
DIVISOR PACKAGE FOR MACAULAY2

KARL SCHWEDE AND ZHAONING YANG

Abstract. This note describes a Macaulay2 package for handling divisors. Group operations for
divisors are included. There are methods for converting divisors to reflexive or invertible sheaves.
Additionally, there are methods for checking whether divisors are Cartier, Q-Cartier, simple normal
crossings, generate base point free linear systems, or satisfy numerous other conditions.

1. Introduction

Divisors are fundamental objects of study within algebraic geometry and commutative algebra.
In this package for Macaulay2 [GS] we provide a wrapper object for studying Weil and Cartier
divisors. We include tools for studying divisors on both affine and projective varieties.

In this package, divisors are stored (roughly) as formal linear combinations of height one prime
ideals, with coefficients from Z, Q, or R. We include group and scaling operations for divisors, as
well as various methods for constructing modules OX(D) from divisors D (and vice versa). We
also include code for determining whether divisors are linearly or Q-linearly equivalent, and for
checking whether divisors are Cartier or Q-Cartier (or finding the non-Cartier locus). Finally, we
also include a number of functions for handling reflexive modules, ideals and their powers.

We realize there is a Divisor class defined in a tutorial in the Macaulay2 help system. In that
implementation, divisors are given as a pair of ideals—an ideal corresponding to the positive part
and an ideal corresponding to the negative part. Our approach offers the advantage that it is easier
for the user to see the structure of the divisor. Additionally, certain operations are much faster in
our approach.

We warn the user that when a divisor is created, Gröbner bases are constructed for each prime
ideal defining a component of the divisor. Hence, the construction phase may be slower than other
potential implementations (and in fact slower than our initial implementation). However, we feel
that this choice offers advantages of execution speed for several functions as well as substantial
improvements in code readability.

Within the package, it is tacitly assumed that the ambient ring on which we are working is
normal. This includes the projective case, so care should be taken to make sure the graded ring
you are working on satisfies Serre’s second condition, see for example [Har77, Theorem 8.22A] or
[BH93, Proposition 2.2.21]. While one can talk about subvarieties of codimension 1 on more general
schemes, the correspondence between divisors and reflexive sheaves is much more complicated, so we
restrict ourselves to the normal case. For an introduction to the theory of rank-1-reflexive sheaves
on “nice” schemes, see [Har94, Har07]; and for a more basic introduction see, for instance, [Har77,
Chapter II, Sections 5–7].

This paper is structured as follows. We first give a brief introduction to the construction, con-
version, and group operation functions in Section 2. We then discuss the methods for converting

Date: September 4, 2018.
2010 Mathematics Subject Classification. 14C20.
Key words and phrases. Divisors, Reflexive Modules, Macaulay2.
The first named author was supported in part by the NSF FRG Grant DMS #1265261/1501115, NSF CAREER

Grant DMS #1252860/1501102, NSF Grant #1801849 and a Sloan Fellowship.
The second named author was supported in part by the NSF CAREER Grant DMS #1252860/1501102.

1

divisors D to modules OX(D) and converting modules back to divisors in Section 3. Section 4
describes how to determine if divisors satisfy varies properties (for instance isCartier or isSNC).
We conclude with a section on future plans.

Acknowledgements. We thank Tommaso de Fernex, David Eisenbud, Daniel Grayson, Anurag
Singh, Greg Smith, Mike Stillman, and the referees for useful conversations and comments on the
development of this package. We also thank the referee for numerous useful comments on this paper.

2. Construction, conversion and group operations for divisors

This package includes a number of ways to construct a divisor (an object of class WeilDivisor),
illustrated below.

i1 : needsPackage "Divisor";

i2 : R = QQ[x,y,u,v]/ideal(x*y-u*v);

i3 : D = divisor({2, 3}, {ideal(x,u), ideal(x, v)})

o3 = 3*Div(x, v) + 2*Div(x, u)

o3 : WeilDivisor on R

i4 : E = divisor(x)

o4 = Div(u, x) + Div(v, x)

o4 : WeilDivisor on R

i5 : F = divisor((ideal(x,u))^2*(ideal(x,v))^3)

o5 = 3*Div(v, x) + 2*Div(u, x)

o5 : WeilDivisor on R

The output is a formal sum of height one prime ideals. The first method requires a list of integers
and a list of prime ideals. The third construction method finds a divisor defined by the given ideal
in codimension 1.

We have different classes for Q-divisors and R-divisors (QWeilDivisor and RWeilDivisor re-
spectively), these are constructed via the divisor function with the CoeffType => option set or
by multiplying a WeilDivisor by a rational or real number. See the documentation.

All types of divisors are ancestors of the HashTable class. Internally, they are hash tables where
each key is a list of Gröbner basis generators for a prime height-one ideal and each associated value
is a list, the first entry of which is the coefficient of the prime divisor and the second entry is the
prime ideal used to display the divisor (it tries to match how the user entered it for ease of reading).
Besides the keys corresponding prime divisors, there is a key that specifies the ambient ring and
another key that points to a CacheTable.

One can convert one type of divisor to another more general class, either by multiplication by
appropriate coefficients or by calling appropriate functions.

i2 : R = QQ[x,y,u,v]/ideal(x*y-u*v);

i3 : D = divisor({1, -3}, {ideal(x,u), ideal(y,u)});

o3 : WeilDivisor on R

i4 : 1/1*D

o4 = -3*Div(y, u) + Div(x, u)

o4 : QWeilDivisor on R

i5 : toQWeilDivisor(D)

o5 = Div(x, u) + -3*Div(y, u)

o5 : QWeilDivisor on R

One can convert Q or R-divisors back to Weil divisors as follows.

i3 : D = divisor({2/3, -1/2}, {ideal(x,u), ideal(y, v)}, CoeffType=>QQ)

o3 = 2/3*Div(x, u) + -1/2*Div(y, v) of R
2

o3 : QDiv

i4 : isWDiv(D)

o4 = false

i5 : isWDiv(6*D)

o5 = true

i6 : toWDiv(6*D)

o6 = 4*Div(x, u) + -3*Div(y, v) of R

o6 : WDiv

See the documentation for more examples. Alternately, the functions ceiling and floor will
convert any Q or R-divisor to a Weil divisor by taking the ceiling or floor of the coefficients
respectively. More generally, one can call the method applyToCoefficients to apply any function
to the coefficients of a divisor (since divisors are a type of HashTable, this is just done via the
applyValues function).

Divisors form an Abelian group and one can add WeilDivisor/QWeilDivisor/RWeilDivisor

to each other to obtain new divisors. Likewise one can scale by integers, rational numbers or real
numbers.

i3 : D = divisor({1, -2}, {ideal(x,u), ideal(x, v)}); E = divisor(u);

o3 : WeilDivisor on R

o4 : WeilDivisor on R

i5 : 3*D+E

o5 = 4*Div(x, u) + -6*Div(x, v) + Div(u, y)

o5 : WeilDivisor on R

i6 : D - (1/2)*E

o6 = -2*Div(x, v) + 1/2*Div(x, u) + -1/2*Div(u, y)

o6 : QWeilDivisor on R

Since divisors are implemented as subclasses of hash tables, these operations are easily executed
internally via the merge and applyValues commands.

3. Modules, ideals, divisors and applications

It is well known that divisors are so useful because of their connections with invertible and reflex-
ive sheaves. This package includes many functions for conversion between these types of objects.
For instance, we have the following.

1 : R = QQ[x,y,z]/ideal(x*y-z^2); needsPackage "Divisor";

i3 : D = divisor(ideal(x, z));

o3 : WeilDivisor on R

i4 : OO(D)

o4 = image {-1} | x z |

{-1} | z y |

o4 : R-module, submodule of R

i5 : divisor(o4)

o5 = -Div(z, x)

o5 : WeilDivisor on R

i6 : divisor(o4, IsGraded=>true)

o6 = Div(z, x)

o6 : WeilDivisor on R

The function OO produces a module M so that M̃ ∼= OX(D) (and the gradings of M are set
appropriately). The function divisor(M) only produces a divisor E such that OX(E) is isomorphic

M̃ . In particular, divisor(OO(D)) will only produce a divisor linearly equivalent to D.
3

The computation of OO(D) is done via a straightforward strategy. If D =
∑m

i=1 aiPi where ai are

integers and the Pi are primes, then we can compute
⊗

P−aii (keeping in mind negative exponents
mean applying HomR(, R)) and compute the reflexification (see the method reflexify). We do
several things make this computation faster. Firstly, we break up the divisor into the positive and
negative parts, and handle them separately (applying the reflexify method as little as possible).

Then, instead of computing P
|ai|
i , which can have many generators, we form an ideal generated by

the generators of Pi raised to the |ai|-th powers. Since this agrees with P
|ai|
i in codimension 1, it

will give the correct answer up to reflexification. We have noticed substantial speed improvements
using this technique.

The function divisor(Module) works as follows. First, it embeds the module as an ideal I ⊆ R
via the function embedAsIdeal. After we have an ideal I, we call divisor(I). This finds a divisor
D such that OX(D) is isomorphic to the given ideal I (in a non-graded sense). The function
divisor(Ideal) does this by looking at the minimal height 1 primes Qi of the ideal I and finding

the maximum power ni such that I ⊆ Q
(ni)
i (the symbolic power). Note that because Qi has

height 1, we know that Q
(ni)
i = (Qni

i)∗∗ where ∗∗ denotes reflexification/S2-ification of the ideal.
Finding this maximal power is done by a binary search. Again, for speed, we compute (Qni

i)∗∗ as

(Q
[ni]
i)∗∗. If the IsGraded flag is set to true, divisor(Module) corrects the degree of the divisor

by adding or subtracting the divisor of an element of appropriate degree (you can see this being
done in the example above). Finding the element of appropriate degree is accomplished via the
function findElementOfDegree, which uses Smith normal form in the multi-degree setting to solve
the system of linear diophantine equations and find a monomial of the given multi-degree.

Remark 3.1. A variant of the function embedAsIdeal appeared in the Macaulay2 documentation
in the Divisor tutorial, it also appeared in the work of Moty Katzman. Our version is slightly more
robust than those as it tries to embed the module into the ring in several ways, including some
random attempts (see the documentation for how to control the number of random attempts).

Instead of calling divisor(Module), one can call divisor(Module, Section => f). This func-
tion finds the unique effective divisor D corresponding to a global section f ∈M of our module. The
function divisor(Ideal, Section => f) behaves similarly. The strategy is the same as above,
additionally one tracks the section and adds a divisor corresponding to the section at the end.

It is worth mentioning that the function canonicalDivisor simply computes the canonical
module via an appropriate Ext and then calls divisor(Module). If you wish to construct a canonical
divisor on a projective variety, make sure to set the IsGraded option to true.

3.1. Pulling back divisors. Utilizing the module and divisor correspondence pullBack pulls back
a divisor along a map SpecS −→ SpecR induced by a ring map R −→ S. The user has a choice
of two algorithms built into this function. The first works for nearly any map, provided that the
divisor is Cartier, and it also works for arbitrary divisors in the flat or finite case. The second, which
is the default strategy, only gives accurate answers if the map is flat, or if the map is finite (or if the
prime components of the divisor are Cartier). It can be faster than the first algorithm, especially
for divisors with large coefficients. To use the first algorithm, use is Strategy => Sheaves, to use
the second, use the Strategy => Primes.

Let us briefly describe these two strategies. The first algorithm pulls back the sheaf O(D), keeping
track of a section appropriately. The second algorithm extends each prime ideal defining a prime
divisor of D to an ideal of S, then it calls divisor(Ideal) on each such ideal and sums them
keeping track of coefficients appropriately.

Consider the following example where we look at pulling back a divisor after blowing up the
origin (we only consider one chart of the blowup).

4

i2 : R = QQ[x,y];

i3 : S = QQ[a,b];

i4 : f = map(S, R, {a*b, b});

o4 : RingMap S <--- R

i5 : D = divisor(x*y*(x+y)*(x-y))

o5 = Div(x+y) + Div(-x+y) + Div(x) + Div(y)

o5 : WeilDivisor on R

i6 : pullback(f, D)

o6 = Div(a+1) + Div(a-1) + 4*Div(b) + Div(a)

o6 : WeilDivisor on S

Note one of the components was lost in this pull-back, as it should have been. The coefficient of
the exceptional divisor is also 4, as it should be.

3.2. Global sections. There are only a few built-in functions for dealing with global sections of
modules corresponding to divisors in the current version (in the future we hope to add more tools
to do this). Of course, the user may call basis(0, OO(D)) to get the global sections of a module
corresponding to a divisor. In this section, we describe briefly two functions for handling global
properties of divisors.

The function mapToProjectiveSpace gets the global sections of O(D) and then computes the
corresponding map to projective space. This of course assumes the divisor is graded. In the example
below we project P1 × P1 to one of its terms by calling mapToProjectiveSpace along a divisor of
one of the rulings.

i2 : R = QQ[x,y,u,v]/ideal(x*y-u*v);

i3 : D = divisor(ideal(x,u));

o3 : WeilDivisor on R

i4 : mapToProjectiveSpace(D)

o4 = map(R,QQ[YY , YY],{v, x})

1 2

o4 : RingMap R <--- QQ[YY , YY]

1 2

Still assuming the divisor is graded, the function baseLocus finds a defining ideal for the locus
where O(D) is not generated by global sections. This is done by computing the cokernel of O⊕n −→
O(D) where H0(X,O(D)) has a basis of n distinct global sections and the map is the obvious one.
In the following example, we compute the base locus of a point on an elliptic curve, and also two
times a point on an elliptic curve (which is degree 2 and hence base point free).

i2 : R = QQ[x,y,z]/ideal(y^2*z-x*(x+z)*(x-z));

i3 : D = divisor(ideal(x,y));

o3 : WeilDivisor on R

i4 : baseLocus(D)

o4 = ideal (y, x)

o4 : Ideal of R

i5 : baseLocus(2*D)

o5 = ideal 1

o5 : Ideal of R

4. Checking properties of divisors

The package Divisor can check divisors for several properties. First, we describe the method
isCartier.

5

i2 : R = QQ[x,y,z]/ideal(x^2-y*z);

i3 : D = divisor(ideal(x,y));

i4 : isCartier(D)

o4 = false

i5 : nonCartierLocus(D)

o5 = ideal (z, y, x)

o5 : Ideal of R

i6 : isCartier(2*D)

o6 = true

i7 : isCartier(D, IsGraded => true)

o7 = true

The algorithm behind this function is as follows. We compute OX(−D) ·OX(D) and check whether
it is equal to OX . In general, OX(−D)·OX(D) always defines an ideal defining the non-Cartier locus
of D, hence the command nonCartierLocus. If the option IsGraded => true, then the relevant
functions saturate the ideals with respect to the irrelevant ideal.

We also briefly describe the method isQCartier.

i8 : isQCartier(5, D)

o8 = 2

This checks whether any multiples n ·D of a Weil divisor or Q-divisor D are Cartier for any integer
n less than or equal to the first argument (in this case n ≤ 5), it may actually search a little higher
than the first argument in the Q-Cartier case due to rounding issues. If it finds that nD is Cartier,
it returns the integer n. If it doesn’t find any Cartier divisors, it returns 0.

Some other useful functions are isPrincipal and isLinearEquivalent. Checking whether a
divisor is principal just comes down to checking whether OX(D) is a free module and checking
whether D ∼ E just boils down to checking whether D − E is principal. In the graded case, we
can do this via Macaulay2 using the prune and isFreeModule commands. Unfortunately, we do
not know an algorithm for deciding if a non-graded module is free (although we still try to prune
the module and more). Therefore isPrincipal and isLinearEquivalent can give a false negative
for non-graded divisors (the function warns you if this might be the case). Likewise, the option
IsGraded can be applied within isLinearEquivlavent, which checks that OX(D−E) is principal
of degree zero.

We can also check whether a divisor D has simple normal crossings by calling isSNC. This first
checks that the ambient space of D is regular, then it checks that each prime divisor of D defines
a regular scheme, finally it checks that every intersection of of prime divisors of D also defines a
regular scheme of the appropriate dimension.

5. Future plans

There are a number of ways that this package should be expanded. One of the most important
things to be done is to further develop the global methods related to divisors. We have recently
added the ability to check whether a divisor is very ample via the isVeryAmple function, which
uses the RationalMaps package. However, there is much more to be done. Some basic intersection
theory between divisors and smooth curves would be natural to include.

While the latest version of the package stores the outputs of some functions in the cache, this
can still be improved. For example, there are likely ways to take advantage of knowing that a given
divisor is Cartier or Q-Cartier.

6

References

[BH93] W. Bruns and J. Herzog: Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39,
Cambridge University Press, Cambridge, 1993. MR1251956 (95h:13020)

[GS] D. R. Grayson and M. E. Stillman: Macaulay2, a software system for research in algebraic geometry.
[Har77] R. Hartshorne: Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics,

No. 52. MR0463157 (57 #3116)

[Har94] R. Hartshorne: Generalized divisors on Gorenstein schemes, Proceedings of Conference on Algebraic Ge-
ometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), vol. 8, 1994, pp. 287–339.
MR1291023 (95k:14008)

[Har07] R. Hartshorne: Generalized divisors and biliaison, Illinois J. Math. 51 (2007), no. 1, 83–98 (electronic).
MR2346188

Department of Mathematics, University of Utah, 155 S 1400 E Room 233, Salt Lake City, UT, 84112
E-mail address : schwede@math.utah.edu

E-mail address : zyy5054@gmail.com

7

	1. Introduction
	Acknowledgements

	2. Construction, conversion and group operations for divisors
	3. Modules, ideals, divisors and applications
	3.1. Pulling back divisors
	3.2. Global sections

	4. Checking properties of divisors
	5. Future plans
	References

