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ABSTRACT

Developing Big Data Analytics often involves trial and error debug-
ging, due to the unclean nature of datasets or wrong assumptions
made about data. When errors (e.g. program crash, outlier results,
etc.) arise, developers are often interested in pinpointing the root
cause of errors and explaining the sources of anomalies. To ad-
dress this problem, BiGSIFT takes an Apache Spark program, a
user-defined test oracle function, and a dataset as input and out-
puts a minimum set of input records that reproduces the same test
failure by combining the insights from delta debugging with data
provenance. The technical contribution of B1GSIFT is the design of
systems optimizations that bring automated debugging closer to a
reality for data intensive scalable computing.

BIGSIFT exposes an interactive web interface where a user can
monitor a big data analytics job running remotely on the cloud,
write a user-defined test oracle function, and then trigger the auto-
mated debugging process. BIGSIFT also provides a set of predefined
test oracle functions, which can be used for explaining common
types of anomalies in big data analytics—for example, finding the
origin of the output value that is more than k standard deviations
away from the median. The demonstration video is available at
https://youtu.be/jdBsCd61a1Q.
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Figure 1: BIGSIFT Overall Architecture

1 INTRODUCTION

Data-Intensive Scalable Computing (DISC) systems such as Google’s
MapReduce, Apache Spark, and Apache Hadoop enable processing
massive data sets. Similar to other software development platforms,
developers often deal with unclean data or make wrong (or in-
complete) assumptions about the data. It is therefore crucial to
equip these developers with toolkits that can better pinpoint the
root cause of an error. Unfortunately, debugging big data analytics
is currently an ad-hoc, time-consuming process. Data scientists
typically write code that implements a data processing pipeline
and test it on their local development workstation with a small
sample data, downloaded from a TB-scale data warehouse. They
cross fingers and hope that the program works in the expensive
production cloud. When a job fails or they get results that end up
being suspicious, data scientists must identify the source of the
error, often by digging through post-mortem logs.

In such cases, the programmer (e.g. data scientist) may want
to pinpoint the root cause of errors by investigating a subset of
corresponding input records. One possible approach is to track data
provenance (input output record mappings created in individual dis-
tributed worker nodes). However, according to our prior study [1],
backward tracing based on data provenance finds an input subset in
the order of millions, which is still too large for a developer to man-
ually sift through. Delta Debugging (DD) is a well-known algorithm
that re-executes the same program with different subsets of input
records [10]. Applying the DD algorithm naively on big data analyt-
ics is not scalable because DD is a generic, black box procedure that
does not consider the key-value mapping generated from individual
dataflow operators. Therefore, DD cannot prune irrelevant input
records easily by considering the semantics of dataflow operators.

The technical contribution of BiGSIFT is two folds. First, it com-
bines delta debugging with data provenance. Second, it implements
three systems-level optimizations—(1) test predicate pushdown,
(2) backward trace prioritization, and (3) bitmap-based memoiza-
tion to be discussed in Section 2 in details—to improve debugging
performance. Figure 1 shows the overall architecture of BIGSIFT.
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Figure 2: BIGSIFT’s Web-based User Interface

Our evaluations show that BiGSIFT improves the accuracy of
fault localizability by several orders-of-magnitude (~103 to 107x)
compared to Titian’s [4] data provenance only. BIGSIFT improves
performance by up to 66X compared to using Delta Debugging
alone [1]. For each faulty output, BIGSIFT is able to localize fault-
inducing data in less than 62% of the original job running time.

This tool demonstration paper builds on our prior work [1] and
focuses on the tool features and corresponding implementation
details of B1GSIFT. BIGSIFT is fully integrated with the current
Apache Spark’s web-based UL A user can directly inspect raw out-
put records, and write a test-oracle function on the fly or select
from pre-defined test oracle functions. BIGSIFT streams real time
debugging progress information from the remote cluster to the user
through an interactive area plot and presents the current set of
fault-inducing input records in a table format. Our current imple-
mentation targets Apache Spark 2.1.1 with programs written in
Scala and Java [9].

2 TECHNICAL APPROACH

The contribution of BIGSIFT is to adapt delta debugging for big data
analytics by designing new systems optimizations and by lever-
aging data provenance in tandem, which provides backward and
forward tracing capabilities for Apache Spark [4]. The overview
of our approach is described in Figure 1. Without such systems
optimizations, delta debugging could take hours if not days. This
is because the input dataset size is huge and thus an exhaustive,
binary-search like algorithm such as delta debugging could take sig-
nificant amount of time. In our evaluation, BIGSIFT is up to 66 times
faster than DD. Below we summarize three systems optimizations
at a high level, and further details are described elsewhere [1].

2.1 Test Function Push Down.

In the map-reduce programming paradigm, a combiner performs
partial aggregation for operators such as reduceByKey on the map
side before sending data to reducers in order to minimize network
communication. Since delta debugging uses a user-defined test
function to check if each final record is faulty, our insight is that,
during backward tracing, we should isolate the exact partitions with

fault-inducing intermediate inputs to further reduce the backward
tracing search scope.

In Apache Spark, certain aggregation operators (e.g. reduceByKey)
require a user to provide an associative and commutative function
as an argument. BIGSIFT implements a new optimization by push-
ing down a user-defined test function to partitions in the previ-
ous stage to test intermediate results. This optimization is enabled
when (1) the program ends with an aggregation operator (such as
reduceByKey) that requires an associative function fi; (2) fi o f2
is associative, when f3 is a test function; and (3) fi o f5 is failure-
monotone. If this monotonicity property is not satisfied (which can
be verified by testing final output), or none of the partitions fail the
test function, BIGSIFT rolls back to the default case of backward
tracing the final faulty record.

2.2 Overlapping Backward Traces.

Multiple faulty output records may be caused by the same input
records due to operators such as flatMap or join, where a single
data record can produce multiple intermediate records, leading to
multiple faulty outputs. Therefore, BIGSIFT prioritizes the common
input records leading to multiple outputs before applying DD. To
check the eligibility for this optimization, BIGSIFT explores a pro-
gram DAG to find at least one 1-to-many or many-to-many operator
such as flatMap and join.

In order to explore all the possible overlapping traces, BIGSIFT
overlaps the two smallest backward traces (let’s say #; and t3), to
find the intersection, t; N ty. If the test function evaluated on t; Nty
finds any fault, then DD is applied to t; N t; and the remaining
(potential) failure-inducing inputs t; — t2 and tp — t;. Otherwise, DD
is executed over both initial traces t; and tp. If any fault-inducing
inputs are found in the overlap, there could be potential time saving
from not processing the overlapped trace twice.

2.3 Bitmap Based Memoization of Test Results

DD is not capable of detecting redundant trials of the same input
configuration and therefore may test the same input configuration
multiple times. To avoid waste of computational resources, BIGSIFT
uses a test results memoization optimization. A naive memoization
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i class BigSift(sc:SparkContext, logFile:String){

) def runWithBigSift[T]1(

3 sparkProgram : (RDD[Stringl,Lineage[String]l) =>
RDD[T] , test : T => Boolean ) : Unit

! .

Figure 3: BIGSIFT’s API
strategy would require scanning of the content of an input configu-

ration to check whether it was tested already; such content-based
memoization would be time consuming and not scalable. BIGSIFT
instead leverages bitmaps to compactly encode the offsets of the
input dataset to refer to a sub-configuration.

The universal splitting function for DD is thus instrumented to
generate sub-configurations along with their related bitmap descrip-
tions. BIGSIFT maintains the list of already executed bitmaps, each
of which points to the test result of running a program on the input
sub-configuration. Before processing an input sub-configuration,
BIGSIFT uses its bitmap description to perform a look-up in the list
of bitmaps. If the result is positive, the test result for the target sub-
configuration is directly reused by the look-up. Otherwise, BIGSIFT
tests the sub-configuration and enrolls its bitmap and the corre-
sponding test result in the list. This technique avoids redundant
testing of the same input sub-configuration and reduces the total
debugging time. BiGSIFT uses the compressed Roaring Bitmaps
representation to describe large scale datasets [5].

2.4 Implementation

To enable automated debugging of big data analytics applications,
a user can instantiate BigSif't class with SparkContext and in-
put file path as input arguments, as shown in Figure 3. Internally,
this class instantiates LineageContext that enables Titian’s instru-
mentation for data provenance support. More details on the usage
of Titian is described in our prior VLDB 2016 paper [4]. A user
can then call runWithBigSift method with a test oracle function,
and a sparkProgram—a directly acyclic graph (DAG) workflow
that takes in an input Resilient Distributed Dataset (RDD-i.e., an
abstraction of distributed collection) and returns the final RDD.
B1GSIFT is designed as an external Java library (jar) and can be
deployed by importing the jar file in a Spark application running
on a data-provenance enabled Spark distribution such as Titian [4].
BI1GSIFT’s interactive Ul is available on port 8989 on the Spark driver
node. Figure 2 shows the web-based user interface. Once the job is
completed, a user can examine the job execution time, raw output,
etc. She can write her own custom test-oracle function or select
from pre-defined test functions. BiGSIFT also displays a set of input
records that reproduce the same test failure. The area chart reports
the real time debugging progress information. A user can click on
the graph to see the size and samples of failure-inducing inputs.

3 DEMONSTRATION SCENARIO

Suppose Alice is a data scientist and she writes a big data application
in Apache Spark to analyze a large scale dataset that contains
passenger transit information in the US. Since the data is in the
scale of terabytes, she takes a small sample of the dataset (say 10
MB) and builds a data processing pipeline using Spark in a local
machine. Alice wants to find the total transit time for all passengers
spending less than 45 minutes while in transit for each airport in
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Figure 4: B1GSIFT’s histogram visualization of key-value
based output records

i val countoftranist = sc.textFile(dataset).map{ s =>
2 val tokens = s.split(",")
3 val arrival_hr = tokens(2).split(":")(@)
4 val diff = getDiff(tokens(2) , tokens(3))
5 val airport = tokens(4)
((airport, arrival_hr), diff)}

filter{ v => v._2 < 45}
8 .reduceByKey (_+_)

.collect()

Figure 5: A Spark program written in Scala that finds the
total layover time of all passengers spending less than 45
minutes per airport at each hour.

the US for each hour. A row in the dataset represents a passenger’s
transit information in the following format.
[date, passenger, arrival, departure, airport code]
9/4/17 , 161413 , 6:52 , 8:22 , MNN

The program in Figure 5 first loads the dataset (line 1) and scans
each row to retrieve a key-value pair. A key consists of the airport
code and arrival hour of a passenger and the value is the transit
time spent in minutes (departure time -arrival time) at the airport
(line 2-6). Line 7 filters passengers with the transit time less than
45 minutes. Finally, the program sums up the transit times of all
passengers per airport at each arrival hour (line 8).

After writing this application, Alice submits the job to the pro-
duction cloud which results in the following output:

((SEA,7) , 175080)

((LAX,11) , 173460)

((MNN,23) , -27804120)
She then realizes that some output records look suspicious. For
example, the total transit time of MNN is -27804120, when she
expects the total transit time to be a positive value. Alice wants
to investigate what are the exact input records responsible for
producing a negative value. This task is challenging because the
large scale dataset is infeasible to inspect manually and there is no
one-to-one mapping between input records and output records due
to an aggregation step that applies user-defined functions.

Alice decides to use BIGSIFT that takes her program, input data
set, and a test oracle function as input and, eventually, returns
the following culprit input record responsible for the suspicious
negative output value.

11/9/12 , 141011 , 22:53 , @:23 , MNN
The following describes BIGSIFT demonstration step by step.
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Step 1: Program Output Inspection. Figure 2 shows the landing
page of BIGSIFT. It shows the size of input dataset as the number of
records, the job processing time, final output records in a text box.
See @, 8, and O in Figure 2 respectively. To better visualize output
records, BIGSIFT provides interactive and dynamic visualization
of key-value pairs using a histogram to make it easier for a user
to identify anomalous records visually (Figure 4(a)). For example,
Alice can mark any negative value as incorrect using a histogram
and note down this threshold to construct a test function.

Step 2: Classifying Suspicious or Wrong Output Records by Defin-
ing a Test-Oracle Function. BIGSIFT enables a user to write a test
function—a predicate to be applied to each final output record to
distinguish correct outputs from incorrect or anomalous outputs.

BI1GSIFT also enables user to choose from a list of pre-defined test
predicate functions (Figure 2(b)-@) to help explain the common
types of anomalies in big data analytics: for example, (1) explain
how a minimum output value is created, (2) explain how a maximum
output value is created, (3) explain how the output value greater
than k standard deviations from the median is created, etc. Once
the selection is made from the radio buttons, a user can press the
Run BiGSIFT button (Figure 2(b)-@®). Internally, BIGSIFT selects the
corresponding pre-defined test function to initiate debugging.

Step 3: Visualization of Data Provenance. To help understand the
propagation of fault-inducing intermediate input records across
transformation steps, BIGSIFT provides a pie chart based DAG vi-
sualization of the workflow (Figure 4(b)). Each node in this graph
is represented as a pie chart where a red segment shows the ratio
of fault-inducing intermediate records against the total number of
records processed by that transformation. By viewing data ratio at
each transformation, a user may get deeper insight.

Step 4: Automated DISC Debugging. When B1GSIFT is invoked by
the user, a realtime area chart appears on the UL In Figure 2(c), Y-
axis represents the number of fault-inducing input records isolated
by BIGSIFT in log scale and X-axis represents debugging time. As
the time passes, BIGSIFT streams debugging progress information
from the cloud. A user can click on any part of the chart to view
sample fault-inducing input records at the selected time. A mouse
hover-over will show the number of fault-inducing input records.
As soon as BIGSIFT finds the minimum set of fault-inducing input
records, BIGSIFT reports the total debugging time through a push
notification (green container in Figure 2(c)-@).

4 RELATED WORK

Delta debugging (DD) is a well known technique for finding the min-
imal failure-inducing input [10] that requires multiple tests of the
program, which alone, is not tractable for DISC system workloads.
HDD tries to minimize DD tests by assuming that the input is in a
well defined hierarchical structure which rarely holds [7]. RAMP
[3] and Newt [6] add data provenance support to DISC systems.
BiGSrrT differs from these by leveraging DD and data provenance in
tandem and by implementing unique systems optimizations to im-
prove performance for DISC workloads. BIGDEBUG is an interactive
debugger for Spark [2] and it leaves to the developer to manually
identify the root cause of errors. Data X-ray [8] extracts a set of
features representing input data properties and summarizes the
errors in a SQL table, but does not support automated debugging.
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5 EVALUATION AND SUMMARY

We are in the early days of debugging big data analytics. This tool
demonstration paper showcases BIGSIFT, an automated debugging
toolkit in the context of data-intensive scalable computing (DISC).
Finding failure-inducing inputs is just the beginning. We see further
opportunities for automated debugging of DISC applications, such
as automated data cleaning and faulty code localization.

In our prior work [1], we evaluated BIGSIFT on a 16-node cluster
with 8 subject program where faults were injected in both input
datasets or code. The datasets used in the evaluation ranges from
few GB to 80GB. In comparison to using DD alone, BIGSIFT re-
duced the fault localization time (as much as 66x) by pruning out
input records that are not relevant to faulty outputs. Further, our
trace overlapping heuristic decreases the total debugging time by
14%, and our test memoization optimization provides up to 26%
decrease in debugging time. Indeed, the total debugging time taken
by BIGSIFT is on average 62% less than the original job running
time per single faulty output.
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