

Accepted Manuscript

Characterization of a novel Lytic Polysaccharide Monooxygenase from *Malbranchea cinnamomea* exhibiting dual catalytic behavior

Neha Basotra, Saurabh Sudha Dhiman, Dhruv Agrawal, Rajesh K. Sani, Adrian Tsang, Bhupinder S. Chadha

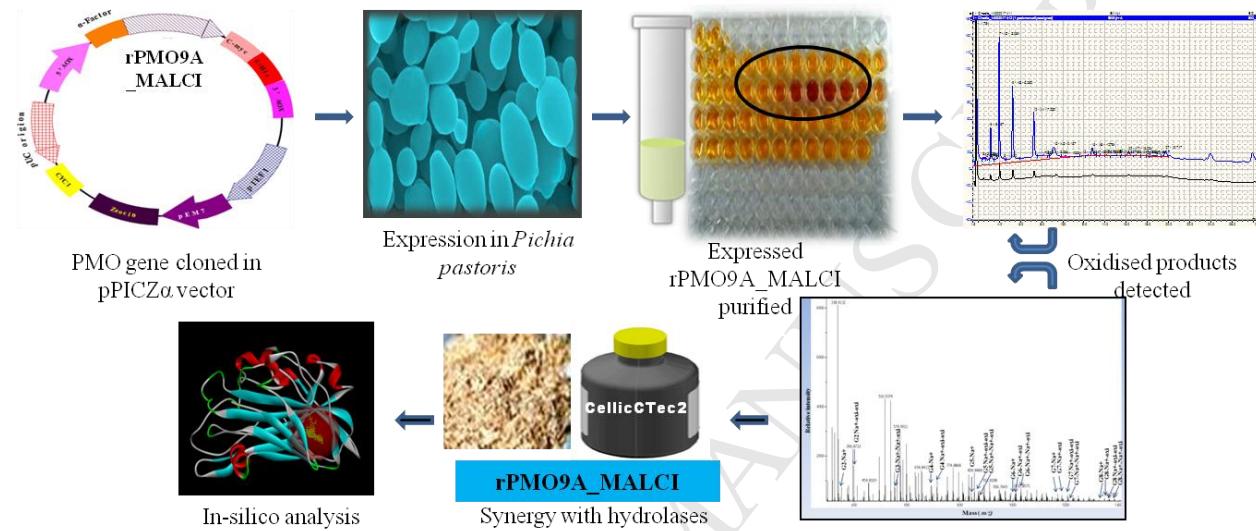
PII: S0008-6215(18)30738-9

DOI: <https://doi.org/10.1016/j.carres.2019.04.006>

Reference: CAR 7702

To appear in: *Carbohydrate Research*

Received Date: 19 December 2018


Revised Date: 27 March 2019

Accepted Date: 23 April 2019

Please cite this article as: N. Basotra, S.S. Dhiman, D. Agrawal, R.K. Sani, A. Tsang, B.S. Chadha, Characterization of a novel Lytic Polysaccharide Monooxygenase from *Malbranchea cinnamomea* exhibiting dual catalytic behavior, *Carbohydrate Research* (2019), doi: <https://doi.org/10.1016/j.carres.2019.04.006>.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical abstract

1 Running title: **A novel versatile LPMO from *Malbranchea cinnamomea* active on both**
2 **cellulose and pure xylan.**

3 **Characterization of a novel Lytic Polysaccharide Monooxygenase from**
4 ***Malbranchea cinnamomea* exhibiting dual catalytic behavior**

5 Neha Basotra^{a‡}, Saurabh Sudha Dhiman^{b, c, d ‡}, Dhruv Agrawal^a, Rajesh K. Sani^{b,c,d}, Adrian
6 Tsang^e and Bhupinder S. Chadha^{a,*}

7 ^aDepartment of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India

8 ^bDepartment of Chemical and Biological Engineering, South Dakota School of Mines and
9 Technology, Rapid City, SD 57701, USA

10 ^cComposite and Nanocomposite Advanced Manufacturing Center - Biomaterials
11 [CNAM/Bio], Rapid City, SD 57701, USA

12 ^dBuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD
13 57701, USA

14 ^eCenter for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street,
15 West, Montreal, Quebec H4B 1R6, Canada

16

17

18 **Corresponding author:**

19 *Bhupinder S. Chadha: chadhabs@yahoo.com

20 ‡ Equal contribution by each author

21

22 **Abstract**

23 A novel Lytic Polysaccharide Monooxygenase (LPMO) family AA9 (PMO9A_MALCI) protein
24 from thermophilic fungus *Malbranchea cinnamomea* was cloned and expressed in *Pichia*
25 *pastoris*. The expressed protein was purified to homogeneity using ion exchange and hydrophobic
26 interaction chromatography. SDS-PAGE analysis showed PMO9A_MALCI to be ~27 kDa
27 protein. High performance anion exchange chromatography and mass spectrometry confirmed
28 that purified protein was active against an array of cellulosic (avicel, carboxy methyl cellulose)
29 and hemicellulosic (birch wood xylan, wheat arabinoxylan and rye arabinoxylan) substrates,
30 releasing both oxidized and unoxidized cello-oligosaccharide and xylo-oligosaccharide products
31 respectively. Presence of double oxidized products during mass spectrometric analysis as well as
32 *in-silico* analysis confirmed that the expressed protein belongs to Type 3 LPMO family.
33 Molecular dynamic simulations further confirmed the sharing of common amino acid residues
34 conserved for catalysis of both cellulosic and hemicellulosic substrates which further indicates
35 that both substrates are equally preferred. Enzymatic cocktails constituted by replacing a part of
36 commercial cellulase CellicCTec2 with PMO9A_MALCI (9:1/8:2) led to synergistic
37 improvement in saccharification of acid and alkali pretreated biomass. This is the first report on
38 heterologous expression of LPMO from *M. cinnamomea*, exhibiting catalysis of cellulose and
39 pure xylan.

40

41

42 *Keywords:* LPMO; heterologous expression; characterization; dual catalytic activity; docking;
43 hydrolysis.

44

45 **1. Introduction**

46 Lytic Polysaccharide Mono-oxygenases (LPMOs) have garnered attention in recent times for their
47 critical role in boosting the deconstruction of cellulosic substrates by puncturing the crystalline
48 cellulose surface [1, 2, 3]. LPMOs are copper dependent mono-oxygenases which utilize
49 molecular oxygen [4] or oxygen abstracted from H_2O_2 [5] to reduce the Cu^{2+} at their active site.
50 This oxido-reduction process is followed by hydroxylation of substrate during cleavage of
51 crystalline region of cellulose [6, 7]. For this cleavage process, role of an external source of
52 electron such as ascorbic acid, reduced glutathione, gallate etc., is highly illustrious [8, 9].
53 However in some cases, extracellular cellobiose dehydrogenase (CDH), a natural redox enzyme
54 co-secreted with LPMOs by several fungi, has been shown to serve as a source of electrons [3].
55 LPMOs are currently classified into auxiliary activity (AA) families 9, 10, 11, 13, 14 and 15 in
56 the CAZy database [10]. The AA9 proteins were previously known as glycoside hydrolase family
57 61 (GH61) endoglucanase (EG) [11] owing to their weak activity against carboxymethyl cellulose
58 (CMC) and were designated as EG-IV [12, 13]. Based on sequence variations, substrate
59 recognition property and oxidation efficiency, AA9s are classified into Types 1, 2 and 3 [14].
60 Among classified types, oxidation of C1 (reducing end) and C4 (non-reducing end) of cellulose is
61 governed by Type 1 and 2, respectively. Type 3 AA9 catalyzes the oxidation of both C1 and C4
62 of cellulosic substrates [15].
63 Structural elucidations and molecular analysis confirmed the presence of highly conserved
64 histidine brace in all reported LPMOs [16]. Recent finding illustrated that the LPMO activities
65 cover a broader range of substrates (cellulose, xyloglucan, xylans associated with cellulose etc.)
66 [17,18]. However, no LPMO activity on pure xylan substrate has been reported till date. This
67 paper reports the heterologous expression, purification and biochemical/*in-silico* characterization

68 of unique LPMO from thermophilic fungus, *M. cinnamomea*. The current study for the first time
69 reports a Type 3 AA9 family protein from *M. cinnamomea* active against cellulosic, substituted
70 and un-substituted xylan substrates.

71 **2. Materials and methods**

72 *2.1. Microbial strain and sequence information*

73 Previously isolated and identified thermophilic fungus *M. cinnamomea* was used for the current
74 investigation [19]. *M. cinnamomea* culture was grown on CWR (cellulose, Wheat bran, Rice
75 straw) medium containing a mixture of cellulose, wheat bran and rice straw (3:1:1) at 40°C under
76 shaking conditions (180 rpm) [20]. *E. coli* strain DH5 α and *Pichia pastoris* strain X-33
77 (Invitrogen, Carlsbad, CA) were used as hosts for sub-cloning experiment and heterologous
78 expression of PMO9A_MALCI protein, respectively.

79 A total of eight AA9 encoding genes were found in the genome sequence of *M. cinnamomea*
80 (CBS 343.55) which is available at http://www.fungalgenomics.ca/wiki/Fungal_Genomes. For
81 cloning and expression in *Pichia pastoris*, coding sequence of one of the LPMO
82 (PMO9A_MALCI) having gene model ID Malci1p7_001540 was selected on the basis of
83 presence of N-terminal histidine, a second conserved histidine and a Q/EXYXXC motif in the
84 sequence [21].

85 *2.2. Heterologous expression and enzyme assay*

86 **Forty eight** hour grown mycelium (frozen using liquid N₂) was used to extract the total RNA
87 from *M. cinnamomea* using TRIzol (Ambion). mRNA was recovered from total RNA, using maxi
88 mRNA isolation kit (Invitrogen, USA) and was used as a template for complementary DNA
89 synthesis using previously described method [22]. Specific forward
90 (GAAGGTACCATGCTTCCGAACGCAGCTGG) and reverse

91 (CCGATCTAGAGAATCGCGGAAAACATCCGG) primers were used for the amplification of
92 PMO9A_MALCI gene (restriction sites for *KpnI* and *XbaI* are underlined). Size of PCR product
93 was confirmed through agarose gel electrophoresis (1% w/v agarose) and desired amplified
94 product was eluted from gel using Gene clean®Turbokit (MP).

95 The purified PCR product was introduced into the vector pPICZ α A between *KpnI* and *XbaI*
96 restriction sites under the control of *AOX1* promoter, yielding pPICZ α A-PMO9A_MALCI fusion
97 set. This fusion set was linearized using *PmeI* (New England BioLabs), transformed into *P.*
98 *pastoris* X33 by electroporation (Invitrogen, Carlsbad, CA, USA) and plated onto YPDS (1%
99 Yeast extract; 2% peptone; 2% dextrose; and 1M sorbitol) medium containing 100 μ g mL $^{-1}$
100 zeocin as a selectable marker. The resultant colonies were randomly picked and inoculated in 10
101 mL of BMGY medium (buffered minimal glycerol complex medium). The grown cells of *P.*
102 *pastoris* harboring PMO9A_MALCI gene were harvested by centrifugation (10,000 g; 10 min;
103 4°C) and resuspended in 50 mL of BMMY (buffered minimal methanol medium) and further
104 incubated with methanol (1% v/v) feeding carried out at an interval of 24h. After 96h, the cells
105 were pelleted by centrifugation (10,000 g; 10 min; 4°C) and liquid extract was considered as
106 crude enzyme and assayed using fluorometric methodology using Amplex red and horseradish
107 peroxidase (HRP) as described previously [23]. Enzymatic activity was also determined using 2%
108 (w/v) CMC as substrate, a method well documented for purification and characterization of GH61
109 [12, 13].

110 The reaction was carried out using 0.5ml of suitably diluted PMO9A_MALCI enzyme and 0.5 ml
111 of the substrate prepared in sodium citrate buffer (50 mM; pH 6.0) and incubated at 50°C for 30
112 min. The reaction was stopped by adding 3 ml DNS, followed by boiling for 10 min. The amount
113 of reducing sugars released was quantified at 540 nm. One unit of enzyme activity was defined as

114 the amount of enzyme that released 1 μ mol of glucose equivalent per minute. The assay was
115 performed in triplicates. **The protein content was determined using Lowry's method [24].**

116 *2.3. Purification and characterization of PMO9A_MALCI*

117 Two-stage purification strategy (anion exchange followed by hydrophobic interaction exchange)
118 was applied to crude PMO9A_MALCI enzyme. Before column (HiTrap QXL, 5 mL column; GE
119 healthcare, USA) loading, culture supernatant (500 mL) was precipitated using 80% (v/v) acetone
120 (< 4°C). Precipitates were harvested by centrifugation (8000 x g for 30 min) and the resultant
121 pellet was dissolved in 10 mL of buffer A (Tris-HCl; 25 mM; pH 8.0). Sample protein (48.80
122 mg) was loaded onto the column and a linear salt gradient from 100% buffer A to 50% buffer B
123 (buffer A with 1M NaCl) at a flow rate of 1 mL min⁻¹ was used to elute the bound protein using
124 AKTA prime fast protein liquid chromatography system (GE Healthcare, USA). Eluted fractions,
125 positive for activity against CMC were pooled, concentrated (10 kDa; Amicon ultra filtration;
126 Millipore, USA) and loaded onto 5 mL phenyl FF Sepharose column (GE Healthcare, USA)
127 equilibrated with buffer A (50 mM sodium citrate; pH 6.0 and 1.7M ammonium sulphate). Bound
128 protein was eluted using linear gradient formed using buffer B (50mM sodium citrate; pH 6.0).
129 The active fractions were combined for characterization. The protein content in the crude extract
130 and in the chromatographic fractions was determined using Lowry's method [24]. Protein purity
131 was analyzed by 12% SDS-PAGE as described by Laemmli [25].

132 Substrate specificity of the purified PMO9A_MALCI was determined by incubating it with
133 different polysaccharides (Phosphoric Acid Swollen Cellulose [PASC], avicel, β -barley glucan,
134 carboxymethyl cellulose, Whatman filter paper no.1, hydroxyethyl cellulose, xyloglucan,
135 lichenin, laminarin birchwood xylan, oat spelt xylan, rye arabinoxylan, larchwood xylan,
136 beechwood xylan, wheat arabinoxylan [both low viscosity and high viscosity], 4-O-methyl

137 glucuronoxylan, debranched arabinan) . PASC was prepared as described by Wood and co-
138 workers [26]. The reaction (1 ml) was prepared using equal volume of purified enzyme and
139 substrate 2% (w/v) prepared in sodium citrate buffer (50 mM; pH 6.0) and 0.1ml of 1 mM
140 ascorbic acid was also added as a source of electron. The reaction mixture was incubated at 50°C
141 for 30 min. The reaction was stopped by adding 3 ml DNS, followed by boiling for 10 min [27].
142 The amount of reducing sugars released was quantified at 540 nm.

143 *2.3.1 Determination of pH, temperature optima*

144 A temperature range of 30-80°C and pH 3.0-10.0 were used to determine the optimal parameters of
145 the PMO9A_MALCI protein. The pH profile was determined using 50 mM sodium acetate (pH
146 3.0-5.0), 50 mM sodium citrate (pH 6.0), 50mM sodium phosphate (pH 7.0-8.0), 50 mM Tris HCl
147 (pH 9.0) and 50 mM NaOH-Glycine (pH 10.0) as buffers. The thermostability of
148 PMO9A_MALCI was determined by incubating the enzyme up to 72h at 50 and 60°C and pH 5.0.
149 7.0 and 9.0; and subsequently assaying for residual enzyme activity.

150 *2.3.2 Effect of metal ions*

151 The purified enzyme was incubated for 30 min at room temperature in solutions of different metal
152 ions (CaCl₂, CoCl₂, CuCl₂, CuSO₄, FeCl₃, FeSO₄, KCl, MgCl₂, MgSO₄, MnCl₂, MnSO₄, NaCl,
153 ZnCl₂ and ZnSO₄ at 1 mM concentration) and different reagents (β-mercaptoethanol,
154 dithiothreitol, EDTA, N-bromosuccinimide and SDS at 1% w/v). The residual activity was
155 assayed thereafter using CMC as substrate.

156 *2.3.3. Characterization of hydrolysis products by HPAEC and mass spectrometry*

157 For analyzing the hydrolysis products, 2% (w/v) of the birchwood xylan, rye arabino xylan, oat
158 spelt xylan, xyloglucan, carboxy methyl cellulose, lichenin and avicel were used. The reaction
159 (2.0 mL) was set up in 15 mL glass vials along with 0.5 ml (0.534 mg) of purified

160 PMO9A_MALCI in presence/absence of ascorbic acid (1 mM) as electron donor [4] and
161 incubated at 50°C for 48 h under shaking conditions (200 rpm). Samples were drawn after 48h
162 and the released reducing sugars were detected using dinitro salicylic acid (DNS) method. The
163 hydrolysed oligosaccharides and their corresponding aldonic acid and C4-gemdiol forms,
164 generated after the reaction, were analyzed using high-performance anion exchange
165 chromatography coupled with amperometric detection (Dionex; HPAEC-PAD) as described by
166 Forsberg et al [28]. The samples were diluted in water (1:10) and injected (10 μ L) using a PA200
167 (Dionex) column employing gradient elution program of 35 min for the quantification of C1-
168 oxidized gluco/xylo-oligosaccharides. In brief, 0– 21 min, linear gradient 0–0.25 M NaOAc; 21–
169 25 min, linear gradient 0.25–1 M NaOAc; 25–28 min isocratic gradient 1 M NaOAc; followed by
170 equilibration (7 min) of the column with the starting conditions were used. The hydrolysis
171 products were identified on the basis of the elution profile of the xylo-oligosaccharide and cellob-
172 oligosaccharide mix used as standard. Expected masses of sodium-adducted oxidized gluco-
173 oligosaccharides for substrates incubated with PMO9A_MALCI were computed according to the
174 previous studies carried out by Isaken et. al., 2014 and Westereng et. al., 2015 [29, 30]. In
175 addition, analysis of the products released during hydrolysis was carried out using Bruker micro
176 TOF QII mass spectrometer in positive and negative ESI mode with capillary voltage of 4500 V
177 at 180°C. Sample (100 μ L) prepared in combination of acetonitrile (3:7) and directly injected (**0.1**
178 **mL/min**) to the ion source of the spectrometer.

179 *2.4 Enzyme preparation and biomass saccharification*

180 To assess the hydrolytic potential and the degree of synergy of the PMO9A_MALCI with the
181 commercial cellulases (CellicCTec2, Novozymes), the saccharification experiment was carried
182 out using alkali and acid treated rice straw and sugarcane bagasse as described previously [31].

183 Saccharification reactions were performed in 5 mL glass vial that contained 1 mL reaction
184 mixture prepared using 70 mg of pretreated substrate (7% w/v substrate loading), 900 μ L citrate
185 buffer (50 mM; pH 5.0) and 100 μ L of suitably diluted CellicCTec2 (6.6 mg protein /g substrate)
186 as benchmark control. To analyze the synergistic effect, 10 and 20 μ L of the 100 μ L benchmark
187 enzyme was replaced with PMO9A_MALCI (that contained 3.4 mg protein/mL). The reaction
188 was carried out in presence of ascorbic acid (1mM). The hydrolysis was carried out for 96h at
189 50°C and released glucose was assayed using glucose oxidase peroxidase kit (Span Diagnostic,
190 India). All the experiments were performed in triplicates.

191 *2.5. Homology modeling and structural validation*

192 The multiple sequence alignment for the PMO9A_MALCI protein was carried out using other
193 LPMO orthologue sequences using Discovery Studio (DS) R2 (Accelrys Software Inc., San
194 Diego, CA). Protein BLAST was performed to identify the closely matched entries followed by
195 confirmation of the alignment for deletions and insertions into the structurally conserved regions.
196 For homology model (HM) preparation, unanimously, the crystal structure of *Thermoascus*
197 *aurantiacus* (3ZUD) (resolution 1.9 \AA) was selected as the template. Protein health and validation
198 was carried out using PROCHECK. The active site was identified using the **Protein Data Bank**
199 (PDB) coordinates of 3ZUD. Quality of protein structure was determined through **Discrete**
200 **Optimized Protein Energy** (DOPE) score in MODELER. The Root-Mean-Square-Deviation
201 (RMSD) between the models and template was calculated via superimposition, and RMSD was
202 0.25 \AA based on C-alpha atoms. The generated structure was improved by subsequent refinement
203 of the loop conformations by assessing the compatibility of an amino acid sequence to known
204 PDB structures.

205

206

207 *2.6. Molecular docking and energy analysis*

208 Hydrogen atoms were added to the model and minimized, followed by the overall validation of
209 the model using PROCHECK. Carboxymethyl cellulose (CMC) and birchwood xylan (BWX)
210 were docked into the selected active site pocket of PMO9A_MALCI model. Candidate poses
211 were then created using random rigid-body rotations followed by simulated annealing. The
212 structure of protein was subjected to energy minimization using CHARMM force field [32]
213 Based on DOPE score and **Probability Distribution Field** (PDF) energy values, candidate pose
214 was selected. The substrate orientation which gave the lowest interaction energy was selected for
215 further analysis [33].

216 **3. Results and discussion**217 *3.1. Heterologous expression of PMO9A_MALCI*

218 Thermophilic fungal strain *M. cinnamomea*, previously characterized to secrete a significant level
219 of metal dependent GHs including LPMOs [34], was taken up as a source of LPMO. The genome
220 wide analysis confirmed that *M. cinnamomea* harbors eight AA9 genes. An open reading frame
221 encoding AA9 from *M. cinnamomea* was amplified using cDNA as template and designated as
222 PMO9A_MALCI. Size of the amplicon was found to be 747 bp (Fig S1).

223 The amplicon was cloned in-frame with the secretion signal (*S. cerevisiae* α -factor) into the
224 expression vector pPICZ α A under the control of AOX1 promoter. The resultant plasmid was
225 transformed into *P. pastoris* (X33) by electroporation and plated onto YPDS/zeocin medium and
226 incubated at 30°C for 72 h. Resultant 22 transformants were screened for the expression of AA9
227 on BMMY medium with 1% methanol (v/v) (added at 24 h intervals) under shaking conditions

228 for 120 h. The resultant culture extract of each transformant was assayed for LPMO activity using
229 amplex red as described previously [23].

230 The Amplex Red method, that detects H_2O_2 as futile by-product in the reaction has been used to
231 quantify LPMO activity in purified protein [23] However due to background alcohol oxidase in
232 the parent *P. pastoris* strain, the method showed inconsistency and therefore, the clones were
233 screened for AA9 activity using CMC as substrate. AA9 previously classified as GH61 with weak
234 endoglucanase activity has been used to characterize purified GH61 from *Trichoderma reesei*
235 using CMC [24]. The reducing sugars released were detected after incubation of 30 min using
236 DNS. The maximal expression of AA9 was observed in clone 15 (412 units/L; Fig S2) and was
237 chosen for further purification and characterization.

238 *3.2. Characterization of purified PMO9A_MALCI*

239 Purified PMO9A_MALCI appeared to have a significantly higher molecular mass (~27kDa) than
240 that estimated from the amino acid sequence computed using expasy software tool (24.7 kDa,
241 without signal peptide) and this may be attributed to glycosylation (Fig. 1). The glycosylation of
242 LPMO's (MtLPMO9B and MtLPMO9C) cloned and expressed from a thermophilic fungus
243 *Myceliophthora thermophila* have been reported recently [9]. However, MtLPMO9B and
244 MtLPMO9C were glycosylated differentially with 13 and 5 glycosyl units attached, respectively
245 in the mature protein.

246 The purified enzyme was found to be highly active under alkaline conditions (pH 8.0-10.0) with
247 optimum activity (130% relative activity) at pH 9.0 when compared to that observed at pH 5.0 &
248 6.0 (Fig. S3a). The purified enzyme was optimally active at 60°C, but activity decreased
249 significantly at 70°C and 80°C (Fig.S3b). PMO9A_MALCI was found to be stable at 50°C and
250 60°C and pH 5.0, 7.0 and 9.0 (Fig S3c). The enzyme exhibited half life (t_{1/2}) of 67.6, 55.18 and

251 72h at pH 5.0, 7.0 and 9.0 respectively at 50°C whereas at 60°C calculated t_{1/2} was 54.6, 55.1 and
252 75.9h at pH 5.0, 7.0 and 9.0 respectively. Owing to its relatively high thermostability,
253 PMO9A_MALCI can be useful in formulating enzymes for efficient hydrolysis of
254 lignocellulosics.

255 Pre-incubation of enzyme in presence of metal ion and other molecules showed (Fig. S4) Cu²⁺ to
256 significantly improve (127% relative activity) the catalytic activity of the purified enzyme. This
257 may be attributed to the fact that PMOs are the metalloenzymes which require Cu²⁺ as cofactors
258 in the active site for oxidative cleavage [4]. Besides Cu²⁺, other metal ions responsible for
259 enhanced catalytic activity (relative activity) were Fe³⁺ (119%), Mn²⁺ (117%) and Co²⁺ (111%).
260 Whereas, in case of metal dependent *Phanerocheate chrysogenum* (PcGH61D) positive
261 modulation was only observed in presence of Cu²⁺ and Mn²⁺ [29]. In presence of
262 bromosuccinimide, significant loss in the enzyme activity (16% residual) was observed in
263 PMO9A_MALCI indicating the presence of tryptophan residues at the active site of enzyme [35].

264 3.3. Dual catalytic behavior of PMO9A_MALCI enzyme

265 The activity of purified PMO9A_MALCI was tested against different cellulosic and xylanolytic
266 substrates and surprisingly pronounced higher activity against xylans (RAX, WAX, and BWX)
267 when compared to glucan substrates was observed (Fig.2). The high preferential activity towards
268 xylans, when compared to cellulosic substrates, makes PMO9A_MALCI, a unique candidate
269 protein. Previous report in recent times claimed LPMO from *M. thermophila* as the first to show
270 oxidative catalysis of xylan, but only when it is associated with regenerated cellulose (RAC),
271 however no activity was observed in LPMO from *M. thermophila* when xylan was used as sole
272 substrate [17]. Similarly, two AA14-LPMOs designated as xylan oxidases from *Pycnoporus*
273 *coccineus* were reported to cleave xylan coated cellulose fibers [36] but not pure xylans.

274 Therefore, observed dual catalytic behavior of PMO9A_MALCI against a wide array of xylan
275 substrates as well as avicel, PASC, CMC, filter paper, β barley glucan (which contain mixed β 1-3
276 and 1-4 linkages), laminarin and lichenin shows versatility of this LPMO. The LPMO from
277 *Gloephylum trabeum* GtLPMO9A-2 has been previously reported to be active on cellulose,
278 carboxymethyl cellulose and xyloglucan [18].

279 *3.4. Saccharification product analysis using HPAEC and MS*

280 To analyze the oxidized/hydrolysed products formed as a result of PMO9A_MALCI activity on
281 natural xylan substrates (birchwood xylan, rye arabinoxylan) and cellulose substrates (CMC,
282 avicel, lichenin and xyloglucan), hydrolysis was carried out for 48 h in presence/absence of
283 ascorbic acid and the enzyme showed high preference for RAX > BWX > CMC > lichenin >
284 avicel as substrates. Expectedly the observed activities were higher in presence of reductant
285 ascorbic acid when compared to in its absence (Fig. 3). The HPAEC profile (Fig. S5) of the BWX
286 clearly shows the presence of xylobiose, xylotriose, xylotetraose, xylyopentose as major
287 hydrolysis products with decreasing intensity in that order. In addition oxidized products were
288 observed to be eluted between 20-29 minutes as also observed previously [29, 30]. Due to
289 absence of standards for HPAEC and moreover C4 oxidised sugars are difficult to analyze using
290 HPAEC due to their on column decomposition in the presence of alkali [37], identification
291 process of oxidized products was carried out using mass spectroscopy (MS). The MS analysis
292 clearly showed the presence of oligosaccharides and oxidized products (DP2 to DP8). The results
293 in **Table 1** confirmed the presence of sodium adducts of oxidized (+16), double oxidized and
294 unoxidized products of xylo-oligosaccharides (X2-X8) in the sample of BWX (Fig. S6) and RAX.
295 Similarly, oxidized and unoxidized cello-oligosaccharides (G2-G8) were also observed in the
296 hydrolysate derived from CMC (Fig.S7 and **Table 2**) and avicel (**Table 2**). Both C1 and C4

297 oxidised sugars, for example aldonic acid+gemdiol (M+32) and 1,5 delta
 298 lactone+gemdiol/aldonic acid+4-ketoaldehyde (M+14) corresponds to 883 and 865 m/z values,
 299 respectively [38]. The presence of double oxidized (C1/C4) products suggested that
 300 PMO9A_MALCI may belong to Type 3 AA9 and coincides with the properties exhibited by AA9
 301 from *Thermoascus aurantiacus* and *Neurospora crassa* [7, 8].

302 *3.5. Synergistic role of PMO9A_MALCI in biomass saccharification*

303 Four different pretreated biomass samples i.e., acid and alkali treated rice straw (AcRS and AlRS)
 304 and bagasse (AcBG and AlBG) were used to evaluate the boosting effect of PMO9A_MALCI
 305 when supplemented to benchmark cellulase preparations CellicCtec2 by replacing either 1-part
 306 (9:1) or 2 parts (8:2) of enzyme with purified recombinant PMO9A_MALCI. Results in Fig. 4
 307 showed when compared to benchmark an enhanced level of hydrolysis of acid and alkali treated
 308 rice straw (28.7 and 24.8%) respectively, when a cocktail of CellicCTec2 and PMO9A_MALCI
 309 was used in 9:1 ratio. Similarly, 22.7 and 13.28% improvement in release of sugars was observed
 310 when AcBG and AlBG were used as substrates (9:1). However, the boosting effect of
 311 PMO9A_MALCI in release of sugars was more pronounced (35.7, 36.65, 28.9 and 21.4 % for
 312 AcRS, AlRS, AcBG and AlBG respectively) in a cocktail containing CellicCtec2 and
 313 PMO9A_MALCI in 8:2 ratio when compared to benchmark. The improved levels of hydrolysis
 314 of different substrates using cocktails of cellulases with PMO9A_MALCI show its importance in
 315 formulating cocktails applicable to different lignocellulosic substrates.

316 *3.5. Secondary structure and homology modeling of PMO9A_MALCI*

317 For homology modeling and structural superimposition, crystal structures of thermophilic fungi
 318 *Thermoascus* sp. (ID: 3ZUD) and *Trichoderma reesei* (PDB ID: 2VTC_A) were aligned with the
 319 sequence of PMO9A_MALCI protein. The 3D homology model (HM) and structural

320 superimposition is shown in Fig 5a and 5b, respectively. The value of verified score (104) was
 321 comparable to verified expected high score (103), confirmed the validity of the generated HM
 322 [39]. Comparison of active site and structural superimposition analysis revealed the similar active
 323 site environment. The active site pocket interacting with both the substrates (CMC and BWX)
 324 includes 3 residues each. Interestingly 2 residues viz. N124 and G126 were common for active
 325 sites of both types of substrates.

326 **Calculated Ramachandran's plot (Fig. S7) confirmed the presence of 96.0% residues (215)**
 327 **in favored region indicating the accuracy of backbone dihedral angles followed by presence**
 328 **of nearly 2.2% residues [5] in allowed region. Only 4 residues (1.8%) were present in the**
 329 **outlier region. Combined presence of more than 98% residues in favored and allowed**
 330 **region confirmed the validity of protein folds and overall structure of the model [40]. It is**
 331 **generally accepted that a score close to 100% depicts good stereochemical quality of the**
 332 **model. Therefore, these results suggesting 98.0% score indicate that the predicted model is**
 333 **of good quality.**

334 *3.6. Molecular docking and interaction analysis*

335 Based on the minimum PDF energy, HM was selected for molecular docking analysis. For
 336 molecular docking, Momany Rone and CHARMM forcefield approaches were followed for
 337 applying the partial charge and forcefield on xylan molecule. Observed PDF physical energy and
 338 RMSD value for the selected pose of birchwood xylan were -739kcal/mol and 0.407, respectively.
 339 Binding of xylan molecule was tightly regulated by H-bonds with the active site residues. Bond
 340 distance values were less than 5Å for all the active site residues. For efficient substrate catalysis,
 341 bonds exhibiting the distance values less than 5Å are crucial for enzymatic reaction [41].

342 Hydrogen atoms of H87 was interacting with O5 (sp^3) and O2 (sp^3) of the BWX through H-bonds
 343 (**Fig. 6**). Likewise, O4 (sp^3) of xylan was interacting with H1 (2.84Å) of N124 via conventional
 344 H-bond. This conventional H-bond exhibited a DHA angle of 106.5° in which H22 of residue was
 345 acting as the donor and sp^3 hybridized O4 of substrate was functioning as recipient. With other
 346 active sites residue, H13 of substrate was acting as donor and involved in carbon-hydrogen bond
 347 (2.50Å) with sp^2 hybridized O-atom of G126 (**Fig. 6**; distance with blue background), resulted in
 348 the formation of total 4 H-bonds. Observation of high number of H-bond (like current study) by
 349 three or less residues within active site is very rare property of any enzyme [42].

350 Interaction of substrate with multiple O-atoms of active site residues, restrict any change in
 351 confirmation after binding and thus catalyze the substrate efficiently. Tight regulation of xylan
 352 within the active site might be the reason for observed activity of PMO9A_MALCI protein
 353 against pure xylan as substrate. Arrangement of different residues involved in binding and
 354 substrate catalysis was also studied. Presence of polar E84 contributes towards stability of active
 355 site via formation of salt-bridges. These salt-bridges involve strong interactions with closely
 356 placed histidine residues (H86, H87) of the LPMO and thus govern the catalysis due to their
 357 interaction with the hydrophilicity of the protein and are also crucial for the stability of active site
 358 pocket may govern the interaction of docked substrate with other polar and charged atoms of the
 359 birchwood xylan. Presence of hydrophilic residues viz. S85, Y127 is also important for substrate
 360 oxidation because of their characteristic property of acting as proton-donor [43]. Y127 also
 361 contributes N-atom to binding site which is crucial for binding of non-protein atoms via stacking
 362 interactions [44].

363 Observed PDF physical energy for docked CMC was similar to the value noted for BWX. This
 364 might be the reason for similar catalytic efficiency exhibited by LMPO for both the substrate. For

365 docked CMC, molecular oxygen atom of P125 interacting with two hydrogen atoms viz 13 and 20
366 via H-bonds (**Fig. 7**). A bond angle of 61.2° was maintained by H13 and H20 of CMC with O-
367 atom of P125 (**Fig. 7**). **Molecular dynamic** (MD) simulation confirmed the distortion of active
368 site with any variation in these bond angles through *in-silico* mutagenesis (data not given). Thus,
369 confirmed the vital role of P125 in the oxidation reaction performed by PMO9A_MALCI protein.
370 *Sp*³ hybridized O3 of CMC was interacting with H22 and H23 of N124 through H-bonds. Though
371 D203 was in the proximity of the active site but docked molecules were interacting with less
372 affinity compared to other active site residues (data not given). As for docked CMC, the non-bond
373 ligand interactions beyond 5Å radius were not analyzed for molecular interactions. LPMOs are
374 metallo-proteins reported for mononuclear copper [45].

375 Presence of common residues (S85, H87, N124, G126) in binding site of Type 3-LPMO protein
376 from *M. cinnamomea* is crucial for the dual catalytic behavior. However, presence of more
377 defined and large (size-wise) active site for CMC illustrates the preference of PMO9A_MALCI
378 protein for CMC over BWX. Presence of G126 in the binding pocket may govern the flexibility
379 exhibited by PMO9A_MALCI protein for catalysis of dual substrates. Close placement of Cu²⁺
380 within the active site of the PMO9A_MALCI protein (for both the substrates) may create steric
381 hindrance and may govern the non-bond ligand interaction (data not given). However, to confirm
382 the redox state and interactions of Cu²⁺ with metal-binding site residues, in-depth analysis is
383 required (separate manuscript underway).

384 Homology model of PMO9A_MALCI using the crystal structure of *T. aurantiacus* (3ZUD) as a
385 template, the overall shape of the substrate binding pocket (SBP) of PMO9A_MALCI was found
386 to be similar to those of the *T. aurantiacus* and *Hypocrea jecorina*. Homology modeling of the
387 three-dimensional structure indicated that the surface-exposed H86 and D203 in the catalytic

388 cavity play major roles in the oxidation of substrates (data not given). The substrate birch wood
389 xylan binds to the H86 exposed on the surface, and not directly to the metal ion. H86 has been
390 suggested to be a primary electron acceptor, and positioned optimally to interact with substrate
391 because of its easy access to the molecule's surface. Another interesting residue in
392 PMO9A_MALCI structure is D203. This hydrophilic residue in the cavity plays an important role
393 in substrate oxidation by accepting a proton from the substrate [10]. Ligand entropy for BWX and
394 CMC was computed as -17.56 and -17.95 Kcal/mol, respectively (Table S1).

395 **4. Conclusions**

396 Recombinant PMO9A_MALCI can be regarded as distinct and versatile LPMO yet reported with
397 broad substrate specificity. Mass spectral analysis of recombinant protein and gene sequence
398 analysis confirmed the classification of PMO9A_MALCI as Type 3 AA9s, catalyzing both C1
399 and C4 oxidations. In-depth analysis of active site environment, metal ion interactions will
400 provide crucial details in comprehending the oxidation mechanism followed by other oxidative
401 enzyme systems. Improved saccharification efficiency of PMO9A_MALCI in conjunction with
402 CellicCTec2 confirmed the transformative role offered by LPMO for sustainable biorefinery
403 applications.

404 **Acknowledgement**

405 This research was supported by the Department of Biotechnology, India, Project (BT/PR
406 15271/PBD/26/509/2015). Research fellowship provided to Neha Basotra in the form of
407 IUSSTF-DBT B-ACER award is highly acknowledged. Authors also acknowledge the financial
408 support provided by National Science Foundation and South Dakota Governor's Office of
409 Economic Development (USA). In addition, research support from the Department of Chemical

410 and Biological Engineering at the South Dakota School of Mines and Technology is also
411 acknowledged.

412 **Competing interests**

413 The author(s) declare no competing interests.

414

415

416 **References**

- 417 1. I. Morgenstern, J. Powlowski, A. Tsang, Fungal cellulose degradation by oxidative
418 enzymes: from dysfunctional GH 61 family to powerful lytic polysaccharide
419 monooxygenase family, *Brief. Funct. Genomics.* 13 (2014) 471-481.
- 420 2. K.S. Johansen, Discovery and industrial applications of lytic polysaccharide mono-
421 oxygenases, *Biochem. Soc. Trans.* 44 (2016) 143–149.
- 422 3. G. Vaaje-Kolstad , B. Westereng, S.J. Horn, Z. Liu, H. Zhai, M. Sorlie, V.G.H. Eijsink,
423 An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides,
424 *Science.* 330 (2010) 219–222.
- 425 4. S. Kim, J. Stahlberg, M. Sandgren, R.S. Paton, G.T. Beckham, Quantum mechanical
426 calculations suggest that lytic polysaccharide monooxygenases use a copper-oxy, oxygen-
427 rebound mechanism, *Proc. Natl. Acad. Sci. USA.* 111 (2014) 149–154.
- 428 5. B. Bissaro, A.K. Rohr, M. Skaugen, Z. Forsberg, S.J. Horn, G. Vaaje-Kolstad, Fenton-
429 type chemistry by a copper enzyme: molecular mechanism of polysaccharide oxidative
430 cleavage, *bioRxiv.* (2016) doi: 10.1101/097022.
- 431 6. S.J. Horn, G. Vaaje-Kolstad, B. Westereng, V.G. Eijsink, Novel enzymes for the
432 degradation of cellulose, *Biotechnol. Biofuels.* 5 (2012) 45.

433 7. C.M. Phillips, W.T. Beeson, J.H. Cate, M.A. Marletta, Cellobiose dehydrogenase and a
434 copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by
435 *Neurospora crassa*, ACS. Chem. Biol. 6 (2011)1399–1406.

436 8. R.J. Quinlan, M.D. Sweeney, L. Lo Leggio, H. Otten, J.C. Poulsen, K.S. Johansen,
437 Insights into the oxidative degradation of cellulose by a copper metalloenzyme that
438 exploits biomass components, Proc .Natl. Acad. Sci. USA. 108 (2011) 15079–15084.

439 9. M. Frommhagen, M.J. Koetsier, A.H. Westphal, J. Visser, S.W.A. Hinz, J.P. Vincken,
440 Lytic polysaccharide monooxygenases from *Myceliophthora thermophila* C1 differ in
441 substrate preference and reducing agent specificity, Biotechnol. Biofuels. 9 (2016) 186.

442 10. T. Tandrup , K.E.H. Frandsen, K.S. Johansen, J.G. Berrin, L.L. Leggio, Recent
443 insights into lytic polysaccharide monooxygenases (LPMOs), Biochem. Soc. Trans. 46
444 (2018) 1431-1447.

445 11. P. Busk, L. Lange, Classification of fungal and bacterial lytic polysaccharide
446 monooxygenases, BMC. Genomics. 16 (2015) 368.

447 12. M. Saloheimo, T. Nakari-Setala, M. Tenkanen, M. Penttila, cDNA cloning of a
448 *Trichoderma reesei* cellulase and demonstration of endoglucanase activity by expression
449 in yeast, Eur. J. Biochem. 249 (1997) 584–591.

450 13. J. Karlsson, M. Saloheimo, M. Siika-Aho, M. Tenkanen, M. Penttila, F. Tjerneld,
451 Homologous expression and characterization of Cel61A [EG IV] of *Trichoderma reesei*,
452 Eur. J. Biochem. 268 (2001) 6498-6507.

453 14. W.T. Beeson, C.M. Phillips, J.H. Cate, M.A. Marletta, Oxidative cleavage of cellulose by
454 fungal copper-dependent polysaccharide monooxygenases, J. Am. Chem. Soc. 134 (2012)
455 890–892.

456 15. V.V. Vu, W.T. Beeson, C.M. Phillips, J.H. Cate, M.A. Marletta, Determinants of
457 regioselective hydroxylation in the fungal polysaccharide monooxygenases, *J. Am. Chem. Soc.* 136 (2014) 562–565.

459 16. F.L. Aachmann, M. Sørlie, G. Skjåk-Braek, V.G.H. Eijsink, G. Vaaje-Kolstad, NMR
460 structure of a lytic polysaccharide monooxygenase provides insight into copper binding,
461 protein dynamics, and substrate interactions, *Proc. Natl. Acad. Sci. USA.* 109 (2012)
462 18779–18784.

463 17. M. Frommhagen, S. Sforza, A.H. Westphal, J. Visser, S.W. Hinz, M.J. Koetsier,
464 Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new
465 fungal polysaccharide monooxygenase, *Biotechnol. Biofuels.* 8 (2015) 101.

466 18. Y. Kojima, A. Várnai, T. Ishida, N. Sunagawa, D.M. Petrovic, K. Igarashi, J. Jellison,
467 B. Goodell, G. Alfredsen, B. Westereng, V.G.H. Eijsink, M. Yoshida, A Lytic
468 Polysaccharide monooxygenase with broad xyloglucan specificity from the brown-rot
469 fungus *Gloeophyllum trabeum* and its action on cellulose-xyloglucan complexes, *Appl.*
470 *Environ. Microbiol.* 82 (2016) 6557-6572.

471 19. C. Mahajan, B.S. Chadha, L. Nain, A. Kaur, Evaluation of glycosyl hydrolases from
472 thermophilic fungi for their potential in bioconversion of alkali and biologically treated
473 *Parthenium hysterophorus* weed and rice straw into ethanol, *Bioresour. Technol.* 163
474 (2014) 300-307.

475 20. R. Rai, B. Kaur, S. Singh, M. Di Falco, A. Tsang, B.S. Chadha BS, Evaluation of
476 secretome of highly efficient lignocellulolytic *Penicillium* sp. Dal 5 isolated from
477 rhizosphere of conifers, *Bioresour. Technol.* 216 (2016) 958–967.

478 21. G. Jagadeeswaran, L. Gainey, R. Prade, A.J. Mort, A family of AA9 lytic polysaccharide
479 monooxygenases in *Aspergillus nidulans* is differentially regulated by multiple substrates
480 and at least one is active on cellulose and xyloglucan. *Appl. Microbiol. Biotechnol.* 100
481 (2016) 4535-4547.

482 22. P. Carninci, Y. Nishiyama, A. Westove, M. Itoh, S. Nagaoka, N. Sasaki, Y. Okazaki, M.
483 Muramatsu, Y. Hayashizaki, Thermostabilization and thermoactivation of thermolabile
484 enzymes by trehalose and its application for the synthesis of full length cDNA , *Proc. Nat.*
485 *Acad. Sci. U.S.A.* 95 (1998) 520-524.

486 23. R. Kittl , D. Kracher, D. Burgstaller, D. Haltrich, R. Ludwig, Production of four
487 *Neurospora crassa* lytic polysaccharide monooxygenases in *Pichia pastoris* monitored by
488 a fluorimetric assay, *Biotechnol. Biofuels.* 5 (2012) 79.

489 24. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the folin
490 phenol reagent, *J. Biol. Chem.* 193 (1951) 265–275.

491 25. U.K. Laemmli, Cleavage of structural proteins during the assembly of head of
492 bacteriophage T4, *Nature.* 227 (1970) 680–685.

493 26. T.M. Wood, Preparation of crystalline, amorphous and dyed cellulase substrates, *Methods.*
494 *Enzym.* 160 (1988) 19–25.

495 27. G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, *Anal.*
496 *Chem.* 31(1959) 426–428.

497 28. Z. Forsberg, G. Vaaje-Kolstad, B. Westereng, A.C. Bunæs, Y. Stenstrøm, A. Mackenzie,
498 M. Sørlie, S.J. Horn, V.G.H. Eijsink, Cleavage of cellulose by a CBM33 protein, *Protein*
499 *Sci.* 20 (2011) 1479-1483.

500 29. T. Isaksen, B. Westereng, F.L. Aachmann, J.W. Agger, D. Kracher, R. Kittl, A C4-
501 oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-
502 oligosaccharides, *J. Biol. Chem.* 289 (2014) 2632–2642.

503 30. B. Westereng, D. Cannella, J. Wittrup Agger, H. Jorgensen, M. Larsen Andersen, V.G.
504 Eijsink, C. Felby, Enzymatic cellulose oxidation is linked to lignin by long-range electron
505 transfer, *Sci. Rep.* 5 (2015) 18561.

506 31. N. Basotra, B. Kaur, M. Di Falco, A. Tsang, B.S. Chadha, *Mycothermus thermophilus*
507 (Syn. *Scytalidium thermophilum*): Repertoire of a diverse array of efficient cellulases and
508 hemicellulases in the secretome revealed, *Bioresour. Technol.* 222 (2016) 413-421.

509 32. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S.A. Swaminathan, M. Karplus,
510 CHARMM: A program for macromolecular energy, minimization, and dynamics
511 calculations, *J. Comp. Chem.* 4 (1983) 187-217.

512 33. M.Y. Shen, A. Sali, Statistical potential for assessment and prediction of protein
513 structures, *Protein. Sci.* 15 (2006) 2507-2524.

514 34. C. Mahajan, N. Basotra, S. Singh, M. Di Falco, A. Tsang, B.S. Chadha, *Malbranchea*
515 *cinnamomea*: A thermophilic fungal source of catalytically efficient lignocellulolytic
516 glycosyl hydrolases and metal dependent enzymes, *Bioresour. Technol.* 200 (2016) 55-
517 63.

518 35. M. Sharma, B.S. Chadha, H.S. Saini, Purification and characterization of two
519 thermostable xylanases from *Malbranchea flava* active under alkaline conditions,
520 *Bioresour. Technol.* 101 (2010) 8834–8842.

521 36. M. Couturier, S. Ladevèze, G. Sulzenbacher, L. Ciano, M. Fanuel, C. Moreau, A.
522 Villares, B. Cathala, F. Chaspoul, K.E. Frandsen, A. Labourel, I. Herpoël-Gimbert,

523 S. Grisel, M. Haon, N. Lenfant, H. Rogniaux, D. Ropartz, G.J. Davies, M.N. Rosso,
524 P.H. Walton, B. Henrissat, J.G. Berrin, Lytic xylan oxidases from wood-decay fungi
525 unlock biomass degradation. *Nat, Chem. Biol.* (2018) doi:10.1038/nchembio.2558.

526 37. B. Westereng, M.O. Arntzen, F.L. Aachmann, A. Varnai, V.G.H. Eijsink, J.W. Agger,
527 Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic
528 polysaccharide monooxygenase acting on cellulose, *J. of Chromatogr. A.* 1445 (2016) 46-
529 54.

530 38. M. Bey, S. Zhou, L. Poidevin, B. Henrissat, P.M. Coutinho, J.G. Berrin, J.C. Sigoillotta,
531 Cello-oligosaccharides oxidation reveals differences between two lytic polysaccharide
532 monooxygenases (Family GH61) from *Podospora anserine*, *Appl. Environ. Microbiol.* 79
533 (2013) 488-96.

534 39. L. Bordoli, T. Schwede, Automated protein structure modeling with swiss-model
535 workspace and the protein model portal, *Methods. Mol. Biol.* 857 (2012) 107-136.

536 40. S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. de Bakker, J.M. Word, M.G. Prisant,
537 J.S. Richardson, D.C. Richardson, Structure validation by C-alpha geometry: phi-psi and
538 C-beta deviation, *Proteins: Structure, Function & Genetics.* 50 (2002) 437-450.

539 41. E. Notomista, V. Cafaro, G. Bozza, A. Di Donato, Molecular determinants of the
540 regioselectivity of toluene/o-xylene monooxygenase from *Pseudomonas* sp. strain OX1,
541 *Appl. Environ. Microbiol.* 75 (2009) 823-836.

542 42. P.A. Frey, Strong hydrogen bonding in molecules and enzymatic complexes, *Magn.*
543 *Reson. Chem.* 39 (2001) S190-S198.

544 43. R.L. Levine, L. Mosoni, B.S. Berlett, E.R. Stadtman, Methionine residues as endogenous
545 antioxidants in proteins, *Proc. Natl. Acad. Sci.* 93 (1996) 15036-15040.

546 44. M.L. Khamis, J.R. Casas-Finet, A.H. Maki, Stacking interactions of tryptophan residues
547 and nucleotide bases in complexes formed between *Escherichia coli* single-stranded DNA
548 binding protein and heavy atom-modified poly (uridylic) acid. A study by optically
549 detected magnetic resonance spectroscopy, J. Biol. Chem. 262 (1987) 1725-1733.

550 45. D. Kracher, M. Andlar, P.G. Furtmüller, R. Ludwig, Active-site copper reduction
551 promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces
552 stability. J. Biol. Chem. 293 (2018) 1676-1687.

553

554

555 **Figure legends:**

556

557 **Figure 1:** SDS-PAGE of purified PMO9A_MALCI.

558 Lane M: protein ladder (Precision PLUS Protein standards, BIORAD); Lane 1: purified
559 PMO9A_MALCI (~27 kDa); and Lane 2: crude extract showing expressed PMO9A_MALCI

560

561 **Figure 2:** Substrate specificity of the purified PMO9A_MALCI.

562 BWX: birch wood xylan; RAX: rye arabinoxylan; WAX: wheat arabino-xylan; OSX: oat spelt xylan; BEEWX:
563 beech wood xylan; LWX: larch wood xylan; 4-O-MGUX: 4-O-methyl-D-glucurono-D xylan; DBA: debranched
564 arabinan. CMC: carboxy methyl cellulose; PASC: phosphoric acid swollen cellulose; FP: filter paper; HEC:
565 hydroxyethyl cellulose; Bars represent mean± SE (n=3)

566

567 **Figure 3:** Amount of reducing sugars released during hydrolysis of natural substrates using
568 purified PMO9A_MALCI both in the presence and absence of ascorbic acid. BWX: birchwoodxylan;
569 RAX: rye arabinoxylan; CMC: carboxymethyl cellulose; Bars represent mean± SE (n=3)

570

571 **Figure 4:** Amount of glucose released (mg/ml) after saccharification (96h) of differently treated
572 rice straw and bagasse using cocktails containing CellicCTec2 and PMO9A_MALCI in 9:1 and
573 8:2 ratios.

574 AcRS: Acid treated Rice Straw; AlRS: Alkali treated Rice Straw; AcBG: Acid treated Bagasse; AlBG: Alkali treated
575 Bagasse; Bars represent mean± SE (n=3)

576 **Figure 5:** 3D (a) homology model and (b) structural superimposition of LMPO protein from *M.*
577 *cinnamomea*. Structural superimposition with *Thermoascus aurantiacus* (3ZUD, Blue colored)

578 and *Hypocrea jecorina* (2VTC, Yellow) confirmed the classification of PMO9A_MALCI as
579 Type 3 LPMO

580

581 **Figure 6:** Molecular docking analysis of birchwood xylan (BWX) as substrate with the active site
582 residues of PMO9A_MALCI protein

583 Bond distance and bond angle values are given in Å.

584

585 **Figure 7:** Molecular docking analysis of CMC as substrate within the active site residues of
586 PMO9A_MALCI protein.

587 Bond distance and bond angle values are given in Å.

588

589

590

591

592

593

594

595

596

597

598

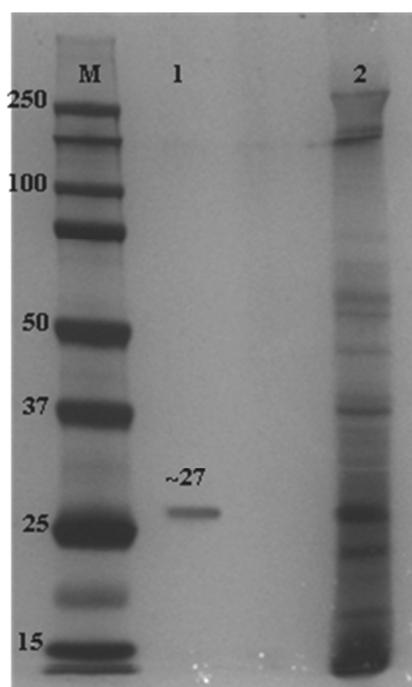
599

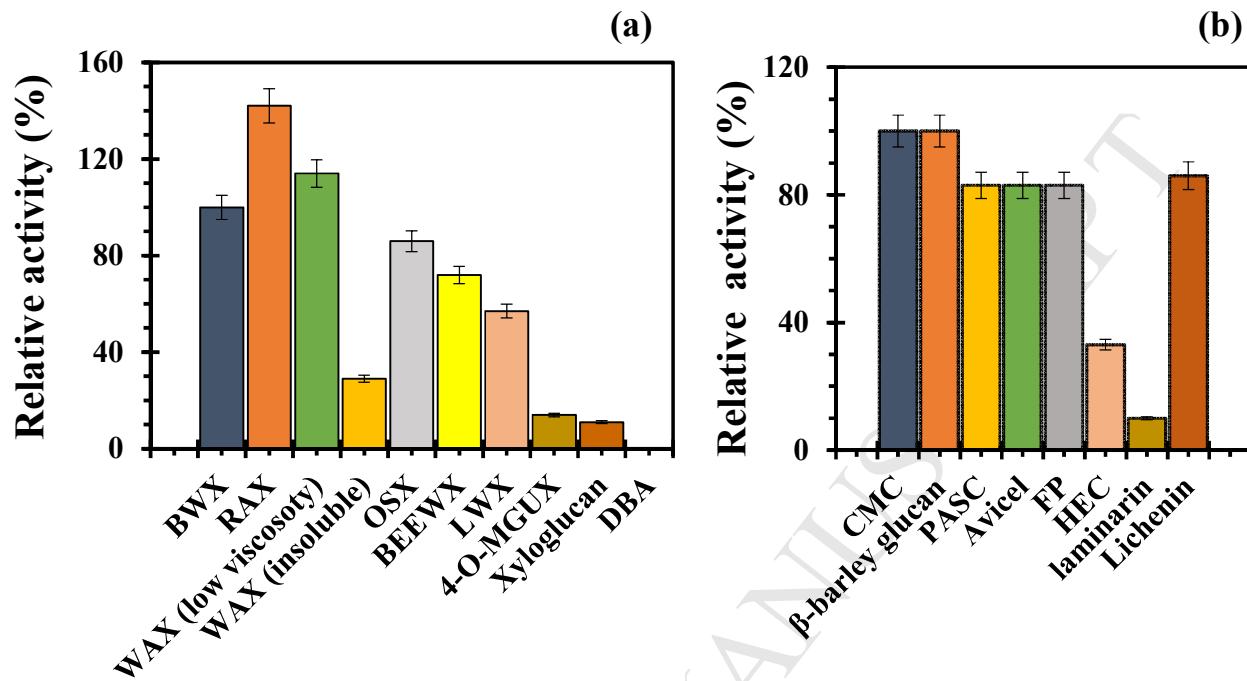
600

601

602

603


604 **Fig. 1**


605

606

607

608

609 **Fig. 2**

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

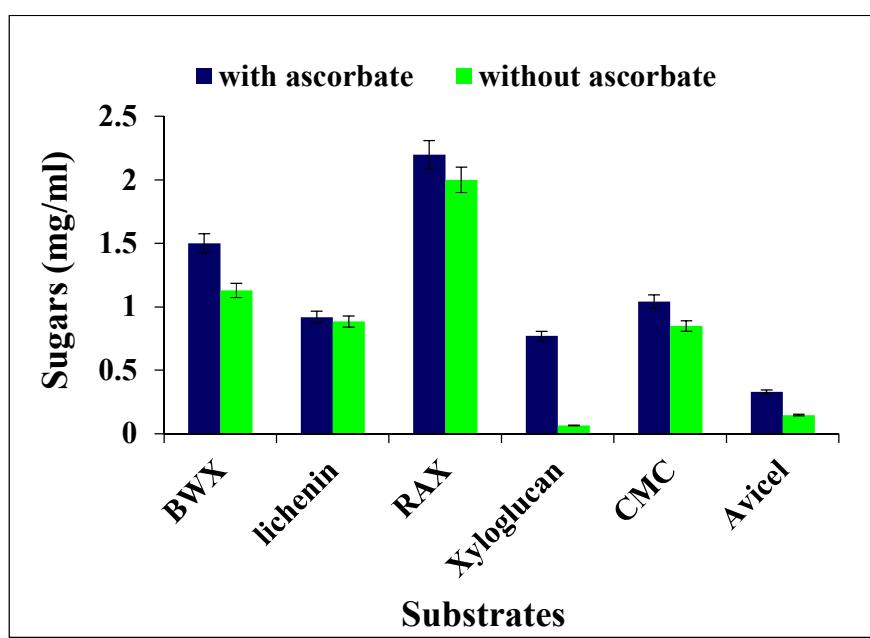
628

629

630

631

632


633

634

635 **Fig. 3**

636

637

638

639

640

641

642

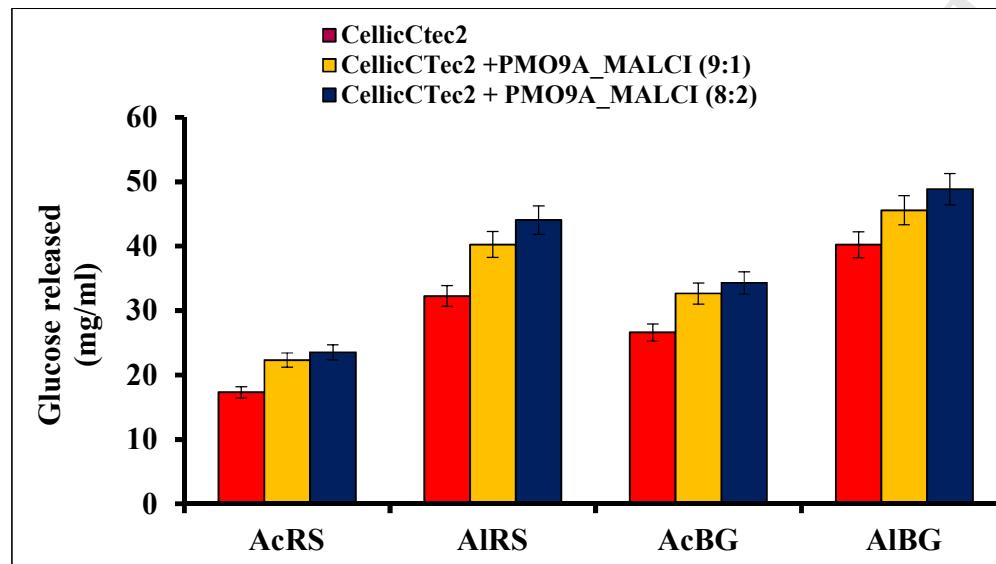
643

644

645

646

647


648

649

650 **Fig. 4**

651

652

653

654

655

656

657

658

659

660

661

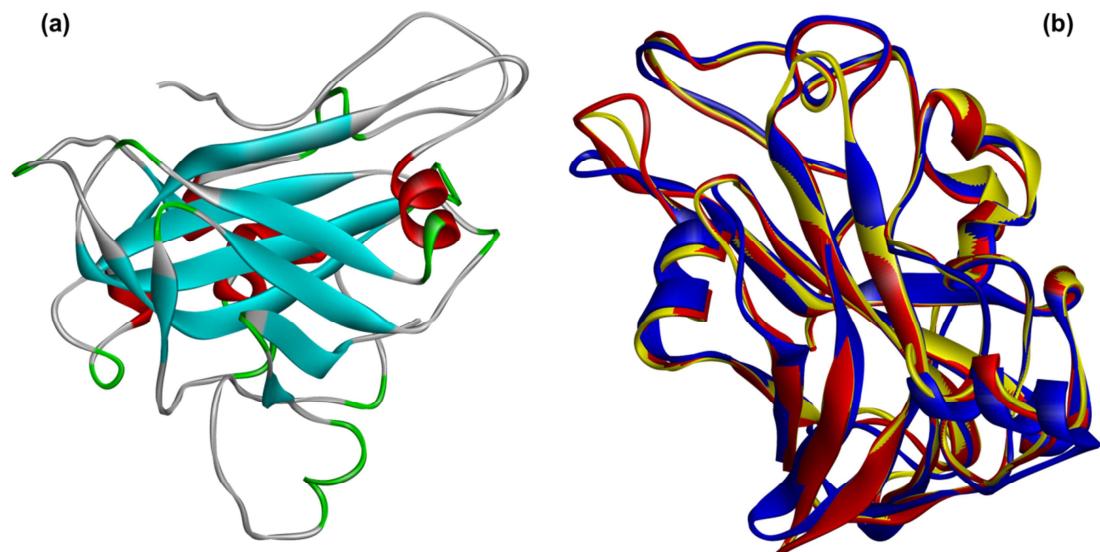
662

663

664

665

666


667

668

669 **Fig. 5**

670

671

672

673

674

675

676

677

678

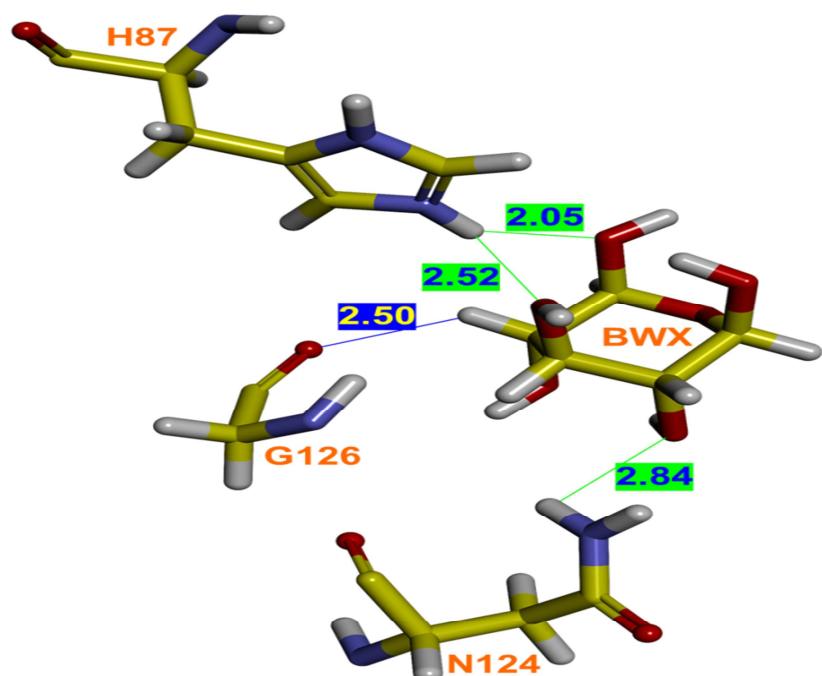
679

680

681

682

683


684

685

686

687 **Fig. 6:**

688

689

690

691

692

693

694

695

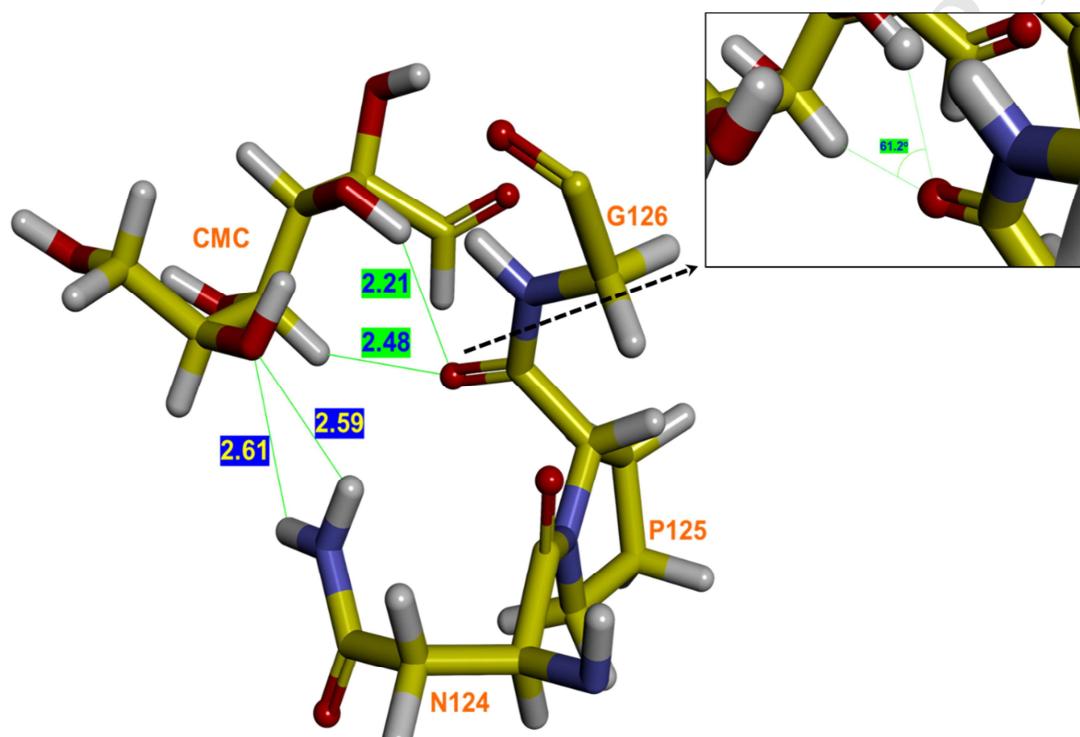
696

697

698

699

700


701

702

703 **Fig. 7:**

704

705

706

707

708

709

710

711

712

713

714

715 **Table 1.** Mass-spectroscopy based analysis of hydrolysis products obtained from Rye Arabino
 716 Xylan (RAX) and Birch Wood Xylan (BWX) using purified PMO9A_MALCI.

717

Pentose Products (m/z)	Structure	RAX	BWX
DP2			
305	X2-Na ⁺	Present	Present
321	X2-Na ⁺ -oxi	ND	Present
343	X2-Na ⁺ -Na ⁺ -oxi	ND	Present
337	X2 Na ⁺ -oxi-oxi	ND	ND
DP3			
437	X3-Na ⁺	Present	Present
453	X3-Na ⁺ -oxi	Present	Present
475	X3-Na ⁺ -Na ⁺ -oxi	ND	ND
469	X3 Na ⁺ -oxi-oxi	ND	Present
DP4			
569	X4-Na ⁺	Present	Present
585	X4-Na ⁺ -oxi	ND	Present
607	X4-Na ⁺ -Na ⁺ -oxi	ND	Present
601	X4 Na ⁺ -oxi-oxi	ND	Present
DP5			
701	X5-Na ⁺	Present	Present
717	X5-Na ⁺ -oxi	Present	Present
739	X5-Na ⁺ -Na ⁺ -oxi	Present	Present
733	X5 Na ⁺ -oxi-oxi	Present	Present
DP6			
833	X6-Na ⁺	Present	Present
849	X6-Na ⁺ -oxi	Present	Present
871	X6-Na ⁺ -Na ⁺ -oxi	Present	Present
849	X6 Na ⁺ -oxi-oxi	Present	Present
DP7			
965	X7-Na ⁺	Present	Present
981	X7-Na ⁺ -oxi	Present	Present
1003	X7-Na ⁺ -Na ⁺ -oxi	Present	Present
997	X7 Na ⁺ -oxi-oxi	Present	Present
DP8			
1097	X8-Na ⁺	Present	Present
1113	X8-Na ⁺ -oxi	Present	Present
1135	X8-Na ⁺ -Na ⁺ -oxi	Present	Present
1129	X8 Na ⁺ -oxi-oxi	Present	Present

718

719 RAX: Rye Arabinoxylan; BWX: Birch Wood Xylan; DP: Degree of Polymerization; X: Xylo-oligosaccharides; Na⁺:
 720 sodium adduct; ND: not detected

721 **Table2.** Mass-spectroscopy based analysis of hydrolysis products obtained from Carboxy Methyl
 722 Cellulose (CMC) and avicel using purified PMO9A_MALCI.

723

Hexose Products (m/z)	Structure	CMC	Avicel
DP2			
365	G2-Na ⁺	Present	Present
381	G2-Na ⁺ -oxi	Present	Present
403	G2-Na ⁺ -Na ⁺ -oxi	ND	Present
397	G2 Na ⁺ -oxi-oxi	Present	Present
DP3			
527	G3-Na ⁺	ND	Present
543	G3-Na ⁺ -oxi	ND	ND
565	G3-Na ⁺ -Na ⁺ -oxi	Present (minor)	Present
559	G3 Na ⁺ -oxi-oxi	Present	Present
DP4			
689	G4-Na ⁺	Present	ND
705	G4-Na ⁺ -oxi	Present	Present
727	G4-Na ⁺ -Na ⁺ -oxi	ND	Present
721	G4 Na ⁺ -oxi-oxi	Present	Present
DP5			
851	G5-Na ⁺	Present	Present
867	G5-Na ⁺ -oxi	Present	Present
889	G5-Na ⁺ -Na ⁺ -oxi	Present	Present
883	G5 Na ⁺ -oxi-oxi	Present	Present
DP6			
1013	G6-Na ⁺	Present	Present
1029	G6-Na ⁺ -oxi	Present	Present
1051	G6-Na ⁺ -Na ⁺ -oxi	Present	Present
1045	G6 Na ⁺ -oxi-oxi	ND	Present
DP7			
1175	G7-Na ⁺	Present	Present
1191	G7-Na ⁺ -oxi	Present	Present
1213	G7-Na ⁺ -Na ⁺ -oxi	Present	Present
1207	G7 Na ⁺ -oxi-oxi	Present	Present
DP8			
1337	G8-Na ⁺	Present	Present
1353	G8-Na ⁺ -oxi	Present	Present
1375	G8-Na ⁺ -Na ⁺ -oxi	Present	Present
1369	G8 Na ⁺ -oxi-oxi	Present	Present

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

Highlights

- A novel LPMO from *Malbranchea cinnamomea* was heterologously expressed in *P. pastoris*
- rPMO9A_MALCI is a promiscuous LPMO with a unique ability to cleave both glucans and pure xylans.
- MS and HPAEC analysis showed the presence of both C1 and C4 oxidised products.
- rPMO9A_MALCI acts synergistically with CelliCTec2 to hydrolyze pretreated biomass.