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Summary

An innovative substructure approach is proposed for estimating the structural
parameters of shear structures from the acceleration responses of individual
substructures. Two parallel methods are created to form single-degree-of-free-
dom models of each substructure. The behavioral characteristics of these sub-
structure models chiefly depend on the structural parameters of the edges of
the component substructure, which is separate from the shear structure. To
obtain structural parameters from the substructure accelerations, discrete sub-
structure models with accelerations are generated using Newmark's method
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@kceloJp; dier x1e@ and are found similar to the autoregressive moving average with exogenous

(ARMAX) inputs models. Sophisticated techniques for solving ARMAX models
are used to process the accelerations and to extract the structural parameters of
the substructures. A linear relationship among model coefficients of the dis-
crete substructure models and ARMAX models is discovered that provides an
accurate and simple way to identify all the substructure parameters. A numer-
ical simulation of a 10-story shear structure during earthquake is performed to
verify this substructure approach, where the factors of the size of the substruc-
ture and the noise disturbance are considered. Finally, this substructure
approach is used to identify a structural model and reproduce the structural
responses of a five-story three-dimensional structure in a shaking-table
experiment.
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1 | INTRODUCTION

Structural health monitoring (SHM) has advantages of objective and nondestructive detection and has been widely stud-
ied by engineers and researchers in civil engineering as a way of keeping track of damage to structures and assessing
their structural integrity in terms of safety and reliability.!'! Determining the dynamic characteristics and model param-
eters of complex structural systems is the primary concern in SHM for model updating, active control, damage detection,
and prognosis.[2’3] The tremendous quantity of unknown parameters and large number of incomplete measurements
make SHM a significant challenge on large structures such as tall buildings and bridges. Appropriately extracted struc-
tural characteristics associated with a suitably designed monitoring strategy are especially vital for ensuring the effective-
ness and feasibility of any SHM system.
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Modal parameters such as the natural frequency, damping ratio, and mode shape play an important role in establish-
ing and updating appropriate structural models'*! in SHM. However, modal parameters are not very sensitive to varia-
tions in local structural properties, especially in huge structures.'””) A common belief among researchers is that modal
parameters are reflections of the entire structure, whereas physical parameters such as mass, stiffness, and damping
reflect the local structural properties. Furthermore, it is quite difficult to identify all the modal information or accurately
infer structural physical parameters from incomplete sets of modal parameters. The large number of unknown param-
eters also hinders any effort aimed at improving identification efficiency and robustness.

The substructure approach may be a way to overcome the above obstacles in structural parameter identification by
separately estimating the structural physical parameters. By cutting the whole structure into several parts, the properties
and characteristics of each part can be independently identified. Because the idea was probably first proposed by Koh
et al,l a variety of substructure approaches have been presented for structural parameter identification and damage
identification in buildings and bridges and have been verified in numerical simulations. These include the substructure
approaches only using accelerations!”! or under the condition without measurement on the interface of the beam struc-
ture,'®! the Bayesian frequency-domain substructure approach using noisy measurements,'®! the substructure approach
with incomplete measurement,!*”! the isolated substructure approach by placing virtual supports on the interfaces of the
substructure,!''1?! the substructure approach in the frequency domain for shear structures using cross-power spectral
densities,'**! and others.

The major concern of the substructure approaches is dealing with the interaction forces at interface of the isolated
substructure and the performance of the substructure approaches in the primary stage of development mostly relied
on the use of iterative algorithms to estimate the unknown physical parameters. For example, the algorithms that oper-
ate in the time domain include the extended Kalman filtering,'*'* the genetic algorithm,!”*! the observer/Kalman filter
identification and the Eigen system realization algorithm,[m’15 I'and the sequential prediction error method.'®! The algo-
rithms in the frequency domain include modified successive linear programming.[”] With the continued development of
computer science and related techniques, many of these iterative algorithms can now be executed on practical compu-
tational platforms. Some researchers have since switched their attention to the substructure approaches.

Mital'®! described a distributed health monitoring system equipped with accelerometers that can preliminarily pro-
cess vibration data of pipeline architecture that can be modeled as shear structure. Xing and Mita"®! and Mei et al.*"!
developed the distributed health monitoring system into substructures by taking out one floor from a tall building to
form a single-degree-of-freedom (SDOF) system and to detect structural damage inside the substructure. This approach
is very efficient as it only needs to process three accelerations each time and is very easy for engineers to use. Instead of
developing complex algorithms, the autoregressive-moving average with exogenous (ARMAX) model, a sophisticated
statistic model that has been incorporated in many software platforms, can be used to process the accelerations. How-
ever, because structural parameter identification is not the focus in the above research, the structural parameters of dif-
ferent parts of the structure are still mixed together. In that research, it was almost impossible to separately obtain
individual structural parameters from a substructure.

This paper describes an innovative substructure approach that makes it possible to conduct a parallel structural
parameter identification of every substructure. It is based on the research of Xing and Mital'®! and Mei et al.*°! But dif-
ferent from the previous substructure approaches where all unknown parameters of the edges and inner part of the sub-
structure are treated equally, the proposed approach only focuses on identifying the parameters of the edges of the
substructure. In so doing, the ability to deal with different substructures is obviously improved, whereas the number
of unknown parameters in the calculation is greatly reduced.

Three steps are proposed to realize the innovative substructure approach: structure separation, model discreteness,
and data processing. First, any part of a shear structure can be separated into very fine SDOF substructure models by
rearranging the structural parameters in the corresponding equations of motion. The structural parameters of the edges
(upper and lower edges of a building) of the substructure are the major parameters in these models. Second, substructure
models with accelerations are formulated on the basis of Newmark's method in a discrete time space. These discrete sub-
structure models, after taking into account error terms, are equal in performance to ARMAX models. Third, the tech-
niques for solving ARMAX models are used to process acceleration measurements and extract the structural
parameters. The coefficients of the ARMAX model are functions of the structural parameters in the substructure model.
A linear relationship among the coefficients of the ARMAX model can be easily revealed and can be used to estimate all
the unknown structural parameters of a substructure.

The parameters of the whole structure can then be estimated through a parallel calculation of the substructures.
Moreover, the behavior of critical parts of the shear structure can be individually monitored in the substructures. The
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substructure identification strategy with overlapping (where the substructures overlap and share some parts of the struc-
ture) is used to estimate the structural parameters of the whole structure. The performance of the structural identifica-
tion can be judged by comparing the simulated accelerations of the identified structural model with the measured
accelerations of the real structure.

Numerical simulations of a 10-story shear building subject to earthquake vibrations were conducted to verify the per-
formance of the new substructure approach. Substructures of various sizes and two kinds of noise disturbances were sim-
ulated. In addition, the new substructure approach was compared with previous research. 12! Finally, a shaking-table
experiment of a five-story three-dimensional frame was carried out to test the efficiency of the approach. The percent
errors of the identified structural parameters with theoretical values were calculated and the simulated and measured
accelerations were compared in order to examine the accuracy of the structural parameter identification.

This paper is organized as follows. Section 2 describes the derivation of the proposed substructure approach. Section 3
shows the numerical simulation of a 10-story building subjected to earthquake vibration. Section 4 describes the exper-
iment on a five-story three-dimensional frame. Section 5 is the conclusion.

2 | NEW SUBSTRUCTURE APPROACH FOR PARAMETER IDENTIFICATION

The shear structure model is a lumped mass in the shape of a building whose basement is subjected to lateral vibrations,
as shown in Figure 1a. The number of stories in the building is n. The equations of motion of the whole structure can be
described as

MZ(t) + Cz(t) + Kz(t) = —MLX,(t), (1)

where (-) denotes the time derivative, X4(f) the acceleration of the basement, and z(¢) the displacement vector of the
structure relative to the basement; M, C, and K are the structural mass, damping and stiffness matrixes, respectively,
whereas L is an n X 1 unit vector (L = [1---1]%).

Now, let us consider a substructure that includes stories running from the ith to the (i + D™ (I > 0, the number of
internal degrees of freedom [DOFs]), as shown in Figure 1b. This substructure is denoted as Sub.#(i, i + [), where i
and i + [ are the story numbers on the edges of the substructure. There are two methods of forming substructure models
for the building.

Method 1 is as follows. The equations of motion of the internal DOFs of Sub.#(i, i + [) can be written as

myx;(t) + ¢y (0) =1y (1) + Ky () —kjyy 1 (6) =0, j=1i,..,i+1-1 ()
my, —> Xn
kn: Cn
Ml =P, s E "
kn—lr Cn—1 5 E
M : g
n-2 =% Xp-3 : Sub.#(7,i+])
| :
Mip1 = Xy : Kis1,Civt
ki+1,Ci+1 H Miy1—1
o = X |:: ! internal
kici = :
Mim1  —» X i  DOFs .
H i :
ki,c; :
mz _’ xz - -
ks, o 0 st
my —> X (b) Substructure model
ki cy
—

FIGURE 1 Division of shear structure

model of a building (a) Shear structure model
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where x;(t) and y,(t) are respectively the absolute movement and inter-story deformation (or drift) of the jth story, calcu-
lated as below:

X)) = (1) + % (0), 3)
() = () =21 (1) 4)

The sum of the series of Equation 2 is
T mii(0) + () + k() =iy ki (t) = 0. 5)

Equation 5 can be arranged by adding I(m;y;(t)—my;(t) = 0) to it, as follows:

.. Ci . ki 3 @ @
Vi) + lmiyi(t) + lmiyi<t) = X1(t) + lmiyi+l<t) + lmiyi+l(t)7 (6)
where
. itl—1M; .. .
Xi(t) = =X (0 +3(0). ()

Viewing the right side of the equation as input, Equation 6 is the SDOF substructure model in Method 1. X;(t) is the
sum of accelerations of the substructure. Usually, i =1, ..., n; [ =1, ..., n — i + 1. Moreover, if (i + [) > n, imaginary stories
from the (n + 1)™ to (i + )™ with no physical meaning or dynamic vibrations can be constructed on the top of the build-
ing to keep Equation 6 balanced for Sub.#(i, i + I).

Newmark's method from 1959?!! converts displacements and velocities into accelerations in a discrete time space:

x(£)=2x(t=1) + x(t—2) = aAr?i(t) + (0.5—2a + §)AL%(t—1) + (0.5 + a—38) A% (t-2), 8)

X(t)—=2x(t—1) 4+ x(t—2) = SALK(t) + (1-20)Atx (t—1)—(1-6)Atx(t=2), )

where 0 <6 <1 and 0 < a < 0.5 are parameters, and At is the sampling period, which is assumed to be constant. Orga-
nizing Equation 6 at sampling time ¢, ¢ — 1, and ¢ — 2 as the left side of Equation 8 or 9 and substituting Equations 8 and 9
to it yield a discrete substructure model including only accelerations:

[1 + @1(mi, Ci, kl)]yl<t) + [—2 + @2(mi, Ci, ki)]yi(l’—l) + [1 + @3(mi, Ci, ki)]yi(l'—Z)
= X1(6)=2X;(t=1) + X (t=2) + O1(my, it kist)Yi11 (1) (10)

+02(m, ciyt, ki)Y (t=1) + Oz (my, iy, ki)Y (6=2),

where 0,(.), ©,(.) and O5(.) are functions defined as

k
O (m, c,k) = SAL— + aAP—, (11)
Im Im
Or(m, e, k) = (1-28) A"+ (0.5-20 + ) AP (12)
2 ) &y - lm . lm’
Os(m,c,k) = —(1—5)Ati +(0.5+ oc—5)At2£ (13)
3 s &y - lm . lm

By taking model errors into account in Equation 10, the discrete substructure model of Sub.#(i, i + ) can then be
transformed into an ARMAX model, a sophisticated statistic model that is included in a number of software products:

Vi(t) + ar(my, i, ki)y;(t=1) + ax(my, ¢, ki)y;(t=2) = b (my, ¢i, ki) X(t) + bar (M, ci, ki, Cigt, Kis )Y ()
(14)
+bay(my, ci, ki, it ki)Y (8=1) + bas(my, iy ki, it ki1)Vi(8=2) + e(t) + gre(t—1) + g,e(t—2),
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where
X§(0) = X1(6)—2X1(t-1) + X;(t-2), (15)

Xf(t) is pre-calculated, e(t) is the model residuals, and a,(.), a,(.), b11(.), b21(.), b2x(.), ba3(.), g1 and g, are the esti-
mated model coefficients. There are two moving-average terms (e(t — 1), e(t — 2)) in the ARMAX model. From sim-
ulation analysis, when the number of moving-average terms equal to or bigger than two, the model is robust against
the noise and the number of moving-average terms does not make a big difference. The correspondences between the
coefficients of the ARMAX model and that of Equation 10 are presented in Table 1, where 0,(.), ©,(.), and ©s(.) are as
in Equations 11 to 13.

The denominators in Table 1 become 1 in the special case of Newmark's method (6§ = 0, a = 0), ©,(.) = 0 (Equa-
tion 11), and b,,(-) = 0. In this case, replacing the physical parameters (c;, k;) in the expressions of a,(-) and a,(-) with
(ci + b ki + 1) leads to the following linear relationship between by,(-), bys(-), and a;(-), a,(-):

a1 (my, ¢t Kir) = baa(m, civi, ki) =2, 16)
ax(mi, €1, ki) = bos(my, i, kir) + 1.

This linear relationship also appears in Equation 10. The ARMAX model (Equation 14) in the above special case of
Newmark's method becomes more condensed and can be used for parameter identification.

The structural parameters of the substructure model (Equation 6) can be identified by examining the coefficients of
the ARMAX model (Equation 14) on the basis of the relation between Laplace-transform and Z-transform, which has
been studied in the theory of experimental modal analysis and has been utilized in Lee and Yun??! to estimating struc-
tural modal quantities such as natural frequencies, damping ratios, and mode shapes from the measurements. The pro-
cess for identifying the structural stiffness from the ARMAX model of the related substructure is demonstrated as
follows.

The Laplace-transform of Equation 6, that is, the continuous substructure model of Sub.#(i, i + [), can be written as
below:

2 Citd; Kt
v (S) S L{Xl(t) + lmiyurl( ) + lminl(t)} SZL{U(t)} (17)
i - - *y 9
s2 + is + ﬁ (S_/ls) (S_/ls)
m;  Im;

where £{-} is the denotation of Laplace-transform, Y;(s) = £{j;(t)} the Laplace-transform of j;(¢), and (4, A;) the poles
of the system, which are related with structural parameters,

. ola 1/ )\ ki
Asvls: Cl+ _<Cl>_l (18)

om \4\Im;)  Imy

The (/1S7/1:) are complex numbers. Equation 18 builds a relationship between k; and (/15,/12), given as below:
ki = Imi(Ag-2y) = Imy| A (19)
In parallel, the Z-transform of Equation 14, that is, the ARMAX model of Sub.#(i, i + I), can be written as

_ U0} _ ZAU©)
Yi(Z) = 1+ ay(my, ¢, k) Z™ + ay(my, ¢, ki) Z72 a (Z_AZ)(Z_A*Z)) 0

TABLE 1 Expressions for the coefficients of ARMAX model with structural parameters

ARMAX Model a, () a(\) by:() by () by() by(.)
Equation 14 24 Oy(my, ¢ ki) 1+ Os(my, ¢, k) 1 O1(my, civt ki) Oa(my ey, ki) Os(my, civgs kiga)
140, (m;.ci.ki) 140, (m;.ci.k;) 14+ @l(mv,o k) 140, (m;,ci.k;) 140 (m;.c;.k;) 140 (m;.ci.k;)

Note. ARMAX = autoregressive-moving average with exogenous.
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where U'(¢) is the part on the right side of Equation 14; 2{-} denotes Z-transform; Y;(Z) = Z{y,;(t)} is the Z-transform of

¥;(t) where t is the discrete time; (/12,/1*2) are the poles of the system. Defining Z = ¢**, the Z-transform Y;(Z), becomes
proportional to the Laplace-transform Yi(s). Correspondingly, the poles (/IZ,/l*Z) and (/13,/1:) has relations as below:

* * 1 * ln /‘L*
Az = or 1, =M e A= In{d7) or 1, = itZ)' (21)
Submitting Equation 21 into Equation 19, the k; can be expressed by 12, as seen below:
| In(Az)[\?
P =Im (—=22 ) 22
=ty (14 @2)

~i 1| (i,i+1)

. . il (i,i+ . .
Assuming the structural mass is already known, 1kl|(” ) and ,k are the corresponding estimates of k; and k; 4 ;

~j "' l .
in Sub.#(i, i + [). Based on Equation 22, 1kl|(”+> is calculated as

~ Inual\?
1Kijii+1) _lmi<| A'L: |> , (23)

where ua or ua’ is the null point of an equation formed by the coefficients of the ARMAX model (Equation 14), as shown
below:

1+ ar(my, ¢, ki)ua™" + az(my, ¢, k)ua™ = 0. (24)
G
Because the coefficients (a;(-),a,(-)) are functions of (b,,(-),b,s(+)), as illustrated in Equation 16, 1kl+ (e can be
obtained by substituting Equation 16 into Equation 24 and solving for the null point ub or ub’:
S~ (1) | Inub|\ ®
1k = lml( At . (25)

Method 2 is as follows. Analogously, the structural parameters k; and k; ;. ; in Sub.#(i, i + [) can be obtained by using
Method 2, wherein the substructure model is formed by adding I(m;;—19;,,(t)—mi1-13;,(t) = 0) to Equation 5:

. k;
f Pi(t) + —

B () + Vi(e). (26)

Vig(t) + —— -
i41(t) Imiy Imi 4 Imiy

Imiy
where

X/ (6) = ST () + 5 (0). @7)

Similar to Equation 6 in Method 1, Equation 26 can also be transformed into an ARMAX model by using the proce-

i (i+ ~il(i,i+1 ) ) . .
dure described above. Accordingly, zkl+ e and Zkll(l a ), that is, the estimates of k; .. ; and k; in Sub.#(i, i + [) in Method

2, can be obtained from the coefficients of the ARMAX model:

2
~ i) (1,4 | Inpa|
k =Imip- , 28
2 miy 1( Al ) (28)
' 2
il (1,i+1) | Inub |
k = Imjq— , 29
2 mi 1( At (29)

where ua and ub’ are respectively the roots of the equations formed from (1,a;(-),a»(+)) and (1,b25(-) — 2,b25(-) + 1) of the
ARMAX model of Method 2. The y,, (¢) is a pseudo acceleration of (n + 1)™ story relative to nth story. Because there are



XIE ET AL. Wl LEY 7 of 18

only n stories in the structure, j, ., () = 0. Note when () = 0, Method 1 still works whereas Method 2 can no longer
be applied. Because j;(t) is the output of the system in Method 2, Method 2 cannot work if y,,,(t) = 0. Therefore,
Method 2 works for Sub #(i, i + ) withi+ Il <n + 1.

The major difference between Method 1 and Method 2 is that part of the model input and output information are
interchanged. Hence, either method can be used to obtain the structural parameters of a specific story of a building from
a substructure containing that story as one of its edges. In addition, for a specific ith story (1 < i < n), it can appear as the
upper edge or the lower edge of the substructure used in the identification; that is, k; (1 < i < n) can be estimated from
Sub.#(i-l, i) (1 < I < i), where the ith story is the upper edge, or from Sub.#(i, i + ) (0 < I < n-i + 1), where the ith story is
the lower edge. Both methods can be used to calculate k; from those two substructure types. Table 2 lists the various rep-
resentatives of k;.

The proposed substructure approach can separately and independently estimate the stiffness of different edges of a
substructure by using either Method 1 or Method 2. All the structural stiffness can be identified by appropriately dividing
the shear structure into substructures. The only measurements that have to be made are of the acceleration responses of
the substructures. The ARMAX models only need the ratio between the masses of different floors. The approach does not
require detailed information about the masses for the calculation of the relative variation in stiffness or for the structural
finite element model normalized by the mass.

This approach is intended to be used for small earthquake so that the structure vibrates within linear range and the
nonlinearity does not pose major problems in the structural identification. Of course, during the major earthquake with
large magnitude, the nonlinear response should be considered if this method is applied. This approach can be used under

TABLE 2 Various stiffness identifications for a specific story of a building

Representative Sub.#(i-L, i) Sub.#(i, i + )
value Method 1 Method 2 Method 1 Method 2
% ~i|(i=Li) Eil(i—l,i) Eil(i.iJrl) %u(z‘,m)

1 2 1 2

400
& 200
2 o
(b
E
8 -200 |
s

-400

0 10 20 30 40
Time (s)

1500
9
£ 1000 |
a
B
=
% 500t
)
O

O "
0 5 10 15 20
Frequency/Hz
(a) Shear structure model (b) El Centro earthquake

FIGURE 2 Shear structure model of a 10-story building



8 0of 18 Wl LEY XIE ET AL.

less severe vibration before and after the large earthquake to check if the structure suffers permanent damage. For small
vibration, the response can be considered linear.

3 | NUMERICAL SIMULATION

The capabilities of the substructure approach were assessed in a simulation in which vibrations were applied to the base-
ment of a 10-story building. The acceleration responses of the structure were generated using the state-space method.
The shear structure model of the building is shown in Figure 2a. The masses of the floors were equal (1,000 tons).
The lateral stiffness of each floor decreased from 2.00 X 10° kN/m to 1.64 X 10° kN/m as the floor height increased.
The structure suffered stiffness proportional damping; this was simulated by defining the first-order global damping ratio
as 0.005. The first three-orders of the global natural frequencies were 1.03, 3.02, and 4.96 Hz, and the first three-orders of
the global damping ratio were 0.005, 0.015, and 0.024.

The 1940 El Centro earthquake (N-S acceleration) data were used as the input to the structure. The sampling fre-
quency was 100 Hz. The time history and power spectral density of the quake are illustrated in Figure 2b, which shows
that the major components are frequencies less than 5 Hz, near the lower-order frequencies of the building.

The environmental disturbances in the measured X;(f) were modeled as Gaussian white noise, w;(f) N (0,07).

Xi(t) = X%;(¢t) +w;i(t),i = 1,..,10, where X;(t) is the unpolluted data. The noise level R was characterized by the ratio of
its root-mean-square (rms), that is, o;, to either the rms of Z;(¢) (the first noise scenario) or the rms of the basement vibra-
tion X (t) (the second noise scenario). In the first noise scenario, the noise intensity or o; varied with the position of the
floors, and the higher floors usually had larger noise intensities. In the second noise scenario, the noise intensity or o;
was the same for every floor.

3.1 | Effect of varying the size of the substructure

Theoretically, a substructure can be an arbitrary continued part of the structure. However, the more floors there are in a
substructure, the more accelerometers are needed, and the larger the cost of the local monitoring system becomes in
turn.

Denoting num_f as the size of the substructure, num_f is defined as the number of DOFs (or floors including the
basement of the building) in the substructure. For Sub.#(i, i + I), num_f is calculated as

numg=14+2(1=1, .., n—i+1i=1, .., n). (30)

Correspondingly, the number of accelerometers required for the substructure is
na = min(i+ 1, n)—i+ 2. (31)

where num_f € [3,n + 2], na € [2,n + 1]. Figure 3 shows the ranges of num_fand na for substructures at different posi-
tions of the 10-story building. The figures show that na=num_f for most of the substructures, except for those separated
at the imaginary floor (the 11th floor here), where na = num_f — 1. For example, num_f = 3 and na = 2 are for the sub-
structure at i = 10 in Figure 3. The substructures at i = 9 with num_f = 3 or 4 share the same na (=3).

12 ] 12f
g 10} 2 10}
E A
% 87 w 87
._5 (=]
: I | : | I
g 4 - E I
= I 3 o Z g o
2 ] 2 o
2 4 6 8 10 2 4 6 8 10
Sub.#(j, %) Sub.#(i, %)

FIGURE 3 Ranges of num_f (left) and na (right) for substructures at different positions
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Now considering substructures with different sizes at i = 1 (first story), that is, Sub.#(1, 1 + ) (I = 1,

, 10;
num_f = 3, ..

., 12), four stiffness estimations (( kyaa4), 1k1+l|(1 1+l),2k1|(1 1+z),zk1+z| 114 ) defined as Equations 23,
25, 29, and 28, can be obtained by using Methods 1 and 2 to represent k; and k; , ; in the substructures. The exception

11, 11 . . . . .
is Sub.#(1,11) with [ = 10, where only ; k 1 can be estimated. The percent error is used to represent the identification
accuracy. For example, the percent error of 1’l€1|(1_, 11) (see Equation 23) is

‘ 1Ei|(i,i+l) —k; )

i

error_liciﬂ(l-yw) = 100. (32)

~ ~ ) ~1H|(Q, 14
Figures 4-6 plot the percent errors of (1k1|(1, 101 K11, 14 ) of Method 1 and ( k He ), 2k1+ o ))
2withl =1, ...

, of Method
, 10 for accelerations without noise and with 5% and 10% noise in the first noise scenario. The stiffness
estimations of Method 1 are very close to those of Method 2 at the same level of noise. The majority of the percent errors
of the stiffness estimates of Method 1 are <2% (no noise), <7% (5% noise), and <18% (10% noise), and the majority of
those of Method 2 are <1.5% (no noise), <7.5% (5% noise), and <15% (10% noise).

. ~1|(1, 1+1) ~1)(1, 1+1) A .
The percent errors of the estimates for k; (;k . and,k . ) the blue bars in Figures 4-6, decrease as [ increases,

1+l 1, 1+1) ~1+1](1, 1+]) . . e e
whereas the percent errors of the estimates for k;  ; (;k K and ,k : ) the green bars in Figures 4-6, initially

~1H|(1, 14) ST, 1)
decrease before starting to climb. The transition points of the percent errors of (;k i and ,k : ) shift to

smaller [ as the noise level increases. At 10% noise, the transition points are very close to [ = 2. Thus, [ = 2 can be determined
for Sub.#(i, i + I) (i < n — ), whereas the substructures at i > n — [ can be determined as Sub.#(i, n + 1). The size of the
substructure is num_f = 4, and the number of accelerometers is na = 4 for Sub.#(i, i + 2) (i < n — 2).

3.2 | System parameter identification of the whole building

The above discussion suggests that a shear structure can be partitioned into substructures containing four floors (includ-
ing imaginary floors and basement). Because i is the only variation in Sub.#(i, i + 2) (i < n — 2) or Sub.#(i, n + 1)

4

I 2
.1k1[(1,1v1) .1khﬂ(1,lfn .zkl[(l,l-f) .zk1—1](1,1—l)
$3 €15
S g
52 5 1
3 g
bt Sos
¢ Sub#(1,1+) Sub.#(1,14]
1 23 45 6 7 8 9 105WHLIH) 1 2 3 45 6 7 8 9 105ub#LIH)
(a) Method 1 (b) Method 2
S, 1) A, 1) S, 1) A, 14 .
FIGURE 4 Percent error of estimates <1k1|(1 1+)71k1+ " 1+)’2 1 1+)72 e 1+)) of Sub. # (1,1 + 1) (I = 1,...,10) (no noise)
15 — 15 "
.1k1[(1,H) [ 1kl-ﬂ(1,1~:1) -2k1|(1,1+z) -2k1+1i(1,1~i)
3 5
=10 = 10
g e
5 5
g 5 g s
& &
¢ Sub#1,1+)  © Sub.#(1,1+7)
1 2 3 4 5 6 7 8 9 109777\ 1 2 3 4 5 6 7 8 9 107777\
(a) Method 1 (b) Method 2
S, 14 A, 1) A1, 14 1i( )
FIGURE 5 Percent error of estimates <1k1|(1 1+)7llcl+|(1 lﬂ,zkll(1 1+)72k1+| b ) of Sub. # (1, 1+ 1) (I=1,..,10) (5% noise in the first

noise scenario)
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FIGURE 6 Percent error of estimates (1k I, +), 1k i, 1+ ),Zk I ), Lk I, 1 )) of Sub. # (1,1 + 1) (I=1,...,10) (10% noise in the first

noise scenario)

(i = n — 1, n), the substructures are simply denoted as Sub.#i (i = 1, ..., n). Ten substructures can be generated from a
10-story building.

As Table 2 shows, a specific stiffness k; can be estimated from Sub.#i-2 by using (I%il(i_z’i), 2?
~i|(1i42)  ~i] (142

|(i_w) or from Sub.#i by
using (;k .k

)) when these estimations have physical significance. The corresponding stiffness estimations are

~ili—2 ~i

denoted below as (;k  ,,k |i_z) and (1Ei|i, ZEi|i).

3.2.1 | Accuracy of various stiffness estimations

s s il il
First, the performance of the various estimates (1k” ,zklll ,lklll,zklll) was investigated for a specific stiffness k;;

i ili i il
Method 1 was used to solve for (1klll ,1kl|l), and Method 2 was used to solve for (zklll ,2klll). Sub.#i-2 and Sub.#i were
used to estimate k;.

4
.lkiJi-L? .!ki[f -zkzr;f-z .2kr\r
s 5 5
] s
5 2 5 2t
& 1 g 1t
0 (Story) 0 (Story)
1st 2nd 3rd 4th 5th 6th 7th §th 9th10th 1st 2nd 3rd 4th 5th 6th 7th 8th 9th10th
(a) Method 1 (b) Method 2
~ili~2 il ~li-2 il . )
FIGURE 7 Percent error of (1k 1k .k .k ) representing k; (no noise)
20 20
N -2 .lkilf .2kr[t-2 .zkrir
S5t g1s
g g
E 10 E 10
2 g
0 (Story) 0 (Story)
1st 2nd 31d 4th 5th 6th 7th 8th 9th10th 1st 2nd 3rd 4th 5th 6th 7th Sth 9th10th
(a) Method 1 (b) Method 2

i ili il ~ili
FIGURE 8 Percent error of (1klll ,lklll, zklll 72klll) representing k; (5% noise in the first noise scenario)
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FIGURE 9 Percent error of (lklll , 1klll, zklll 72klll) representing k; (10% noise in the first noise scenario)

s il ilina il
Figures 7-9 depict the percent errors of ( klll ,1klll, zklll .,k lll) (i is the story number) without noise and in the 5%

and 10% noise cases of the first scenarlo In Method 1, 1k " of Sub.#i has comparatively higher accuracy than k of Sub.

l

#i- |2 ati=3,. i , 10. In Method 2, 2k of Sub.#i-2 has comparatively higher accuracy than ,k of Sub.#iati=3, .., 8.

i

1k and k were obtained from the linear relationship expressed in Equation 16. The premlse of this equatlon is

6 =0,a= O) in Newmark's method, which may be the main reason for the above difference.

The average percent errors of Method 1 (1Ei|i_2, 1%”0 in Figures 7a-9a are (1.77%, 0.77%; no noise), (6.96%, 3.40%; 5%
noise), and (17.52%, 8.49%; 10% noise). The average percent errors of Method 2 (2Ei|i—27 ZEili) in Figures 7b-9b are (1.01%,

1.29%; no noise), (2.86%, 3.85%; 5% noise), and (10.37%, 9.15%; 10% noise). Overall, 1El~|l~ of Method 1 is more accurate
than the other three estimates, whereas the estimates of Method 2 are more robust to noise than those of Method 1.

1Ei|i_2 and inli—Z have significantly larger errors at i = 10, corresponding to Sub.#8, whereas 1?'1 and 2?'1 have the
maximum percent errors at Sub.#8 in the case of 10% noise. The probable reason is that Sub.#8, which is compromised
of the top four floors, has a larger absolute noise effect compared with the other substructures, because in the first noise
scenario, the noise intensity is proportional to the vibration intensity and the top floors vibrate more than the lower
floors in the EI Centro earthquake, whose major frequencies are close to the lower order natural frequencies of the build-
ing. To further illustrate this problem, the second noise scenario was simulated, where the noise intensity was the same
for every measurement. As can be seen in Figures 10 (20% noise) and 11 (30% noise), the distributions of the percent
errors are more even among the stories than in Figures 8 and 9.

Figures 7-11 show the linear relationship (Equation 16) among the coefficients of the ARMAX model, where {IEHH

and 2Ei|i work effectively as 1Ei|i and 2Ei|i—2’ although there are some differences in the percent errors. Because b,;(-) in
the ARMAX model (Equation 14; i < n — [) is set to zero, the equation loses part of the input information. The stiffness of
the system simulated with the ARMAX model is reduced as a result. This explains why the stiffness estimated from Subs.
#i (i < n — 2,1 = 2) are generally smaller than the true value in the simulation.

3.2.2 | Stiffness identification of the whole building

The structural stiffness of the whole building can be identified in every substructure. A parallel calculation can be per-
formed by analyzing at most four accelerations at a time. Because the stiffness of Subs.#i (i < n — 2) are reduced by using

8—r——r————7—— 8

.1ki[f-2 .lkr'[z' .Zki}z‘-.? .Zkr‘]r‘

s 6} 1 g 6f

g s

5 4 E 4

& 2f 5 2f

0 (Story) 0 (Story)
1st 2nd 31d 4th 5th 6th 7th 8th 9th10th 1st 2nd 3rd 4th 5th 6th 7th 8th 9th10th
(a) Method 1 (b) Method 2

i il il i
FIGURE 10 Percent error of <1klll ,lklll, zklll 72klll) representing k; (20% noise in the second noise scenario)
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1st 2nd 31d 4th 5th 6th 7th 8th 9th10th 1st 2nd 31d 4th 5th 6th 7th 8th 9th10th
(a) Method 1 (b) Method 2

~ili—2  ~ili ~ilim2 ~ii

FIGURE 11 Percent error of <1k ko Lk l) representing k; (30% noise in the second noise scenario)

the ARMAX models, the best estimate of k; (i < n — 2) should be the largest value of all possible estimates of k;. For k;

(i=n —1, n), the best estimate could be Eili’ because the analysis in Section 3.2.1 shows that it is more accurate than the
other estimates.

Figure 12 illustrates the substructure identification with an overlapping strategy. k; is calculated as

R - mix(1ki|i—22ki|i—21ki|i2ki|i)7i— 1,..,n=2; (33)
ki, i=n-1,n.

where 1’l€,~|,~_2 and 2Ei|i—2 are zeroati =1, 2.

Substructure identification of the stiffness of the 10-story building (Figure 2) was simulated in first and second noise
scenarios. As shown in Figures 13 and 14, all the structural stiffness are accurately estimated even in the cases of a large
amount of noise. The percent errors of k; in Figure 13 (the first scenario) are (0.00-1.08%; no noise), (1.52-5.76%; 5%
noise), and (0.96-10.30%; 10% noise). In Figure 13 as in Figures 8 and 9, the percent errors are larger in the upper stories.

The percent errors in Figure 14 (the second noise scenario) are more evenly distributed among the stories: (1.03-3.83%;
20% noise) and (1.59-5.37%; 30% noise).

3.3 | Comparison with previous substructure approach

The previous substructure approach proposed by Xing and Mita!'”) and implemented in Mei et al.** was chosen for
comparison. A concise description of their substructure approach is given here. For the n-story building depicted in
Figure 1, n substructures are generated by taking out one story to form an SDOF system. The size of the substructure

Dynamic System
of Sub.#i

v

ARMAX Model
of Sub.#i

Method 1:
ki) 1kiva)i
Method 2:

-~

Stiffness estimation k;

Y

zki|i: zki+2|i

ARMAX Model Method 1:
of Sub.#i-2 1kigji-20 1Kiio2

4 Method 2:
Dynamic System 2Ei—2|f—2J ZEHI—Z
of Sub.#i-2

-~

max( 1k1|1—2r 2E111—2l 1kl|11 2k1|1)

FIGURE 12 Stiffness estimation within substructure identification with overlapping strategy
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FIGURE 13 Estimated Ei and corresponding percent error (no noise, 5%, and 10% noise in the first noise scenario). The red solid line is the
true value
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FIGURE 14 Estimated k; and corresponding percent error (20% and 30% noise in the second noise scenario). The red solid line is the true
value

is fixed to three floors. Let ¢,, , ; = 0 and k,, ;. ; = 0; the equation of motion of Sub.#i (i = 1,..., n, the story number) can be
written as

my;(t) + (i + civ)yi(8) + (ki + kig1)y;(£) = =miXi 1 (£) + Cip1yiq () + kiyayiq (), =1, n. (34)

where y;(t) and y; , 1(t) are the movements of m; and m; . ; relative to m; _ ; in Sub.#i (i = 1, ..., n). Central difference
formulas are used to reformulate Equation 34 with accelerations. The following ARMAX model is obtained:

j}i(t) + alj}i(t—l) + azj}i(t—Z) = blljéi—l(t) + b1oXi_1 (t—l) + b13Xi_1 (t—2) (35)
+b21Y;(t=1) + by, (t=2) + e(t) + gre(t—1) + gye(t=2),i =1, ...,n.

Stiffness identification was not the focus in the research presented in previous works,*?°! so here, Equation 22 is
used to extract the stiffness information from the ARMAX model (Equation 35). The stiffness combination (k; + k; 4 1)
in Sub.#i (Equation 34) is able to be identified as follows:

-~ - 1 2
ki+ki+1 = ml<| IZL;a|> ai: 1)"',”’7 (36)

where pa or ua” defined in Equation 24 is the null point related with the coefficients of Equation 35. However, to obtain
k;, all the above substructures including the ith story, that is, Subs.#i, ..., #n, need to be estimated.

Xing's substructure approach was then used to identify structural stiffness of the 10-story building (Figure 2) in the
simulation. The noise levels of the first and second noise scenarios were the same as in Section 3.2.2. The percent errors
of k; in Figure 15 increase steeply with the noise level.

Compared with Figure 15, the percent errors in Figures 13 and 14 are much smaller and steadier at the same noise

level. The proposed substructure approach has comparatively much better accuracy and robustness. Table 3 presents a
detailed comparison with Xing's approach.
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FIGURE 15 Percent error of K; determined using previous substructure approach (no noise, 5%, and 10% noise in the first noise scenario
(a); 20% and 30% noise in the second noise scenario (b))

TABLE 3 Comparison of the previous and proposed substructure approaches

Previous substructure approach!”:!®! Proposed substructure approach
Size of substructure a. Fixed, 3DOFs. a. Arbitrary, suggested to be 4DOFs.
Substructure model a. One model without further divisions; a. Further divided into two models: Method 1 (Equation 6)
see Equation 34. and Method 2 (Equation 26).
b. No factor before m; in Equation 34. b. Im;andlm; . jare used in Equations 6 and 26.
ARMAX model a. Based on central difference formulas. a. Based on Newmark's method.
b. No condensation (Equation 35). b. Condensed (Equation 14).
Identifications a. Stiffness combination k; + k1. a. Individual stiffness:

lE‘\(LHl): lEiH\(i.iH)v 2Ei\<i.i+l)» 2%i+l\(i,i+l)-

Performance a. Works well without noise; no robust a. Works well even when there is large amount of noise:
to noise. Very robust.
b. Need Subs.#i, ..., #n to identify E,-. b. Ei can be identified from Sub.#i-2 or Sub.#i.
c. Distributed monitoring is difficult. c. Distributed monitoring is possible.

Note. ARMAX = autoregressive-moving average with exogenous; DOFs = degrees of freedom.

4 | SHAKING-TABLE EXPERIMENT

Because the effect of the noise is very difficult to model precisely in the simulation, it becomes vital to conduct an
actual experiment for testing the substructure approach. Here, a shaking-table experiment of a five-story three-
dimensional frame, as shown in Figure 16a, was carried out at the Mita Laboratory of Keio University. Six acceler-
ometers were used to monitor the vibrations of the structure and shaking table; one was installed on each floor
(including the basement).

The floor of the frame was an aluminum slab and four bronze columns (plates) were attached it. The theoretical stiff-
ness of each column was calculated from its size by using Young's modulus of bronze (1.0 X 10'"" N/m?). The size and
weak-axis stiffness of the plates are shown in Figure 16b. The positions of the columns are shown in Figure 16c. Some
plates (Type 1) were 2.5 mm thick; the others (Type 2) were 1.5 mm thick. Two columns on the second story and one
column on the fifth story were Type 2; the other columns were Type 1. The mass of the frame was in the aluminum slabs,
bronze columns and accelerometers, and the stiffness of the frame was the sum of the four columns. Table 4 lists the
structural mass and stiffness information. The global modal frequencies of the frame were 2.40, 7.45, 11.16, 13.55, and
16.47 Hz for the first to fifth mode.

A sinusoidal wave with a major frequency around 3.7 Hz was used as the input signal. The acceleration time histories
were sampled at 200 Hz. The structure started to vibrate about 10 s after the start of sampling. The acceleration records
used in the analysis were 5-s long with 1,000 points and sampled after 10-s vibration. There were five substructures in the
analysis: Sub.#(i, i + 2) (i = 1, 2, 3) and Sub.#(i, n + 1) (i = 4,5).
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Plate 1: size 0.0025x0.03x0.24 (m), i
stiffness 3.39x10% (N/m); i
Plate 2: size 0.0015x0.03x0.24 (m), i
stiffness 0.73x10% (N/m).

FIGURE 16 Five-story frame structure (c) Positions of columns

in the Mita Laboratory (a) Model Structure

TABLE 4 Theoretical mass and stiffness of five-story frame

Property 1st story Second story Third story Fourth story Fifth story
Mass (kg) 4.25 4.25 4.36 4.31 3.49
Stiffness (kN/m) 13.56 8.25 13.56 13.56 10.90

4.1 | Stiffness estimation among substructures

First, the accuracies of the stiffness estimates (1Ei|i_2, 2E1|i—2) from Sub.#i-2 and (1Ei|i, Z%iﬁ) from Sub.#i were examined.
These were representative values for k; (i = 1,2,3,4,5). As in Table 2, (1Ei|i_2, 1Ei|i) were the results of Method 1 and (
2Ei|i—2» ZEi|i) were the results of Method 2.

The identification of (1Ei|i_2, 1El-|i, sz_z, ng) and percent errors ati = 1, 2, 3, 4, 5 are presented in Figures 17 and 18,
where the theoretical stiffness is from Table 4. The substructure approach can correctly estimate every stiffness of (
1E,~|i_2, 1Ei|i, ZEi|i_2, 2Eili)- All the stiffness identifications are very close to the theoretical value. Similar to the conclusions
obtained in Section 3.2.1, most stiffness identifications are close to or less than the theoretical value. The percent errors of
Method 1 are 0.52-13.20%, whereas those of Method 2 are 0.98-11.53%. The average errors of 1Ei|i_2, 1Ei|i, zflgi”_z and ZEi|i
are 7.40%, 2.36%, 4.09%, and 6.55%, respectively.

4.2 | Stiffness identification of the whole structure at different sampling frequencies

The substructure identification with overlapping (Figure 12) and Equation 33 were used to estimate the whole structural

stiffness Ei(i =1, 2, 3, 4, 5) of the five-story building in the experiment. Many earthquake records have been made by
sampling at lower frequencies, that is, 100 and 50 Hz. For this reason, structural stiffness identifications were conducted
at these frequencies as well. In this case, resampling was used to lower the sampling frequency of the acceleration mea-
surements. The length of the data in the analysis was 1,000 points.



16 of 18 Wl LEY XIE ET AL.

Method 1 Method 1
W LR Nc lLE

15 _ 15 ]
z =
7 =
2 10 £ 10
w o
g z
8 3
! o
5 ° -

0 Story 0 Sto

1st 2nd 3rd 4th 5th ( ¥ 1st 2nd 3rd 4th 5th (Story)

FIGURE 17 Identified substructure parameters (1Ei|i_2, 1Ei|i) of Method 1 and their percent errors in the experiment test. The red edged
bars indicate the theoretical stiffness
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FIGURE 18 Identified substructure parameters (2E1|i—27 ZEi|i) of Method 2 and their percent errors in the experiment. The red edged bars
indicate the theoretical stiffness

As shown in Figure 19, E,-(i =1, 2, 3, 4, 5)can allbe identified accurately at sampling frequencies of 200, 100,

and 50 Hz. The percent errors of El-(i =1, 2, 3, 4, 5) are 0.52-2.88% (200 Hz), 0.64-6.99% (100 Hz), and 1.94-5.19%
(50 Hz). The results obtained for 200 Hz are slightly more accurate than those of 100 and 50 Hz.

4.3 | Structural identification verification without theoretical values

In most situations, the theoretical stiffness of a building is very difficult to calculate. A popular way of assessing the effec-

tiveness of a structural parameter identification is to simulate the system output of the identified structural model for a
given input and see if it matches the measured output.

The structural model of the five-story building in the experiment was reconstructed by using the identified
Ei(i =1, 2, 3, 4, 5) at a sampling frequency of 200 Hz (Figure 19) and by assuming the following damping ratios of
each s: El- =0.018 (i=1, 2, 3, 4, 5). The equations of motion of the whole structure (Equation 1) can be rewritten as

15 200 Hz I100 Hz 50 Hz 200 Hz 100 Hz 50 Hz
_ sl
£ g
z 10t ‘g 6t
g 5 s
Z !
0 : (Story) 0 . : : (Story)
Ist 2nd 3rd  4th  5th st 2nd  3d  4th St

FIGURE 19 Estimated k; and corresponding percent errors in the experiment at different sampling frequencies: (200, 100, and 50 Hz). The
red edged bars indicate the theoretical stiffness
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FIGURE 20 Comparison of simulated and measured structural accelerations

Mz (t) + Cz(t) + Kz(t) = —MLi,(t), (37)

where C and K are the estimated damping matrix and stiffness matrix composed of ¢; and ki, respectively. ¢; is calcu-
lated as

G =2\ mki, (i=1, 2, 3, 4, 5). (38)

Because ¢; and k; can be normalized by dividing by m;, Equation 37 does not require any detailed information on m;.
The input signal X,(t) consists of the measurements of the shaking-table experiment.

Solving Equation 37 by using the state-space method reproduces the structural accelerations, as depicted in
Figure 20. The shape and amplitude of the simulated acceleration of every floor are very close to those of the measured
acceleration. These results demonstrate the effectiveness of the structural parameter identification even without
theoretical values.

5 | CONCLUSIONS

The new substructure approach provides a fast and effective way to separately identify structural parameters of any part
of a shear structure from SDOF substructure models formed using Method 1 or Method 2. Parallel parameter identifica-
tion in every substructure can be performed by processing at most four accelerometers. The numerical simulation
showed that the new approach can deal with large amounts of noise (5% noise in the first scenario and 30% noise in
the second scenario) with less than 5% errors in the stiffness estimation of most substructures. The shaking-table exper-
iment indicated that the errors are less than 3% at a sampling frequency of 200 Hz, and the simulated structural accel-
erations of the identified structural model matched the measurements. Compared with previous methods, the new
method has much greater versatility, accuracy, and robustness.
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