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Simplified Mechanistic Model for Seismic Response
Prediction of Coupled Cross-Laminated
Timber Rocking Walls

Z. Jin'; S. Pei?; H. Blomgren®; and J. Powers*

Abstract: A simplified mechanistic model is developed in this study to predict the lateral load resistance of coupled rocking walls made from
cross-laminated timber (CLT) panels as an alternative to finite-element modeling. The model is derived in an incremental format in order to
capture the nonlinear behavior of the rocking wall, including crushing of the corners and inelastic response of interpanel connectors.
The backbone curve and limit states generated using the proposed model are verified through a detailed finite-element model. Following
the validation of the backbone curve, a spectrum-based maximum displacement prediction method is proposed for the rocking wall system
under an arbitrary earthquake input. This simplified prediction method is validated using full-scale shake table test data of a two-story wood
building with coupled CLT rocking walls. The model and the dynamic response prediction approach are found to be reasonably accurate for
preliminary seismic design and evaluation of CLT rocking wall systems, so that detailed finite-element modeling and nonlinear time history

analysis may not be necessary. DOI: 10.1061/(ASCE)ST.1943-541X.0002265. © 2018 American Society of Civil Engineers.

Introduction

Cross-laminated timber (CLT) is an engineered wood panel product
made from layers of lumber lamina glued together in an orthogonal
pattern. There is a growing trend to construct multistory building
using CLT as floor diaphragms and walls. A number of multistory
CLT buildings have been built around the world with different
structural configurations. Platform CLT buildings using CLT panels
as both the floors and bearing walls are easy to construct, but have
limited ductility unless long CLT panel shear walls are split into
shorter segments with relatively high height:length ratios (Pei
et al. 2013). Such buildings are typically built in regions with lower
seismic demands (e.g., multistory CLT buildings in London and
Melbourne). Another form of CLT building design combines
CLT diaphragm with a traditional glulam column—beam system as
gravity framing (e.g., the Wood Design and Innovation Center in
Canada, the Carbon 12 Building in Portland, Oregon, and the
Brock Commons Building at the University of British Columbia).
Such a design requires separate lateral force-resisting systems that
are typically balloon-framed into the wood-based gravity system.
Because seismic design provisions for CLT lateral systems have not
been well-established in current building codes in North America,
a few existing tall CLT buildings used steel or concrete lateral sys-
tems that are recognized in current codes. There is currently no
standard CLT-based lateral force-resisting solution for multistory
wood buildings, especially in regions with high seismicity.
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Rocking wall (or frame) systems have been studied in the past
by the concrete and steel research communities (e.g., Wada et al.
2010; Andrea et al. 2014; Deierlein et al. 2011). Existing research
findings indicated that rocking wall systems can be designed to
achieve low damage during small to moderate earthquakes and be
easily repairable after large earthquakes. Wood-based rocking wall
systems have also been tested, and were used first in New Zealand
(Smith et al. 2007; Loo et al. 2014) and later in the United States
(Ganey et al. 2017; Akbas et al. 2017). With the reduced seismic
mass of a wood building and the inherent flexibility of wood
material, mass timber buildings with CLT rocking walls and wood
gravity-frame systems can achieve very high-resilience perfor-
mance. This was demonstrated in a series of full-scale shake table
tests on a two-story CLT building as part of the Natural Hazards
Engineering Research Infrastructure Program (NHERI) Tall Wood
Project (Pei et al. 2017). One of the configurations tested in this
program, a pair of coupled CLT rocking walls designed by Katerra
(Seattle, Washington), was installed and subjected to 13 seismic
tests (Fig. 1). The test results verified the ability of the rocking wall
design to remain elastic when subjected to service-level earth-
quakes and to adequately control building drift when subjected to
larger earthquakes. These tests also provided a great set of full-scale
test data to validate the rocking wall model and displacement pre-
diction method proposed here.

This study presents a mechanistic model used to predict the
lateral pushover behavior of coupled CLT rocking wall systems
(to obtain the backbone curve of the rocking wall). In order to
facilitate displacement-based design of the rocking wall systems,
this model is combined with a spectrum-based displacement pre-
diction approach to estimate the maximum building dynamic re-
sponse under a given ground motion input. Although nonlinear
finite-element (FE) models (FEMs) and time history simulation
can be employed for the same purpose, it is believed that a simpler
mechanistic model for coupled rocking wall system can be of
great value for preliminary performance prediction and design. The
following sections present the analytical pushover process to derive
the theoretical backbone curve for the rocking wall system. The
analytical solution is compared with finite-element simulation and
validated. Then the simplified approach to predict rocking wall
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Fig. 1. Full-scale wood building with coupled rocking CLT walls
designed by Katerra. (Image by S. Pei.)

peak dynamic response under earthquake excitation is proposed
and validated through comparison with full-scale shake table test
results.

Coupled CLT Rocking Wall System

A coupled rocking wall configuration is commonly used in rocking
wall design because it allows additional energy dissipation through
connectors between rocking wall panels. Although there can be
more than two rocking panels in a coupled wall series, a two-panel
coupled rocking wall captures the kinematics of the system and is
the configuration that was tested most in past research work (Ganey
et al. 2017). Moreover, because the analytical model proposed here
was validated with full-scale shake table test data from a building
with two-panel coupled wall system, the discussion in this study is
focused on two-panel coupled rocking wall configuration.

A coupled wall consists of two identical panels placed next to
each other on a rigid foundation. The two panels are linked by a
series of shear connectors at their interface (i.e., coupling ele-
ments). The shear connectors can be designed to remain elastic at
the service load level in order to improve the lateral stiffness of
the coupled wall. The connectors will also yield under larger earth-
quakes to help dissipate dynamic energy. The corners of the rock-
ing wall panels are referred to here as the toes of the rocking wall.
The rocking wall considered in this study also has hold-down el-
ements placed at the center of the panel width to resist overturning.
These hold-down elements can be simple mechanical connections
that prevent the wall from uplifting, or posttensioned rod elements.
The configuration of the rocking wall is illustrated in Fig. 2.

The coupling shear connectors are typically made of steel with
the intention of yielding behavior for energy dissipation. Design
options for these connectors may vary depending on construction
details (e.g., water-jetted steel plates or U-shaped steel connectors),
but the shear behavior of these connectors can typically be ideal-
ized as elastoplastic. In posttensioned rocking wall cases, the hold-
down connector spring is posttensioned and remains elastic under
design level loads. Thus it can be idealized as a linear spring. If
other forms of hold-down elements are used, it can be assumed that
the hold-downs are metal connectors that can exhibit a plastic yield-
ing behavior when force demands become high.

Under lateral loads, the toe of each CLT panel bears on the foun-
dation and may be crushed. There are different design options for
the toe detail, including strengthening the toe to prevent damage or
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Fig. 2. Simplified kinematics configuration of coupled CLT rock-
ing wall.

allowing the toe to be damaged for additional energy dissipation.
Specifically, CLT toes experience strain hardening as the wood
material densifies during the process of crushing. Thus it is logical
to model the toe with a bilinear spring element with a postyielding
stiffness. In summary, a generalized coupled CLT rocking wall
model will include a number of key parameters listed in the
Appendix. These parameters serve as the input for the proposed
mechanistic model and dictate the behavior of the rocking wall
under lateral load. Using this model, a designer will be able to
quickly identify different limit states of various rocking wall
designs, such as panel decompression, toe yielding/crushing, inter-
panel connector yielding, and hold-down yielding, without con-
structing nonlinear finite-element models.

Mechanistic Model of Coupled Wood Rocking Wall
System

Depending on the strength and stiffness of the connectors (hold-
downs or shear connectors) relative to that of the toe of the panel,
the rocking wall system can behave differently. This derivation nu-
merically pushes the top of a coupled rocking wall incrementally
and seeks to establish force equilibrium under a set of simple kin-
ematics assumptions. Once the lateral force is determined through
equilibrium at every incremental step, the pushover backbone curve
of the wall is obtained. This derivation assumes that the amount of
rotation of both panels stays the same throughout the pushover.
Secondly, the total lateral pushing force equals the sum of the
resultant lateral forces from the tops of both panels. Given these
conditions, it is possible for the rocking wall to experience five dis-
tinct loading phases, which are described subsequently.

Phase 1: From Zero Lateral Load to Decompression

Decompression happens when the lateral force grows large enough
to balance the gravity load and the posttension force on the wall
panels. The forces applied on the two panels at the point of decom-
pression can be calculated as shown in Fig. 3.
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Fig. 3. Forces acting on panels at decompression load.

The moment equilibrium of the two panels about O; and O,
requires

Pyph+My —Hyy - h/2—(W+Vy+Vy)-b/2=0 (1)

~My +Hy - h/2 =V, b—(W+Vyo+ V) -b/2=0 (2)

where W = self-weight of the wall; V,, = prestressing force in the
hold-down bar; and V,; and V, = incremental hold-down forces
caused by panel rotation. Because the rotation angle « is very small
at decompression, the coupling shear force V and the incremental
hold-down forces V;,; and V,, can be neglected. Adding Eqs. (1)
and (2) obtains

Py =W+ Vy)-b/h (3)

As the lateral force increases, the vertical load on the left toe
shifts to the right toe gradually. The initial compression deforma-
tion of the toe spring is (W + V,,4)/(2K ), and thus the rotation
angle leading to decompression of the left toe is v, = (W+Vy)/
(2K,)/(b/2). Therefore, the lateral displacement at the top can be
calculated as

Uup = auph = (W + th)h/KtO/b (4)
At this point, the force in the toes at both panels are the same

Vi =W+ Vo (5)

The elastic displacement of the wall top is U, ,, = Puph3 /
(3EI), where I = 2tb3/12 (the bending moment of inertia of the
coupled wall cross section), and E and ¢ are the equivalent elastic
modulus and the thickness of the wall panel, respectively. Thus,
the shear spring force from the elastic bending deformation of the
wall is

Vs.up = ZKS(W + VhO)h/b/(Et) (6)

where K = stiffness of the shear spring. If the rocking wall system
is posttensioned, or has very large vertical loading (load bearing
wall), it is possible in theory to yield the toe or shear spring before
decompression happens. However, for typical rocking wall design,
decompression is typically the first limit stage encountered under
increasing lateral loads.

© ASCE

Phase 2: From Decompression to Yielding of Shear
Spring

Theoretically, it is possible to crush the toe before the yielding
of shear spring if the toe is relatively weak. However, the main
purpose of shear elements in realistic designs is to help dissipate
energy, thus the coupling elements are typically designed to yield
first in most cases. After decompression, the compression forces on
the wall panels are resisted by the toes. The rotation of the panel
continues as the hold-down spring elongates. Once the rotation
exceeds a certain level, the interpanel shear connector yields. The
lateral drift level at yielding mainly depends on the interpanel shear
connector’s yielding displacement and the panel aspect ratio. The
incremental displacement and force relationship for the wall system
during this phase is summarized as follows (Appendix I provides
the detailed derivation).
The incremental lateral drift AUy, can be calculated as

AUy, = hAay,,
where AO‘ys = (Fs/b/Ks N O‘up)[l + ZKA'/(KtO + Kh)] (7)

where oy, = U,p/h = nominal rotation at decompression.
The incremental lateral force is

K, Ky

AP, = 00
' K, + K

Aaovy, - b*/h/2 + [Fs — Kboylb/h - (8)

The incremental forces in the hold-down and at the toes can be
calculated by

AVhLyS = elKhAaysv
AVhZ,_vs = eZKhAays (9)

Avtl.ys = (b/z - el)KIOAOZyS,
AV!Z,ys = (b/2 - e2)Kt0Aays (10)

In Egs. (9) and (10), e; and e, are the distances between the
rotation center and the panel center at Phase 2

e :b( Ko/2 | K, > (11)
b2 Ko+Ky  Kpo+Kj+2K,

Phase 3: Yielding of Toe on Right Panel

After the yielding of the shear spring, the shear force between pan-
els remains constant. From the vertical equilibrium condition each
panel, the sum of the incremental hold-down force and the toe force
equals the incremental shear force, which is zero after yielding.
Therefore, after the yielding of the shear spring, the panels will
rotate in a specific way so that the incremental hold-down force
always balances the incremental toe force. Based on this condition,
the location of the rotation center can be calculated as

b 1
e[ ,Ky = (b/2—e{,)Ky, or e[.zzim (12)

The toe for the right panel (when the lateral load is applied from
left to right) will always take a higher load than the toe of the left
panel. Thus the right panel toe will yield first if the materials of both
panels are the same.

Incremental force of the toe spring is

AVipyn = (b/2 = e5)KpAay, (13)
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The right panel toe will yield when

W+ VhO + szz,ys =+ AV!Z.ytZ = Fl (14)

Thus, by substituting Eq. (14) into Eq. (13), the yielding of the
right toe will happen when the incremental angle is
Ft -W- VhO - AVtZ,ys

(b/2—€))K,

ACVyQ = (15)

At this time, the incremental force on the left panel toe is
Ath.ytz = (b/z - el/)KIOAayQ (16)

The incremental hold-down force can also be calculated based
on geometry

AV yn = Kpe{Aay,,
AVhZ,ytZ = Khez,Aayﬂ (17)
Finally, the incremental lateral force is

AP)'tZ = KhAaytZ ' (el/ + eé)b/h/z (18)

Phase 4: Yielding of Left Panel Toe

Similar to Phase 3, before the yielding of the left panel toe, the left
panel will continue to rotate about e, and the incremental toe force
at the yielding of the left panel toe can be written as

b
AV{I,}'ZI = (E — e{) KtoAnyt] (19)
The left toe will eventually yield as the rotation continues to

increase

W+ Vi + Ath.ys + Ath.ytl + Ath,ytz =F, (20)

From Eqgs. (18) and (19), the incremental rotation angle as the
left panel toe yields is
Ft B (W -+ Vrl,ytz + Avtl.ys)
(b/2— Ky

Aaytl = (21)

After the yielding of the right panel toe, the rotation center of the
right panel shifts to

1

(1+K,/Ky) (22)

b
el” :E

Eq. (22) is the result of replacing the initial stiffness K,y with the
postyielding stiffness K,; in Eq. (12). The incremental hold-down
force can be calculated as

AV yn = KpejAay, AV, v = Kpey'Aay, (23)

Similar to the right panel toe, the incremental toe force is
AV = (/2 — e)')K ;1 Aayyyy (24)
The incremental lateral force can be calculated using a formula
similar to Eq. (18), by replacing e; with e;’ and Ac,,; with Aay,

b/h

. (25)

APytl = KhAaytl : (el/ + eél)

© ASCE

Phase 5: Yielding of Left Panel Hold-Down

After both panel toes yield, the toe force will continue to increase
because the wood in compression is not elastoplastic. Eventually, it
is possible for the hold-down to yield under large rotation. After the
yielding of the both toes, the rotation center of both panels can be
determined by [Eq. (22)]

1

(1+Kh/Kt1) (26)

b

no_

€12 =5

Because the left hold-down spring takes more hold-down force
than the right hold-down spring due to geometry, the left hold-
down spring will yield first (assuming that the hold-down systems
in both panels are the same). The left hold-down spring yields when

Aayre" + Dy yy = Fi/Ky,
where D, = Aayef + Aaypef + Aayey (27)
From Eq. (27), the incremental rotation angle Aa,,; can be

solved. At this moment, the hold-down force increment on the right
panel can be written

AV o = Kyey Ay, (28)
The incremental toe forces are

AV = (b/2 — ef') K Aaryyy.,
AV = (b/2 = €)' ) KAy, (29)

The lateral force increment at the left hold-down spring
yielding is
b/h

APyhl = KhAayhl . (el” =+ eé')T (30)

Phase 6: Yielding of Right Hold-Down

After the left hold-down spring yields, if the panel continues to
rotate, the right hold-down will eventually yield. Beyond this stage,
the rocking wall system will yield laterally and there will be no
mechanism to generate additional resistance. After the left hold-
down yields, the left panel rotates about its right corner; because
the shear and hold-down springs both yield, no additional force can
be generated to further compress the toe). The right panel center of
rotation locates ez” from the panel center, as described for Phase 5.
The right hold-down spring yield when

2 —
Aaypes + Dy = Fi /Ky,
where Dy 1 = Aaypes’ + Aaye)’ + Aaypes + Aayep

(31)

From Egq. (31), the incremental rotation angle Acv,,, when the
right hold-down spring yields can be solved. The incremental toe
forces are

AV g =0, AV = (b/2 =)' ) KAy, (32)

The lateral force after the left hold-down spring yields is

b/h
APy = KpAay, - (b/2 + 32”)% (33)

Eq. (33) is the result of replacing e;’ with 5/2 in Eq. (30).
These six stages of possible coupled rocking wall behavior and
their corresponding rotation and resistance calculations can be

J. Struct. Eng.

239

240
241
242
243
244

245
246
247
248

249
250
251

252

253
254

255

256
257
258
259
260
261
262
ER63
264

265
266
267

268

269
270
271



272
273
274
275
276
271
278
279
280
281
282

283
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298

T1:1

T1:2
T1:3
T1:4
T1:5
T1:6
T1:7
T1:8
T1:9
T1:10
T1:11
T1:12

F4:1

summarized in a set of limit states formulas (Appendix II). This
analytical solution is presented in incremental format (except for
Stage 1, given as the limits for this linear deformation stage) be-
cause the rocking wall connection elements (hold-down, toe, and
shear connector) are nonlinear. The incremental formula can be
implemented using Excel or another simple numerical program.
For a particular wall design, with the properties of the shear, toe,
and hold-down springs determined, the formula can be used to
calculate the wall response under a monotonic pushover protocol
(i.e., generating a backbone curve). These limit states can be iden-
tified along the backbone curve.

Comparison of Analytical Backbone Curve and FEM
Simulation

The analytical backbone curve derived in this study was compared
with a nonlinear finite element model constructed using SAP2000
software (Computers and Structures Inc 2006) in order to illustrate
the equivalency in these two approaches. Two rocking wall con-
figurations were simulated based on realistic mass timber rocking
walls configurations used in the aforementioned testing program.
The first configuration was a rocking wall with very strong hold-
down elements but no posttensioning. The second configuration
was a modified version of the first, with posttensioning added and
the hold-down/shear stiffness reduced. The design parameters for
both cases are listed in Table 1.

The backbone curves of the wall obtained from the analytical
solution and the FEM analysis are compared in Fig. 4. The analyti-
cal formula can accurately capture the overall trend of the backbone

Table 1. Example rocking wall parameters

compared with FEM simulation. Furthermore, the rocking wall
characteristics are very sensitive to the design parameters. There is
a small discrepancy between the backbone curve from the analyti-
cal solution and the FEM which is induced by the elastic deforma-
tion of the wall panel, which was not considered in the simplified
model (analytical derivation assumed the panels to be rigid). If de-
sired, the elastic deformation can be calculated by 2P/E/t(h/b)?
and added to the total lateral deformation. Fig. 4 also shows the
analytical backbone curve with the elastic deformation of the wall
added. After considering the elastic deformation, the analytical sol-
ution is almost identical to FEM simulation result. In the following
sections, the backbone curves used in the examples do not include
the elastic deformation impact because (1) from Fig. 4, the elastic
deformation is relatively small, and (2) in most practical cases, the
lateral force is applied along the height of the wall at each floor and
the roof, making the elastic deformation contribution even smaller
compared with the case in which all lateral forces are applied on
the roof.

Seismic Response Prediction

Rocking wall system dynamic response is nonlinear under large
earthquakes. Traditionally, nonlinear time history analysis needs
to be conducted in order to estimate the dynamic displacement of
the system. This process is time-consuming and requires significant
efforts in modeling, making it difficult for preliminary design and
assessment. For displacement-based design, the full time history
of the wall response is typically not required. Design can be

Symbol Meaning Case 1 Case 2 Unit
E Modulus of elasticity of wall material 1.103 x 10'° 1.103 x 10'° N/m?
b Width of single panel 1.524 1.524 m
t Thickness of panel 0.175 0.175 m
w Self-weight of single panel 915.3 915.3 Kg
Vio Prestressing force of hold-down 0 10,000 N
K, Stiffness of hold-down tendon 4.901 x 108 5.000 x 10° N/m
K Stiffness of shear spring 1.911 x 107 9.555 x 10° N/m
Ky Initial stiffness of toe spring 2.942 x 107 2.942 x 107 N/m
K Toe spring stiffness after yielding 8.262 x 10° 8.262 x 10° N/m
Fy Yielding force of shear spring 9.710 x 10* 9.710 x 10* N
F, Yielding force of toe spring 1.644 x 103 1.644 x 103 N
Phase 4 Phase 5

~ 601 60

525 Z Phase 5

8 © Phase 4

= Phase 3 o

2 401 2

2 2]

@ G

3 2 Phase 3

T 5 T 904

% 20 —— SAP simulation i) 20 — SAP simulation

| —O— Analytical-rigid wall 3 Phase 2 —O— Analytical-rigid wall

—&— Analytical-elastic wall —&— Analytical-elastic wall
0 T T T T T T T 0 Phas'e ! T T T T T T T T T
0 20 40 60 80 0 100 200 300 400 500
(a) Top displacement (mm) (b) Top displacement (mm)
Fig. 4. Backbone curve of the rocking wall: (a) Case 1; and (b) Case 2.
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conducted with an accurate estimation of the maximum displace-
ment response. Therefore this paper proposes a simplified approach
to calculate the maximum seismic response of the rocking wall
against a given ground motion. This approach requires only the
response spectrum of the ground motion and the analytical back-
bone curve derived previously (which can be obtained given basic
design parameters of the wall). The method was applied to a
coupled CLT rocking wall subjected to a series of earthquake
excitations. The maximum displacement estimation was compared
with full-scale shake table test results and showed satisfactory
accuracy.

Dynamic Equation for Rocking Wall System

The dynamic response of the rocking wall subjected to earthquake
ground motion excitation can be written as a single-degree-of-
freedom (SDOF) system in terms of the rotation angle

M,a+ Ca+ K, (a)ao = —La(t) or

& + 2ewy i 4+ wja = —L/M ,a,(1) (34)
where M, = mlh% + mzh% = mass moment of inertia of the build-
ing about the toe; and L = m;h, + m,h, = rotation moment factor
from the ground motion excitation. This study used the NHERI
Tall Wood two-story test building as an example, which has con-
centrated mass at the roof and floor levels. The secant stiffness
of the wall K, («) in rotation motion can be obtained by the back-
bone curve of the wall (example calculation is shown in section
“Simplified Approach for Displacement Prediction”).
The rotation stiffness in Eq. (34) can be calculated by

h h P
_ph P 2*—h%

Kala) = o  u/hy, u (35)

where P/u = secant stiffness from the backbone curve (Fig. 7).

Simplified Approach for Displacement Prediction

We propose a graphic spectrum approach to estimate the drift of
the rocking wall in the preliminary design stage. This approach
avoids complicated FEM modeling and time-history simulations.
Based on the linearization approach for random vibration theory,
Eq. (34) can be linearized as

M &+ Co+ K, = —La(t) (36)

In Eq. (36), only the stiffness needs to be linearized. Assuming
that the response distribution is Gaussian, the standard linearization
approach (Caughey 1963) can be followed for dynamic system
with Gaussian responses. The equivalent stiffness is calculated as

Ko(a0) = K ()] = — = [ K, 0)ex (- %) do
(37)

where o, = standard derivation of the wall rotation angle. For a
Gaussian process the standard derivation can be approximated as
one-third of the maximum value, that is

T X gy /3 With a, = max(|a(7))/3 (38)
Given the maximum rotation «,, of the wall, the equivalent
stiffness K, can be calculated from the backbone curve using
Egs. (35) and (37). Then the natural period of the linearized wall
can be easily related to the maximum rotation of the wall by
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T(amax) =27 \/ I_(a(amax/?’)/Mo,

On the other hand, once the natural period of the wall is known,
the maximum rotation of the wall can be determined using the
response spectrum as

(39)

Omax = RSd(T) (40)

Finally, the maximum rotation and equivalent natural period
can be found as the solution to Egs. (39) and (40). The solution
can be determined graphically on the T—a,,, plots from Eqgs. (39)
and (40). The procedure of the proposed graphical approach is
illustrated in Fig. 5 as a six-step process.

Step 1. Convert the rocking wall backbone curve to the secant
stiffness curve;

Step 2. Calculate the equivalent stiffness of the wall from the
secant stiffness curve using Eqs. (37) and (38);

Step 3. Plot the natural period of the linearized panel using the
equivalent stiffness;

Step 4. Calculate the displacement response curve for given
ground motion;

Step 5. Find the intersection of the curves in Step 3 and Step 4,
resulting in the nonlinear solution; and

Step 6. Take average of the linear solution and the nonlinear
solution.

Details of this process are demonstrated using examples in the
following section.

Example Prediction and Validation

This study used experimental data from full-scaled shake table tests
of a coupled rocking wall to validate the proposed displacement
prediction approach. The full-scale CLT wall tested is shown in
Fig. 6. Because the wall was balloon-framed with the diaphragm,
the roof and floor in Fig. 6 did not interrupt the continuity of the
rocking wall panels.

The rocking wall was designed without posttensioning (Fig. 6).
Instead, the toe detail was specially designed to allow crushing into
a sacrificial wood crushing block that can be quickly replaced after
an earthquake (if needed). The parameters used for the wall design
were those of Design Case 1 in Table 1.

Demonstrative Example: Prediction of Single Test

As an example to demonstrate the six-step process of the proposed
method, prediction of the rocking wall responses subjected to the
Imperial Valley ground motion record scale with peak ground

Backbone curve | [Secant stiffness |
Ap AK,(a)

Step 1 5
- Kafa)=ph*/u

a=u/h
Step 2 |Eq.(37)

<y

nonlinear
solution

A Kofamax)

a
L »

Equivalent stiffness

Fig. 5. Spectrum-based approach to estimate maximum wall
displacement.

X Umax= amax/ h

averaging

Step 4,5,6
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Fig. 6. Detailed configuration of coupled CLT wall (designed by Katerra). (Image by S. Pei.)

acceleration (PGA) of 0.736g is illustrated here. The following
steps were followed:
1. Convert the backbone curve (P—u relation) in Fig. 4(a) into the

secant stiffness curve in Fig. 7. Fig. 7 is related to Fig. 4(a) by
the following conversion: rotation angle o = u/h; and secant
rotation stiffness K, (o) = (P/u)h>.

2. Calculate equivalent stiffness of the wall [K,(c,)] from the

secant stiffness in Fig. 7, using Eq. (37). Get the relation be-
tween the equivalent stiffness K, (c,,) and the maximum displa-
cement a,,, = 30, (Fig. 8).

x1000

60 -

40 -

Kg (o)

20 A

Secant stiffness in rotation (kN.m/rad)

a=u/h

T T
0.01 0.02
Wall rotation angle (rad)

0.00 0.03

Fig. 7. Secant stiffness versus wall rotation.

b

Get the dependence of equivalent period on the maximum
displacement from Fig. 8 using T(mex) = 27/ Ko (0,)/ M.,
Oq = Omax /3, and U = hauy,, (Fig. 9).

Calculate the displacement response spectrum of the wall.
In Eq. (34), the ground motion should be scaled by L/M, to
obtain the response spectrum of the rotation angle.

Find the intersection of the two curves as the nonlinear solution.
Average the displacement between the linear and nonlinear
responses on the response spectrum curve.

The estimated roof displacement based on the curve in

Fig. 9 is 20.7 cm before averaging, and 28.1 cm after averaging.
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. 8. Equivalent stiffness versus maximum wall rotation.
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Fig. 12. Response spectrums of 13 tested ground motions.
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Fig. 11. Measured roof displacement time history.

The purpose of averaging over the spectral response is to
account for potential softening of the system during dynamic
loading.

The ground motion acceleration time history and the roof dis-
placement subjected to this ground motion are shown in Figs. 10
and 11. The measured maximum roof displacement is 20.0 cm,
which is very close to the estimated response using the proposed
method.
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Validation Using Multiple Earthquakes

Similar to the preceding process, all 13 cases of different GM
records and PGA were predicted. The ground motions used in
the test were scaled to three different intensity levels, namely
the serviceability-level earthquake (SLE), design-basis earthquake
(DBE), and maximum considered earthquake (MCE). The response
spectrum of the ground motion records tested are shown in Fig. 12.
During the 13 tests, a few variations of the interpanel shear con-
nector configuration were tested. By applying different amounts
(Iengths) of interpanel steel connectors, the shear spring stiffness
and strength changes. The lengths of the interpanel connector for
the wall are listed in Table 2.

The estimated roof drift from the proposed methods are com-
pared with the actual measurements in Fig. 13, with the relative
error listed in Table 2. The comparison shows that the mean error
of the proposed method is about 25%, with RMS of 12%-15%
across all intensity levels. Considering the large uncertainty of
ground motions, the accuracy of the proposed method can be
accepted as a preliminary design tool.

Conclusions

The lateral load-resisting behavior of a coupled rocking CLT
wall system was investigated in this study. Analytical formulas that
can be used to generate backbone curve of the coupled rocking wall
were proposed. The model is able to represent different rocking
wall design configurations given key load-resistance parameters
for the toe, hold-down element, and interpanel shear connectors.
The analytical backbone curves were compared with FEM simu-
lation, validating the equivalency of the two methods.

Based on the backbone curve of the rocking wall, the equation
of motion for a rocking wall system under seismic excitation was
linearized, resulting in a simplified equivalent single-degree-of-
freedom system. Then the maximum displacement of the rocking
wall was estimated as the intersection point of the displacement
response spectrum and the displacement—natural period curve (gen-
erated based on the nonlinear backbone curve). To further improve
the accuracy of this graphic method, the spectrum averaging
method was proposed in order to consider the nonlinear period
elongation of the rocking walls. The proposed maximum displace-
ment prediction method was compared with the results from full-
scale system-level shake table tests. The accuracy of the proposed
method was found to be reasonable for preliminary design and
evaluation of CLT rocking walls.
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Table 2. Ground motion records, shear connector length, and predicted drift errors for tests

Relative error of predicted roof drifts (%)

Equivalent linearization Average over spectrum

Ground
motion Panel connector Individual Average of Individual Average of
Test Ground motion level PGA (g9) length [m (ft)] analysis intensity level analysis intensity level
1 Loma Prieta SLE 0.163 9.75 (32) 15 23 15 21
2 Superstition Hills SLE 0.154 9.75 (32) 36 30
3 Northridge SLE 0.134 4.88 (16) 16 19
4 Northridge SLE 0.115 9.75 (32) 42 36
5 Loma Prieta SLE 0.147 7.32 (24) 13 13
6 Imperial Valley SLE 0.190 9.75 (32) 18 15
7 Superstition Hills DBE 0.413 9.75 (32) 8 31 15 34
8 Imperial Valley DBE 0.395 4.88 (16) 28 50
9 Imperial Valley DBE 0.403 9.75 (32) 60 42
10 Northridge DBE 0.447 4.88 (16) 29 29
11 Imperial Valley MCE 0.813 7.32 (24) 3 14 31 22
12 Northridge MCE 0.697 7.32 (24) 21 21
13 Northridge MCE 0.821 7.32 (24) 17 14
aP,,

T 30 4 Proposed method without averaging
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Fig. 13. Comparison of tested and estimated roof displacements.

Appendix I. Detailed Derivation of Phase 2 Panel
Equilibrium

The rotation centers of the panels in Phase 2 are marked R; and R,
in Fig. 14, located e; and e, from the panel center.

As the panels rotate about R; and R, with an incremental ro-
tation angle Aq, the incremental hold-down forces and toe forces
can be calculated by the spring elongation as shown in Fig. 14.
The incremental hold-down forces are K,e;Aa (left panel)
and Kje,A« (right panel), and the incremental toe forces are
K,(b/2 —e;) (left panel) and K,(b/2 — e,) (right panel).

The vertical equilibriums (incremental form) of the left and the
right panels are

AVS+Kt0(b/2—€l)AO[—Kh€1AOé:0 (41)
—A‘/A =+ K,O(b/Z — EZ)AO[ — KhEZAOé =0 (42)

The rotation center e¢; and e, can be solved using the equilib-
rium Egs. (41) and (42) as

e = (AVS/A(X—i-K,Ob/Z)(Kh +Kt0> (43)
e, = (—AV,/Aa+ K,zb/2)(K; + Ky) (44)

© ASCE

KneiAa Ki(b/2-e;)Aa KneAa Ki(b/2-e;)Aa

Fig. 14. Phase 2 panel equilibrium free body diagram.

The incremental shear force can be calculated according to the
elongation of the shear spring by
AV, =K [(b/2—e;)+ (b/2+ e;)]Aa =K (b+ e — ;) A
(45)
By substituting Egs. (43) and (44) into Eq. (45), the incremental
shear force can be solved as

K.bAa

AV, =
142K /(K +K))

(46)

Then, by substituting Eq. (46) into Eq. (43) and Eq. (44), the
rotation center location can be determined by

K K,n/2
e, =b|+ J o/ (47)
’ Ko+ Ky +2K; K+ K,
The shear spring yields when
AV, + Kbay, = F (48)

where o, = panel rotation at the decompression phase; and F',; =
yielding strength of the shear spring. By substituting Eq. (48) into
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Eq. (46), the incremental rotation angle and lateral displacement at
the top when the shear spring yields can be found

AO‘ys = [Fs/Ks/b - O‘up][l + ZKS/(K,() + Kh)]
AUy, = hAay,

and

(49)

Given the incremental rotation angle Aay, in Eq. (49) and the
rotation center e, in Eq. (47), the forces in the hold-down and at
the toes can be calculated

Avhl,ys = elKhAaysv

AVhZ.yx = e2KhAays (50)
Ath.ys = (b/2 - el)KIOAays’
AV = (b/2 — e2)KpAay, (51)

The rotation equilibrium equation of the panels about O; and
0, are

APy h+ AMy, — AHjy - h/2 = AV - b/2 =10 (52)

—AM;, + AH;, - h/2 = AV b= AV, - b/2 =0 (53)
By adding Eqgs. (52) and (53), the lateral pushing force that will
yield the shear spring can be written

b/h

APy: = Kh(ez + el) " Oy T + [Fs - Ksbaup]b/h (54)

Appendix Il. Formula for Six Stages of Coupled
Rocking Wall Behavior

Stage 1: Decompression of the wall corner will occur when the
rotation angle equals

gy = (W+Vio)/Ki/b (55)
and the lateral resistance equals
(W+Vyo) - b/h (56)

Stage 2: At yielding of the shear connectors, the incremental
rotation angle is

Aayx = [Fs/Ks/b W aup] ' [1 + 2K.v/(K10 + Kh)] (57)
and the incremental lateral resistance is
b’K,K
P20 Aay, + [Fy — K bay)b/h (58)

2h(Kj, + Ky)

Stage 3: At crushing of the right panel corner, the incremental
rotation angle is

F=W —Vyo— AV

A = 59
N (Y Ry 39)

and the incremental lateral resistance is
bK,Aoy,(ef 4 e3) (60)

2h

Stage 4: At crushing of the left panel corner, the incremental
rotation angle is

© ASCE

10

Ft_(W + Athi,ys + Ath.ytZ)

A = 61
o (/2 - e)Ke ©D)

and the incremental lateral resistance is
bKAay, (e] + ey') (62)

2h

Stage 5: At yielding of the left panel hold-down element, the
incremental rotation angle is

Fy/Ky = Dpiyn

AO‘yhl = 11 (63)
€
and the incremental lateral resistance is
bK Ay, (el + es
h yhl ( 1 2 ) (64)

2h

Stage 6: At yielding of the right panel hold-down element, the
incremental rotation angle is

Fy/Kpy — Dy i

AO‘yhz = 7 (65)
€
and the incremental lateral resistance is
bK,Acyn (b2 + el
h yh2( / 2 ) (66)

2h
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Notation

The following symbols are used in this paper:
b, h, and t = width, height, and thickness, respectively, of each
panel;
D = elongation of springs;
e and e, = rotation center distance on left panel on left and
right panel, respectively, during Phase 2;
e| = rotation center distance on left panel during
Phases 3 and 4;
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e} = rotation center distance on left panel on right panel
during Phase 3;
e|’ = rotation center distance on left panel on left panel
during Phase 5;
e}’ = rotation center distance on left panel on right panel
during Phases 4-6;
F), = yielding strength of hold-down spring;
F = yielding strength of shear spring;
F, = yielding strength of toe spring;
K, = stiffness of hold-down spring;
K = stiffness of shear connector before yielding;
Ko = initial stiffness of toe before yielding;
K1 = postyielding stiffness of toe;
U = lateral displacement on wall top;
V10 = prestressing hold-down force;
Viuis Vo = left and right hold-down force (excluding prestress
load);
V, = shear force of interpanel connector;
V1 and V,, = left and right toe force, respectively;
W = self-weight of one panel,
« = rotation angle of panel; and
AX = increment of X with respect to former phase.

Subscripts

up = decompression (Phase 1);

ys = yielding of shear spring (Phase 2);

yt2 = yielding of the toe on right panel (Phase 3);
yt1 = yielding of the toe on left panel (Phase 4);
yh1 = yielding of left hold-down (Phase 5); and
yh2 = yielding of right hold-down (Phase 6).
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