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Abstract. Complex networks are used to represent real-world systems
using sets of nodes and edges that represent elements and their interac-
tions, respectively. A principled approach to understand these network
structures (and the processes that give rise to them) is to formulate
generative models and infer their parameters from given data. Ideally,
a generative model should be able to synthesize networks that belong
to the same population as the observed data, but most models are not
designed to accomplish this task. Due to the scarcity of data in the form
of populations of networks, generative models are typically formulated
to learn parameters from a single network observation, hence ignoring
the natural variability of network populations. In this paper, we eval-
uate four generative models with respect to their ability to synthesize
networks that belong to the same population as the observed network.
Our empirical analysis quantifying the ability of network models to repli-
cate characteristics of a population of networks highlights the need for
rethinking the way we evaluate the goodness of fit of new and existing
network models.
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1 Introduction

Many natural and artificial systems can be described as networks composed
of sets of nodes and edges that represent system elements and their interac-
tions, respectively [20]. The structure of these complex networks can also capture
the functional abilities of the system they represent. The analysis and model-
ing of complex networks has provided transformative perspectives, models and
methods in diverse application domains such as computer science, sociology,
chemistry, biology, anthropology, psychology, geography, history and engineer-
ing [11,20]. In particular, the increasing availability of network data from a
wide variety of sources such as the internet, online social networks, citation and
collaboration networks, biological networks (brain connectivity, protein-protein
interactions), etc. has fueled a great deal of interest in the analysis and modeling
of networks.
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A goal of network modeling is to solve the problem of decoding how the
observed structure of a network supports its perceived/desired function [1]. As
a consequence, a long-standing question in the network science community has
been regarding the existence of a model capable of generating synthetic networks
that are statistically representative of real networks. Most of the existing models
either make assumptions biased by system-specific observations that are not
plausible across domains, or focus on replicating a few predefined topological
features, such as degree distribution and clustering, at the expense of other
potentially more important characteristics. Without any indication that they are
either necessary or sufficient as descriptors for the actual network data, these
summary quantities can often be highly misleading [11]. Further, even when a
model is capable of consistently reproducing a set of target properties, it might
fail to capture the naturally occurring stochasticity in those properties [12]. This
is depicted in Fig. 1b, which shows the variance in a population of real-world
networks (evaluated using five different network properties) compared with the
networks synthesized by dk-random graphs [21].

Definition 1 (Network Population). Let G1(V1, E1) be a network that has
non-zero probability of being generated using the process A∗. A set of such real-
izations GA∗ = {G1(V1, E1), . . . , Gk(Vk, Ek)} is called a network population.

The inability of certain network models to reproduce the naturally occurring
variability in networks can be attributed to the fact that they sample each edge
independently through Bernoulli distributions [19]. Further, modeling networks
based on a single network observation might bias a network model to synthesize
networks that over-fit the observed network, thus ignoring the natural variability.
In statistical analysis, the goodness of fit of a model is evaluated by measuring the
discrepancy between observed values and the values expected under the model
in question. Similarly, in the context of networks, we would like to evaluate
the ability of a model to approximate the population of networks that can be
created by a process A∗ using a single observed network G∗ (see Fig. 1a for a
pictorial representation). Unfortunately, we generally do not have a population
of independent instances of networks that can be used to draw a set of samples
[17]. To recap, an ideal generative model M would exactly correspond to the true
process A∗ that defines the dynamical processes responsible for the observed
data G∗. That is, if A∗ defines a probability distribution PG(A∗) ∀G ∈ A∗,
then PG(M) and PG(A∗) would be identical. As stated above, A∗ is usually
unknown and the number of observed networks in the data G∗ are usually small
(sometimes only one).

In this work, we study the distributional properties of four competing gen-
erative models: Chung-Lu model and dk-random graphs, which are designed
to match specific properties of the observed network, and exponential random
graphs and action-based network generators, which were designed to capture
local graph properties (Sect. 2 briefly describes each model). We consider net-
works drawn from three known processes and three real-world populations. For
each model, we learn parameters from a representative sample (see Fig. 1a).
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(a) Assuming G∗ is not an outlier, how
well do existing network models ap-
proximate the process A*?

(b) Variance in real-world data of Indian
villages versus networks synthesized by dk-
random graphs.

Fig. 1. Evaluation of network models: Fig. 1a depicts the procedure used for eval-
uating network models in this paper, while Fig. 1b highlights the need for such a
procedure. Social networks in Indian villages [4] is the data used in Fig. 1b. The net-
works are compared using the Kolmogorov-Smirnov distance on five different network
properties, namely: degree distribution (DD), local assortativity (LA), local transitiv-
ity (LT), PageRank (PR), and Betweenness (Bet). Principal component analysis of the
five properties was performed, where the first two principal components were able to
account for more than 85% of the variance.

Then, the learned models are used to synthesize networks followed by an inves-
tigation of their distributional properties. This evaluation is done by comparing
the statistical properties of the synthesized networks with the properties of the
corresponding population of networks.

2 Background

In this section, we briefly introduce the four generative models that are used in
the empirical analysis in Sect. 4. Where applicable, details regarding user-defined
inputs have also been provided. Further, as shown in Fig. 1a, each model uses
the network G∗ to learn a fixed set of parameters.

2.1 Chung-Lu Model

In the Chung-Lu model [6,7], a vertex i is assigned a degree di from the given
degree distribution and an edge is placed between the vertex pair (i, j) with
probability proportional to didj , i.e. the probability that an edge exists between
nodes i and j is given by

Pi,j =
didj∑
k dk
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The Chung-Lu model is often used as the baseline for comparison owing to its
simplicity and ability to synthesize fairly realistic networks [24]. Unfortunately,
the Chung-Lu model synthesizes networks with low clustering coefficients making
it unsuitable for most real-world applications.

2.2 Exponential Random Graphs

One of the most popular statistical network models in the social science literature
are the exponential random graph models (ERGM) [29,32]. ERGMs represent
probability distributions over networks with an exponential linear model that
uses feature counts of local graph properties considered relevant by the modeler
(for example, edges, triangles, paths, etc.):

P (Y = G∗|θ) =
1
Z

exp(θTφ(G∗))

where (i) φ(G∗) are feature counts of G∗; (ii) θ are parameters to be learned;
(iii) Z is a normalizing constant. Though ERGMs are the most widely used
models for social networks, they are plagued with the degeneracy problem (i.e.,
the probability distribution is biased towards empty and complete networks),
whereas real-world networks are sparse. In our experimental evaluation, the fol-
lowing feature counts φ(G∗) were used as they are known to be capable of
circumventing the degeneracy problem (see [13,28] for more details): (i) total
number of edges, (ii) geometrically weighted degree distribution, (iii) geomet-
rically weighted dyadwise shared partner distribution, and (iv) geometrically
weighted edgewise shared partner distribution.

2.3 dk-Random Graphs

In [21] it was observed that fixing some structural properties in a network model
to those observed in the given network can lead to the appearance of other
statistical properties as a consequence. These observations follow from earlier
research on the dk-series [16], which defines a series of null models or random
graph ensembles [21]. Consequently, dk-random graphs [21] model networks as
random ensembles, where ensemble size is controlled using dk-distributions. dk-
random graphs rely on ergodic edge-swapping operations to sample networks
from an ensemble defined using the chosen dk-distributions. Experimental results
[2,21,27] have shown that the networks synthesized by dk-random graphs have
very low dissimilarity to most real-world networks. Despite this fact, the lim-
ited inferential capabilities and inability to perform tasks such as compression,
extrapolation, etc. limit the utility of dk-random graphs. In our empirical analy-
sis, we used the dk2.5 variant as it is known to outperform other network models
on a variety of measures [2,27].

2.4 Action-Based Network Generators

The action-based approach of [2] models networks using local node interactions
based on simple link creation processes known as actions. An action is a decision
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process a node uses to form a link with another node. Given a pre-defined set of
actions, the aim of action-based networks is to learn a probability distribution
over these actions, such that the resultant model can synthesize networks sta-
tistically similar to a given network observation. A synthesis algorithm f(M, n)
can then be used to synthesize networks containing n nodes using the learned
action-based model M, leading to action-based network generators (ABNG).
The fundamental idea behind action-based networks is to define a unifying net-
work generative process, which follows from observations by [33] who note that
there must exist an assembling algorithm to combine local mechanisms for emer-
gence of different complex network structures. For an observed network G∗, the
action-based model M is determined by solving a multi-objective optimization
problem. In our empirical analysis, we used degree distribution, local assorta-
tivity [25], and local transitivity of the observed network as the set of network
properties in the objective function.

3 Experimental Setup

Evaluation of the distributional properties of a generative model requires a
well-defined methodology that correctly represents the distribution over net-
works. Although a model-based technique for hypothesis testing of networks has
been proposed in the literature [18], it heavily relies on the choice of a baseline
model. Alternatively, one could build on the concept of a network morphospace
[3], which provides a coarse-grained approach for classifying and mapping net-
work architectures according to a set of network-level structural characteris-
tics. The network morphospace can be transformed to a network dissimilarity
space (DG ⊂ R

d), where networks are placed based on their dissimilarity to the
observed network G∗ ∈ G with respect to a variety of node-level structural char-
acteristics. The true process and network models also have counterpart distribu-
tions PDG

(A∗) and PDG
(M) in the network dissimilarity space. In an appropri-

ately defined dissimilarity space, if PDG
(M) sufficiently approximates PDG

(A∗),
we might be able to conclude that model M can synthesize networks that belong
to the same population as the observed network G∗.

The utility of such a network dissimilarity space relies heavily on the choice
of node-level metrics used for network comparison. Network science provides
numerous quantitative tools to measure and classify different patterns of local
and global network architectures across disparate types of systems. A set of node-
level measures that could prove particularly useful for the network dissimilarity
space is provided by the dk-series [21], which is a systematic series of properties
(Y0, Y1, . . . ) of network structure defined in a way such that each Yi provides more
detailed information about the network structure and Yn fully characterizes a
network with n nodes. [21] have shown that the first three terms in the dk-series
(Y = degrees + correlations + clustering/transitivity) are capable of almost
fully defining local and global organization of most real-world networks that do
not exhibit community structure.
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4 Experimental Results

In our experiments to evaluate the distributional properties of generative models,
we propose to use the Kolmogorov-Smirnov statistic for evaluating the dissim-
ilarity between networks based on node-level properties of degree, correlations
and clustering. To examine the ability of existing generative models to approxi-
mate the ground truth process using a single network observation (assuming it
is representative of the true process with respect to the measures of interest),
we propose two different experiments: (i) a controlled experiment where the true
process is known, and (ii) set of real-world networks that have most likely evolved
from a common generative process (for example, social interaction networks of
different villages).

The following datasets were used for real-world network populations: (i) Con-
tact Networks: 69 daily cumulated networks where nodes represent visitors of
a Science Gallery while the edges represent close-range face-to-face proximity
between the concerned persons [14]; (ii) Social Networks in Indian Villages: Data
from a survey of social networks in 75 villages in rural southern Karnataka, a
state in India [4]; and (iii) Autonomous Systems: The graph of routers compris-
ing the Internet organized into sub-graphs called Autonomous Systems (AS).
The dataset [30] contains 733 daily instances which span an interval of 785 days
from November 8 1997 to January 2 2000. The first 100 networks were used in
this study. The networks obtained from each of these datasets have most likely
evolved from similar underlying social mechanisms, hence belonging to the same
network population.

Figure 2 shows the results for the first set of experiments when the Barabási-
Albert [5] and Forest Fire models [15] are used as the true processes A∗. For
the second experiment, we consider the three real-world network populations
described above, with results presented in Figs. 3 and 5. Results presented in
Figs. 2, 3, 4 and 5 are composed of three different plots:

1. Scatter plots below the diagonal show each synthesized/real network as a
point in the network dissimilarity space, where the coordinates are computed
using the Kolmogorov-Smirnov distance of the associated properties when
the network is compared to the observed network G∗ (the observed network
itself is at the (0,0) position). Network models (colored triangles) showing
higher overlap with networks originating from the true process (black dots)
are better.

2. In the blocks above the diagonal, we evaluate the amount of overlap between
PDG

(A∗) and PDG
(M) using the 2-D KS distance [22] (lower the better). This

quantifies the extent to which a given generative model is able to reproduce
the distributional properties of the population representing the true process.

3. Plots along the diagonal show the density distributions of the Kolmogorov-
Smirnov distance of the associated properties when the network is compared
to the observed network G∗.

Based on Figs. 2 and 3 we can easily conclude that ABNG consistently out-
performs the other models considered here by replicating the natural variability
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Fig. 2. Empirical evaluation of the ability of network models to approximate the ground
truth system based on observation of a single network. The Barabási-Albert and Forest
Fire models are used as the true generators.

in the network population of the true process in both the experimental settings.
The plots also show that dk-random graphs, which are considered to be the state-
of-art, fail to capture the variability of the true generative process and potentially
over-fit the observed network. This leads us to question the fundamental idea
behind dk-random graphs, i.e. whether exactly preserving the distribution of dif-
ferently sized subgraphs of a given network leads to a good model for real-world
networks. In fact, in most cases we see that the Chung-Lu model, by matching
the degree distribution in expectation, outperforms dk-random graphs. These
results highlight the need for evaluating the ability of a generative model to
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Fig. 3. Empirical evaluation of the ability of network models to approximate the ground
truth system based on observation of a single network. Two real-world datasets were
considered: contact networks, and social networks in Indian villages.

capture the distributional properties of a network population as comparing only
with the observed network might produce misleading results.

4.1 Networks with Community Structure

While the network dissimilarity space defined in Sect. 3 works well for networks
without communities, it will prove ineffective for networks with community struc-
tures, which is property seen in most real-world networks [10]. In this section, we
extend the network dissimilarity space by adding a fourth dimension to compare
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the community structures of two networks. To compare community structures,
we first use a community detection algorithm1 to decide the membership for
each node, followed by evaluation of the normalized mutual information mea-
sure [8]. We also add the microcanonical stochastic block model (referred to as
SBM-fit in the plots) [23] to our set of generative models and evaluate its ability
to replicate the community structure of these networks.

Fig. 4. Empirical evaluation of the ability of network models to approximate the ground
truth system based on observation of a single network. The stochastic block model is
used as the true generator, and the ability of different models to replicate the commu-
nity structure is tested.

Again, we performed two different experiments to test the validity of our
extended network dissimilarity space: (i) a controlled experiment where the true
process is known, and (ii) set of real-world networks (with communities) that
have most likely evolved from a common generative process. For the first case, we
used the standard version of the stochastic block model [9,31] with 3 communities
of different sizes, and the results can be seen in Fig. 4. As expected, ABNG
performs well on the original measures, but fails to reproduce the community
structure, while the fitted SBM is the most likely candidate capable of replicating
the true process. This is an expected result as the four original models are not
designed to create networks with communities. Fig. 5 shows the results for the
network of Autonomous Systems, where only the fitted SBM was able to capture
some of the features of the true process. Results presented in Fig. 5 show the

1 Infomap community detection algorithm [26] was used in our experiments.
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inability of the microchanonical block model to reproduce the local transitivity
of the true generative process, thus creating an exciting direction for future
research.

Fig. 5. Empirical evaluation of the ability of network models to approximate the ground
truth system based on observation of a single network. The ability of different models
to replicate the community structure of networks of autonomous systems is tested.

In summary, our empirical analysis has highlighted the importance of consid-
ering distributional properties of network populations for evaluating generative
models of complex networks. This shows that there is an urgent need to rethink
the network modeling problem and create new models that can reproduce the
variability in the structural properties of network populations.

5 Conclusions

Traditional approaches for evaluating the ability of a network model to synthe-
size networks exhibiting real-world characteristics have compared the similarity
of the synthesized networks with the observed network. While this approach
assumes that the particular observation is representative of the underlying pro-
cess that created the observation, it does not account for the natural variability
of the population from which it is sampled. Our experiments have highlighted the
importance of considering network populations for evaluating generative models.
Although it is difficult to obtain data corresponding to network populations, we
have shown that it is possible to establish a baseline test set to evaluate the
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ability of a network model to capture the distribution of network populations.
This test set can then be used for preliminary validation of a network model
before it is used for drawing conclusions about real-world networks.
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