
several examples demonstrating various negative behaviors. We fix the following notation for
all of our examples: X will be an affine scheme of a strongly F -regular hypersurface. Specif-
ically, X = Spec(R), R = k[x1, . . . , xn]/(f), k will be an algebraically closed field of prime
characteristic p > 0, and X will have isolated singularity at the origin (x1, . . . , xn). We denote
by π : Y −→ X the blow-up of X at the origin. Then π is proper, birational, and has n standard
affine charts:

Yi = Spec

(
R

[
x1
xi
, . . . ,

xn
xi

])
∼= Spec

k
[
x1
xi
, . . . , xi, . . .

xn
xi

]
(f : x∞i )


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where (f : x∞i ) =
⋃
`∈N{g ∈ k

[
x1
xi
, . . . , xi, . . .

xn
xi

]
| x`ig ∈ (f)}.

Our strategy of showing F -signature can strictly decrease under the blow-up of an isolated
singularity avoids any technical computations or explicit formulas of F -signature. Instead,
we show a strongly F -regular isolated singularity can be blown-up to create a variety which
has non-strongly F -regular points. We first discuss a method of determining if an isolated
hypersurface singularity is strongly F -regular.

Lemma 5.1. Let k be an F -finite field of prime characteristic p > 0, S = k[x1, . . . , xn], and
f ∈ S an element such that S/(f) is a domain with isolated singularity at the maximal ideal
(x1, . . . , xn). Then S/(f) is strongly F -regular if and only if there exists e ∈ N such that

x1f
pe−1 6∈ (xp

e

1 , . . . , x
pe

n ).

Proof. The property of being strongly F -regular is a local condition. Let m = (x1, . . . , xn).
Then R is strongly F -regular if and only if Rm is a strongly F -regular local ring. By [AE05]
the set

P =
⋂
e∈N

{c ∈ Rm | Rm
·c1/pe−−−→ R1/pe

m does not split}

is an ideal of Rm satisfying the following:

(a) Rm is F -pure if and only if P 6= Rm;
(b) If Rm is F -pure then P is a prime ideal;
(c) Rm is not strongly F -regular then the closed set V (P) of Spec(Rm) defines the non-

strongly F-regular locus of Rm.

Thus the assumption that R has isolated singularity implies that P is 0 if R is strongly F -
regular, the unique maximal ideal of Rm if R is F -pure but not strongly F -regular, or all of
Rm if R is not F -pure. Therefore Rm is strongly F -regular if and only if x1 6∈ P . It readily
follows by the techniques of [Fed83] that x1 6∈ P if and only if there exists e ∈ N such that

x1f
pe−1 6∈ (xp

e

1 , . . . , x
pe

n )Sm (c.f. [Gla96, Theorem 2.3]). Since (xp
e

1 , . . . , x
pe

n )S is primary to m

we have x1f
pe−1 6∈ (xp

e

1 , . . . , x
pe

n )Sm if and only if x1f
pe−1 6∈ (xp

e

1 , . . . , x
pe

n )S. �

Example 5.2. Let

R =
k[x1, x2, x3, x4]

(x21 + x42 + x53 + x44)

and assume that k is an algebraically closed field of characteristic 7. Then for any i ∈ {2, 3, 4},
we have xi(x

2
1 + x42 + x53 + x44)

6 6∈ (x71, x
7
2, x

7
3, x

7
4) and therefore R is strongly F -regular by

Lemma 5.1. The chart Y1 is non-singular. The charts Y2 and Y4 are isomorphic and have
coordinate rings isomorphic to the hypersurface

S =
k[a, b, c, d]

(a2 + b2 + c5b3 + d4b2)
.

The hypersurface S is not normal at the point (a, b, c, d), in particular is not strongly F-regular,
but is F -pure since (a2 + b2 + c5b3 +d4b2)6 6∈ (a7, b7, c7, d7). The remaining chart has coordinate
ring isomorphic to

k[a, b, c, d]

(a2 + b4c2 + c3 + d4c2)
,

a ring which is neither normal nor F-pure.
Observe that Rm is a local ring of multiplicity 2. In particular eHK(Rm) + s(Rm) = 2, see

the proof of [Tuc12, Proposition 4.22] for a justification. The same holds for the three singular
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charts of the blow-up. In particular, not only does the F -signature strictly decrease to 0 on
points in the exceptional locus of π : Y −→ X, but the Hilbert-Kunz multiplicity of these points
has strictly increased to 2.

We leave it to the reader to verify that if Ỹ −→ Y is the normalization of Y , i.e., Ỹ −→ X

is the normalized blow-up of X at the origin, then Ỹ is non-singular and in particular the

conclusion of Theorem 4.5 is valid for the proper birational morphism Ỹ −→ X. This is not
an indication that the conclusion of Theorem 4.5 is valid for normalized blow-ups of isolated
strongly F -regular singularities by the following examples.

Example 5.3. Let

R =
k[x1, x2, x3, x4]

(x21 + x32 + x63 + x64)

where k is an algebraically closed field of characteristic 7. Then R is strongly F -regular but
the affine chart Y4 of the blow-up has coordinate ring isomorphic to

k[a, b, c, d]

(a2 + b3d+ c6d4 + d4)

which is normal, F -pure, but is not strongly F -regular.

Our final example illustrates that the normalized blow-up of an isolated F-regular singularity
can produce a normal variety with non-F-pure points. The example is obtained by changing
the characteristic of the base field from Example 5.3.

Example 5.4. Let

R =
k[x1, x2, x3, x4]

(x21 + x32 + x63 + x64)

where k is an algebraically closed field of characteristic 11. Then R is strongly F -regular but
the affine chart Y4 of the blow-up has coordinate ring isomorphic to

k[a, b, c, d]

(a2 + b3d+ c6d4 + d4)

which is normal but not F -pure.

6. Further questions

We conclude the paper by stating two open questions. First, we hope that Hilbert-Kunz
multiplicity can also be controlled under certain blowups.

Question 6.1. Can we control the Hilbert-Kunz multiplicity of a local ring (R,m) under (special)
blowups π : Y −→ X = SpecR?

Second, we would like to generalize the results of Section 3 to the case when the ring⊕
i>0R(iKX) or

⊕
i>0R(−iKX) is finitely generated, instead of generated in degree 1. Note

that we expect that for any strongly F -regular ring and any Weil divisor D, the ring
⊕

i>0R(iD)
is finitely generated, this would hold for instance if the minimal model program is known to hold
in characteristic p > 0 and hence we know it if dimR = 3 and p > 5, see [Bir16, Theorem 1.3]
and also [SS10, Theorem 4.3] applied locally.

Question 6.2. If R is a strongly F -regular local ring and S =
⊕

i>0R(iKX) (respectively,
S =

⊕
i>0R(−iKX)) is finitely generated, can we control the F -signature of ProjS?
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