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Abstract—Given n independent draws from
a discrete distribution, what is the probability
that the next draw will be a symbol that has
not appeared before? We study the problem of
estimating this missing mass probability under
mean squared error. Our results include the
following:

1) Mean squared error (MSE) of Good-Turing
estimator is 0.608...

n
+ o
(

1

n

)

.
2) Minimax MSE for estimating missing mass

of uniform distributions is 0.570...

n
+ o
(

1

n

)

.
We prove that the minimax MSE R

∗ of missing
mass estimation satisfies

0.570 . . .

n
+ o

(

1

n

)

≤ R
∗

≤
0.608 . . .

n
+ o

(

1

n

)

.

The upper bound characterizes the maximum
MSE of the celebrated Good-Turing (GT) esti-
mator, and the lower bound characterizes the
minimax MSE for estimating the missing mass
for the class of uniform distributions.

I. Introduction

Given independent draws from a discrete distri-
bution, what is the probability that the next draw
will be a symbol that has not appeared before?
This probability is called as the discovery proba-
bility, unseen probability, or as the missing mass
probability. This random variable has applications
across many scientific disciplines. For example, what
is the probability that the next gene variant that
we obtain is new, or the probability that the next
species that we collect is a new species. .

A. Problem Set Up

Let X be a countable domain. Let p be an
unknown distribution over X . For example, p
could be the distribution over all butterfly species
(X ), some of which are yet to be discovered. Let

Xn
1

def
= X1, . . . , Xn be drawn independently from p.

The missing mass of Xn
1 with respect to p is the

random variable

M0(Xn
1 , p)

def
=
∑

x∈X

p(x) · I {x is not in Xn
1 } ,

which is the probability that a new draw from p
has not appeared before in Xn

1 .
A missing mass estimator is a (possibly random-

ized) function M : X n → [0, 1] that maps a length-n
sample to a non-negative number in [0, 1]. Adopting
the framework proposed by Rajaraman, Suresh, and
Thangaraj [1], we measure the performance of an
estimator in the popular mean squared error (MSE)
metric. More precisely, the MSE of the estimator
M for a distribution p is

R(M, p)
def
= E

[

(M(Xn
1 ) − M0(Xn

1 , p))
2
]

,

where the expectation is over the randomness in
the input sequences Xn

1 ∼ p and possibly the
randomness of the estimator. The MSE of M for a
collection of distributions P is defined as

R(M, P)
def
= sup

p∈P

R(M, p),

the worst MSE of M over distributions in P. The
minimax risk, or minimax MSE of missing mass
estimation for P is

R∗(P)
def
= inf

M
R(M, P) = inf

M
sup
p∈P

R(M, p),

the MSE of the best estimator for the worst distri-
bution in the class.

Let ∆ be the class of all discrete distributions,
namely the class of all distributions over all count-
able sets X . Without loss of generality we assume
that X = N, and for a distribution p and i ∈ N,
pi is the probability of i. The focus of this work is
to understand the minimax MSE of missing mass
estimation for P = ∆, namely,

R∗ def
= R∗(∆) = inf

M :Nn→[0,1]
sup

p over N

R(M, p). (1)

II. Known Results and Our Contributions

Missing mass estimation has a long history, dating
back at least half a century [2], [3]. The most
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celebrated estimator for missing mass is the Good-
Turing estimator [2], denoted MGT (Definition 1).
The first theoretical analysis of the MGT was given
in [4], who among other things showed that MGT

is an almost unbiased estimator of the expected
missing mass, namely for any p,

E
[
∣

∣MGT(Xn
1 , p) − M0(Xn

1 , p)
∣

∣

]

≤ 1

n
.

They also proved concentration results about the
deviation of MGT from the true M0, and these
arguments can be extended to show that the MSE
of the GT estimator satisfies R(MGT, ∆) = O

(

1
n

)

.
Arguments for estimating the MSE of Bernoulli
random variables (e.g., Chapter 5, Example 1.7
in [5]) can be used to show that R∗ = Ω(1/n).
Combining these two,

Ω

(

1

n

)

≤ R∗ ≤ R
(

MGT, ∆
)

= O

(

1

n

)

.

In a recent work, Rajaraman, Thangaraj, and
Suresh [1] initiated the question of determining the
precise constant for both the Good-Turing estimator
as well as the best possible estimator, namely tight
characterization of R∗, and R(MGT, ∆).

A. Why care for the precise constant?
GT estimators, and its variants have been studied

in many problems in probability theory, data com-
pression, language modeling and other fields [6]–[11].
Better estimators for missing mass might provide
better performance in practice for these tasks.

Another line of recent work [12]–[17] have studied
the concentration and other properties of missing
mass. Obtaining better bounds on the minimax
MSE of missing mass estimators will inherently
require estimators with better variance bounds than
those known, and can improve the concentration
results for the missing mass. In particular, perhaps
finding the precise R∗ can shed light on the pre-
cise constants in the exponents of missing mass
deviation inequalities.

Missing mass estimation is an interesting question
in the sense that the quantity we want to estimate is
itself a random variable, and it is still simple enough
that we might hope to characterize its missing mass
precisely, and it might provide tools for establishing
tight minimax MSE bounds for other problems.

B. Results

[1] proposed the minimax MSE estimation
problem and proved the following bound on the
performance of MGT. Up to an additive ±o(1/n),

0.608 . . .

n
≤ R

(

MGT, ∆
)

≤0.6179 . . .

n
. (2)

They first derive an expression for the MSE of
MGT for any distribution p (Given in (6)). Upper
bounding this expression over all distributions gives
the upper bound. For the lower bound they consider
U , the class of all discrete uniform distributions. By
maximizing (6) over U , they obtain the lower bound.
In particular, they showed that R(MGT, ∆) ≥
R(MGT, U) =

maxx∈[0,1] x(1−x−log x)

n + o(1/n) =
0.608...

n +o(1/n). We denote maxx∈[0,1] x(1−x−log x)
by αGT.

They also study R∗, showed a lower bound
that holds for every estimator. More precisely, by
using the result on minimax MSE of estimating a
Bernoulli they showed that R∗ ≥ 0.25/n + o(1/n).

We prove a number of results for missing mass
estimation. Our first result, proved in Section IV
establishes the precise minimax MSE of MGT, in
particular showing that the class of uniform distri-
butions are the worst case instances.

Theorem 1.

R
(

MGT, ∆
)

= R
(

MGT, U
)

=
αGT

n
+ o

(

1

n

)

.

Then a natural question to ask is: Does MGT

achieve R∗?, namely is the Good-Turing estimator
MSE optimal? While we are not able to answer
this question, we will provide some arguments
that suggest that MGT might not achieve R∗. In
particular, we study the minimax MSE of missing
mass estimation of U , namely R∗(U). If R∗(U) =
R(MGT, U), it proves that MGT is MSE-optimal! If
not, then perhaps there is an estimator with smaller
minimax MSE than MGT.

Theorem 2. The Maximum-Likelihood estimator

for missing mass for the uniform distribution

Ru

(

MML
)

=
αu

n
+ o

(

1

n

)

,

where αu is the solution to

αu = max
x∈[0,1]

xe−x(1 − e−x)2

1 − e−x − xe−x
≈ 0.570 . . . . (3)

This shows that up to an o(1/n) additive factor,
R∗(U) = 0.570...

n < 0.608...
n = R(MGT, U). This shows

that there is a better estimator than MGT for U .
Since U is the class where MGT achieves its minimax
rate, we believe that MGT does not achieve R∗.

Since R∗ ≥ R∗(U), we obtain

0.570 . . .

n
+ o

(

1

n

)

≤ R∗(∆) ≤ 0.608 . . .

n
+ o

(

1

n

)

.

2

2018 IEEE International Symposium on Information Theory (ISIT)

327



III. Preliminaries and the Estimators

For a sequence Xn
1 , and t ≥ 1, let Φt(X

n
1 ) be the

number of symbols that appear t times in Xn
1 . The

profile of Xn
1 , is Φ(Xn

1 )
def
= (Φ1(Xn

1 ), Φ2(Xn
1 ), . . .).

When the sequence is clear from the context, we de-
note Φ(Xn

1 ), and Φt(X
n
1 ) by Φ, and Φt respectively.

For example, when Xn
1 = abracadabra, Φ1 = Φ2 =

2, Φ3 = Φ4 = 0, Φ5 = 1, Φ6 = Φ7 = . . . = 0, and
Φ = (2, 2, 0, 0, 1, 0, . . .).

Definition 1. The Good-Turing estimator is

MGT(Xn
1 )

def
=

Φ1(Xn
1 )

n
. (4)

MGT estimates the missing mass as the fraction
of symbols in Xn

1 that appear once. MGT is only
a function of Φ1, and gives the same missing
mass estimate for any two sequences with the
same profile. Such estimators are called symmetric.
Optimal symmetric estimators exist for missing
mass estimation.

Definition 2. A missing mass estimator M is
symmetric if for any two sequences Xn

1 , and Y n
1

with Φ(Xn
1 ) = Φ(Y n

1 ), the distributions of M(Xn
1 ),

and M(Y n
1 ) are identical.

Theorem 3. There is a symmetric estimator that

achieves R∗(∆).

The proof is similar in spirit to that in [18], and
is omitted due to lack of space.

While profiles form a sufficient statistic for miss-
ing mass, and various other problems [19], their
distributional form is unwieldy. In particular, it is
not known how to compute, or even approximate
the profile probabilities (See [20], [21] for some
heuristics on this computation). However, in the
special case when the underlying distribution is
uniform, profile probabilities take a nice form and
are easy to compute. Recall that U is the set of all
distributions that are uniform over a subset of N.

Let m(Xn
1 ) be the number of distinct symbols in

Xn
1 . The next result shows that for U , m(Xn

1 ) is
a sufficient statistic for the missing mass. This is
crucial for proving Theorem 2, since we can restrict
our attention to estimators that are just a function
of m, for both the upper and the lower bound.

Theorem 4. m(Xn
1 ) is a sufficient statistic to

achieve R∗(U).

Proof. Similar to Theorem 3, it can be used to
show that for U profiles are a sufficient statistic.

The probability of a profile Φ under the uniform
distribution u(k) is

Pr (Φ) =
km

kn

n!
∏

t≥1 ((t!)Φt · Φt!)
, (5)

where km =
∏m

i=0(k − i).
(5) follows from a counting argument similar to
Lemma 3 in [22]. Therefore, the distribution over
profiles with the same m is independent of the value
of k. In other words, conditioned on the value of m,
and n the distribution over profiles is independent
of k. Hence knowing the exact profile won’t give
us additional information about k than knowing m.
Combining with Theorem 3 gives us the result.

In Section V we provide a missing mass estimator
for U based on the profile maximum likelihood
estimation method. This estimator is a function
of m, and achieves the bound in Theorem 2 and
strictly outperforms MGT over U .

To provide the lower bound, by Yao’s minimax
principle, we consider a prior P over U . P induces a
distribution over m(Xn

1 ). Given m, and P, MMSE
theory states that the MSE-optimal estimator is
given by

E[M0(Xn
1 , p)|m].

In Section VI, we show that for a properly chosen
prior, the MMSE optimal estimator is identical to
the ML estimator (ignoring the smaller order terms),
proving the lower bound.

IV. Performance of Good-Turing

In this section, we prove Theorem 1. [1] charac-
terized the MSE of GT estimator for any p as:

R
(

MGT, p
)

=
1

n
E

[

2Φ2

n
+

Φ1

n

(

1 − Φ1

n

)]

+o

(

1

n

)

. (6)

They proved (2) by obtaining upper and lower
bounds on the largest possible value of (6) over
discrete distributions p. We show that their lower
bound is tight, by showing that for any discrete
distribution R(MGT, p) ≤ αGT/n + o(1/n).

By concavity of x(1 − x), E
[

Φ1

n

(

1 − Φ1

n

)]

≤
E[Φ1]

n

(

1 − E[Φ1]
n

)

and linearity of summations in (6),

it will suffice to show that

2E [Φ2]

n
+

E [Φ1]

n

(

1 − E [Φ1]

n

)

≤ αGT + o(1). (7)

Note that E [Φt] =
∑∞

i=1

(

n
t

)

pt
i(1 − pi)

n−t
We

then show that replacing (1 − pi)
n−t with e−npi

for t = 1, 2 can affect only the o(1/n) term. Using
this replacement, we plug in E [Φt]’s in (7).

3
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From these results, it will suffice to prove that
for any p1, . . ., such that pi ≥ 0,

∑

i pi = 1

n
∞
∑

i=1

p2
i e−npi +

(

∞
∑

i=1

pie
−npi

)(

1−
∞
∑

i=1

pie
−npi

)

≤αGT.

The proof involves invoking Lagrange multipli-
ers, and showing that the maximum value of the
expression is achieved for a uniform distribution.
For uniform distributions we end up with αGT.

V. Upper Bound on R∗(U)
In this section, we provide the upper bound of

Theorem 2, the minimax MSE of U . Suppose the
support of the uniform distribution is k, then the
missing mass is exactly 1 − m/k. However, since
we do not know k, we study the following two step
procedure. (a) Obtain an estimate k̂ of the support
size of p from Xn

1 , (b) Output 1 − m/k̂.
Our estimator of support size is the uniform dis-

tribution that assigns the highest probability to the
profile, also called as the Profile Maximum Likeli-
hood distribution [23]. For the uniform distributions,
this is equivalent to finding the value of k that
maximizes (5). Note that this expression depends on

k only via km/kn. Therefore, km,n
def
= arg maxk

km

kn

is the support of the uniform distribution that
maximizes the probability of Φ(Xn

1 ). Our ML
missing mass estimator, which we show achieves
the upper bound in Theorem 2, is the following.

MML = 1 − m

km,n
.

Similar to the arguments in [24], it is easy to
see that the expression in (V) increases and then
decreases in k. Using this, [24] showed that km,n is
one of the two integers adjacent to the solution to

m

k
=

(

1 −
(

1 − 1

k

)n)

.

For ease of analysis, instead of using km,n, which
is always an integer, we use ke that is a solution to

ke(1 − e−n/ke) = m. (8)

Note that here we have used exponential approxi-
mation similar to the previous section.

Suppose k0 is the true underlying support size.
Then, the MSE of our estimator is

E

[

(

m

ke
− m

k0

)2
]

, (9)

where the only randomness is in m, since ke is
a deterministic function of m, n. To bound (9),
consider two cases:

1) Case 1. 5k0 < n/ log n. In this case, by
a coupon-collector argument, we observe all
symbols with high probability.

2) Case 2. 5k0 > n
log n . This is the more involved

case. Let m(Xn
1 ) be the random variable that

denotes the number of distinct symbols that
appear in Xn

1 . Note that we actually obtain an
instantiation of m(Xn

1 ) as our m.

Lemma 1. When 5k0 > n
log n , the variance of

m(Xn
1 ) is k0

(

e− n
k0 − e− 2n

k0 − n
k0

e− 2n
k0

)

+ O(1).

Let (m0, k0) be a solution to (8), where k0 is the
true underlying support size. For a fixed n, we will
characterize the solutions around (m0, k0).

Lemma 2. Suppose (m0, k0) is the solution to (8),
then for c with |c| = O(log n), and m′ = m0 +c

√
m0,

then the solution (m′, k′) to (8) satisfies

k′ = k0 + c

√

1 − e− n
k0

1 − e− n
k0 − n

k0
e− n

k0

√

k0 + O(c2).

Applying McDiarmid’s inequality, we show that

Pr
(

|m(Xn
1 ) − m0| ≥ 10

√

k0 log n
)

≤ 1

n5
. (10)

Let E denote the event that |m(Xn
1 ) − m0| ≤

10
√

k0 log n. Denote the random variable m(Xn
1 ) by

m′, and (m′, k′) be the solution to (8). Therefore,

it suffices to bound E

[

(

m′

k′ − m′

k

)2 ∣
∣

∣
E
]

, since

E

[

(

m′

k′
− m′

k

)2
]

≤ E

[

(

m′

k′
− m′

k

)2
∣

∣

∣
E
]

+o(
1

n
).

We prove the following result.

Lemma 3.

E

[

(

m′

k′
− m′

k0

)2
∣

∣

∣
E
]

=
H6

D2

m0

k0
Var (m(Xn

1 ))+o

(

1

n

)

where D = 1 − e−n/k0 − n
k0

e−n/k0 , and H =√
1 − e−n/k0 .

Assuming Lemma 3 and plugging in the variance
expression for m(Xn

1 ),

H6

D2

m0

k0
Var (m) =

n

k0

e−n/k0(1 − e−n/k0)2

1 − e−n/k0 − n
k0

e−n/k0
· 1

n
.

(11)
In (11) denote n

k0
by x, then

n

k0

e−n/k0(1 − e−n/k0)2

1 − e−n/k0 − n
k0

e−n/k0
=

xe−x(1 − e−x)2

1 − e−x − xe−x
.

Let f(x) = xe−x(1−e−x)2

1−e−x−xe−x . It has maximum 0.570 . . .
when x = 0.801 . . ..

4
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VI. Lower bound on R∗(U)

We invoke key results from the theory of Mini-
mum Mean Squared Error (MMSE) Estimation.

In the first step, we construct a prior, P over the
class U , which will be simply a distribution over
the support size k. Since the maximum is always
at least the expectation, for any estimator M ,

max
p

R∗(M, p) ≥ Ep∼P [R(M, p)] .

Suppose that Mu is the optimal missing mass
estimator for the class U that achieves R∗(U). Then
plugging in the previous equation,

R∗(U) ≥ Ep∼PR(Mu, p) ≥ inf
M

Ep∼PR(M, p).

We now invoke MMSE theory to obtain an optimal
missing mass estimator given the knowledge of P.

Lemma 4. Suppose X is a random variable that we

want to estimate given that another random variable

Y takes on the value y. Then the estimator X̂ that

minimizes E

[

(X − X̂)2
]

is E [X|Y = y].

Let D be the random variable denoting the
number of distinct symbols that appear in Xn

1 . By
Theorem 4 we know that D is a sufficient statistic
for estimating the missing mass for uniform distri-
butions. In the framework of MMSE estimation,
the random variable X is m/k, and the random
variable Y is D. Now conditioned on the value of
D = m, the optimal estimator MP(Xn

1 ) is equal to

MP(Xn
1 ) = EP

[

1 − m

k
|D(Xn

1 ) = m
]

.

After constructing the appropriate prior, the bulk
of our argument goes into showing that MP can be
replaced by the ML estimator from the previous
section while only introducing an error of order
o( 1

n ). Once this reduction is done, we can simply
use the bound from the previous section.
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