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A B S T R A C T

Computer vision sensors have great potential for accurate remote displacement monitoring in the field. This
paper presents InnoVision, a video image processing technique developed by the authors to address a number of
difficulties associated with the application of the vision sensors to monitoring structural displacement responses
in the outdoor condition that are rarely comprehensively studied in literatures. First, limited lighting condition
in the field presents a challenge to tracking low contrast features on the structural surface using intensity-based
template matching algorithms. For tackling this challenge, a gradient based template matching algorithm is
formulated. Second, to cost-effectively monitor structural displacements at multiple points using one camera,
widely used interpolation subpixel methods are investigated and incorporated into InnoVision. Third, camera
vibration in the field causes displacement measurement errors. A practical solution is proposed by applying the
multi-point monitoring to track both the structure and a stationary reference point. The effect of the camera
vibration can be canceled by subtracting the reference displacement from the structural displacements. Several
laboratory and field tests are conducted to evaluate the InnoVision’s performance. One of the field tests is
conducted in a challenging low lighting condition at night on a steel girder bridge to validate the robustness of
InnoVision in comparison with two other vision sensing methods. Another field test is carried out on the
Manhattan Bridge to demonstrate the efficacy of the proposed technique for canceling camera vibration and the
capability of InnoVision to simultaneously monitor multiple points under the effect of camera vibration.

1. Introduction

Monitoring of structural health conditions is necessary for early
detection of problems and prevention of catastrophic structural failure
of aging infrastructure. Structural health monitoring is often based on
measurement of structural vibration, acceleration in particular.
However, structural displacements are more sensitive than acceleration
to measure for low-frequency structures such as high-rise buildings and
long-span bridges. Generally, displacement sensors can be categorized
into contact type and non-contact type. Linear variable differential
transformer (LVDT) [1], and global positioning system (GPS) [2–5] are
the widely used contact type sensors. Laser displacement sensor and
vision sensor are the main non-contact type sensors.

The LVDT and GPS are limited by the accessibility of the structure
and require cumbersome installation. LVDT which measures the dif-
ferential displacement between the device and the measurement target
needs to be installed on a stationary platform that is free of vibration.
However, it is hard to find a stationary platform for some of the
structures. Other factors such as wind force, measuring distance and

installation costs also make it impractical for monitoring large struc-
tures especially for long-term monitoring. The challenge of using GPS
for displacement monitoring is its high cost and low accuracy that is
insufficient for structural dynamic response analysis. The accuracy of
GPS-based displacement sensor is around ± 1.5 cm in horizontal axis
and ± 2 cm in vertical axis [2,3,5].

The non-contact type sensors have advantages over contact type
sensors in measuring displacement without accessing the structure.
Laser displacement sensor [6] is a high fidelity non-contact sensor and
is widely recognized. However, similar to the LVDT, the laser dis-
placement sensor needs a stationary platform for reference. Moreover,
strong laser beams required for long distance monitoring may impose
danger to human safety/health.

Vision-based displacement sensors provide a simple, cost-effective,
and accurate alternative for remote displacement monitoring. Various
vision sensors have been developed and applied for displacement
monitoring including the widely used digital image correlation (DIC)
[7–13], up-sampled cross correlation (UCC) [14], phase-based method
[16,17], orientation code matching (OCM) [18,19] and others [20–25].
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However, there are a few challenges associated with applying vision
sensors in monitoring displacement response in the field that were
rarely comprehensively studied in literatures, such as low lighting en-
vironment, insufficient camera resolution, and evident camera vibra-
tion. A new video image processing technique InnoVision was devel-
oped to tackle these difficulties.

First, it is difficult to accurately track the structural displacement of
natural targets with low contrast features in low light conditions using
intensity-based template matching algorithms (DIC and UCC methods).
Inspired by the histogram of oriented gradients (HOG) algorithm [26]
and the template matching method – PQ-HOG algorithm [27], a new
gradient based template matching algorithm was developed in the In-
noVision for monitoring targets with low contrast features.

The second challenge for vision sensors is insufficient resolution
when monitoring multi-point structural displacements. A subpixel al-
gorithm needs to be implemented in the vision sensor to increase re-
solution. There are several kinds of subpixel methods including gra-
dient-based methods [28,29], Newton-Raphson method [28], up-
sampling cross correlation method, generic methods [30,31], phase
correlation method [32], neural network methods [33], and the inter-
polation methods. Interpolation methods are the most popular subpixel
methods in the vision sensors because of their simplicity, accuracy and
computational efficiency [9,16,19,34,35]. Three widely used inter-
polation subpixel methods will be evaluated and incorporated into In-
noVision, which are spline interpolation, cubic convolution [36], and
paraboloid fitting method [19,35].

Camera vibration is the third challenge when using vision sensor in
the field. Only few studies have been published on camera vibration
cancellation. A practical technique for camera vibration cancellation
using InnoVision was proposed by simultaneously tracking both the
structure and a stationary reference point using InnoVision. The camera
vibration can be canceled by subtracting the displacements of the re-
ference point from the structural displacements. The InnoVision also
has the capability of simultaneous displacement monitoring of multiple
points on the structure under the effect of camera vibration. The per-
formance of the InnoVision was evaluated through several laboratory
and field tests.

This paper was arranged in the following way: Section 2 covers the
configuration and algorithms of InnoVision (Section 2.1), and the
practical technique for camera vibration cancellation by applying
multi-point monitoring using InnoVision (Section 2.2). In Section 3,
three laboratory tests are included. The first test investigates and in-
corporates three interpolation subpixel methods in InnoVision to eval-
uate the performance of the subpixel methods (Section 3.2). The second
laboratory test evaluates the robustness of InnoVision in low contrast
features (Section 3.3), The third test (Section 3.4) demonstrates the
efficacy of the practical technique for camera vibration cancellation and
further validates the robustness of InnoVision to low contrast features;
Section 4 covers the field test conducted on a steel girder bridge in a
challenging low lighting condition to demonstrate the robustness of
InnoVision in comparison with two other methods; Section 5 covers the
other field test conducted on Manhattan Bridge for validating the effi-
cacy of the proposed technique for canceling camera vibration, and the
advantage of InnoVision for monitoring multiple points simultaneously
under the effect of camera vibration; Section 6 concludes this paper.

2. Multi-point displacement monitoring of low contrast features

2.1. InnoVision system

The InnoVision system contains a video camera and a computing
unit. The video camera used in the system is a mono PointGrey USB 3.0
Camera of model FL3-U3-13Y3M-C that has 1280 by 1024 pixels of
4.8 μm in size. The video camera is installed in a remote location to
capture the structural vibrations. The captured video is then trans-
mitted to the computing unit installed with a video image processing

software for extracting displacements from the video images. The
computing unit has the Intel i7 CPU and 9 Gb RAM. The power con-
sumption of the camera is less than 3 Watts. A power supply with the
capacity of about 3 Wh is required for the camera for one hour of field
test. In the current InnoVision system, the camera was connected to the
computing unit by a USD 3.0 connection cable and powered by the
battery of the computing unit. Considering the battery capacity of
65 Wh and the power consumption of at most 37Watts for the com-
puting unit, the battery of the computing unit was able to power both
the computing unit and the video camera for about an hour and half.
Alternatively, the camera can also be connected by a general-purpose
input/output (GPIO) cable to an external power supply.

The overview of the video image processing software was presented
in Fig. 1. The InnoVision system uses a video camera to record struc-
tural vibrations remotely by tracking a target of natural features on the
structure surface. At first, a target of features is selected on the first
frame, then the pixel displacement of the target in subsequent frames in
the video is obtained by the template matching algorithm, in this case, a
robust gradient based similarity matching algorithm developed in In-
noVision to cope with low contrast features in low lighting condition.
To increase the displacement resolution, a subpixel method is im-
plemented in the InnoVision. Finally, the subpixel displacement of the
target is converted into physical displacements by multiplying a scaling
factor (SF ). By selecting and tracking multiple targets, the vision sensor
is able to monitor displacements of multiple points on a structure using
only one video camera. To cancel the effect of camera vibration, a new
practical technique is developed using InnoVision by tracking the
background target and the structure targets simultaneously.

2.1.1. Dense-RHOG code based similarity matching with subpixel resolution
It is inevitable the vision sensor needs to track low contrast features

in changing lighting conditions when applied for field measurements.
Low contrast features have intensities very similar to that of the back-
ground, making it challenging for intensities based template matching
algorithms to accurately track the structural vibrations. A new simi-
larity matching algorithm based on the gradient information was de-
veloped in InnoVision for tracking low contrast features in challenging
low light condition. The proposed similarity matching algorithm is in-
spired by the sparse HOG feature descriptor [26], and the PQ-HOG
template matching algorithm [27]. The new gradient based similarity
matching algorithm is based on a new similarity estimation function
and the dense rectangular HOG (dense-RHOG) feature descriptor. The
dense-RHOG represents the steepest ascent orientation and magnitude
estimated from the pixel neighborhoods. The dense-RHOG thus ob-
tained contains information of the texture and shape of the target and is
essentially robust in low illumination condition and invariant to
changing illumination conditions. The detail of the new similarity
matching algorithm with pixel level analysis is shown below.

At first, the densest one-pixel-step HOG code grid is computed. Each
pixel is transformed into a four-bin feature descriptor, dense-RHOG

Fig. 1. The overview of the video image processing software.
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code, which is estimated from nine pixel neighborhoods. Fig. 2 presents
an example for converting a pixel intensity in the blue shade into a four-
bin dense-RHOG code estimated from the pixel neighborhoods within
the red window.

Assume a discrete digital image is represented by I x y( , ), its hor-
izontal and vertical derivatives f f( , )x y are computed respectively:

= ∂
∂

= ∗ + − −f x y I
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Then the gradient orientation angle θ and gradient magnitude Gm at
each pixel are calculated:
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Since the numerical value of the gradient orientation angle θ is
confined to −( , )π π

2 2 , the orientation bin Gb is assigned by quantizing θ
into four bins:
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As presented in Fig. 3, each orientation bin is given a numerical
assignment.

The dense-RHOG is calculated from the gradient magnitude Gm of
the nine neighborhood pixels and their corresponding orientation bin
values Gb:
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A customized similarity estimation function for dense-RHOG codes
is employed to evaluate the similarity between any two images of the
same size. The best match between the dense-RHOG code images of the
template T and any object image I from the same scene is searched by
maximizing the measured similarity γ in the form of mean of normal-
ized cross correlation of each bin of the matching dense-RHOG codes, as
shown below:
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where RIm n, and RT are the dense-RHOG code images of the object image
and the template image respectively, and m n( , ) shows the position of
the object image in the scene. M N, are the sizes of the template image
in the axes of both directions.

The template image needs to be compared with the entire scene
image to find the best matching point, where the similarity γ reach its
maximum. This process can be time consuming especially when the
scene image is large. Therefore, the dense-RHOG matching process is
carried out within a region-of-interest (ROI) window defined based on
the current best matching position of the template image.

In the matching process, the similarity is calculated for each pixel
position in the scene image and a similarity map containing the values
of the similarity measurements is obtained as the rectangular grid
shown in Fig. 4, thus the resolution of the best matching position as
well as the displacement obtained is one pixel. To increase the dis-
placement resolution, a subpixel algorithm needs to be implemented
and applied to the similarity map in InnoVision. Three interpolation
subpixel methods paraboloid interpolation, cubic convolution, and
spline interpolation will be implemented and evaluated, and the
method with the best performance will be chosen to be employed by
InnoVision for subpixel resolution.

The paraboloid interpolation is proposed by Gleason et al. [35] and
was applied by the authors [19]. In this method, the value distribution
within a small window (3×3 pixels) of the similarity map is assumed

Fig. 2. Example for transforming a pixel into dense-RHOG code.

Fig. 3. Orientation bin. Fig. 4. Example of similarity map.
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to be paraboloid. The coefficients of the paraboloid surface which fits
all the points in the window is obtained through least squares method.
The extreme similarity value and its coordinate are obtained by finding
the peak value on the paraboloid surface. The extreme coordinate thus
obtained is the subpixel coordinate (M(x′, y′)) used for obtaining the
subpixel displacement D by comparing with the coordinate of the
template in the reference image P x y( , ).

= ′ ′ −D M x y P x y( , ) ( , ). (10)

In the cubic convolution, the surface of the similarity map was in-
terpolated using bi-cubic convolution by applying a convolution kernel
proposed by Keys in 1981 [36] in axes of both directions. In the spline
interpolation, the similarity map is fitted by a third order interpolation
surface, as that presented in Fig. 4, based on the properties that the
surface passes through all the points and the first and second deriva-
tives will be continuous everywhere including the knots to ensure the
spline will take a shape that minimizes the bending. The two-dimen-
sional cubic convolution and spline interpolation can be applied using
MATLAB built-in function interp2.

After an interpolation subpixel method is employed, InnoVision can
produce subpixel displacements with sufficient resolution. Then, the
obtained subpixel displacement in the image coordinate needs to be
converted into displacement in the physical coordinate, as shown
below:

= ∗X X SF,physical image (11)

where SF is the scaling factor which can be calculated by comparing the
physical dimension of a measured object with the pixel dimension in
the image plane, as presented below and Fig. 5:

=SF
D
D

.physical

image (12)

2.2. Multi-point displacement monitoring for camera vibration cancellation

InnoVision can be used for robust multi-point displacement mon-
itoring using only one camera after gaining sufficient resolution by
employing one of the interpolation subpixel methods. However, am-
bient ground vibrations and the wind are inevitable in the field and will
cause camera vibrations, therefore causing errors in displacement re-
sults. The effects of camera vibration become more significant when the
target being monitored is located far away from the camera since the
signal to noise ratio will decrease with the increase of target distance.

The effect of the camera vibration can be canceled by a practical
technique that applies the multi-point measurement using InnoVision.
To cancel the camera vibration, at first, the object targets which are
referred as targets are selected on the monitored structure; and the
background target (BG target) is selected on the stationary background
structure. The displacements of the targets and the BG target are
monitored simultaneously. The displacements detected on the BG target
can be regarded as the measurement errors due to camera vibration.

The displacement of the BG target is equal to the error displacement
of the scene due to camera vibration in the image coordinate:

=X X .image
BG

image
camera

(13)

By subtracting the displacements of the BG target (XimageBG ) from the
displacements of the targets (Ximage

target) before applying the SF, the camera
vibration can be canceled in the new targets’ displacements in image
coordinate (Ximagenew ), given as below:

= −X X X .image
new

image
target

image
BG

(14)

Because the displacement subtraction is performed before applying
the scaling factor, the SF for the BG target is not required. The dis-
placement in image coordinate is converted into the displacement in
physical coordinate using the SF of the target after vibration cancella-
tion.

= ∗X X SF.physical image
new new

(15)

3. Laboratory tests

3.1. Experiment setup

A two-story shear structure was monitored in the experiments, as
shown in Fig. 6. Two laser displacement sensors (LDS) were installed at
40 cm next to the structure as reference sensors. The video camera was
located 4.175m away from the structure. A shaking table was placed
under the video camera to simulate the camera vibration. The SF of
video images was 0.7724 mm/pixel. A hammer was used to induce im-
pact force on the second floor of the structure. The movements of the
structure due to the impact force were recorded by the reference laser
displacement sensors and the vision sensor. The displacements obtained
by the InnoVision were evaluated by comparing with the reference
data. Three tests were conducted with different testing scenarios as
listed in Table 1: In the first test, to evaluate the necessity and perfor-
mance of the subpixel methods, the video camera remained stationary
without any vibration and three interpolation subpixel methods were
investigated and incorporated into InnoVision. The second test was
conducted in low light condition also without any camera vibration to
validate the robustness of InnoVision to low contrast features in low
lighting condition. In the third test, the video camera was placed on a
shaking table that vibrated under a white noise signal to demonstrate
the efficacy of the practical technique for camera vibration cancella-
tion. The third test was also conducted in low lighting condition to
further validate the robustness of InnoVision.

3.2. Lab test #1 - subpixel algorithm for higher resolution

The displacement resolution of the template matching methods is
limited to 1 pixel which corresponds to 0.7724mm in the laboratory
test due to the video camera quality and long object-to-camera distance.
This resolution is not sufficient for structural dynamic analysis. To in-
crease the displacement resolution, one can either move the video
camera closer to the target, purchase an expensive high-resolution
video camera, or employ a subpixel registration method. To be able to
monitor multiple points, the object-to-camera needs to be very long to
ensure the image plane is large enough. If only the video cameras with
limited quality are available, the first choice is to employ one of the
efficient interpolation subpixel methods. Three of the interpolation
subpixel methods including the spline, cubic convolution, and para-
boloid methods were tested and evaluated by comparing the results
before/after applying the subpixel methods.

In the first laboratory test, the effectiveness of interpolation sub-
pixel methods was evaluated. The results were analyzed then plotted in
Fig. 7. The displacement results obtained without subpixel method did
not match well with the reference data; on the contrary, the displace-
ments obtained after implementing any of the three interpolation sub-
pixel methods matched very well with the reference data. The root
mean squared errors (RMSE) without/with subpixel method wereFig. 5. Physical plane to image plane.
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calculated and listed in Table 2. After implementing the subpixel
methods, the RMSE were significantly reduced by up to 57%. The spline
interpolation method performed the best in the test, therefore was
implemented in the proposed vision sensor, InnoVision. After applying
the spline interpolation subpixel method, the displacement resolution
of InnoVision was improved significantly from 1 pixel (0.7724mm) to
1/20 pixel (0.03662mm) and became sufficient for multi-point

displacement monitoring.
When higher resolution is desired, the interpolation subpixel

method implemented in InnoVision obviates the need for a more ex-
pensive camera. To test the limit of the subpixel methods, the RMSE of
the results obtained with different subpixel resolution using the spline
interpolation subpixel method were compared. Fig. 8 presents the re-
duction in RMSE in percentage versus the denominator of the subpixel
resolution D( ). The subpixel resolution is equal to D1/ pixel. As shown
in the plot, the RMSE was significantly reduced by the subpixel method
up to = ( )D 20 pixel1

20 . When the subpixel resolution is less than 1/20

Fig. 6. Experiment setup and target selection.

Table 1
Laboratory testing scenarios.

Camera vibration
condition

Lighting
condition

Testing element

First test Stationary Good lighting Subpixel
Second test Stationary Low lighting Low contrast

feature
Third test Shake with white noise Low lighting Camera vibration

(a) Measured displacement 

(b) Measurement error
Fig. 7. The measurement results obtained by the vision sensor without /with subpixel methods.

Table 2
Testing error of subpixel methods.

No subpixel Spline Cubic convolution Paraboloid

RMSE (mm) 0.245 0.105 0.112 0.144
Reduction in RMSE (%) – 57.39 54.73 41.67

L. Luo et al.



pixel (D > 20), the RMSE does not improve further. Therefore, the
subpixel resolution limit of InnoVision after applying the subpixel
method is around 1/20 pixel.

To demonstrate the effectiveness of the subpixel method, the field
test on the Manhattan Bridge measurement is used as an example,
which will be explained in more details in Section 4. In the field test,
the scaling factor is 26.76mm/pixel, therefore displacement resolution
before the subpixel method is 26.76mm. After applying the spline in-
terpolation subpixel method, the displacement resolution is improved
significantly to 1.34mm. The camera pixel dimensions currently used
in InnoVisino is 1280 by 1024 pixels. To obtain the same displacement
resolution without applying the subpixel method, a camera with pixel
dimensions of 25,600 by 20,480 pixels (524mega pixels) would be re-
quired, which would be considerably more expensive than the camera
currently used in InnoVision.

3.3. Lab test #2 - robust tracking of low contrast features

Since natural targets on the structure do not have high contrastness
sometimes and the lighting conditions always change in the field en-
vironment, it is inevitable the structure is monitored by tracking low
contrast features in low lighting condition. In the second test, the low
lighting condition was simulated by setting the structure in an en-
vironment illuminated by dim light. A target with low contrast features
was selected on the structure for tracking. The target can hardly be
distinguished from the background since their pixel intensities are si-
milar. The same target under good lighting condition had much higher
contrast from the background as shown in Fig. 9. The displacements of
the target in low lighting condition were obtained by both the proposed
InnoVision method and the traditional DIC. The DIC used for compar-
ison employed the normalized-cross-correlation (NCC) algorithm for
template matching and the spline interpolation subpixel method for
subpixel resolution. The NCC algorithm is implemented by applying the
MATLAB function normxcorr2.

From Fig. 10, the displacements obtained by InnoVision matched

very well with the reference data while the displacements obtained by
DIC did not match well with the reference data. The displacement er-
rors obtained by InnoVision was less than 1mm, while the displacement
errors obtained by DIC reached as high as 3mm. The DIC is expected to
fail catastrophically and diverge in this low lighting condition. But since
the template matching was carried out within a confined ROI and the
displacement was obtained based on the highest correlation point
within the ROI, the erroneous results could be discrete and may ap-
proach to zero. The RMSE of the displacement measurement obtained
by InnoVision (0.431mm) was much lower than that obtained by DIC
method (2.020mm). This test validated the robustness of the InnoVi-
sion in monitoring displacement of low contrast features in low lighting
condition.

However, DIC is effective when a high-contrast artificial target is
used. The displacement measurements obtained by both InnoVision and
DIC through tracking the high-contrast artificial target are presented in
Fig. 10(c). As shown in the plots, both the displacements produced by
the InnoVision and DIC match very well with the reference data. This
validated the accuracy of the InnoVision and DIC techniques used in the
paper when tracking a high-contrast target.

3.4. Lab test #3 - camera vibration cancellation through multi-point
displacement monitoring

The camera vibration due to ambient ground vibration and the wind
is inevitable in the field, and can results in errors in displacement
measurement. The third laboratory test was conducted to validate the
practical technique for camera vibration cancellation through multi-
point displacement monitoring enabled using InnoVision. The camera
vibration in the test was simulated by placing the camera on a shaking
table which was excited by white noise signal. Two targets on the floors
of the monitored structure and one BG target on the background sta-
tionary structure were selected as shown in Fig. 6 and their displace-
ments were tracked simultaneously. The effects of camera vibration
were canceled by subtracting the displacements of the BG target from
the displacements of the targets.

The displacement measurement before and after camera vibration
were plotted in Fig. 11. The measurement errors were greatly reduced
after camera vibration cancellation. The displacements of the targets
after camera vibration cancellation matched very well with the re-
ference data. Table 3 showed the testing errors RMSE were reduced up
to 61% after camera vibration cancellation. The laboratory results
confirmed the efficacy of the practical camera vibration cancellation
technique by applying multi-point vision displacement monitoring.
Since the third test is also conducted in low lighting condition, the
robustness of InnoVision is further validated.

Fig. 8. Reduction of RMSE with improvement of subpixel resolution.

Fig. 9. Target selected for the second laboratory test.
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4. Field test #1 – Validation of robustness of InnoVision

4.1. Setup for field test #1

The robustness of InnoVision in monitoring of low contrast features
was validated in the second laboratory test. A field test was conducted
on a 16.9 m long steel girder bridge to further confirm the robustness of
InnoVision in comparison with two other methods including DIC
method, and UCC method. The field test was conducted at night and

illuminated by a dim flashlight.
A video camera was placed on a stationary point which was per-

pendicular to the bridge at 30 feet (9.14m) away, as presented in
Fig. 12. The vertical displacement responses of the mid-span of the
bridge were captured when a train passed through at the speed of
25mph. A rivet on the mid-span bridge surface was selected as the
target, which had low contrastness from the background because the
test was conducted at night. An LVDT was placed on a stationary
ground under the mid-span of the bridge as the reference sensor. The

(a) (b)

(c)
Fig. 10. Comparison of laboratory measurements, (a) Displacements using natural target. (b) Measurement errors using natural target. (c) Displacements using high-contrast artificial
target.

(a) Measurement of floor 1

(b) Measurement of floor 2
Fig. 11. Displacement measurement before/after camera vibration cancellation.
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reference sensor was utilized to evaluate the performance of InnoVision
and the other two methods: DIC and UCC. The sampling frequency of
the displacement result was 150 Hz.

4.2. Displacement measurement of low contrast features

The measured displacements obtained by the reference sensor and
the vision sensors were depicted in Fig. 13. The measurement of In-
noVision matched very well with the reference data while the DIC
method could only roughly detect the general trend of the displace-
ment. The displacement obtained by UCC method had errors too large
in comparison with the reference data, therefore was not plotted. The
RMSE estimations of the displacement measurements were listed in
Table 4. The RMSE of the measurement results obtained by the In-
noVision (0.28mm) was much lower than that by DIC method (1.8 mm)
and UCC method (29.4mm). The results demonstrated the InnoVision
which is based on the steepest ascent orientation and magnitude is
more robust to low contrast features in low lighting conditions than DIC
and UCC methods which are directly based on pixel intensities.

4.3. Analyses of robustness of InnoVision in comparison with DIC

InnoVision is not sensitive to changes in lighting conditions since
the gradient magnitudeGm and gradient orientation angle θ are decided
by the gradients of intensities as shown in Eqs. (3) and (4) in Section
2.1. On the contrary, the DIC method could not track the target accu-
rately because it relies on image intensities for tracking. Changes in the
lighting conditions may change the correlation value in the DIC
therefore causing errors in the displacement measurement. For ex-
ample, when the intensities offset by a factor of v, the intensities and
the correlation value in the DIC change, but the gradient in either di-
rection will not change. Therefore the orientation angle θ and the or-
ientation magnitudeGm in InnoVision also remain the same as shown in
the functions below:
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When the target has high contrast, small changes in image in-
tensities can be negligible since a rectangular target with the pattern of
×m n pixels instead of one pixel is selected for tracking. However,

when the target has low contrast, small changes in image intensities
may affect the target pattern, therefore resulting in errors in measure-
ment obtained by DIC. Another reason is that in low lighting condition,
the image intensities fluctuates since the photo counts for the fixed
exposure time may vary. The analyses agree with the results in the field
test. As shown in Fig. 13, for the durations of 9.6–10 s in the field test,
the lighting condition changed and caused high-variance and high-
frequency errors in the displacement obtained by DIC. For other dura-
tions, the small-variance errors are probably due to the image in-
tensities fluctuations.

5. Field test #2 – Validation of camera vibration cancellation

5.1. Setup for field test #2

After the robustness of InnoVision is demonstrated in the first field
test, the capability of InnoVision to cancel camera vibration through
multi-point displacement monitoring was further validated in the
second field test. The test was conducted on Manhattan Bridge, a steel
suspension bridge with 448m long span. The dynamic response of the
Manhattan Bridge was captured by a video camera that was located on
Brooklyn Bridge at 447m away from the mid-span of Manhattan Bridge
as shown in Fig. 14. The camera vibration was introduced by the
structural vibration of Brooklyn Bridge which was subjected to constant
traffic.

At first, a natural target was selected on the mid-span of the
Manhattan Bridge and a BG target was selected on a background
building. The displacements of the target and the BG target were ob-
tained by InnoVision. The camera vibration was canceled by sub-
tracting the displacements of the BG target from the displacements of
the target before applying the scaling factor. Recall the pixel displace-
ment due to camera vibration is the same on the whole scene image in
the image coordinate and the displacement subtraction is performed
before applying the scaling factor, the scaling factor for the background
building is not required. The scaling factor for the bridge was estimated
at 26.76mm/pixel. The sampling rate of the displacement measure-
ment was 60 Hz. Since there is not a stationary platform for installing
high fidelity displacement sensor such as LVDT or laser displacement
sensor, the measurement result was validated through dynamic analysis
in frequency domain. Acceleration data taken at the mid-span of the
bridge were used as reference data to compare with the measurement
results in the frequency domain.

Table 3
Testing error before/after camera vibration cancellation.

Before camera
vibration
cancellation

After camera
vibration
cancellation

Reduction (%)

Floor 1 RMSE
(mm)

0.409 0.158 61.45

Floor 2 RMSE
(mm)

0.446 0.206 53.81

Fig. 12. Setup of a field test conducted on a steel girder bridge.
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5.2. Measurement result of camera vibration cancellation

The displacement results before camera vibration cancellation and
after vibration cancellation were plotted in Fig. 15. As shown in the
figure, errors of the displacements were large due to camera vibration
but were significantly reduced after vibration cancellation. The power
spectrum density (PSD) of the displacements after camera vibration
cancellation was plotted in Fig. 16, from which the first four identified
resonant frequencies 0.22 Hz, 0.30 Hz, 0.40 Hz, and 0.50 Hz matched
very well with the reference data identified from the accelerations as
listed in Table 5. In Table 5, V1, V2 and V3 represent the first three
vertical resonant frequencies and T1 represents the first torsional re-
sonant frequency. A high pass filter with cut-off frequency at 0.06 Hz
was applied to the displacements. It can also be seen in Table 5 that the
resonant frequencies identified from the displacement before camera
vibration cancellation did not match with the reference data. This is
because the error due to camera vibration is so strong that it suppresses
the bridge vibration. Some of the identified resonant frequencies are
due to camera vibration and it is hard to decide which frequencies are
the natural frequencies of the bridge, therefore the frequency readings
can be inaccurate before camera vibration cancellation. The difference
of the identified resonant frequencies before/after camera vibration
cancellation validates the necessity and the efficacy of the camera vi-
bration cancellation method.

5.3. Simultaneous multi-point displacement monitoring with camera
vibration cancellation

The InnoVision was able to accurately monitor bridge displacement
after camera vibration cancellation. Moreover, InnoVision has ad-
vantage over accelerometers or GPS in bridge monitoring that it can
monitor multiple points on the bridge simultaneously without the need
of moving the sensor or using multiple sensors.

Five targets were selected along the bridge span and one BG target
was selected on the background building as shown in Fig. 17. The
displacements of the targets after camera vibration cancellation were
extracted and plotted in Fig. 18. The structural deflection responses of
multiple points on the bridge under a moving train load were clearly
reflected by displacement measurement. Target 1 and target 5 were the
first and last to reach the peak displacement respectively, it can be
predicted the train passed through the bridge from the left to the right
side of the image plane which matched the video footage. The field test
validates the InnoVision’s advantage to simultaneously monitor struc-
tural responses of multiple points on a bridge under the effect of camera
vibration.

6. Conclusions

This study contributes to a new video image processing technique
InnoVision developed with capabilities of robust tracking of low con-
trast features, high subpixel resolution, multi-point displacement
monitoring, and practical camera vibration cancellation in response to
a number of difficulties associated with vision based structural dis-
placement monitoring in the field. Some of the important conclusions of
this study are summarized as follows:

1. To enable robust tracking of low contrast features by InnoVision, a

(a) (b)

Fig. 13. Comparison of field measurement obtained by different methods; (a) measured displacement; and (b) measurement error.

Table 4
Testing error of different methods.

InnoVision DIC UCC

RMSE (mm) Natural Target 0.28 1.88 29.4

Fig. 14. Field test bird-view and setup.
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Fig. 15. Displacement measured before/after camera vibration cancellation.

Fig. 16. Frequency plot before/after camera vibration cancellation.

Table 5
Resonant frequencies before/after camera vibration cancellation.

Data type Data Year 1st resonant V1 (Hz) 2nd resonant V2 (Hz) 3rd resonant T1 (Hz) 4th resonant V3 (Hz)

Reference acceleration data [37] 2009 0.23 0.30 0.37 0.50
Displacement before vibration cancellation 2017 0.16 0.22 0.26 0.31
Displacement after vibration cancellation 2017 0.22 0.30 0.40 0.50
Recent acceleration data 2016–2017 0.23 – 0.40 0.51
GPS data [38] Before 2009 0.23 – 0.30 0.49

Fig. 17. Targets for monitoring multiple points.
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new gradient based template matching algorithm was proposed
based on the dense-RHOG feature descriptor and a new similarity
matching method. The dense-RHOG represents the steepest ascent
orientation and magnitude that contains information of the texture
and shape of the target and is therefore essentially robust to low
contrast features in low illumination condition and invariant to
changing illumination conditions. The low contrast features were
successfully tracked with high accuracy by InnoVision in both the
laboratory tests and the night field tests on a railway bridge.

2. The displacement measurement resolution of the InnoVision vision
system was increased significantly by implementing the spline in-
terpolation subpixel method, which showed the highest accuracy
among the three interpolation methods investigated.

3. A practical solution was developed using the InnoVision to cancel
the camera vibration that is inevitable in the field measurement by
simultaneously tracking the displacements of both the structure and
a stationary reference point, then subtracting the displacement of
the reference point from the structural displacement measurement.
The laboratory tests and the field tests on the Manhattan Bridge
validated the efficacy of the vibration cancellation technique.

4. InnoVision’s advantage of simultaneous monitoring of displace-
ments at multiple points was also demonstrated in the Manhattan
Bridge field tests.

Other environmental conditions such as heat haze and high hu-
midity can also affect the measurement of the vision sensor. In the fu-
ture research, the authors will focus on studying and providing solu-
tions for these challenges. Heat haze induced image distortion due to
high temperature in hot weather is a known factor to affect the mea-
surement accuracy [39]. The authors are currently working on pro-
viding a framework for heat haze filtering. High intensity of water
particles in the air in high humidity (foggy) weather can result in biased
and low-contrast images, therefore affecting the performance of com-
puter vision techniques. The effect of humidity on the measurement
accuracy of the vision sensor needs to be studied. And whether the
techniques in the researches conducted on de-hazing can be applied to
InnoVision to help reduce the effect of the humidity needs further in-
vestigation.

Owing to its robustness in monitoring low contrast features, high
subpixel resolution, efficacy of canceling the effect of camera vibration,
and capability of multi-point displacement monitoring, the developed
InnoVision has great advantages in multi-point displacement mon-
itoring of bridges in the challenging field conditions.
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