

# 2 Simplified Mechanistic Model for Seismic Response

## 3 Prediction of Coupled Cross-Laminated

### 4 Timber Rocking Walls

5 **Z. Jin<sup>1</sup>; S. Pei<sup>2</sup>; H. Blomgren<sup>3</sup>; and J. Powers<sup>4</sup>**

6 **Abstract:** A simplified mechanistic model is developed in this study to predict the lateral load resistance of coupled rocking walls made from  
 7 cross-laminated timber (CLT) panels as an alternative to finite-element modeling. The model is derived in an incremental format in order to  
 8 capture the nonlinear behavior of the rocking wall, including crushing of the corners and inelastic response of interpanel connectors.  
 9 The backbone curve and limit states generated using the proposed model are verified through a detailed finite-element model. Following  
 10 the validation of the backbone curve, a spectrum-based maximum displacement prediction method is proposed for the rocking wall system  
 11 under an arbitrary earthquake input. This simplified prediction method is validated using full-scale shake table test data of a two-story wood  
 12 building with coupled CLT rocking walls. The model and the dynamic response prediction approach are found to be reasonably accurate for  
 13 preliminary seismic design and evaluation of CLT rocking wall systems, so that detailed finite-element modeling and nonlinear time history  
 14 analysis may not be necessary. **DOI:** [10.1061/\(ASCE\)ST.1943-541X.0002265](https://doi.org/10.1061/(ASCE)ST.1943-541X.0002265). © 2018 American Society of Civil Engineers.

### 15 **3 Introduction**

16 **4** Cross-laminated timber (CLT) is an engineered wood panel product  
 17 made from layers of lumber lamina glued together in an orthogonal  
 18 pattern. There is a growing trend to construct multistory building  
 19 using CLT as floor diaphragms and walls. A number of multistory  
 20 CLT buildings have been built around the world with different  
 21 structural configurations. Platform CLT buildings using CLT panels  
 22 as both the floors and bearing walls are easy to construct, but have  
 23 limited ductility unless long CLT panel shear walls are split into  
 24 shorter segments with relatively high height:length ratios (Pei  
 25 et al. 2013). Such buildings are typically built in regions with lower  
 26 seismic demands (e.g., multistory CLT buildings in London and  
 27 Melbourne). Another form of CLT building design combines  
 28 CLT diaphragm with a traditional glulam column-beam system as  
 29 gravity framing (e.g., the Wood Design and Innovation Center in  
 30 Canada, the Carbon 12 Building in Portland, Oregon, and the  
 31 Brock Commons Building at the University of British Columbia).  
 32 Such a design requires separate lateral force-resisting systems that  
 33 are typically balloon-framed into the wood-based gravity system.  
 34 Because seismic design provisions for CLT lateral systems have not  
 35 been well-established in current building codes in North America,  
 36 a few existing tall CLT buildings used steel or concrete lateral sys-  
 37 tems that are recognized in current codes. There is currently no  
 38 standard CLT-based lateral force-resisting solution for multistory  
 39 wood buildings, especially in regions with high seismicity.

40 Rocking wall (or frame) systems have been studied in the past  
 41 by the concrete and steel research communities (e.g., Wada et al.  
 42 2010; Andrea et al. 2014; Deierlein et al. 2011). Existing research  
 43 findings indicated that rocking wall systems can be designed to  
 44 achieve low damage during small to moderate earthquakes and be  
 45 easily repairable after large earthquakes. Wood-based rocking wall  
 46 systems have also been tested, and were used first in New Zealand  
 47 (Smith et al. 2007; Loo et al. 2014) and later in the United States  
 48 (Ganey et al. 2017; Akbas et al. 2017). With the reduced seismic  
 49 mass of a wood building and the inherent flexibility of wood  
 50 material, mass timber buildings with CLT rocking walls and wood  
 51 gravity-frame systems can achieve very high-resilience perfor-  
 52 mance. This was demonstrated in a series of full-scale shake table  
 53 tests on a two-story CLT building as part of the Natural Hazards  
 54 Engineering Research Infrastructure Program (NHERI) Tall Wood  
 55 Project (Pei et al. 2017). One of the configurations tested in this  
 56 program, a pair of coupled CLT rocking walls designed by Katerra  
 57 (Seattle, Washington), was installed and subjected to 13 seismic  
 58 tests (Fig. 1). The test results verified the ability of the rocking wall  
 59 design to remain elastic when subjected to service-level earth-  
 60 quakes and to adequately control building drift when subjected to  
 61 larger earthquakes. These tests also provided a great set of full-scale  
 62 test data to validate the rocking wall model and displacement pre-  
 63 diction method proposed here.

64 This study presents a mechanistic model used to predict the  
 65 lateral pushover behavior of coupled CLT rocking wall systems  
 66 (to obtain the backbone curve of the rocking wall). In order to  
 67 facilitate displacement-based design of the rocking wall systems,  
 68 this model is combined with a spectrum-based displacement pre-  
 69 diction approach to estimate the maximum building dynamic re-  
 70 sponse under a given ground motion input. Although nonlinear  
 71 finite-element (FE) models (FEMs) and time history simulation  
 72 can be employed for the same purpose, it is believed that a simpler  
 73 mechanistic model for coupled rocking wall system can be of  
 74 great value for preliminary performance prediction and design. The  
 75 following sections present the analytical pushover process to derive  
 76 the theoretical backbone curve for the rocking wall system. The  
 77 analytical solution is compared with finite-element simulation and  
 78 validated. Then the simplified approach to predict rocking wall

<sup>1</sup>Associate Professor, School of Civil Engineering, Southwest Jiaotong Univ., Chengdu 610031, China.

<sup>2</sup>Assistant Professor, Dept. Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401 (corresponding author). Email: spei@mines.edu

<sup>3</sup>Director of Testing and Characterization, Katerra, Seattle, WA 98101.

<sup>4</sup>Engineer Associate, Katerra, Seattle, WA 98101.

Note. This manuscript was submitted on November 29, 2017; approved on August 16, 2018. No Epub Date. Discussion period open until 0, 0; separate discussions must be submitted for individual papers. This paper is part of the *Journal of Structural Engineering*, © ASCE, ISSN 0733-9445.



F1:1  
F1:2  
**Fig. 1.** Full-scale wood building with coupled rocking CLT walls designed by Katerra. (Image by S. Pei.)

79 peak dynamic response under earthquake excitation is proposed  
80 and validated through comparison with full-scale shake table test  
81 results.

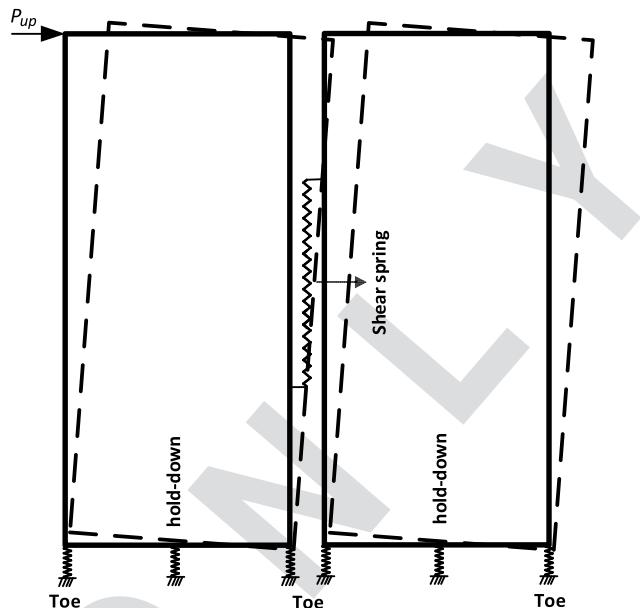
## 82 **Coupled CLT Rocking Wall System**

83 A coupled rocking wall configuration is commonly used in rocking  
84 wall design because it allows additional energy dissipation through  
85 connectors between rocking wall panels. Although there can be  
86 more than two rocking panels in a coupled wall series, a two-panel  
87 coupled rocking wall captures the kinematics of the system and is  
88 the configuration that was tested most in past research work (Ganey  
89 et al. 2017). Moreover, because the analytical model proposed here  
90 was validated with full-scale shake table test data from a building  
91 with two-panel coupled wall system, the discussion in this study is  
92 focused on two-panel coupled rocking wall configuration.

93 A coupled wall consists of two identical panels placed next to  
94 each other on a rigid foundation. The two panels are linked by a  
95 series of shear connectors at their interface (i.e., coupling elements).  
96 The shear connectors can be designed to remain elastic at  
97 the service load level in order to improve the lateral stiffness of  
98 the coupled wall. The connectors will also yield under larger earth-  
99 quakes to help dissipate dynamic energy. The corners of the rock-  
100 ing wall panels are referred to here as the toes of the rocking wall.  
101 The rocking wall considered in this study also has hold-down el-  
102 ements placed at the center of the panel width to resist overturning.  
103 These hold-down elements can be simple mechanical connections  
104 that prevent the wall from uplifting, or posttensioned rod elements.  
105 The configuration of the rocking wall is illustrated in Fig. 2.

106 The coupling shear connectors are typically made of steel with  
107 the intention of yielding behavior for energy dissipation. Design  
108 options for these connectors may vary depending on construction  
109 details (e.g., water-jetted steel plates or U-shaped steel connectors),  
110 but the shear behavior of these connectors can typically be ideal-  
111 ized as elastoplastic. In posttensioned rocking wall cases, the hold-  
112 down connector spring is posttensioned and remains elastic under  
113 design level loads. Thus it can be idealized as a linear spring. If  
114 other forms of hold-down elements are used, it can be assumed that  
115 the hold-downs are metal connectors that can exhibit a plastic yield-  
116 ing behavior when force demands become high.

117 Under lateral loads, the toe of each CLT panel bears on the foun-  
118 dation and may be crushed. There are different design options for  
119 the toe detail, including strengthening the toe to prevent damage or



F2:1  
F2:2  
**Fig. 2.** Simplified kinematics configuration of coupled CLT rocking wall.

allowing the toe to be damaged for additional energy dissipation. Specifically, CLT toes experience strain hardening as the wood material densifies during the process of crushing. Thus it is logical to model the toe with a bilinear spring element with a postyielding stiffness. In summary, a generalized coupled CLT rocking wall model will include a number of key parameters listed in the Appendix. These parameters serve as the input for the proposed mechanistic model and dictate the behavior of the rocking wall under lateral load. Using this model, a designer will be able to quickly identify different limit states of various rocking wall designs, such as panel decompression, toe yielding/crushing, inter-panel connector yielding, and hold-down yielding, without constructing nonlinear finite-element models.

## 120 **Mechanistic Model of Coupled Wood Rocking Wall** 121 **System**

122 Depending on the strength and stiffness of the connectors (hold-  
123 downs or shear connectors) relative to that of the toe of the panel,  
124 the rocking wall system can behave differently. This derivation nu-  
125 merically pushes the top of a coupled rocking wall incrementally  
126 and seeks to establish force equilibrium under a set of simple kin-  
127 ematics assumptions. Once the lateral force is determined through  
128 equilibrium at every incremental step, the pushover backbone curve  
129 of the wall is obtained. This derivation assumes that the amount of  
130 rotation of both panels stays the same throughout the pushover.  
131 Secondly, the total lateral pushing force equals the sum of the  
132 resultant lateral forces from the tops of both panels. Given these  
133 conditions, it is possible for the rocking wall to experience five dis-  
134 tinct loading phases, which are described subsequently.

### 135 **Phase 1: From Zero Lateral Load to Decompression**

136 Decompression happens when the lateral force grows large enough  
137 to balance the gravity load and the posttension force on the wall  
138 panels. The forces applied on the two panels at the point of decom-  
139 pression can be calculated as shown in Fig. 3.

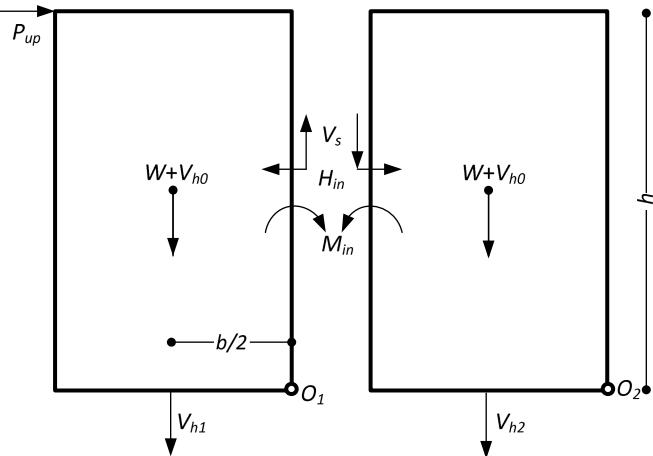


Fig. 3. Forces acting on panels at decompression load.

F3:1

153 The moment equilibrium of the two panels about  $O_1$  and  $O_2$   
 154 requires

$$P_{up}h + M_{in} - H_{in} \cdot h/2 - (W + V_{h0} + V_{h1}) \cdot b/2 = 0 \quad (1)$$

$$-M_{in} + H_{in} \cdot h/2 - V_s \cdot b - (W + V_{h0} + V_{h2}) \cdot b/2 = 0 \quad (2)$$

155 where  $W$  = self-weight of the wall;  $V_{h0}$  = prestressing force in the  
 156 hold-down bar; and  $V_{h1}$  and  $V_{h2}$  = incremental hold-down forces  
 157 caused by panel rotation. Because the rotation angle  $\alpha$  is very small  
 158 at decompression, the coupling shear force  $V_s$  and the incremental  
 159 hold-down forces  $V_{h1}$  and  $V_{h2}$  can be neglected. Adding Eqs. (1)  
 160 and (2) obtains

$$P_{up} = (W + V_{h0}) \cdot b/h \quad (3)$$

161 As the lateral force increases, the vertical load on the left toe  
 162 shifts to the right toe gradually. The initial compression deforma-  
 163 tion of the toe spring is  $(W + V_{h0})/(2K_{t0})$ , and thus the rotation  
 164 angle leading to decompression of the left toe is  $\alpha_{up} = (W + V_{h0})/(2K_{t0})/(b/2)$ . Therefore, the lateral displacement at the top can be  
 165 calculated as

$$U_{up} = \alpha_{up}h = (W + V_{h0})h/K_{t0}/b \quad (4)$$

167 At this point, the force in the toes at both panels are the same

$$V_{t1,up} = W + V_{h0} \quad (5)$$

168 The elastic displacement of the wall top is  $U_{e,up} = P_{up}h^3/(3EI)$ , where  $I = 2tb^3/12$  (the bending moment of inertia of the  
 169 coupled wall cross section), and  $E$  and  $t$  are the equivalent elastic  
 170 modulus and the thickness of the wall panel, respectively. Thus,  
 171 the shear spring force from the elastic bending deformation of the  
 172 wall is

$$V_{s,up} = 2K_s(W + V_{h0})h/b/(Et) \quad (6)$$

174 where  $K_s$  = stiffness of the shear spring. If the rocking wall system  
 175 is posttensioned, or has very large vertical loading (load bearing  
 176 wall), it is possible in theory to yield the toe or shear spring before  
 177 decompression happens. However, for typical rocking wall design,  
 178 decompression is typically the first limit stage encountered under  
 179 increasing lateral loads.

## Phase 2: From Decompression to Yielding of Shear Spring

180

181

Theoretically, it is possible to crush the toe before the yielding of shear spring if the toe is relatively weak. However, the main purpose of shear elements in realistic designs is to help dissipate energy, thus the coupling elements are typically designed to yield first in most cases. After decompression, the compression forces on the wall panels are resisted by the toes. The rotation of the panel continues as the hold-down spring elongates. Once the rotation exceeds a certain level, the interpanel shear connector yields. The lateral drift level at yielding mainly depends on the interpanel shear connector's yielding displacement and the panel aspect ratio. The incremental displacement and force relationship for the wall system during this phase is summarized as follows (Appendix I provides the detailed derivation).

The incremental lateral drift  $\Delta U_{ys}$  can be calculated as

$$\Delta U_{ys} = h\Delta\alpha_{ys},$$

$$\text{where } \Delta\alpha_{ys} = (F_s/b/K_s - \alpha_{up})[1 + 2K_s/(K_{t0} + K_h)] \quad (7)$$

196 where  $\alpha_{up} = U_{up}/h$  = nominal rotation at decompression.

197 The incremental lateral force is

$$\Delta P_{ys} = \frac{K_h K_{t0}}{K_h + K_{t0}} \Delta\alpha_{ys} \cdot b^2/h/2 + [F_s - K_s b \alpha_{up}]b/h \quad (8)$$

198 The incremental forces in the hold-down and at the toes can be  
 199 calculated by

$$\Delta V_{h1,ys} = e_1 K_h \Delta\alpha_{ys},$$

$$\Delta V_{h2,ys} = e_2 K_h \Delta\alpha_{ys} \quad (9)$$

$$\Delta V_{t1,ys} = (b/2 - e_1) K_{t0} \Delta\alpha_{ys},$$

$$\Delta V_{t2,ys} = (b/2 - e_2) K_{t0} \Delta\alpha_{ys} \quad (10)$$

200 In Eqs. (9) and (10),  $e_1$  and  $e_2$  are the distances between the  
 201 rotation center and the panel center at Phase 2

$$e_{1,2} = b \left( \frac{K_{t0}/2}{K_{t0} + K_h} \pm \frac{K_s}{K_{t0} + K_h + 2K_s} \right) \quad (11)$$

## Phase 3: Yielding of Toe on Right Panel

202

203 After the yielding of the shear spring, the shear force between pan-  
 204 elels remains constant. From the vertical equilibrium condition each  
 205 panel, the sum of the incremental hold-down force and the toe force  
 206 equals the incremental shear force, which is zero after yielding.  
 207 Therefore, after the yielding of the shear spring, the panels will  
 208 rotate in a specific way so that the incremental hold-down force  
 209 always balances the incremental toe force. Based on this condition,  
 210 the location of the rotation center can be calculated as

$$e'_{1,2} K_h = (b/2 - e'_{1,2}) K_{t0}, \quad \text{or} \quad e'_{1,2} = \frac{b}{2} \frac{1}{(1 + K_h/K_{t0})} \quad (12)$$

211 The toe for the right panel (when the lateral load is applied from  
 212 left to right) will always take a higher load than the toe of the left  
 213 panel. Thus the right panel toe will yield first if the materials of both  
 214 panels are the same.

215 Incremental force of the toe spring is

$$\Delta V_{t2,yt2} = (b/2 - e'_2) K_{t0} \Delta\alpha_{yt2} \quad (13)$$

The right panel toe will yield when

$$W + V_{h0} + \Delta V_{t2,ys} + \Delta V_{t2,yt2} = F_t \quad (14)$$

217 Thus, by substituting Eq. (14) into Eq. (13), the yielding of the  
218 right toe will happen when the incremental angle is

$$\Delta\alpha_{yt2} = \frac{F_t - W - V_{h0} - \Delta V_{t2,ys}}{(b/2 - e'_2)K_t} \quad (15)$$

219 At this time, the incremental force on the left panel toe is

$$\Delta V_{t1,yt2} = (b/2 - e'_1)K_{t0}\Delta\alpha_{yt2} \quad (16)$$

220 The incremental hold-down force can also be calculated based  
221 on geometry

$$\begin{aligned} \Delta V_{h1,yt2} &= K_h e'_1 \Delta\alpha_{yt2}, \\ \Delta V_{h2,yt2} &= K_h e'_2 \Delta\alpha_{yt2} \end{aligned} \quad (17)$$

222 Finally, the incremental lateral force is

$$\Delta P_{yt2} = K_h \Delta\alpha_{yt2} \cdot (e'_1 + e'_2)b/h/2 \quad (18)$$

#### 223 Phase 4: Yielding of Left Panel Toe

224 Similar to Phase 3, before the yielding of the left panel toe, the left  
225 panel will continue to rotate about  $e'_1$ , and the incremental toe force  
226 at the yielding of the left panel toe can be written as

$$\Delta V_{t1,yt1} = \left(\frac{b}{2} - e'_1\right)K_{t0}\Delta\alpha_{yt1} \quad (19)$$

227 The left toe will eventually yield as the rotation continues to  
228 increase

$$W + V_{h0} + \Delta V_{t1,ys} + \Delta V_{t1,yt1} + \Delta V_{t1,yt2} = F_t \quad (20)$$

229 From Eqs. (18) and (19), the incremental rotation angle as the  
230 left panel toe yields is

$$\Delta\alpha_{yt1} = \frac{F_t - (W + V_{t1,yt2} + \Delta V_{t1,ys})}{(b/2 - e'_1)K_{t0}} \quad (21)$$

231 After the yielding of the right panel toe, the rotation center of the  
232 right panel shifts to

$$e'_1'' = \frac{b}{2} \frac{1}{(1 + K_h/K_{t1})} \quad (22)$$

233 Eq. (22) is the result of replacing the initial stiffness  $K_{t0}$  with the  
234 postyielding stiffness  $K_{t1}$  in Eq. (12). The incremental hold-down  
235 force can be calculated as

$$\Delta V_{t1,yt1} = K_h e'_1 \Delta\alpha_{yt1}, \Delta V_{h2,yt1} = K_h e'_2 \Delta\alpha_{yt1} \quad (23)$$

236 Similar to the right panel toe, the incremental toe force is

$$\Delta V_{t2,yt1} = (b/2 - e'_2)K_{t1}\Delta\alpha_{yt1} \quad (24)$$

237 The incremental lateral force can be calculated using a formula  
238 similar to Eq. (18), by replacing  $e'_2$  with  $e'_2''$  and  $\Delta\alpha_{yt1}$  with  $\Delta\alpha_{yt2}$

$$\Delta P_{yt1} = K_h \Delta\alpha_{yt1} \cdot (e'_1 + e'_2'') \frac{b/h}{2} \quad (25)$$

#### Phase 5: Yielding of Left Panel Hold-Down

240 After both panel toes yield, the toe force will continue to increase  
241 because the wood in compression is not elastoplastic. Eventually, it  
242 is possible for the hold-down to yield under large rotation. After the  
243 yielding of the both toes, the rotation center of both panels can be  
244 determined by [Eq. (22)]

$$e''_{1,2} = \frac{b}{2} \frac{1}{(1 + K_h/K_{t1})} \quad (26)$$

245 Because the left hold-down spring takes more hold-down force  
246 than the right hold-down spring due to geometry, the left hold-  
247 down spring will yield first (assuming that the hold-down systems  
248 in both panels are the same). The left hold-down spring yields when

$$\begin{aligned} \Delta\alpha_{yh1} e''_1 + D_{h1,yt1} &= F_h/K_h, \\ \text{where } D_{h1,yt1} &= \Delta\alpha_{yt1} e'_1 + \Delta\alpha_{yt2} e'_1 + \Delta\alpha_{ys} e_1 \end{aligned} \quad (27)$$

249 From Eq. (27), the incremental rotation angle  $\Delta\alpha_{yh1}$  can be  
250 solved. At this moment, the hold-down force increment on the right  
251 panel can be written

$$\Delta V_{h2,yh1} = K_h e''_2 \Delta\alpha_{yh1} \quad (28)$$

252 The incremental toe forces are

$$\begin{aligned} \Delta V_{t1,yh1} &= (b/2 - e''_1)K_{t1}\Delta\alpha_{yh1}, \\ \Delta V_{t2,yh1} &= (b/2 - e''_2)K_{t1}\Delta\alpha_{yh1} \end{aligned} \quad (29)$$

253 The lateral force increment at the left hold-down spring  
254 yielding is

$$\Delta P_{yh1} = K_h \Delta\alpha_{yh1} \cdot (e''_1 + e''_2) \frac{b/h}{2} \quad (30)$$

#### Phase 6: Yielding of Right Hold-Down

255 After the left hold-down spring yields, if the panel continues to  
256 rotate, the right hold-down will eventually yield. Beyond this stage,  
257 the rocking wall system will yield laterally and there will be no  
258 mechanism to generate additional resistance. After the left hold-  
259 down yields, the left panel rotates about its right corner; because  
260 the shear and hold-down springs both yield, no additional force can  
261 be generated to further compress the toe). The right panel center of  
262 rotation locates  $e''_2$  from the panel center, as described for Phase 5.  
263 The right hold-down spring yield when

$$\begin{aligned} \Delta\alpha_{yh2} e''_2 + D_{h2,yh1} &= F_h/K_h, \\ \text{where } D_{h2,yh1} &= \Delta\alpha_{yh1} e''_2 + \Delta\alpha_{yt1} e''_2 + \Delta\alpha_{yt2} e'_2 + \Delta\alpha_{ys} e_2 \end{aligned} \quad (31)$$

265 From Eq. (31), the incremental rotation angle  $\Delta\alpha_{yh2}$  when the  
266 right hold-down spring yields can be solved. The incremental toe  
267 forces are

$$\Delta V_{t1,yh2} = 0, \quad \Delta V_{t2,yh2} = (b/2 - e''_2)K_{t1}\Delta\alpha_{yh2} \quad (32)$$

268 The lateral force after the left hold-down spring yields is

$$\Delta P_{yh2} = K_h \Delta\alpha_{yh2} \cdot (b/2 + e''_2) \frac{b/h}{2} \quad (33)$$

269 Eq. (33) is the result of replacing  $e''_1$  with  $b/2$  in Eq. (30).  
270 These six stages of possible coupled rocking wall behavior and  
271 their corresponding rotation and resistance calculations can be

272 summarized in a set of limit states formulas (Appendix II). This  
 273 analytical solution is presented in incremental format (except for  
 274 Stage 1, given as the limits for this linear deformation stage) be-  
 275 cause the rocking wall connection elements (hold-down, toe, and  
 276 shear connector) are nonlinear. The incremental formula can be  
 277 implemented using Excel or another simple numerical program.  
 278 For a particular wall design, with the properties of the shear, toe,  
 279 and hold-down springs determined, the formula can be used to  
 280 calculate the wall response under a monotonic pushover protocol  
 281 (i.e., generating a backbone curve). These limit states can be iden-  
 282 tified along the backbone curve.

### 283 Comparison of Analytical Backbone Curve and FEM 284 Simulation

285 The analytical backbone curve derived in this study was compared  
 286 with a nonlinear finite element model constructed using SAP2000  
 287 software (Computers and Structures Inc 2006) in order to illustrate  
 288 the equivalency in these two approaches. Two rocking wall con-  
 289 figurations were simulated based on realistic mass timber rocking  
 290 walls configurations used in the aforementioned testing program.  
 291 The first configuration was a rocking wall with very strong hold-  
 292 down elements but no posttensioning. The second configuration  
 293 was a modified version of the first, with posttensioning added and  
 294 the hold-down/shear stiffness reduced. The design parameters for  
 295 both cases are listed in Table 1.

296 The backbone curves of the wall obtained from the analytical  
 297 solution and the FEM analysis are compared in Fig. 4. The analyti-  
 298 cal formula can accurately capture the overall trend of the backbone

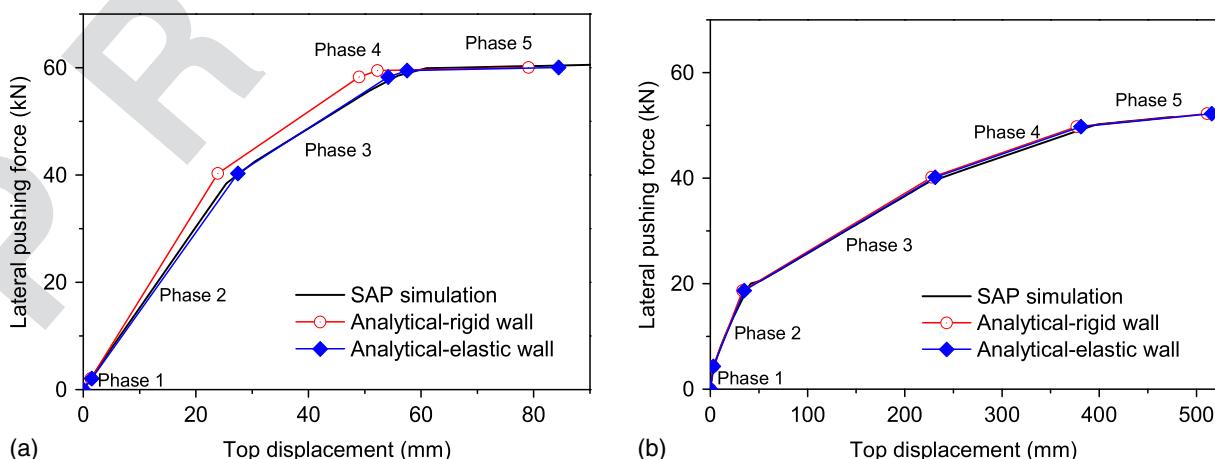
299 compared with FEM simulation. Furthermore, the rocking wall  
 300 characteristics are very sensitive to the design parameters. There is  
 301 a small discrepancy between the backbone curve from the analyti-  
 302 cal solution and the FEM which is induced by the elastic deforma-  
 303 tion of the wall panel, which was not considered in the simplified  
 304 model (analytical derivation assumed the panels to be rigid). If de-  
 305 sired, the elastic deformation can be calculated by  $2P/E/t(h/b)^3$   
 306 and added to the total lateral deformation. Fig. 4 also shows the  
 307 analytical backbone curve with the elastic deformation of the wall  
 308 added. After considering the elastic deformation, the analytical sol-  
 309 ution is almost identical to FEM simulation result. In the following  
 310 sections, the backbone curves used in the examples do not include  
 311 the elastic deformation impact because (1) from Fig. 4, the elastic  
 312 deformation is relatively small, and (2) in most practical cases, the  
 313 lateral force is applied along the height of the wall at each floor and  
 314 the roof, making the elastic deformation contribution even smaller  
 315 compared with the case in which all lateral forces are applied on  
 316 the roof.

### 317 Seismic Response Prediction

318 Rocking wall system dynamic response is nonlinear under large  
 319 earthquakes. Traditionally, nonlinear time history analysis needs  
 320 to be conducted in order to estimate the dynamic displacement of  
 321 the system. This process is time-consuming and requires significant  
 322 efforts in modeling, making it difficult for preliminary design and  
 323 assessment. For displacement-based design, the full time history  
 324 of the wall response is typically not required. Design can be

**Table 1.** Example rocking wall parameters

| Symbol   | Meaning                                | Case 1                 | Case 2                 | Unit             |
|----------|----------------------------------------|------------------------|------------------------|------------------|
| $E$      | Modulus of elasticity of wall material | $1.103 \times 10^{10}$ | $1.103 \times 10^{10}$ | N/m <sup>2</sup> |
| $b$      | Width of single panel                  | 1.524                  | 1.524                  | m                |
| $t$      | Thickness of panel                     | 0.175                  | 0.175                  | m                |
| $W$      | Self-weight of single panel            | 915.3                  | 915.3                  | Kg               |
| $V_{h0}$ | Prestressing force of hold-down        | 0                      | 10,000                 | N                |
| $K_h$    | Stiffness of hold-down tendon          | $4.901 \times 10^8$    | $5.000 \times 10^6$    | N/m              |
| $K_s$    | Stiffness of shear spring              | $1.911 \times 10^7$    | $9.555 \times 10^6$    | N/m              |
| $K_{t0}$ | Initial stiffness of toe spring        | $2.942 \times 10^7$    | $2.942 \times 10^7$    | N/m              |
| $K_{t1}$ | Toe spring stiffness after yielding    | $8.262 \times 10^5$    | $8.262 \times 10^5$    | N/m              |
| $F_s$    | Yielding force of shear spring         | $9.710 \times 10^4$    | $9.710 \times 10^4$    | N                |
| $F_t$    | Yielding force of toe spring           | $1.644 \times 10^5$    | $1.644 \times 10^5$    | N                |



**Fig. 4.** Backbone curve of the rocking wall: (a) Case 1; and (b) Case 2.

325 conducted with an accurate estimation of the maximum displacement  
 326 response. Therefore this paper proposes a simplified approach  
 327 to calculate the maximum seismic response of the rocking wall  
 328 against a given ground motion. This approach requires only the  
 329 response spectrum of the ground motion and the analytical back-  
 330 bone curve derived previously (which can be obtained given basic  
 331 design parameters of the wall). The method was applied to a  
 332 coupled CLT rocking wall subjected to a series of earthquake  
 333 excitations. The maximum displacement estimation was compared  
 334 with full-scale shake table test results and showed satisfactory  
 335 accuracy.

### 336 **Dynamic Equation for Rocking Wall System**

337 The dynamic response of the rocking wall subjected to earthquake  
 338 ground motion excitation can be written as a single-degree-of-  
 339 freedom (SDOF) system in terms of the rotation angle

$$340 M_\alpha \ddot{\alpha} + C\dot{\alpha} + K_\alpha(\alpha)\alpha = -La(t) \quad \text{or} \\ 341 \ddot{\alpha} + 2\varepsilon\omega_0\dot{\alpha} + \omega_0^2\alpha = -L/M_\alpha a_g(t) \quad (34)$$

340 where  $M_\alpha = m_1h_1^2 + m_2h_2^2$  = mass moment of inertia of the building  
 341 about the toe; and  $L = m_1h_1 + m_2h_2$  = rotation moment factor  
 342 from the ground motion excitation. This study used the NHERI  
 343 Tall Wood two-story test building as an example, which has con-  
 344 centrated mass at the roof and floor levels. The secant stiffness  
 345 of the wall  $K_\alpha(\alpha)$  in rotation motion can be obtained by the back-  
 346 bone curve of the wall (example calculation is shown in section  
 347 10 "Simplified Approach for Displacement Prediction").

348 The rotation stiffness in Eq. (34) can be calculated by

$$349 K_\alpha(\alpha) = \frac{ph_2}{\alpha} = \frac{ph_2}{u/h_2} = \frac{P}{u}h_2^2 \quad (35)$$

349 where  $P/u$  = secant stiffness from the backbone curve (Fig. 7).

### 350 **Simplified Approach for Displacement Prediction**

351 We propose a graphic spectrum approach to estimate the drift of  
 352 the rocking wall in the preliminary design stage. This approach  
 353 avoids complicated FEM modeling and time-history simulations.  
 354 Based on the linearization approach for random vibration theory,  
 355 Eq. (34) can be linearized as

$$356 M_\varphi \ddot{\alpha} + C\dot{\alpha} + \bar{K}_\alpha \alpha = -La(t) \quad (36)$$

356 In Eq. (36), only the stiffness needs to be linearized. Assuming  
 357 that the response distribution is Gaussian, the standard linearization  
 358 approach (Caughey 1963) can be followed for dynamic system  
 359 with Gaussian responses. The equivalent stiffness is calculated as

$$360 \bar{K}_\alpha(\sigma_\alpha) = E[K_\alpha(\alpha)] = \frac{1}{\sigma_\alpha \sqrt{2\pi}} \int_{-\infty}^{+\infty} K_\alpha(\alpha) \exp\left(-\frac{\alpha^2}{2\sigma_\alpha^2}\right) d\alpha \quad (37)$$

360 where  $\sigma_\alpha$  = standard derivation of the wall rotation angle. For a  
 361 Gaussian process the standard derivation can be approximated as  
 362 one-third of the maximum value, that is

$$363 \sigma_\alpha \approx \alpha_{\max}/3 \quad \text{with } \alpha_p = \max(|a(t)|)/3 \quad (38)$$

363 Given the maximum rotation  $\alpha_{\max}$  of the wall, the equivalent  
 364 stiffness  $\bar{K}_\alpha$  can be calculated from the backbone curve using  
 365 Eqs. (35) and (37). Then the natural period of the linearized wall  
 366 can be easily related to the maximum rotation of the wall by

$$367 T(\alpha_{\max}) = 2\pi \sqrt{\bar{K}_\alpha(\alpha_{\max}/3)/M_\alpha} \quad (39)$$

368 On the other hand, once the natural period of the wall is known,  
 369 the maximum rotation of the wall can be determined using the  
 370 response spectrum as

$$371 \alpha_{\max} = RS_d(T) \quad (40)$$

372 Finally, the maximum rotation and equivalent natural period  
 373 can be found as the solution to Eqs. (39) and (40). The solution  
 374 can be determined graphically on the  $T$ - $\alpha_{\max}$  plots from Eqs. (39)  
 375 and (40). The procedure of the proposed graphical approach is  
 376 illustrated in Fig. 5 as a six-step process.

377 Step 1. Convert the rocking wall backbone curve to the secant  
 378 stiffness curve;

379 Step 2. Calculate the equivalent stiffness of the wall from the  
 380 secant stiffness curve using Eqs. (37) and (38);

381 Step 3. Plot the natural period of the linearized panel using the  
 382 equivalent stiffness;

383 Step 4. Calculate the displacement response curve for given  
 384 ground motion;

385 Step 5. Find the intersection of the curves in Step 3 and Step 4,  
 386 resulting in the nonlinear solution; and

387 Step 6. Take average of the linear solution and the nonlinear  
 388 solution.

389 Details of this process are demonstrated using examples in the  
 390 following section.

### Example Prediction and Validation

391 This study used experimental data from full-scaled shake table tests  
 392 of a coupled rocking wall to validate the proposed displacement  
 393 prediction approach. The full-scale CLT wall tested is shown in  
 394 Fig. 6. Because the wall was balloon-framed with the diaphragm,  
 395 the roof and floor in Fig. 6 did not interrupt the continuity of the  
 396 rocking wall panels.

397 The rocking wall was designed without posttensioning (Fig. 6).  
 398 Instead, the toe detail was specially designed to allow crushing into  
 399 a sacrificial wood crushing block that can be quickly replaced after  
 400 an earthquake (if needed). The parameters used for the wall design  
 401 were those of Design Case 1 in Table 1.

### Demonstrative Example: Prediction of Single Test

401 As an example to demonstrate the six-step process of the proposed  
 402 method, prediction of the rocking wall responses subjected to the  
 403 Imperial Valley ground motion record scale with peak ground

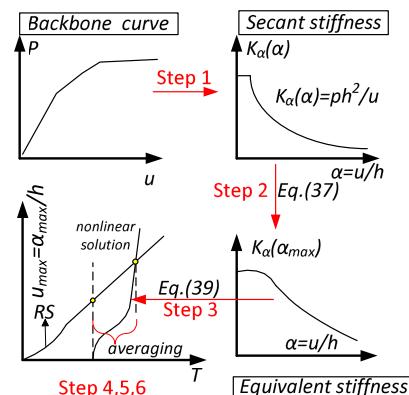
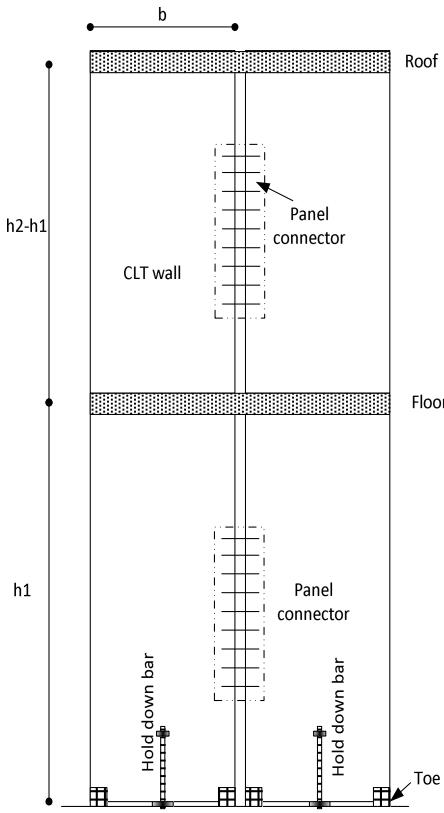
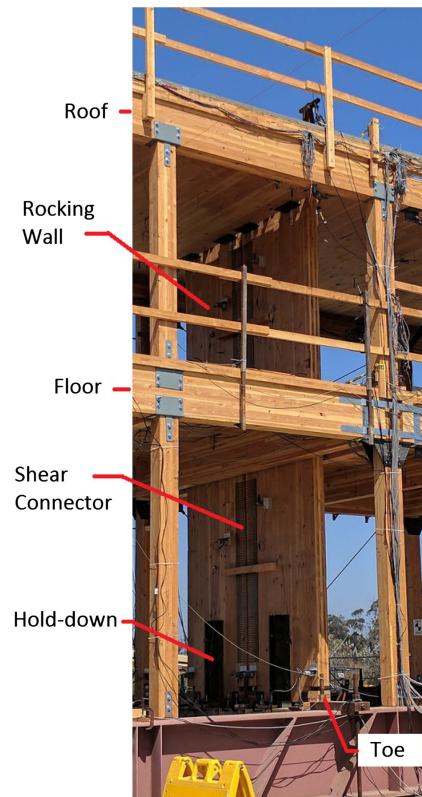


Fig. 5. Spectrum-based approach to estimate maximum wall displacement.



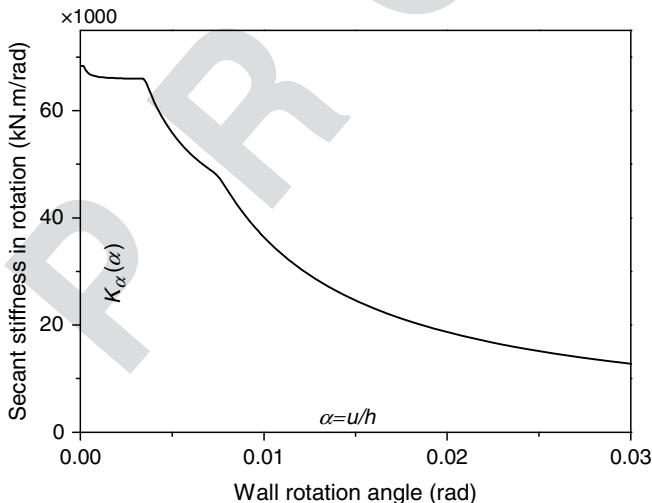
F6:1 **Fig. 6.** Detailed configuration of coupled CLT wall (designed by Katerra). (Image by S. Pei.)

acceleration (PGA) of 0.736g is illustrated here. The following steps were followed:

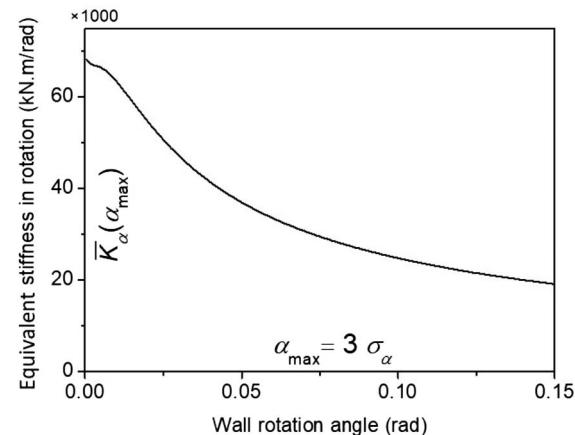
1. Convert the backbone curve ( $P-u$  relation) in Fig. 4(a) into the secant stiffness curve in Fig. 7. Fig. 7 is related to Fig. 4(a) by the following conversion: rotation angle  $\alpha = u/h$ ; and secant rotation stiffness  $K_\alpha(\alpha) = (P/u)h^2$ .
2. Calculate equivalent stiffness of the wall [ $\bar{K}_\alpha(\sigma_\alpha)$ ] from the secant stiffness in Fig. 7, using Eq. (37). Get the relation between the equivalent stiffness  $\bar{K}_\alpha(\sigma_\alpha)$  and the maximum displacement  $\alpha_{\max} = 3\sigma_\alpha$  (Fig. 8).

3. Get the dependence of equivalent period on the maximum displacement from Fig. 8 using  $T(\alpha_{\max}) = 2\pi\sqrt{\bar{K}_\alpha(\sigma_\alpha)/M_\alpha}$ ,  $\sigma_\alpha = \alpha_{\max}/3$ , and  $u_{\max} = h\alpha_{\max}$  (Fig. 9).
4. Calculate the displacement response spectrum of the wall. In Eq. (34), the ground motion should be scaled by  $L/M_\alpha$  to obtain the response spectrum of the rotation angle.
5. Find the intersection of the two curves as the nonlinear solution.
6. Average the displacement between the linear and nonlinear responses on the response spectrum curve.

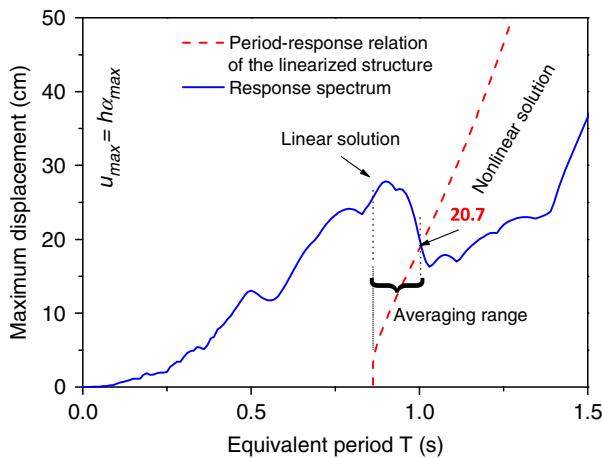
The estimated roof displacement based on the curve in Fig. 9 is 20.7 cm before averaging, and 28.1 cm after averaging.



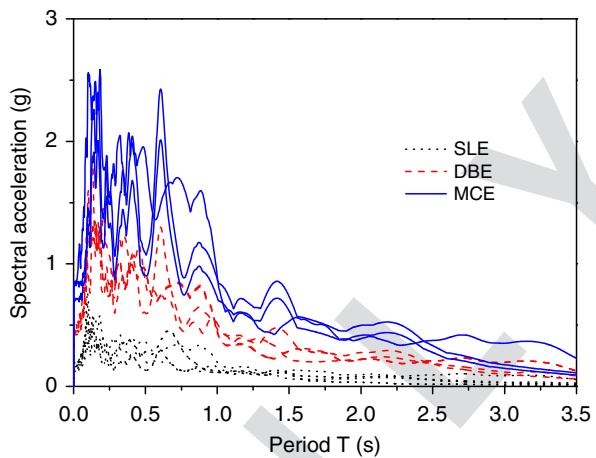
F7:1 **Fig. 7.** Secant stiffness versus wall rotation.



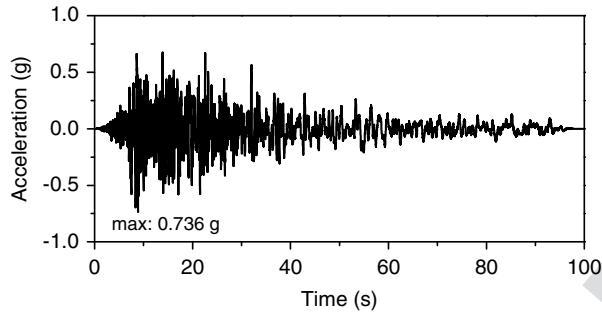
F8:1 **Fig. 8.** Equivalent stiffness versus maximum wall rotation.



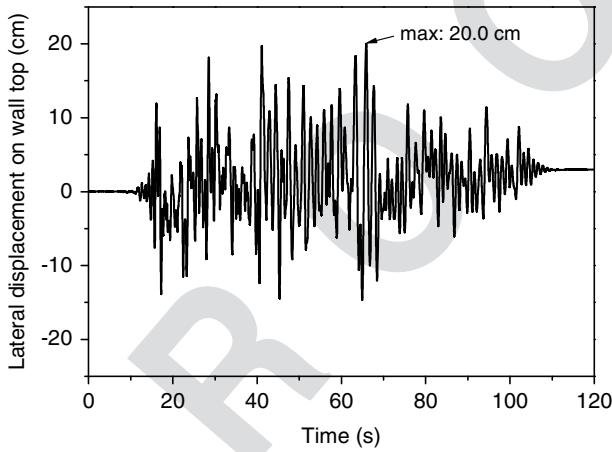
F9:1 **Fig. 9.** Graphical method to find maximum wall displacement.



F12:1 **Fig. 12.** Response spectrums of 13 tested ground motions.



F10:1 **Fig. 10.** Ground motion record (Imperial Valley, with PGA = 0.736g).



F11:1 **Fig. 11.** Measured roof displacement time history.

426 The purpose of averaging over the spectral response is to  
427 account for potential softening of the system during dynamic  
428 loading.

429 The ground motion acceleration time history and the roof dis-  
430 placement subjected to this ground motion are shown in Figs. 10  
431 and 11. The measured maximum roof displacement is 20.0 cm,  
432 which is very close to the estimated response using the proposed  
433 method.

### Validation Using Multiple Earthquakes

Similar to the preceding process, all 13 cases of different GM records and PGA were predicted. The ground motions used in the test were scaled to three different intensity levels, namely the serviceability-level earthquake (SLE), design-basis earthquake (DBE), and maximum considered earthquake (MCE). The response spectrum of the ground motion records tested are shown in Fig. 12. During the 13 tests, a few variations of the interpanel shear connector configuration were tested. By applying different amounts (lengths) of interpanel steel connectors, the shear spring stiffness and strength changes. The lengths of the interpanel connector for the wall are listed in Table 2.

The estimated roof drift from the proposed methods are compared with the actual measurements in Fig. 13, with the relative error listed in Table 2. The comparison shows that the mean error of the proposed method is about 25%, with RMS of 12%–15% across all intensity levels. Considering the large uncertainty of ground motions, the accuracy of the proposed method can be accepted as a preliminary design tool.

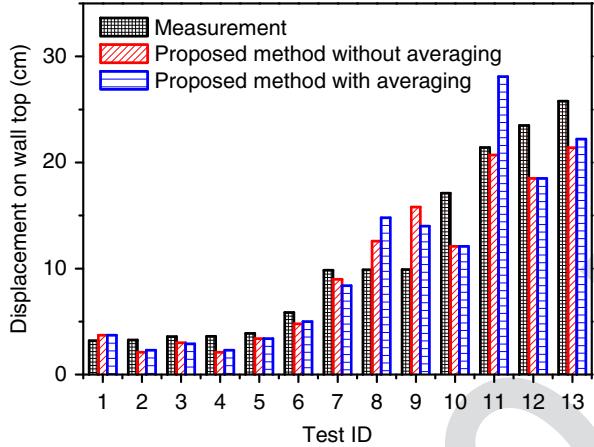
### Conclusions

The lateral load-resisting behavior of a coupled rocking CLT wall system was investigated in this study. Analytical formulas that can be used to generate backbone curve of the coupled rocking wall were proposed. The model is able to represent different rocking wall design configurations given key load-resistance parameters for the toe, hold-down element, and interpanel shear connectors. The analytical backbone curves were compared with FEM simulation, validating the equivalency of the two methods.

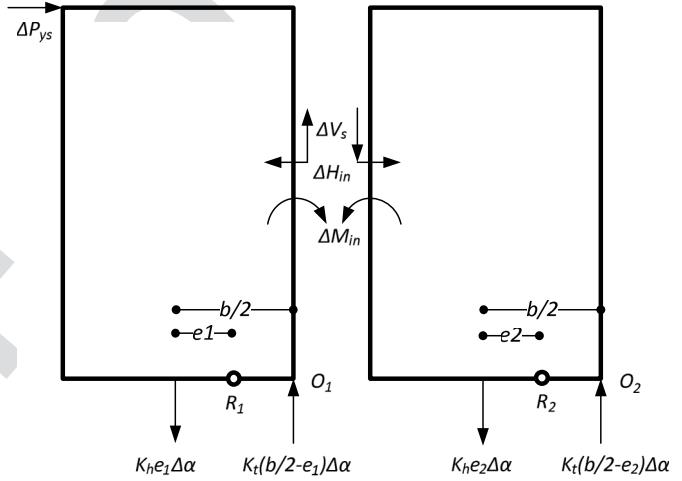
Based on the backbone curve of the rocking wall, the equation of motion for a rocking wall system under seismic excitation was linearized, resulting in a simplified equivalent single-degree-of-freedom system. Then the maximum displacement of the rocking wall was estimated as the intersection point of the displacement response spectrum and the displacement–natural period curve (generated based on the nonlinear backbone curve). To further improve the accuracy of this graphic method, the spectrum averaging method was proposed in order to consider the nonlinear period elongation of the rocking walls. The proposed maximum displacement prediction method was compared with the results from full-scale system-level shake table tests. The accuracy of the proposed method was found to be reasonable for preliminary design and evaluation of CLT rocking walls.

**Table 2.** Ground motion records, shear connector length, and predicted drift errors for tests

| T2:1  | Test | Ground motion      | Ground motion level | PGA (g) | Panel connector length [m (ft)] | Relative error of predicted roof drifts (%) |                            |                       |                            |
|-------|------|--------------------|---------------------|---------|---------------------------------|---------------------------------------------|----------------------------|-----------------------|----------------------------|
|       |      |                    |                     |         |                                 | Equivalent linearization                    |                            | Average over spectrum |                            |
|       |      |                    |                     |         |                                 | Individual analysis                         | Average of intensity level | Individual analysis   | Average of intensity level |
| T2:4  | 1    | Loma Prieta        | SLE                 | 0.163   | 9.75 (32)                       | 15                                          | 23                         | 15                    | 21                         |
| T2:5  | 2    | Superstition Hills | SLE                 | 0.154   | 9.75 (32)                       | 36                                          |                            | 30                    |                            |
| T2:6  | 3    | Northridge         | SLE                 | 0.134   | 4.88 (16)                       | 16                                          |                            | 19                    |                            |
| T2:7  | 4    | Northridge         | SLE                 | 0.115   | 9.75 (32)                       | 42                                          |                            | 36                    |                            |
| T2:8  | 5    | Loma Prieta        | SLE                 | 0.147   | 7.32 (24)                       | 13                                          |                            | 13                    |                            |
| T2:9  | 6    | Imperial Valley    | SLE                 | 0.190   | 9.75 (32)                       | 18                                          |                            | 15                    |                            |
| T2:10 | 7    | Superstition Hills | DBE                 | 0.413   | 9.75 (32)                       | 8                                           | 31                         | 15                    |                            |
| T2:11 | 8    | Imperial Valley    | DBE                 | 0.395   | 4.88 (16)                       | 28                                          |                            | 50                    |                            |
| T2:12 | 9    | Imperial Valley    | DBE                 | 0.403   | 9.75 (32)                       | 60                                          |                            | 42                    |                            |
| T2:13 | 10   | Northridge         | DBE                 | 0.447   | 4.88 (16)                       | 29                                          |                            | 29                    |                            |
| T2:14 | 11   | Imperial Valley    | MCE                 | 0.813   | 7.32 (24)                       | 3                                           | 14                         | 31                    | 22                         |
| T2:15 | 12   | Northridge         | MCE                 | 0.697   | 7.32 (24)                       | 21                                          |                            | 21                    |                            |
| T2:16 | 13   | Northridge         | MCE                 | 0.821   | 7.32 (24)                       | 17                                          |                            | 14                    |                            |



**Fig. 13.** Comparison of tested and estimated roof displacements.



**Fig. 14.** Phase 2 panel equilibrium free body diagram.

F13:1

T2:2  
T2:3

#### 476      Appendix I. Detailed Derivation of Phase 2 Panel 477      Equilibrium

478      The rotation centers of the panels in Phase 2 are marked  $R_1$  and  $R_2$   
479      in Fig. 14, located  $e_1$  and  $e_2$  from the panel center.

480      As the panels rotate about  $R_1$  and  $R_2$  with an incremental ro-  
481      tation angle  $\Delta\alpha$ , the incremental hold-down forces and toe forces  
482      can be calculated by the spring elongation as shown in Fig. 14.  
483      The incremental hold-down forces are  $K_h e_1 \Delta\alpha$  (left panel)  
484      and  $K_h e_2 \Delta\alpha$  (right panel), and the incremental toe forces are  
485       $K_t(b/2 - e_1)$  (left panel) and  $K_t(b/2 - e_2)$  (right panel).

486      The vertical equilibriums (incremental form) of the left and the  
487      right panels are

$$\Delta V_s + K_{t0}(b/2 - e_1)\Delta\alpha - K_h e_1 \Delta\alpha = 0 \quad (41)$$

$$-\Delta V_s + K_{t0}(b/2 - e_2)\Delta\alpha - K_h e_2 \Delta\alpha = 0 \quad (42)$$

488      The rotation center  $e_1$  and  $e_2$  can be solved using the equilib-  
489      rium Eqs. (41) and (42) as

$$e_1 = (\Delta V_s / \Delta\alpha + K_{t0}b/2)(K_h + K_{t0}) \quad (43)$$

$$e_2 = (-\Delta V_s / \Delta\alpha + K_{t0}b/2)(K_h + K_{t0}) \quad (44)$$

490      The incremental shear force can be calculated according to the  
491      elongation of the shear spring by

$$\Delta V_s = K_s[(b/2 - e_1) + (b/2 + e_2)]\Delta\alpha = K_s(b + e_2 - e_1)\Delta\alpha \quad (45)$$

492      By substituting Eqs. (43) and (44) into Eq. (45), the incremental  
493      shear force can be solved as

$$\Delta V_s = \frac{K_s b \Delta\alpha}{1 + 2K_s/(K_{t0} + K_h)} \quad (46)$$

494      Then, by substituting Eq. (46) into Eq. (43) and Eq. (44), the  
495      rotation center location can be determined by

$$e_{1,2} = b \left[ \pm \frac{K_s}{K_{t0} + K_h + 2K_s} + \frac{K_{t0}/2}{K_{t0} + K_h} \right] \quad (47)$$

496      The shear spring yields when

$$\Delta V_s + K_s b \alpha_{up} = F_s \quad (48)$$

497      where  $\alpha_{up}$  = panel rotation at the decompression phase; and  $F_{ys}$  =  
498      yielding strength of the shear spring. By substituting Eq. (48) into

499 Eq. (46), the incremental rotation angle and lateral displacement at  
500 the top when the shear spring yields can be found

$$\Delta\alpha_{ys} = [F_s/K_s/b - \alpha_{up}][1 + 2K_s/(K_{t0} + K_h)] \quad \text{and} \quad (49)$$

$$\Delta U_{ys} = h\Delta\alpha_{ys}$$

501 Given the incremental rotation angle  $\Delta\alpha_{ys}$  in Eq. (49) and the  
502 rotation center  $e_{1,2}$  in Eq. (47), the forces in the hold-down and at  
503 the toes can be calculated

$$\Delta V_{h1,ys} = e_1 K_h \Delta\alpha_{ys}, \quad (50)$$

$$\Delta V_{h2,ys} = e_2 K_h \Delta\alpha_{ys}$$

$$\Delta V_{t1,ys} = (b/2 - e_1) K_{t0} \Delta\alpha_{ys}, \quad (51)$$

$$\Delta V_{t2,ys} = (b/2 - e_2) K_{t0} \Delta\alpha_{ys}$$

504 The rotation equilibrium equation of the panels about  $O_1$  and  
505  $O_2$  are

$$\Delta P_{ys}h + \Delta M_{in} - \Delta H_{in} \cdot h/2 - \Delta V_{h1,ys} \cdot b/2 = 0 \quad (52)$$

$$-\Delta M_{in} + \Delta H_{in} \cdot h/2 - \Delta V_s \cdot b - \Delta V_{h2,ys} \cdot b/2 = 0 \quad (53)$$

506 By adding Eqs. (52) and (53), the lateral pushing force that will  
507 yield the shear spring can be written

$$\Delta P_{ys} = K_h(e_2 + e_1) \cdot \alpha_{ys} \cdot \frac{b/h}{2} + [F_s - K_s b \alpha_{up}] b/h \quad (54)$$

## 508 Appendix II. Formula for Six Stages of Coupled 509 Rocking Wall Behavior

510 Stage 1: Decompression of the wall corner will occur when the  
511 rotation angle equals

$$\alpha_{up} = (W + V_{h0})/K_{t0}/b \quad (55)$$

512 and the lateral resistance equals

$$(W + V_{h0}) \cdot b/h \quad (56)$$

513 Stage 2: At yielding of the shear connectors, the incremental  
514 rotation angle is

$$\Delta\alpha_{ys} = [F_s/K_s/b - \alpha_{up}] \cdot [1 + 2K_s/(K_{t0} + K_h)] \quad (57)$$

515 and the incremental lateral resistance is

$$\frac{b^2 K_h K_{t0}}{2h(K_h + K_{t0})} \Delta\alpha_{ys} + [F_s - K_s b \alpha_{up}] b/h \quad (58)$$

516 Stage 3: At crushing of the right panel corner, the incremental  
517 rotation angle is

$$\Delta\alpha_{yt2} = \frac{F_t - W - V_{h0} - \Delta V_{t2,ys}}{(b/2 - e_2') K_{t0}} \quad (59)$$

518 and the incremental lateral resistance is

$$\frac{b K_h \Delta\alpha_{yt2} (e_1' + e_2')}{2h} \quad (60)$$

519 Stage 4: At crushing of the left panel corner, the incremental  
520 rotation angle is

$$\Delta\alpha_{yt1} = \frac{F_t - (W + \Delta V_{t1,ys} + \Delta V_{t1,yt2})}{(b/2 - e_1') K_{t0}} \quad (61)$$

521 and the incremental lateral resistance is

$$\frac{b K_h \Delta\alpha_{yt1} (e_1' + e_2'')}{2h} \quad (62)$$

522 Stage 5: At yielding of the left panel hold-down element, the  
523 incremental rotation angle is

$$\Delta\alpha_{yh1} = \frac{F_h/K_h - D_{h1,yt1}}{e_1''} \quad (63)$$

524 and the incremental lateral resistance is

$$\frac{b K_h \Delta\alpha_{yh1} (e_1'' + e_2'')}{2h} \quad (64)$$

525 Stage 6: At yielding of the right panel hold-down element, the  
526 incremental rotation angle is

$$\Delta\alpha_{yh2} = \frac{F_h/K_h - D_{h2,yh1}}{e_2''} \quad (65)$$

527 and the incremental lateral resistance is

$$\frac{b K_h \Delta\alpha_{yh2} (b/2 + e_2'')}{2h} \quad (66)$$

## 528 Acknowledgments

529 This research project is supported by the National Science Foundation  
530 through a number of collaborative awards, including CMMI  
531 1636164, CMMI 1634204, CMMI 1635363, CMMI 1635227,  
532 CMMI 1635156, CMMI 1634628. The use of the NHERI exper-  
533 imental facility is supported by the National Science Foundation's  
534 Natural Hazards Engineering Research Infrastructure Program. The  
535 authors also acknowledge support for the two-story shake table  
536 testing program from industry partners including Katerra, Simpson  
537 Strong-Tie, Forest Products Laboratory, Softwood Lumber Board,  
538 DR Johnson Lumber, and the City of Springfield, Oregon. The op-  
539 nions presented here are solely those of the authors. The authors  
540 also acknowledge individual industry collaborators and students  
541 who worked on this project, including Reid Zimmerman, Jace  
542 Furley, Sarah Wichman, Leonardo Rodrigues, Brian DeMeza,  
543 Gabriele Tamagnone, Daniel Griesenauer, Ethan Judy, Steven  
544 Kordziel, Aleesha Busch, Ali Hansan, Joycelyn Ng, Monica Y. Liu,  
545 Ata Mohseni, and Da Huang. The authors also acknowledge the  
546 research collaboration on the Tall Wood project from James Ricles  
547 and Richard Sause at Lehigh University and Keri Ryan at the  
548 University of Nevada Reno; and finally, the help provided by the  
549 management and site staff of NHERI@UCSD.

## 550 Notation

551 The following symbols are used in this paper:

552  $b$ ,  $h$ , and  $t$  = width, height, and thickness, respectively, of each  
553 panel;

554  $D$  = elongation of springs;

555  $e_1$  and  $e_2$  = rotation center distance on left panel on left and  
556 right panel, respectively, during Phase 2;

557  $e_1'$  = rotation center distance on left panel during  
558 Phases 3 and 4;

559 12  $e'_2$  = rotation center distance on left panel on right panel  
 560 during Phase 3;  
 561 13  $e''_1$  = rotation center distance on left panel on left panel  
 562 during Phase 5;  
 563 14  $e''_2$  = rotation center distance on left panel on right panel  
 564 during Phases 4–6;  
 565  $F_h$  = yielding strength of hold-down spring;  
 566  $F_s$  = yielding strength of shear spring;  
 567  $F_t$  = yielding strength of toe spring;  
 568  $K_h$  = stiffness of hold-down spring;  
 569  $K_s$  = stiffness of shear connector before yielding;  
 570  $K_{t0}$  = initial stiffness of toe before yielding;  
 571  $K_{t1}$  = postyielding stiffness of toe;  
 572  $U$  = lateral displacement on wall top;  
 573  $V_{h0}$  = prestressing hold-down force;  
 574  $V_{h1}$ ,  $V_{h2}$  = left and right hold-down force (excluding prestress  
 575 load);  
 576  $V_s$  = shear force of interpanel connector;  
 577  $V_{t1}$  and  $V_{t2}$  = left and right toe force, respectively;  
 578  $W$  = self-weight of one panel;  
 579  $\alpha$  = rotation angle of panel; and  
 580  $\Delta X$  = increment of  $X$  with respect to former phase.

## 581 Subscripts

582  $up$  = decompression (Phase 1);  
 583  $ys$  = yielding of shear spring (Phase 2);  
 584  $yt2$  = yielding of the toe on right panel (Phase 3);  
 585  $yt1$  = yielding of the toe on left panel (Phase 4);  
 586  $yh1$  = yielding of left hold-down (Phase 5); and  
 587  $yh2$  = yielding of right hold-down (Phase 6).

## 588 References

589 Akbas, T., et al. 2017. "Analytical and experimental lateral-load re-  
 590 sponse of self-centering posttensioned CLT walls." *J. Struct. Eng.*

143 (6): 04017019. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0001733](https://doi.org/10.1061/(ASCE)ST.1943-541X.0001733).  
 591  
 592 Belleri, A., M. J. Schoettler, J. I. Restrepo, and R. B. Fleishman. 2014.  
 593 "Dynamic behavior of rocking and hybrid cantilever walls in a precast  
 594 concrete building." *ACI Struct. J.* 111 (3): 661–672. <https://doi.org/10.14359/51686778>.  
 595  
 596 Caughey, T. K. 1963. "Equivalent linearization techniques." *J. Acoust. Soc. Am.* 35 (11): 1706–1711. <https://doi.org/10.1121/1.1918794>.  
 597  
 598 Computers and Structures. 2006. *Integrated finite element analysis and  
 599 design of structures basic analysis reference manual*. Berkeley, CA:  
 600 Computers and Structures.  
 601 Deierlein, G., H. Krawinkler, X. Ma, M. Eatherton, J. Hajjar, T. Takeuchi,  
 602 K. Kasai, and M. Midorikawa. 2011. "Earthquake resilient steel  
 603 braced frames with controlled rocking and energy dissipating  
 604 fuses." *Steel Constr.* 4 (3): 171–175. <https://doi.org/10.1002/stco.201110023>.  
 605  
 606 Ganey, R., et al. 2017. "Experimental investigation of self-centering cross-  
 607 laminated timber walls." *J. Struct. Eng.* 143 (10): 04017135. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0001877](https://doi.org/10.1061/(ASCE)ST.1943-541X.0001877).  
 608  
 609 Loo, W. Y., C. Kun, P. Quenneville, and N. Chouw. 2014. "Experimental  
 610 testing of a rocking timber shear wall with slip-friction connectors." *Earthquake Eng. Struct. Dyn.* 43 (11): 1621–1639. <https://doi.org/10.1002/eqe.2413>.  
 611  
 612 Pei, S., et al. 2017. "Development and full-scale validation of resilience-  
 613 based seismic design of tall wood buildings: The NHERI Tallwood  
 614 Project." In *Proc., New Zealand Society for Earthquake Engineering  
 615 Annual Conf.* Wellington, New Zealand.  
 616  
 617 Pei, S., J. W. van de Lindt, and M. Popovski. 2013. "Approximate R-Factor  
 618 for cross laminated timber walls in multi-story buildings." *J. Archit. Eng.* 19 (4): 245–255. [https://doi.org/10.1061/\(ASCE\)AE.1943-5568.0000117](https://doi.org/10.1061/(ASCE)AE.1943-5568.0000117).  
 619  
 620 Smith, T., F. Ludwig, S. Pampanin, M. Fragiacomo, A. Buchanan,  
 621 B. Deam, and A. Palermo. 2007. "Seismic response of hybrid-LVL  
 622 coupled walls under quasi-static and pseudo-dynamic testing." In  
 623 Vol. 1 of *Proc., New Zealand Society for Earthquake Engineering  
 624 Conf.*, 1–8. Palmerston North, New Zealand.  
 625  
 626 Wada, A., Z. Qu, H. Ito, S. Motoyui, H. Sakata, and K. Kasai. 2010.  
 627 "Seismic retrofit using rocking walls and steel dampers." In *Improving  
 628 the seismic performance of existing buildings and other structures*,  
 629 1010–1021.  
 630

## Queries

1. Please provide the ASCE Membership Grades for the authors who are members.
2. Please provide street address for the author "H. Blomgren and J. Powers" in affiliation footnotes.
3. [ASCE Open Access: Authors may choose to publish their papers through ASCE Open Access, making the paper freely available to all readers via the ASCE Library website. ASCE Open Access papers will be published under the Creative Commons-Attribution Only (CC-BY) License. The fee for this service is \$1750, and must be paid prior to publication. If you indicate Yes, you will receive a follow-up message with payment instructions. If you indicate No, your paper will be published in the typical subscribed-access section of the Journal.]
4. Please check the hierarchy of section heading levels.
5. The citation (Andrea et al. 2014) mentioned in this sentence is not present in the References list. Please provide the full details and we will insert it in the References list and link it to this citation.
6. Please check all figures, figure citations, and figure captions to ensure they match and are in the correct order.
7. Please specify "Appendix I" or "Appendix II".
8. ASCE style for fences in math is in the order {[0]}. Please check to ensure all math conforms to this ASCE style.
9. Please confirm the change from "rotate center" to "center of rotation".
10. ASCE style does not number sections. Please verify that the section reference is correct.
11. "distance on left panel on left and right panel" is unclear. Please rewrite this sentence to clarify its meaning.
12. "distance on left panel on right panel" is unclear. Please rewrite this sentence to clarify its meaning.
13. "distance on left panel on left panel" is unclear. Please rewrite this sentence to clarify its meaning.
14. "distance on left panel on right panel" is unclear. Please rewrite this sentence to clarify its meaning.
15. This reference Belleri et al. (2014) is not mentioned anywhere in the text. ASCE style requires that entries in the References list must be cited at least once within the paper. Please indicate a place in the text, tables, or figures where we may insert a citation or indicate if the entry should be deleted from the References list.
16. Please provide the publisher or sponsor name and location (not the conference location) for reference Pei et al. (2017).
17. Please provide the publisher or sponsor name and location (not the conference location) for reference Smith et al. (2007).
18. Please provide publisher name and location for reference Wada et al. (2010).