
1

The Minrank of Random Graphs
Alexander Golovnev, Yahoo Research,

Oded Regev, Courant Institute of Mathematical Sciences, New York University,
and Omri Weinstein, Columbia University

Abstract—The minrank of a directed graph G is the minimum
rank of a matrix M that can be obtained from the adjacency
matrix of G by switching some ones to zeros (i.e., deleting edges)
and then setting all diagonal entries to one. This quantity is
closely related to the fundamental information-theoretic problems
of (linear) index coding (Bar-Yossef et al., IEEE Trans. Inf.
Theory 2011), network coding (Effros et al., IEEE Trans. Inf.
Theory 2015) and distributed storage (Mazumdar, ISIT, 2014).

We prove tight bounds on the minrank of directed Erdős-Rényi
random graphs G(n, p) for all regimes of p ∈ [0, 1]. In particular,
for any constant p, we show that minrk(G) = Θ(n/ logn)
with high probability, where G is chosen from G(n, p). This
bound gives a near quadratic improvement over the previous
best lower bound of Ω(

√
n) (Haviv and Langberg, ISIT 2012),

and partially settles an open problem raised by Lubetzky and
Stav (IEEE Trans. Inf. Theory 2009). Our lower bound matches
the well-known upper bound obtained by the “clique covering”
solution, and settles the linear index coding problem for random
knowledge graphs.

Index Terms— Index coding,
Minrank, Linear index coding.

I. INTRODUCTION

IN the index coding problem ([2], [3]), a sender wishes to
broadcast, over a noiseless channel, an n-symbol string

x ∈ Fn (where F is a finite field) to a group of n re-
ceivers R1, . . . , Rn, each equipped with some side informa-
tion, namely, a subvector xKi

of x (indexed by a subset
Ki ⊆ {1, . . . , n}). The index coding problem asks what is
the minimum length m of a broadcast message that allows
each receiver Ri to retrieve the ith symbol xi, given his
side-information xKi

and the broadcasted message. The side
information of the receivers can be modeled by a directed
graph Kn, in which Ri observes the symbols Ki := {xj :
(i, j) ∈ E(Kn)}. Kn is sometimes called the knowledge
graph. A canonical example is where Kn is the complete
graph (with no self-loops) on the vertex set [n], i.e., each
receiver observes all but his own symbol. In this simple case,
broadcasting the sum

∑n
i=1 xi (in F) allows each receiver to

retrieve his own symbol, hence m = 1.
The problem was originally motivated by applications to

distributed storage ([4], [5]), on-demand video streaming
(ISCOD, [6]) and wireless networks (see, e.g., [7]), where
a typical scenario is that clients miss information during
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transmissions of the network, and the network is interested in
minimizing the retransmission length by exploiting the side-
information clients already possess. More recently, Effros et
al. [8] established a formal connection between index coding
and the challenging problem of network coding ([9]), offering
a partial explanation to the current barrier in understanding
the capacity of general networks.

The minimum length of an index code for a given graph
has well-known relations to other important graph parameters.
For instance, it is bounded from below by the size of the
maximum independent set, and it is bounded from above by
the clique-cover number (χ(Ḡ)) since for every clique in G,
it suffices to broadcast a single symbol (recall the example
above). The aforementioned connections also led to algorith-
mic connections (via convex relaxations) between the compu-
tational complexity of graph coloring and that of computing
the minimum index code length of a graph ([10]). In theoretical
computer science, index coding is related to some important
communication models and problems in which players have
overlapping information, such as the one-way communication
complexity of the index function ([11]), and can also be viewed
as an interesting special case of nondeterministic computation
in the (notoriously difficult to understand) multiparty Number-
On-Forehead communication model ([12]). We remark that
index coding is also closely related to proving circuit lower
bounds in complexity theory – Riis [13] observed that a
certain index coding problem is equivalent to the so-called shift
conjecture of Valiant [14] which, if true, would resolve a major
open problem in complexity theory of proving superlinear
lower bounds for logarithmic-depth circuits.

When the encoding function of the index code is linear
in x (as in the example above), the corresponding scheme
is called a linear index code. In their seminal paper, Bar-
Yossef et al. [3] showed that the minimum length m of a
linear index code is characterized precisely by a parameter of
the knowledge graph Kn, called the minrank (minrkF(Kn)),
first introduced by Haemers [15] in the context of Shannon
capacity of graphs.1 Namely, minrkF(Kn) is the minimum
rank (over F) of an n × n matrix M that “represents” Kn.
By “represents” we mean a matrix M that contains a zero in
all entries corresponding to non-edges, and non-zero entries
on the diagonal. Entries corresponding to edges are arbitrary.
(Over F2 this is equivalent to being the adjacency matrix of a
subgraph of Kn, with diagonal entries set to one.) Note that
without the “diagonal constraint”, the above minimum would
trivially be 0, and indeed this constraint is what makes the

1To be precise, this holds only for graphs without self-loops. We will ignore
this minor issue in this paper as it will not affect any of our results.
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problem interesting and hard to analyze. While linear index
codes are in fact optimal for a large class of knowledge graphs
(including directed acyclic graphs, perfect graphs, odd “holes”
and odd “anti-holes” [3]), there are examples where non-linear
codes outperform their linear counterparts ([16]). In the same
paper, Lubetzky and Stav [16] posed the following question
about typical knowledge graphs, namely,

What is the minimum length of an index
code for a random knowledge graph Kn = Gn,p?

Here, Gn,p denotes a random Erdős-Rényi directed graph, i.e.,
a graph on n vertices in which each arc is taken independently
with probability p. In this paper, we partially answer this open
problem by determining the optimal length of linear index
codes for such graphs. In other words, we prove a tight lower
bound on the minrank of Gn,p for all values of p ∈ [0, 1]. In
particular,

Theorem 1 (Main theorem, informal). For any constant 0 <
p < 1 and any field F of cardinality |F| < nO(1), it holds with
high probability that

minrkF(Gn,p) = Θ

(
n

log n

)
.

The formal quantitative statement of our result can be found
in Corollary 2 below. We note that our general result (see
Theorem 2) extends beyond the constant regime to subconstant
values of p. Theorem 1 gives a near quadratic improvement
over the previously best lower bound of Ω(

√
n) ([16], [17]),

and settles the linear index coding problem for random knowl-
edge graphs, as an Op(n/ log n) linear index coding scheme is
achievable via the clique-covering solution (see Section III-A).

A. Overview of the Proof of Theorem 1

In [16], Lubetzky and Stav showed that for any field F and
a directed graph G,

minrkF(G) ·minrkF(Ḡ) ≥ n .

This inequality gives a lower bound of Ω(
√
n) on the ex-

pected value of the minrank of Gn,1/2. (Indeed, the random
variables Gn,1/2 and Ḡn,1/2 have identical distributions). Since
minrkF(Gn,p) is monotonically non-increasing in p, the same
bound holds for any p ≤ 1/2. Haviv and Langberg [17]
improved this result by proving a lower bound of Ω(

√
n) for

all constant p (and not just p ≤ 1/2), and also by showing
that the bound holds with high probability.

We now outline the main ideas of our proof. For simplicity
we assume that F = F2 and p = 1/2. To prove that
minrk2(Gn,p) ≥ k, we need to show that with high probability,
Gn,p has no representing matrix (in the sense of Definition 1
below) whose rank is less than k.

As a first attempt, we can show that any fixed matrix M
with 1s on the diagonal of rank less than k has very low
probability of representing a random graph in Gn,p, and then
apply a union bound over all such matrices M . Notice that this
probability is simply 2−s+n, where s is the sparsity of M (i.e.,
the number of non-zero entries) and the n is to account for

the diagonal entries. Moreover, we observe that the sparsity s
of any rank-k matrix with 1s on its main diagonal must be2

at least ≈ n2/k. Finally, since the number of n× n matrices
of rank k is ≈ 22nk (as a rank-k matrix can be written as a
product of n×k by k×n matrices, which requires 2nk bits to
specify), by a union bound, the probability that Gn,p contains
a subgraph of rank < k is bounded from above by (roughly)
22nk · (1/2)n2/k, which is ≪ 1 for k ≤

√
n/2 (for large

enough n). This recovers the previous Ω(
√
n) lower bound

of Haviv and Langberg [17] (for all constant p, albeit with a
much weaker concentration bound).

To see why this argument is “stuck” at
√
n, we observe that

we are not overcounting and indeed, there are 2n
3/2

matrices of
rank k ≈ n1/2 and sparsity s ≈ n3/2. For instance, we can take
the rank n1/2 matrix that consists of n1/2 diagonal n1/2×n1/2

blocks of 1s (a disjoint union of n1/2 equal-sized cliques), and
replace the first n1/2 columns with arbitrary values. Each such
matrix has probability 2−n3/2

of representing Gn,p (because of
its sparsity) and there are 2n

3/2

of them, so the union bound
breaks for k = Ω(

√
n).

In order to go beyond
√
n, we need two main ideas. To

illustrate the first idea, notice that in the above example, even
though individually each matrix has probability 2−n3/2

of
representing Gn,p, these “bad events” are highly correlated.
In particular, each of these events implies that Gn,p must
contain n1/2 − 1 disjoint cliques, an event that happens with
roughly the same probability 2−n3/2

. Therefore, we see that
the probability that the union of these bad events happens
is only 2−n3/2

, greatly improving on the naive union bound
argument. (We remark that this idea of “bunching together
related events” is reminiscent of the chaining technique as
used, e.g., in analyzing Gaussian processes.) More generally,
the first idea (and also centerpiece) of our proof is Lemma 4,
which shows that every matrix must contain a “nice” submatrix
(in a sense to be defined below). The second and final idea,
described in the next paragraph, will be to bound the number
of “nice” submatrices, from which the proof would follow by
a union bound over all such submatrices.

Before defining what we mean by “nice”, we mention the
following elementary yet crucial fact in our proof: Every rank
k matrix is uniquely determined by specifying some k linearly
independent rows, and some k linearly independent columns
(i.e., a row space basis and a column space basis) including the
indices of these rows and columns (see Lemma 2). This lemma
implies that we can encode a matrix using only ≈ sbasis ·log n
bits, where sbasis is the minimal sparsity of a pair of row
and column space bases that are guaranteed to exist. This in
turn implies that there are only ≈ 2sbasis logn such matrices.
Now, since the average number of 1s in a row or in a column
of a matrix of sparsity s is s/n, one might hope that such
a matrix contains a pair of row and column space bases of

2To see why, notice that any maximal linearly independent set of columns
must “cover” all coordinates, i.e., there must not be any coordinate that is zero
in all vectors, as otherwise we could take the column vector corresponding
to that coordinate and it would be linearly independent of our set (due to the
nonzero diagonal) in contradiction to maximality. Assuming all columns have
roughly the same number of 1s, we obtain that each column has at least n/k
1s, leading to the claimed bound. See Lemma 3 for the full proof.
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sparsity k · (s/n), and this is precisely our definition of a
“nice” matrix. (Obviously, not all matrices are nice, and as
the previous example shows, there are lots of “unbalanced”
matrices where the nonzero entries are all concentrated on a
small number of columns, hence they have no sparse column
space basis even though the average sparsity of a column is
very low; this is exactly why we need to go to submatrices.)

To complete this overview, notice that using the bound on
the number of “nice” matrices, the union bound yields

2ks log(n)/n · (1/2)s,

so one could set the rank parameter k to be as large as
Θ(n/ log n) and the above expression would still be ≪ 1.
A similar bound holds for nice submatrices, completing the
proof.

II. PRELIMINARIES

For an integer n, we denote the set {1, . . . , n} by [n].
Throughout the paper by edges and arcs we mean undirected
and directed edges, respectively. For an integer n and 0 ≤ p ≤
1, we denote by Gn,p the probability space over the directed
graphs on n vertices where each arc is taken independently
with probability p. By Ḡ we mean a directed graph on the
same set of vertices as G that contains an arc if and only if
G does not contain it.3

For a directed graph G, we denote by χ(G) the chromatic
number of the undirected graph that has the same set of
vertices as G, and an edge in place of every arc of G.

Let F be a finite field. For a vector v ∈ Fn, we denote by
vj the jth entry of v, and by v≤j ∈ Fj the vector v truncated
to its first j coordinates. For a matrix M ∈ Fn×n and indices
i, j ∈ [n], let Mi,j be the entry in the ith row and jth column
of M,Coli(M) be the ith column of M , Rowi(M) be the ith
row of M , and rk(M) be the rank of M over F.

By a principal submatrix we mean a submatrix whose set
of row indices is the same as the set of column indices. By
the leading principal submatrix of size k we mean a principal
submatrix that contains the first k columns and rows.

For a matrix M ∈ Fn×n, the sparsity s(M) is the number
of non-zero entries in M . We say that a matrix M ∈ Fn×n of
rank k contains an s-sparse column (row) basis, if M contains
a column (row) basis (i.e., a set of k linearly independent
columns (rows)) with a total of at most s non-zero entries.
For a column (row) basis B of a matrix, its sparsity, denoted
by s(B), is the number of non-zero elements in B.

Definition 1 (Minrank [3], [16]). 4 Let G = (V,A) be a graph
on n = |V | vertices with the set of directed arcs A. A matrix
M ∈ Fn×n represents G if Mi,i ̸= 0 for every i ∈ [n], and
Mi,j = 0 whenever (i, j) /∈ A and i ̸= j. The minrank of G
over F is

minrkF(G) = min
M represents G

rk(M) .

3Throughout the paper we assume that graphs under consideration do not
contain self-loops. In particular, neither G nor Ḡ has self-loops.

4In this paper we consider the directed version of minrank. Since the
minrank of a directed graph does not exceed the minrank of its undirected
counterpart, a lower bound for a directed random graph implies the same
lower bound for an undirected random graph. The bound is tight for both
directed and undirected random graphs (see Theorem 3).

We say that two graphs differ at only one vertex if they
differ only in arcs leaving one vertex. Following [18], [17], to
amplify the probability in the main theorem, we shall use the
following form of Azuma’s inequality for the vertex exposure
martingale.

Lemma 1 (Corollary 7.2.2 and Theorem 7.2.3 in [19]). Let
f(·) be a function that maps directed graphs to R. If f satisfies
the inequality |f(H) − f(H ′)| ≤ 1 whenever the graphs H
and H ′ differ at only one vertex, then for any λ > 0,

Pr[|f(Gn,p)− E[f(Gn,p)]| > λ
√
n− 1] < 2e−λ2/2 .

III. THE MINRANK OF A RANDOM GRAPH

The following elementary linear-algebraic lemma shows that
a matrix M ∈ Fn×n of rank k is fully specified by k linearly
independent rows, k linearly independent columns, and their
2k indices. In what follows, we denote by Mn,k the set of
matrices from Fn×n of rank k.

Lemma 2 (Row and column space bases encode the entire
matrix). The mapping ϕ : Mn,k → (F1×n)k×(Fn×1)k×[n]2k

defined as

ϕ(M) = (R,C, i1, . . . , ik, j1, . . . , jk) ,

is a one-to-one mapping, where R =
(Rowi1(M), . . . ,Rowik(M)) and C =
(Colj1(M), . . . ,Coljk(M)) are, respectively, a row space
basis and a column space basis of M ∈ Mn,k (taking, say,
the lexicographically first if multiple bases exist).

Proof. We first claim that the intersection of R and C
has full rank, i.e., that the submatrix M ′ ∈ Fk×k ob-
tained by taking rows i1, . . . , ik and columns j1, . . . , jk
has rank k. This is a standard fact, see, e.g., [20, p20,
Section 0.7.6]. We include a proof for completeness. As-
sume for convenience that (i1, . . . , ik) = (1, . . . , k) and
(j1, . . . , jk) = (1, . . . , k). Next, assume towards contradiction
that rk(M ′) = rk({Col1(M ′), . . . ,Colk(M

′)}) = k′ < k.
Since C is a column space basis of M , every column
Coli(M) is a linear combination of vectors from C, and
in particular, every Coli(M)≤k is a linear combination of
{Col1(M)≤k, . . . ,Colk(M)≤k}. Therefore, the k × n sub-
matrix M ′′ := (Col≤k

1 (M), . . . ,Col≤k
n (M)) has rank k′. On

the other hand, the k rows of M ′′ : Row1(M), . . . ,Rowk(M)
were chosen to be linearly independent by construction. Thus,
rk(M ′′) = k > k′, which leads to a contradiction.

In order to show that ϕ is one-to-one, we show that R
and C (together with their indices) uniquely determine the
remaining entries of M . We again assume for convenience that
(i1, . . . , ik) = (1, . . . , k) and (j1, . . . , jk) = (1, . . . , k). Con-
sider any column vector Coli(M), i ∈ [n] \ [k]. By definition,
Coli(M) =

∑k
t=1 αi,t · Colt(M) for some coefficient vector

αi := (αi,1, . . . , αi,k) ∈ Fk×1. Thus, in order to completely
specify all the entries of Coli(M), it suffices to determine the
coefficient vector αi. But M ′ has full rank, hence the equation

M ′αT
i = Col≤k

i (M)
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has a unique solution. Therefore, the coefficient vector αi is
fully determined by M ′ and Col≤k

i (M). Thus, the matrix
M can be uniquely recovered from R,C and the indices
{i1, . . . , ik}, {j1, . . . , jk}.

The following corollary gives us an upper bound on the
number of low-rank matrices that contain sparse column and
row space bases. In what follows, we denote by Mn,k,s the
set of matrices over Fn×n of rank k that contain an s-sparse
row space basis and an s-sparse column space basis.

Corollary 1 (Efficient encoding of sparse-base matrices).

|Mn,k,s| ≤ (n · |F|)6s .

Proof. Throughout the proof, we assume without loss of
generality that s ≥ k, as otherwise |Mn,k,s| = 0 hence the
inequality trivially holds. The function ϕ from Lemma 2 maps
matrices from Mn,k,s to (R,C, i1, . . . , ik, j1, . . . , jk), where
R and C are s-sparse bases. Therefore, the total number of
matrices in Mn,k,s is bounded from above by((

kn

s

)
· |F|s

)2

· n2k ≤
(
(n2)s · |F|s

)2 · n2k ≤ (n · |F|)6s ,

where the last inequality follows from k ≤ s.

Now we show that a matrix of low rank with nonzero entries
on the main diagonal must contain many nonzero entries. To
get some intuition on this, notice that a rank 1 matrix with
nonzero entries on the diagonal must be nonzero everywhere.
Also notice that the assumption on the diagonal is crucial –
low rank matrices in general can be very sparse.

Lemma 3 (Sparsity vs. Rank for matrices with non-zero
diagonal). For any matrix M ∈ Fn×n with non-zero entries
on the main diagonal (i.e., Mi,i ̸= 0 for all i ∈ [n]), it holds
that

s(M) ≥ n2

4rk(M)
.

Proof. Let s denote s(M). The average number of nonzero en-
tries in a column of M is s/n. Therefore, Markov’s inequality
implies that there are at least n/2 columns in M each of which
has sparsity at most 2s/n. Assume without loss of generality
that the first n/2 columns of M are such. Now pick a maximal
set of linearly independent columns among these columns. We
now finish the proof by showing that the cardinality of this
set is at least n2/(4s). Indeed, in any set of less than n2/(4s)
columns, the number of coordinates (i.e., row indices) that are
nonzero in at least one of those columns is less than

n2

4s
· 2s
n

=
n

2

and therefore there exists a coordinate i ∈ {1, . . . , n/2} that
is zero in all those columns. As a result, the ith column,
which by assumption has a nonzero ith coordinate, must be
linearly independent of all those columns, in contradiction to
the maximality of the set. We therefore get that

rk(M) ≥ n2/(4s) ,

as desired.

The last lemma we need is also the least trivial. In order
to use Corollary 1, we would like to show that any n × n
matrix of rank k has sparse row and column space bases,
where by sparse we mean that their sparsity is roughly k/n
times that of the entire matrix. If the number of nonzero entries
in each row and column was roughly the same, then this
would be trivial, as we can take any maximal set of linearly
independent columns or rows. However, in general, this might
be impossible to achieve. E.g., consider the n×n matrix whose
first k columns are chosen uniformly and the remaining n−k
columns are all zero. Then any column space basis would
have to contain all first k columns (since they are linearly
independent with high probability) and hence its sparsity is
equal to that of the entire matrix. Instead, what the lemma
shows is that one can always choose a principal submatrix
with the desired property, i.e., that it contains sparse row and
column space bases, while at the same time having relative
rank that is at most that of the original matrix.

Lemma 4 (Every matrix contains a principal submatrix of low
relative-rank and sparse bases). Let M ∈ Mn,k be a matrix.
There exists a principal submatrix M ′ ∈ Mn′,k′ of M , such
that k′/n′ ≤ k/n, and M ′ contains a column space basis and
a row space basis of sparsity at most

s(M ′) · 2k
′

n′ .

Note that if M contains a zero entry on the main diagonal,
the lemma becomes trivial. Indeed, we can take M ′ to be a
1 × 1 principal submatrix formed by this zero entry. Thus,
the lemma is only interesting for matrices M without zero
elements on the main diagonal (i.e., when every principal
submatrix has rank greater than 0).

Proof. We prove the statement of the lemma by induction on
n. The base case n = 1 holds trivially.

Now let n > 1, and assume that the statement of the lemma
is proven for every m×m matrix for 1 ≤ m < n. Let s(i) be
the number of nonzero entries in the ith column plus the num-
ber of non-zero entries in the ith row (note that a nonzero entry
on the diagonal is counted twice). Let also smax = maxi s(i).
By applying the same permutation to the columns and rows
of M we can assume that s(1) ≤ s(2) ≤ · · · ≤ s(n) holds.

If for some 1 ≤ n′ < n, the leading principal submatrix M ′

of dimensions n′ × n′ has rank at most k′ ≤ n′k/n, then we
use the induction hypothesis for M ′. This gives us a principal
submatrix M ′′ of dimensions n′′ × n′′ and rank k′′, such that
M ′′ contains a column space basis and a row space basis of
sparsity at most s(M ′′) · 2k′′

n′′ . Also, by induction hypothesis
k′′/n′′ ≤ k′/n′ ≤ k/n, which proves the lemma statement in
this case.

Now we assume that for all n′ < n, the rank of the leading
principal submatrix of dimension n′×n′ is greater than n′k/n.
We prove that the lemma statement holds for M ′ = M for a
column space basis, and an analogous proof gives the same
result for a row space basis.

For every 0 ≤ i ≤ smax, let ai = |{j : s(j) = i}|. Note
that

smax∑
i=0

ai = n . (1)
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Let us select a column space basis of cardinality k by greedily
adding linearly independent vectors to the basis in non-
decreasing order of s(i). Let ki be the number of selected
vectors j with s(j) = i. Then

smax∑
i=0

ki = k. (2)

Next, for any 0 ≤ t < smax, consider the leading principal
submatrix given by indices i with s(i) ≤ t. The rank of this
matrix is at most k′ =

∑t
i=0 ki, and its dimensions are n′×n′,

where n′ =
∑t

i=0 ai < n. Thus by our assumption k′/n′ ≥
k/n, or equivalently,

t∑
i=0

ki ≥
k

n
·

t∑
i=0

ai . (3)

From (1) and (2),
smax∑
i=0

ki =
k

n
·
smax∑
i=0

ai . (4)

Now, (3) and (4) imply that for all 0 ≤ t ≤ smax:
smax∑
i=t

ki ≤
k

n
·
smax∑
i=t

ai . (5)

To finish the proof, notice that the sparsity of the constructed
basis of M is at most

smax∑
i=1

i · ki =
smax∑
t=1

smax∑
i=t

ki
(5)
≤ k

n
·
smax∑
t=1

smax∑
i=t

ai

=
k

n
·
smax∑
i=1

i · ai = s(M) · 2k
n

.

Now we are ready to prove our main result – a lower bound
on the minrank of a random graph.

Theorem 2.

Pr

[
minrkF(Gn,p) ≥ Ω

(
n log(1/p)

log (n|F|/p)

)]
≥ 1− e

−Ω

(
n log2 (1/p)

log2 (n|F|/p)

)
.

Proof. Let us bound from above probability that a random
graph Gn,p has minrank at most

k :=
n log(1/p)

C log (n|F|/p)
,

for some constant C to be chosen below.
Recall that by Lemma 4, every matrix of rank at most k

contains a principal submatrix M ′ ∈ Mn′,k′ of sparsity s′ =
s(M ′) with column and row space bases of sparsity at most

s′ · 2k
n
,

where k′/n′ ≤ k/n. By Corollary 1, there are at most (n′ ·
|F|)6(2s′k/n) such matrices M ′, and (for any s′) there are

(
n
n′

)
ways to choose a principal submatrix of size n′ in a matrix of

size n× n. Furthermore, recall that Lemma 3 asserts that for
every n′, k′,

s′ ≥ n′2

4k′
. (6)

Finally, since M ′ contains at least s′−n′ off-diagonal non-zero
entries, M ′ represents Gn′,p with probability at most ps

′−n′
.

We therefore have

Pr [minrkF(Gn,p) ≤ k]

≤
∑

k′,n′,s′

Pr
[
Gn,p M ′ ∈ Mn′,k′ represents Gn′,p,

s(M ′) = s′, s(bases of M ′) ≤ s′ · 2k
n

]
≤

∑
k′,n′,s′

(
n

n′

)
· ps

′−n′
· (n′ · |F|)12s

′k/n

≤
∑

k′,n′,s′

2n
′ logn−s′ log(1/p)+n′ log(1/p)+(12s′k/n) log (n′|F|) ,

(7)

where all the summations are taken over n′, k′, s.t. k′/n′ ≤
k/n and s′ ≥ n′2

4k′ , the first inequality is again by Lemma 4, and
the second one is by Corollary 1. By s(bases of M ′) ≤ s′ · 2kn
we mean that M ′ contains row and column space bases of
sparsity at most s′ · 2k

n . We now argue that for sufficiently
large constant C, all positive terms in the exponent of (7) are
dominated by the magnitude of the negative term (s′ log(1/p)).
Indeed,

n′ log n+ n′ log(1/p) + (12s′k/n) log (n′|F|)
= n′ log (n/p) + (12s′k/n) log (n′|F|)
≤ (4s′k′/n′) log (n/p) + (12s′k/n) log (n|F|)
≤ (16s′k/n) log (n|F|/p) = (16s′/C) log (1/p) ,

where the first inequality follows from (6), and the second one
follows from k′/n′ ≤ k/n.

Since

s′ log(1/p) ≥ n′2 log(1/p)

4k′
≥ n log(1/p)

4k

=
n log(1/p)C log (n|F|/p)

4n log(1/p)
≥ C log n

4
,

we have that for every C ≥ 17,

Pr

[
minrkF(Gn,p) ≤ k =

n log(1/p)

C log (n|F|/p)

]
≤ n4 · 2s

′ log(1/p)·(16/C−1) ≤ n4 · 2−s′ log(1/p)/17

≤ n4 · 2−C log(n)/(17·4) ≤ 0.5 .

In particular, E [minrkF(Gn,p)] ≥ n log(1/p)
2C log (n|F|/p) . Further-

more, note that changing a single row (or column) of a matrix
can change its minrank by at most 1, hence the minrank of
two graphs that differ in one vertex differs by at most 1. We
may thus apply Lemma 1 with λ = Θ

(√
n log(1/p)

log (n|F|/p)

)
to obtain

Pr

[
minrkF(Gn,p) ≥ Ω

(
n log(1/p)

log (n|F|/p)

)]
≥ 1− e

−Ω

(
n log2 (1/p)

log2 (n|F|/p)

)
.
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as desired.

Corollary 2. For a constant 0 < p < 1 and a field F of size
|F| < nO(1),

Pr [minrkF(Gn,p) ≥ Ω(n/ log n) ] ≥ 1− e−Ω(n/ log2 n) .

A. Tightness of Theorem 2

In this section, we show that Theorem 2 provides a tight
bound for all values of p bounded away from 1 (i.e., p ≤
1− Ω(1)). (See also the end of the section for the regime of
p close to 1.)

Theorem 3. For any p bounded away from 1,

Pr

[
minrkF(Gn,p) = O

(
n log(1/p)

log n+ log(1/p)

)]
≥ 1−e−Ω(n) .

Proof. If p ≤ n−1/8, then n log(1/p)
logn+log(1/p) ≥ Ω(n), but

minrkF(G) is always ≤ n which makes the statement trivial.
Thus, in the following we assume that p > n−1/8.

As we saw in the introduction, in the case of a clique (a
graph with an arc between every pair of distinct vertices) it
is enough to broadcast only one bit. This simple observation
leads to the “clique-covering” upper bound: If a directed graph
G can be covered by m cliques, then minrkF(G) ≤ m ([21],
[3], [17]). Note that the minimal number of cliques needed to
cover G is exactly χ(Ḡ). Thus, we have the following upper
bound: For any field F and any directed graph G,

minrkF(G) ≤ χ(Ḡ) . (8)

Note that if we sample a graph from Gn,p and take its
complement, the resulting graph is distributed according to
Gn,1−p. Now it follows from (8) that an upper bound on
χ(Gn,1−p) with high probability, implies the same upper bound
on minrkF(Gn,p).

Let G−
n,p denote a random Erdős-Rényi undirected graph

on n vertices, where each edge is drawn independently with
probability p. For constant 0 < p < 1, the classical result
of Bollobás [22] asserts that the chromatic number of an
undirected random graph satisfies

Pr

[
χ(G−

n,1−p) ≤
n log (1/p)

2 log n
(1 + o(1))

]
> 1−e−Ω(n) . (9)

In fact, Pudlák, Rödl, and Sgall [23] showed that (9) holds for
any p > n−1/4.

Since we define the chromatic number of a directed graph
to be the chromatic number of its undirected counterpart,
χ(Gn,1−p) and χ(G−

n,1−p2) have identical distributions. The
bound (9) depends on p only logarithmically (log (1/p)), thus,
asymptotically the same bounds hold for the chromatic number
of a random directed graph.

The lower bound of Theorem 2 is also almost tight for
the other extreme regime of p = 1 − ε, where ε = o(1).
Łuczak [24] proved that for p = 1− Ω(1/n),

Pr

[
χ(G−

n,1−p) ≤
n(1− p)

2 log n(1− p)
(1 + o(1))

]
(10)

> 1− (n(1− p))
−Ω(1)

.

When p = 1 − ε, the upper bound (10) matches the lower
bound of Theorem 2 for ε ≥ n−1+Ω(1). For ε = O(n−1), (10)
gives an asymptotically tight upper bound of O(1). Thus, we
only have a gap between the lower bound of Theorem 2 and
known upper bounds when p = 1− ε and ω(1) ≤ nε ≤ no(1).
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