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Co-occurring genomic capacity for anaerobic
methane and dissimilatory sulfur metabolisms
discovered in the Korarchaeota

Luke J. McKay ®'2*, Mensur Dlaki¢ ©3, Matthew W. Fields ©23, Tom O.Delmont
Zackary J. Jay @2, Korinne B. Klingelsmith?, Douglas B. Rusch® and William P.Inskeep

48 A.MuratEren®45,
17%

Phylogenetic and geological evidence supports the hypothesis that life on Earth originated in thermal environments and con-
served energy through methanogenesis or sulfur reduction. Here we describe two populations of the deeply rooted archaeal
phylum Korarchaeota, which were retrieved from the metagenome of a circumneutral, suboxic hot spring that contains high
levels of sulfate, sulfide, methane, hydrogen and carbon dioxide. One population is closely related to ‘Candidatus Korarchaeum
cryptofilum OPF8', while the more abundant korarchaeote, ‘Candidatus Methanodesulfokores washburnensis’, contains genes
that are necessary for anaerobic methane and dissimilatory sulfur metabolisms. Phylogenetic and ancestral reconstruction
analyses suggest that methane metabolism originated in the Korarchaeota, whereas genes for dissimilatory sulfite reduc-
tion were horizontally transferred to the Korarchaeota from the Firmicutes. Interactions among enzymes involved in both
metabolisms could facilitate exergonic, sulfite-dependent, anaerobic oxidation of methane to methanol; alternatively, ‘Ca. M.
washburnensis' could conduct methanogenesis and sulfur reduction independently. Metabolic reconstruction suggests that
‘Ca. M. washburnensis' is a mixotroph, capable of amino acid uptake, assimilation of methane-derived carbon and/or CO,
fixation by archaeal type IlI-b RuBisCO for scavenging ribose carbon. Our findings link anaerobic methane metabolism and
dissimilatory sulfur reduction within a single deeply rooted archaeal population and have implications for the evolution of these

traits throughout the Archaea.

the earliest evolved mechanisms for microbial energy con-

servation'~. Genes associated with both of these energy
metabolisms have recently been discovered in diverse taxonomic
lineages. Genes that encode methyl:coenzyme M reductase (Mcr),
which catalyses the final step in methanogenesis, were recently
discovered in the Bathyarchaeota® and Verstraetearchaeota®, and
overturned the long-held paradigm that this functional capacity
was restricted to the Euryarchaeota. Distantly related mcr homo-
logues were shown to be involved in butane oxidation in mem-
bers of ‘Candidatus Syntrophoarchaeum?”, calling into question the
presumed methanogenic function of distant homologues from the
Bathyarchaeota®. Similarly, dissimilatory sulfite reductases (Dsr),
which catalyse the conversion of sulfite to hydrogen sulfide dur-
ing the process of sulfate reduction, were recently expanded to
thirteen additional bacterial and archaeal lineages’. Discoveries
of Mcr- and Dsr-encoding genes among diverse microbial phyla
continue to expand our understanding of the evolution of methane
and sulfur metabolisms.

Both Mcr and Dsr can function in reverse to mediate the
oxidation of methane” and reduced sulfur', respectively, by
phylogenetically distinct groups of archaea and bacteria. The
predominant mode of anaerobic oxidation of methane is thought
to be completed by microbial consortia of anaerobic methano-
trophic (ANME) archaea and sulfate-reducing bacteria living in

I\/\ ethanogenesis and sulfate reduction are considered two of

marine sediments'>"® and involves reverse Mcr and forward Dsr

functions (reaction 1).
CH, +S03™ - HCO; +HS™ + H,0 (1)

Several mechanisms have been proposed for this interspecies
redox couple, including the use of cytochromes', sulfur dispropor-
tionation' and pili- or flagellum-like proteins'®. Whether a single
organism can conduct both methane and sulfur metabolism through
Mcr and Dsr has not yet been established. Here we performed
metagenome sequencing of highly sulfidic and pyritic sediments
from a suboxic geothermal spring in Yellowstone National Park that
contained high levels of methane, carbon dioxide, hydrogen and
sulfate. Two populations of the poorly understood archaeal phylum
Korarchaeota were discovered, including one with co-occurring mcr
and dsr complexes. Phylogenetic analyses, energetic calculations and
detailed metabolic considerations highlight three possible energy-
conserving strategies, including the highly exergonic, incomplete
oxidation of methane to methanol with sulfite. These observations
link anaerobic methane oxidation and sulfur reduction within a sin-
gle deeply rooted population and provide far-reaching implications
for the evolution of methane and sulfur metabolism in the Archaea.

Results and discussion
Comparison of korarchaeotal genomes. We recovered two near-
complete korarchaeotal genomes from a metagenome of sulfidic,
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Fig. 1| Tetranucleotide frequency display and comparison of genome sequence for three populations of Korarchaeota. a, A Two-dimensional snapshot
of a three-dimensional analysis generated by tSNE of tetranucleotide frequencies. Dots represent assembled scaffolds chopped at a maximum length

of 20kb. n=203 for ‘Ca. M. washburnensis' and n=92 for ‘Ca. K. cryptofilum WS'. b, Differential distribution of homologous gene clusters*® (based on
translated open reading frames) across the three genomes. Red, ‘Ca. K. cryptofilum OPF8’; blue, ‘Ca. K. cryptofilum WS'; green, ‘Ca. M. washburnensis'.

thermal sediments from Washburn Hot Springs (Fig. 1 and Table 1).
One population was highly similar to ‘Ca. K. cryptofilum OPF8"’
with an average nucleotide identity (ANI) of 98.7% (Supplementary
Table 1), hereafter referred to as ‘Candidatus Korarchaeum cryp-
tofilum WS’ (for Washburn Hot Springs). ‘Ca. K. cryptofilum
OPF8 was enriched from Obsidian Pool, another hot spring in
Yellowstone National Park that exhibits a similar pH, temperature
and low-oxygen status to that of Washburn Hot Springs'®"’. The sec-
ond korarchaeotal genome was significantly different from ‘Ca. K.
cryptofilum OPF8’ with an ANI of 70%, average amino acid identity
of 45% (Fig. 1, Table 1 and Supplementary Table 1) and markedly
lower GC content (42.7%) relative to the two ‘Ca. K. cryptofilun’
genomes (48.4 and 49.0%; Fig. 1 and Table 1).

Several gene clusters (15.2%) were common to the two
Korarchaeota populations described here as well as ‘Ca. K. crypto-
filum OPF8’" (Fig. 1b and Supplementary Table 3). Marker genes for
anaerobic methane metabolism (for example, mcrA) and dissimila-
tory sulfite reduction (for example, dsrAB) were found within a large
set of gene clusters belonging exclusively to the divergent korarchaeo-
tal population (comprising 54.3% of the total number of detected
clusters). Previously, genes involved in methane metabolism and
dissimilatory sulfite reduction have not been found within a single
population. The proposed name, ‘Ca. M. washburnensis, combines
these putative functions with the Greek root used for Korarchaeota
(kore, young woman”’) and the location where this genome was
detected (Washburn Hot Springs). Genome completeness esti-
mates were 95.1% for ‘Ca. M. washburnensis, 95.7% for ‘Ca. K.
cryptofilum WS’ and 95.7% for ‘Ca. K. cryptofilum OPF8’ (Table 1).
Redundancy values estimated from multiple copies of single-copy
genes ranged from 1.5 to 4.3% for all three Korarchaeota. Together,
these results suggest that the curated genome assemblies are highly
complete, contain very few redundancies and are of high quality”’.

An analysis of single-nucleotide variants showed that both
genomes represented near-clonal environmental populations with
low levels of strain heterogeneity (Table 1). However, we observed
variable coverage patterns across both korarchaeotal genomes
and in that of ‘Ca. M. washburnensis, contigs containing genes
for methane and sulfur metabolisms fell within different coverage
groups at 109X and 818X, respectively (Supplementary Fig. 2). We

performed multiple tests to ensure that each sequence cluster iden-
tified through t-stochastic neighbour embedding (tSNE) analysis*
of tetranucleotide frequencies accurately corresponded to unique
korarchaeotal populations. These tests included additional analy-
ses with five separate assemblies (Supplementary Table 2), multiple
variations of three clustering algorithms (Fig. 1 and Supplementary
Figs. 1, 2, 4), careful examination of specific sequence content
(that is, single-copy genes, necessary cellular processes, and meth-
ane and sulfur metabolisms), sequence character and contig over-
laps, and taxonomic assignments (Supplementary Figs. 1-3 and
Supplementary Discussion). We also included positive controls
with two clustering algorithms—¢SNE and emergent self-organiz-
ing maps®. These analyses demonstrated a perfect overlap of the
complete genome of ‘Ca. K. cryptofilum OPF8" on the sequence
for the closely related ‘Ca. K. cryptofilum WS’ (Fig. 1a) and com-
plete recovery of Methanopyrus kandleri AV19** and Metallosphaera
sedula DSM5348% reference genomes added to the metagenome
from Washburn Hot Springs (Supplementary Fig. 4). In summary,
our analyses of different assemblies and sequence clustering tech-
niques indicated that the genome of ‘Ca. M. washburnensis’ is rep-
resentative of either a single microbial population with significant
genomic sequence variability or a highly related group of korar-
chaeotal subpopulations that have a nearly identical core genome in
addition to strain-specific genes (that is, a ‘pangenome’*). Notably,
genes for sulfur and methane metabolisms co-occur in ‘Ca. M.
washburnensis’ in either scenario (Supplementary Discussion).

The estimated genome size for ‘Ca. M. washburnensis’ was
2.9Mb (3,578 coding genes), which was considerably larger than the
genome sizes of 1.8 and 1.6 Mb (1,989 and 1,617 coding genes) for
‘Ca. K. cryptofilum WS’ and ‘Ca. K. cryptofilum OPFS;, respectively.
Coverage values and resulting abundance estimates were much higher
for ‘Ca. M. washburnensis’ compared to ‘Ca. K. cryptofilum WS,
which indicates that ‘Ca. M. washburnensis’ represented a greater
fraction (2.5% of metagenomic reads) of the microbial commu-
nity at Washburn Hot Springs than ‘Ca. K. cryptofilum WS’ (0.8%
of metagenomic reads; Table 1). ‘Ca. M. washburnensis’ was the
fourth most abundant of 135 putative genomes recovered from this
metagenome, which suggests that this organism has a key role in the
Washburn ecosystem.
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Table 1| Genomic characteristics of the Korarchaeota

'Ca. Methanodesulfokores washburnensis’

'Ca. Korarchaeum cryptofilum WS'  ‘Ca. Korarchaeum cryptofilum OPF8'

Length (bp) 2,942,065
Completeness (%) 95.1
Redundancy (%) 43
N50 (bp) 24,753
Number of scaffolds 179
Number of genes 3,578
GC content (%) 427
Number of tRNAs 48
Number of rRNAs 3
Mean coverage 377
Relative abundance (%) 25
SNV density 1.22

1,742,982 1,590,757
95.7 95.7¢
31 1.52
78,545 NA
51 1
1,989 1,617
48.4 49.0
47 45

3 3

14 NA
0.8 NA
0.94 NA

Estimated completeness, redundancy, median scaffold size (N50), GC content, total number of genes encoding tRNAs and rRNAs (that is, 55, 16S and, 23S) and mean coverage of the Korarchaeota

populations are compared with ‘Ca. K. cryptofilum OPF8'". The genome for ‘Ca. K. cryptofilum OPF8'

has been published previously'” Relative abundance represents the percentage of metagenomic

short reads recruited by a particular population. Single-nucleotide variant (SNV) density is the percentage of genomic positions that show nucleotide-level variation based on metagenomic short read
recruitment. NA, not applicable. *Completeness and redundancy estimates of a complete Korarchaeota genome based on archaeal single-copy core genes.

Phylogenomic analysis of the Korarchaeota. Phylogenomic analyses
using an alignment of 56 conserved proteins (Supplementary Table 4)
showed that ‘Ca. K. cryptofilum OPF8’ and ‘Ca. K. cryptofilum WS,
as well as the more distantly related ‘Ca. M. washburnensis, formed
a deeply rooted monophyletic clade among the Archaea (Fig. 2a).
Strong posterior probabilities at all nodes reinforced the basal position
of this phylum. Additional phylogenomic analyses with representa-
tives from all three domains of life confirmed the deeply rooted place-
ment of the Korarchaeota but yielded different relationships between
the Archaea and Eukarya (Supplementary Fig. 5 and Supplementary
Discussion). Most trees indicated monophyly of the Korarchaeota
with the Eukarya, whereas a minority of trees supported an Asgard-
Eukarya clade?”; both phylogenomic results were accepted with
significance by some posterior predictive tests (Supplementary
Table 5). Collectively, these results are qualitatively similar to previ-
ous observations®* and an important reminder that the selection
of proteins, microbial species and the parameters for phylogenomic
analyses strongly affect interpretations of the perceived evolutionary
history of the Eukarya. More genomic entries from the Korarchaeota
and Asgard archaea will help to clarify these discrepancies. A phylo-
genetic comparison of full-length 16S rRNA gene sequences demon-
strated that ‘Ca. K. cryptofilum WS’ was 99% similar to that of ‘Ca. K.
cryptofilum OPF8' and 92% similar to ‘Ca. M. washburnensis,
which was more closely related to korarchaeotal sequences from ther-
mal environments in Iceland, Russia and other sites in North America
(Supplementary Fig. 6 and Supplementary Discussion).

Phylogenetic analysis of korarchaeotal McrA and DsrAB. The
deduced McrA sequence from ‘Ca. M. washburnensis’ represents
a basal entry relative to other methane-metabolizing organisms
(Fig. 2b), which is consistent with the deeply rooted position of
the Korarchaeota within the Archaea (Fig. 2a) and the univer-
sal tree of life (Supplementary Fig. 5). The McrA sequence from
‘Ca. M. washburnensis’ was placed with strong posterior prob-
ability near the branches of two recently proposed lineages of
methylotrophic methanogens, the Verstraetearchaeota® and the
Methanomassiliicoccales®. Sequences from the uncultivated
ANME-1 group of methane-oxidizing archaea formed an adjacent
clade to the Korarchaeota, but the branch length between these
groups was relatively large. These findings support the involve-
ment of methylated compounds and the possibility of anaerobic
oxidation of methane in the Korarchaeota. McrA sequences from

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology

Korarchaeota and Verstraetearchaeota® resolved the previously
uncharacterized clades, ‘deeply branching mcrA groups’ 1 and 3*
(Supplementary Fig. 7 and Supplementary Discussion).

The wide taxonomic distribution of McrA among diverse
archaea suggests that lateral gene transfer (LGT) may have
occurred throughout the evolution of methane metabolism. For
example, McrA sequences from the Methanomassiliicoccales
are more closely related to those from the Korarchaeota and
Verstraetearchaeota than to other Euryarchaeota such as the
Methanocellales and Methanomicrobiales. Ancestral reconstruc-
tionsof McrA from two deepnodeselections (Supplementary Fig. 8a)
were more closely related to McrA from ‘Ca. M. washburnensis’
(84.2% and 80.2%) than any other McrA sequence available in
the National Center for Biotechnology Information (NCBI) data-
base. Additionally, we extracted all other deduced McrA sequences
from the metagenome from Washburn Hot Springs (Integrated
Microbial Genomes and Microbiomes (IMG) genome identifier:
3300005860), but none were as similar to the ancestral sequence as
that of ‘Ca. M. washburnensis. These observations provide further
support that korarchaeotal mcrA may have developed relatively
early in the evolution of archaeal methane metabolism. However,
given the frequency of phylum-level additions to the McrA tree
in the past three years, it is probable that our knowledge of Mcr-
containing lineages remains incomplete.

Phylogenetic analysis of deduced DsrAB proteins from ‘Ca. M.
washburnensis’ showed that these sequences were most closely
related to Aigarchaeota from Great Boiling Springs, Nevada,
USA* and Jinze Pool, Yunnan, China*. The Korarchaeota and
Aigarchaeota DsrAB sequences fell within a larger clade that also
contained three cultivated groups of sulfate-reducing Clostridia
(Carboxydothermus, Desulfosporosinus and Desulfotomaculum) and
several clades of uncharacterized environmental sequences. This
large cluster was adjacent to other reductive-type DsrAB clades that
belong to the Desulfobacca and Deltaproteobacteria. By contrast,
oxidative-type DsrAB sequences (for example, Chlorobi, Alpha-,
Beta -, Gamma-proteobacteria) formed a separate, distant clade
consistent with previous observations”. These findings together
with the presence of dsrD, which is absent from oxidative-type Dsr-
expressing organisms®, provide strong support that the deduced
DsrAB proteins found in ‘Ca. M. washburnensis’ are involved in the
dissimilatory reduction of sulfur compounds (that is, sulfite, thio-
sulfate and/or elemental sulfur).
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The association between the Firmicutes and the two
Aigarchaeota sequences has previously been attributed to LGT?,
and other researchers have noted that LGT was probably frequent
in dsrAB evolution’. Interspersed lineages of Archaea and Bacteria
in the DsrAB tree support LGT, but the directionality of lateral
events is unclear. To examine this issue, ancestral reconstructions of
DsrAB were built from three basal nodes (Supplementary Fig. 8b).
The reconstructed sequences from the deeper two nodes were
more closely related to Firmicutes DsrAB sequences than ‘Ca. M.
washburnensis’ or Aigarchaeota. Out of a total of 112 Dsr homo-
logues found in the metagenome from Washburn Hot Springs,
six were more similar to the ancestral sequence than the DsrAB
from Korarchaeota (Supplementary Table 6). These six sequences
were most closely related to members of the Firmicutes (for exam-
ple, Thermoanaeromonas, Pelotomaculum and Calderihabitans).
Consequently, the ancestral reconstruction of DsrAB successfully
identified members of the Firmicutes living in the same habitat that
are candidate donors of dsr transfer to ‘Ca. M. washburnensis.

Energy metabolism in ‘Ca. M. washburnensis’. Metabolic recon-
struction of ‘Ca. M. washburnensis’ revealed enzyme-encoding genes
for two major energy conservation pathways—methanogenesis

and dissimilatory sulfite reduction. Here we discuss three meta-
bolic possibilities (Fig. 3) and outline observations that support or
challenge each.

Methanogenesis from methanol and hydrogen. The presence of a full
mcr complex (ABG subunits and CD-related proteins) and com-
plete methanol:coenzyme M methyltransferase (mtaABC) suggests
that ‘Ca. M. washburnensis’ is capable of using methanol as a sub-
strate for methanogenesis (Fig. 3a). The absence of the methyltetra
hydromethanopterin:coenzyme M methyltransferase (mtr) sodium
ion-translocating system, the absence of the methyl branch of the
Wood-Ljungdahl pathway” and the presence of a complete F,,-
nonreducing hydrogenase (mvhADG) each indicates that ‘Ca. M.
washburnensis’ is capable of using hydrogen to reduce methanol
(reaction 2) rather than disproportionating methanol to methane
and CO, (reaction 3)*,

CH,0OH+H, - CH,+H,0 (2)

4CH,OH — 3CH, + CO, + 2H,0 3)

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology
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The A and C subunits of a heterodisulfide reductase (hdrAC)
were also encoded within the same operon as mvh. The Mvh NjFe-
hydrogenase forms a complex with HdrABC and is thought to
regulate the oxidation of hydrogen while reducing ferredoxin and
CoM-SS-CoB in an electron-bifurcating reaction during hydrogen-
dependent methanogenesis®>'’. However, the HdrB subunit, which
catalyses the direct reduction of CoM-SS-CoB, was not found in the
‘Ca. M. washburnensis’ assembly. It was recently proposed that a
homologous heterodisulfide reductase, HdrD, coupled to an Fpo-
like proton-translocating pump is responsible for establishing a
membrane potential in the Methanomassiliicoccales’. Indeed,
‘Ca. M. washburnensis’ has genes that encode this Fpo-like com-
plex and the HdrD protein that binds to it; this suggests that the
energy metabolism of ‘Ca. M. washburnensis’ may be similar to that
proposed for ‘Candidatus Methanoplasma termitum. The shared
homology and similar function of HdrD and HdrB suggests that
HdrD may also replace HdrB in the Mvh-Hdr complex.

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology

On the basis of the physicochemical properties of Washburn Hot
Springs (Supplementary Table 7) and formation energies of all rel-
evant chemical species®, the free energy yield (AG) of hydrogen-
dependent methylotrophic methanogenesis (reaction 2; Fig. 3a) was
estimated to range from —19.6 to —39.3 k] mol™". The volatilization
of methanol probably limits its availability as a substrate for meth-
anogenesis. At the elevation of Washburn Hot Springs (1,883 m),
methanol has a boiling point of 54 °C, while the temperature of the
spring is 65-70°C.

Sulfite reduction with hydrogen. ‘Ca. M. washburnensis’ may per-
form sulfite or thiosulfate reduction as an alternative energy-
conservation strategy (Fig. 3b). In addition to DsrAB, genes were
detected for the related proteins DsrC and DsrD, and 4 out of the
5 subunits of the membrane-bound DsrMKJOP complex. Subunit
] was missing from dsrMKJOP, but the function of this trihaeme
cytochrome might be replaced by a dihaeme cytochrome b of the be
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complex encoded within the same operon. Like hydrogenotrophic
methanogens, many sulfate-reducing organisms also have Mvh-
Hdr complexes**, which are thought to be used for the reduction
of sulfite with hydrogen (reaction 4; Fig. 3b). Together with the Mvh
hydrogenase, the Dsr components suggest that hydrogen is used as
an electron donor for sulfite reduction (reaction 4).
SO3™+3H,+H"' - HS™ +3H,0 (4)
The reduction of sulfite with hydrogen was estimated to
be exergonic under the conditions at Washburn Hot Springs
(AGysy=-113.1 to —132.8kJmol™). This suggests that ‘Ca. M.
washburnensis’ could either be a facultative methanogen/sul-
fite reducer that alternately employs distinct energy conservation
strategies based on environmental conditions (that is, Fig. 3a,b) or
a sulfite reducer that uses both hydrogen and methane as electron
donors (Fig. 3¢).

Anaerobic oxidation of methane to methanol via sulfite reduction. The
co-occurrence of mcr, mta and dsr complexes in ‘Ca. M. washburn-
ensis’ suggests the possibility of a previously unidentified metabo-
lism in which methane oxidation to methanol is coupled with sulfite
reduction (reaction 5; Fig. 3¢). Calculations of AG demonstrate that
the sulfite-dependent anaerobic oxidation of methane to metha-
nol is highly exergonic (between —122.1 and —200.9kJmol™") in
Washburn Hot Springs:
3CH,+S02™ +2H* - 3CH,OH + H,$ (5
In this scenario, Mcr and Mta operate in reverse'** to produce
methanol from methane, which results in the release of reduced
CoB-SH and CoM-SH that provide substrates for reverse heterodi-
sulfide reductase (that is, ‘dual monosulfide oxidase’) activity*® at
HdrD, DsrAB or DsrK (Fig. 3¢ and Supplementary Discussion). It
is uncertain whether energy can be conserved from this exergonic

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology
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process; however, methane oxidation may be an important avenue
for carbon assimilation (described below).

Carbon and intermediate metabolism in the Korarchaeota.
We hypothesize that methanol produced by Mcr and Mta can be
converted to formaldehyde by an alcohol dehydrogenase (Fig. 4
and Supplementary Fig. 9). Eight genes for alcohol dehydroge-
nases were present in ‘Ca. M. washburnensis. Six of these encoded
putative short-chain alcohol dehydrogenases, which were pro-
posed to catalyse formaldehyde production from methanol in
Methanosarcina barkeri' and ANME-1 spp.*. Formaldehyde can
then be converted to serine by glycine hydroxymethyltransferase;
subsequent pyruvate production is mediated by serine-alanine
lyase. The genes involved in the latter half of this pathway (CH,O
— pyruvate) are present in the ‘Ca. M. washburnensis’ genome and
well-established in organisms that complete the isocitrate-lyase
pathway. Additionally, no genes for the catalytic subunits of alde-
hyde or formate dehydrogenases were identified in ‘Ca. M. wash-
burnensis, which suggests that formaldehyde would be available for
assimilation by the proposed pathway.

The ‘Ca. M. washburnensis’ genome also contained an archaeal
form III-b* ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO), as well as genes encoding the full suite of enzymes that
are necessary for ribose-scavenging pathways that involve phos-
phoribosyl pyrophosphate (PRPP) and/or adenosine monophos-
phate (AMP) precursors (that is, purine nucleoside phosphorylase,
ribose-1,5-phosphate isomerase and thiazole-adenylate synthase).
Type III RuBisCOs have been inferred to scavenge ribose carbon
(for example, nucleic acids) by incorporating CO, for re-entry into
glycolysis and/or gluconeogenesis. Consequently, the incorpora-
tion of highly abundant CO, from Washburn Hot Springs (92% of
subsurface gas'"”) during recycling of ribose may represent another
carbon source for ‘Ca. M. washburnensis’ (Supplementary Fig. 10).

General pathways for central carbon metabolism were similar
for ‘Ca. M. washburnensis, ‘Ca. K. cryptofilum WS’ and ‘Ca. K.
cryptofilum OPF8’ (Fig. 4). Each of these korarchaeotes contain a
glycolysis pathway that lacks genes for the reversible transformation
between glucose and glucose-6-phosphate. All three populations
had an incomplete tricarboxylic acid (TCA) cycle, which lacked
malate dehydrogenase, citrate synthase and aconitate hydratase.
However, each organism exhibited a potential ‘shortcut’ for conver-
sion between oxaloacetate and a-ketoglutarate through glutamate
and aspartate cycling, which utilizes glutamate synthases and aspar-
tate transaminases. This partial TCA cycle has also been observed
in recently described Bathyarchaeota® and Verstraetearchaeota®,
and suggests that these organisms may use the TCA cycle primarily
to generate precursors for biosynthesis. As is common in archaea,
these Korarchaeota exhibited several avenues for the incorporation
of amino acid carbon into major metabolic pathways; entry points
include the production of oxaloacetate or a-ketoglutarate from
aspartate, glutamate and glutamine, or possible production of phos-
phoenolpyruvate from leucine, isoleucine, valine, phenylalanine or
tyrosine. In conjunction with the presence of complete membrane
transport systems for branched-chain amino acids, this suggests
that the Korarchaeota take up and utilize protein-degradation prod-
ucts from the environment.

In summary, genes associated with methane metabolism and
sulfur reduction were detected in one of the most deeply rooted
archaeal phyla, the Korarchaeota. Our findings support the hypoth-
eses that methane metabolism was an early energy conservation
strategy in archaea and, more specifically, that the Korarchaeota
served an important role in the distribution of methane- and sulfur-
metabolizing proteins in this domain. These observations of extant
relatives of ancient archaea influence considerations of early evolu-
tion, particularly with respect to sources of energy and carbon in
geothermal environments.
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Based on data presented here, we propose the name
Methanodesulfokores washburnensis (L. n. methanum, methane;
L. pref. de, from; L. n. sulfo, sulfur; N.L. pref. Methanodesulfo-,
methane metabolizing and dissimilatory sulfur-reducing, used to
characterize a microorganism that participates in the production
and/or oxidation of methane and the dissimilatory reduction of
sulfite; Gr. n. kore, young woman, the previously selected root for
phylum Korarchaeota;” N.L. masc. adj. washburnensis, pertaining
to Washburn Hot Springs in Yellowstone National Park, USA). This
organism contains genes that are necessary for methanogenesis
from methanol and hydrogen, anaerobic oxidation of methane with
sulfite and/or sulfite reduction with hydrogen. Genome sequences
were obtained from Washburn Hot Springs in Yellowstone National
Park, USA, with a temperature of 65-70°C, a pH of 6.4 and elevated
concentrations of carbon dioxide, methane, hydrogen, hydrogen
sulfide and sulfate.

Methods

Site selection and sample collection. Washburn Hot Springs (Yellowstone
National Park) is a circumneutral (pH 6.4), highly sulfidic and anoxic geothermal
pool® that contains high concentrations of methane, hydrogen and carbon dioxide.
Recent work recovered divergent methane metabolism genes from these 65-70°C
sediments'’. Sediments for DNA extraction were collected (4 October 2012) in 50-ml
Falcon tubes, immediately placed on dry ice and then transferred to a —80°C
freezer within 12h.

DNA extraction, sequencing and metagenome analysis. DNA was extracted from
sediments from Washburn Hot Springs with the FastDNA Spin Kit for Soil (MP
Biomedicals). DNA was eluted in sterile water and frozen at —80 °C until shipment
to the Joint Genome Institute (JGI), US Department of Energy, for sequencing on
the Illumina HiSeq platform. Initial analyses of the metagenome from Washburn
Hot Springs were performed in accordance with standard JGI protocols (https://
img.jgi.doe.gov/).

Quality-filtered short reads were assembled with SPAdes’ (v.3.10) according
to the JGI analysis pipeline. Four additional assemblies were also analysed
for comparison. These included the original JGI ‘manual’ assembly, our own
local assembly using SPAdes v.3.11 and Megahit™ with default and sensitive
parameters. Tetranucleotide frequencies were calculated for DNA scaffolds
with a minimum sequence length of 5kb, chopped to 20kb and with an overlap
size of 10kb. Tetranucleotide frequency results were plotted two-dimensionally
with tSNE* using a cluster radius that discriminated discrete sequence clusters
(Supplementary Fig. 4). Clustered scaffolds were imported into anvio™ (v.3) and
further characterized. The curated genome assemblies have been described as
‘metagenome-assembled genomes” and represent the average genomic content
of microbial populations resolved at close to the species level. Coverage values
were not used for sequence clustering purposes because of variation in coverage
across highly similar sequences that were shown to belong to the same population
(Supplementary Discussion).

Genome analysis, pangenomics and metabolic reconstruction. Anvio™ used
Prodigal™ to identify open reading frames in contigs, HMMER™ to search for
archaeal single-copy genes™ for estimating genome completeness and redundancy
and the BLAST software suite’ to assign functions through NCBI’s Clusters

of Orthologous Genes (COGs)*’. Anvio also calculated coverage estimates for
individual scaffolds and population genomes along with other statistics (that is,
N50 and GC content). Anvio was also used to analyse microdiversity patterns
through single-nucleotide variants and for pangenomic analyses™. In brief, anvio
identifies gene clusters by computing amino acid sequence identity scores between
every open reading frame in every genome using the BLASTp program™, then
uses the MCL algorithm® to demarcate individual gene clusters in search results
through graph partitioning and finally visualizes the distribution of gene clusters
across genomes. In addition, functional properties of each population genome
were examined with the KEGG database® using the IMG system from the JGI.
KEGG pathways were used to create metabolic reconstructions. After initial KEGG
analysis, certain functions were further analysed using gene neighbourhood

and blast comparisons to gene and protein databases (for example, COG*” and
PFAM°®' databases). Average genome nucleotide identities (ANIb and ANIm)

and tetranucleotide frequency regression analysis were performed with JSpecies
v.1.2.1°%, Average genome amino acid identities were calculated by averaging the
identities of pairwise protein homologues identified using BLASTp homology cut-
offs (>29% amino acid identity and >60% protein length).

Phylogenetic analyses. Amino acid sequences from 56 archaeal clusters of
orthologous genes (arCOGs; Supplementary Table 4) were aligned, concatenated
and used in the phylogenetic analysis of korarchaeotal genomes compared to
other major archaeal phyla, as well as to representatives from the Bacteria and
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Eukarya®. A similar set of proteins was used by other groups”. To ensure a robust
alignment, we only included taxa that contained at least 50 out of 56 arCOGs
(approximately 90%). Sequences of individual proteins were aligned with MAFFT-
L-INS-i®, visually inspected and adjusted, and trimmed by trimAL** using a 50%
gap threshold. Trimmed alignments (15,526 residues) were subjected to Bayesian
inference analysis (MrBayes v.3.2.5%) in increments of 1 million generations
until the standard deviation of split frequencies was <0.01. ProtTest 3°° analysis
revealed that an LG model with empirical amino acid frequencies and invgamma
rates was the most optimal. Nevertheless, we tested multiple combinations of
parameters (2-5 million generations, 0.1-0.25 burn-in fraction, four and eight
parallel chains, gamma and invgamma models for rate variation, four and eight rate
categories for the gamma distribution and temperature factors ranging from
0.075 to 0.15). Figure 2a shows a tree after 2 million generations (0.25 burn-in,
two runs with eight parallel chains and eight rate categories for the gamma
distribution). Maximum likelihood trees were computed using RAXML® (v.8.2.0)
in regular bootstrapping mode with 1,000 replicates (parameters determined by
ProtTest 3) and using IQ-TREE (v.1.6.7.2)* with the best parameters determined
by internal model selection (LG + F + R10). IQ-TREE reconstructions were
done both in non-parametric bootstrap mode (100 replicates) and with ultrafast
bootstrap approximation (1,000 replicates). IQ-TREE was also used for posterior
tree topology tests (Supplementary Table 5). A comparison of three-domain
trees resulting from different programs and their parameter selections is shown
in Supplementary Fig. 5. Newick versions of all phylogenomic trees as well as
the master concatenated protein alignment used for all phylogenomic trees are
available as Supplementary Data 1-13. Tree topologies were locally constrained to
infer ancestral reconstructions (MrBayes) for select nodes and ancestral sequences
were derived from states with highest probabilities.
16S rRNA sequences were retrieved from IMG for each korarchaeotal genome,
aligned to the Silva database (v.132) with SINA® and compared to other (NCBI,
Genbank) near-full-length (>1,200 nucleotides) 16S rRNA sequences from
environmental samples. Alignments were manually inspected in Arb (v.6.0.6)"
and a maximum likelihood phylogenetic tree was constructed using the inverse
gamma rate substitution model only on sequences with >1,000 nucleotide positions.
Subsequently, 1,000 iterations were performed for calculations of bootstrap support.
Translated amino acid sequences for korarchaeotal McrA and DsrAB were
retrieved from the IMG/MG database. McrA and DsrAB sequences were aligned
with MAFFT-L-INS-i using previously published databases that were updated
to include recently described sequence information'"*". Sequence alignments
were visually examined and manually edited in Arb™. MrBayes was used for
Bayesian analysis of long fragment sequences until the standard deviation in split
frequencies was below 0.01. ProtTest 3° analysis revealed that an LG model with
empirical amino acid frequencies and gamma (DsrAB) or invgamma (McrA) rates
were the most optimal. An additional tree comparing mcrA nucleotide sequences
(Supplementary Fig. 7) was calculated with MrBayes until the standard deviation
in split frequencies was below 0.01 (rates =gamma, eight rate categories for gamma
distribution).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Metagenome sequences used in this study are available on IMG/M (DOE-Joint
Genome Institute) under genome identifier 3300005860. Metagenome-assembled
genomes are available under NCBI BioProject accession number PRINA492148.
Access to the tSNE-based nucleotide frequency analysis algorithm can be obtained
from the Center for Genomics and Bioinformatics at Indiana University. Newick
files for three-domain and archaea-only phylogenomic trees are available as
Supplementary Data 1-13.
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