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Sinusoidal Parameter Estimation From Signed

Measurements Via Majorization—Minimization
Based RELAX

Jiaying Ren *”, Tianyi Zhang, Jian Li

Abstract—We consider the problem of sinusoidal parameter es-
timation using signed observations obtained via one-bit sampling
with fixed as well as time-varying thresholds. In a previous paper,
a relaxation-based algorithm, referred to as IbRELAX, has been
proposed to iteratively maximize the likelihood function. However,
the exhaustive search procedure used in each iteration of 1bRE-
LAX is time-consuming. In this paper, we present a majorization—
minimization (MM) based 1bRELAX algorithm, referred to as
1bMMRELAX, to enhance the computational efficiency of 1bRE-
LAX. Using the MM technique, IbMMRELAX maximizes the like-
lihood function iteratively using simple fast Fourier transform op-
erations instead of the more computationally intensive search used
by 1bRELAX. Both simulated and experimental results are pre-
sented to show that IbMMRELAX can significantly reduce the
computational cost of 1bRELAX while maintaining its excellent
estimation accuracy.

Index Terms—Signed measurements, one-bit sampling, fixed or
time-varying thresholds, sinusoidal parameter estimation, 1bRE-
LAX, majorization-minimization (MM), MM-based 1bRELAX
(IbMMRELAX).

1. INTRODUCTION

IGNAL quantization is a key step in digital signal pro-
S cessing applications which converts an analog signal into
a digital signal. The typical case of quantization is to obtain
high precision quantized samples, where the quantization error
can be modeled as additive noise. However, as the power con-
sumption and cost of an analog-to-digital converter (ADC) grow
exponentially with the bit depth b, low resolution quantization
might be of interest, especially when the sampling rate is high
[1], [2]. Low resolution quantization plays an important role in
modern digital signal processing due to its low cost and low
power consumption advantages and for allowing for ultra-high
sampling rates [1], [2]. Low resolution sampling has many ap-
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plications, including spectral sensing for cognitive radios and
radars [3], [4], environmental sensing using automotive radars
for autonomous driving [5]-[7], and channel estimation for mas-
sive multiple-input multiple-output (MIMO) systems [8]—[18].

As an extreme form of low resolution quantization, one-bit
sampling (which quantizes the signals using a simple compara-
tor with some reference levels) has attracted much research
interests recently [8]-[36]. The power consumption of one-bit
sampling at a rate of 240 GHz is only about 10 mW, which is
much less than the power consumed by a conventional ADC
[2], [37]. The idea of one-bit sampling appeared in early works
[38]-[43], and was further theoretically analyzed in [31]-[33],
[44], [45]. Due to its attractive properties, one-bit sampling has
been considered for radar sensing [19]-[25], frequency estima-
tion for both temporal and spatial sinusoidal signals [27]-[32],
as well as massive MIMO millimeter (mm) wave communi-
cations [8]-[18]. In most of the previous literature on one-bit
sampling, however, the focus was on comparing the signals to
zero, which means that signal amplitude information could not
be recovered [33], [35]. In this paper, we consider the problem
of sinusoidal parameter estimation using signed measurements
obtained via one-bit sampling with fixed as well as time-varying
thresholds.

Recently, one-bit sampling using time-varying thresholds has
been considered to enable accurate amplitude estimation. In
[26], the maximum-likelihood (ML) estimator and the corre-
sponding Cramer-Rao bounds (CRBs) are presented and it was
shown that one-bit sampling with time-varying thresholds al-
lows for accurate amplitude estimation for either known or
unknown noise variances. In [34], a relaxation-based method,
referred to as 1bRELAX, is proposed for sinusoidal parame-
ter estimation via the maximization of the likelihood function.
The 1bRELAX algorithm provides a good estimation perfor-
mance but still suffers from a high computational burden due
to the time-consuming exhaustive searches needed in each it-
eration. Additionally, sparse methods based on /; and logarith-
mic penalty are proposed in [36], but the numerical examples
in [34] have demonstrated that 1bRELAX outperforms these
sparse methods.

In this paper, a sinusoidal parameter estimation method based
on the 1bRELAX framework and majorization-minimization
(MM, see, e.g. [46], [47]) approach is proposed. We derive an
MM algorithm that can be used to maximize the likelihood
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function for the signed measurements via simple FFT opera-
tions. One key step of our derivation is finding an appropriate
majorizing function for the negative log-likelihood of the signed
measurements. By using the MM technique, the proposed MM-
based 1bRELAX algorithm, referred to as IbMMRELAX, en-
hances the computational efficiency of IbRELAX without sac-
rificing its excellent estimation accuracy. Note that though the
MM approach, which is a type of iterative method for opti-
mization problems [46]-[50], has been widely used in many
applications [51]-[53], it is not clear how MM can be used
to deal with the maximum likelihood problem for the signed
measurements. Our main contributions can be summarized as
follows:

1) We present a majorization-minimization (MM) based
IbRELAX algorithm, referred to as IbMMRELAX, for
sinusoidal parameter estimation using signed measur-
ments obtained via one-bit sampling with fixed non-zero
or time-varying thresholds.

2) Weintroduce a proper majorizing function and develop the
MM procedure for minimizing the negative log-likelihood
function for the signed measurements. The resulting opti-
mization problem at each MM iteration can be interpreted
as a sinusoidal parameter estimation problem for infinite
precision data, so that the negative log-likelihood function
for the signed measurements can be minimized by using
the MM approach via simple FFT operations.

3) For the case that the number of sinusoids, i.e., the model
order, is unknown, we explain how the proposed algo-
rithm can be used with the one-bit Bayesian informa-
tion criterion (1bBIC) [54] to simultaneously estimate
the sinusoidal parameters and determine the number of
sinusoids.

4) We also extend the proposed algorithm to the complex-
valued case and the two-dimensional (2-D) case.

5) Both fixed non-zero and time-varying thresholds are con-
sidered to enable accurate amplitude estimation from
signed measurements obtained via one-bit sampling.

6) Numerical examples are provided to demonstrate the per-
formance of IbMMRELAX and 1bBIC for sinusoidal pa-
rameter estimation and model order determination. We
also compare the performance of IbMMRELAX with
that of several existing methods and with the correspond-
ing CRBs. Additionally, the results obtained by apply-
ing IbMMRELAX with 1bBIC to experimental data for
range-Doppler imaging using automotive radar are pre-
sented to demonstrate the effectiveness of the proposed
method for practical applications.

Notation: We denote vectors and matrices by boldface lower-
case and upper-case letters, respectively. (-)7 and (-)” denote
the transpose and the conjugate transpose, respectively. R €
REXM denotes a real-valued I x M matrix, and R € CL*M
denotes a complex-valued L x M matrix. R™ denotes the pos-
itive real numbers. Re (x) and Im (x) denote the real and imag-
inary parts of x, respectively. X = {x, ., } denotes a matrix
whose (n, m)th entry is z,, ,,, . vec (+) is the vectorization oper-
ator that stacks the columns of a matrix on top of each other.

Finally, 7 = v/—1.
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II. PROBLEM FORMULATION

Consider a real-valued one-dimensional (1-D) sinusoidal sig-
nal s; (0) [55]-[38]:

K
St (9) = Z A],«,Sin (wk‘t + ¢k)
k=1

K

= Z aj.sin (wkt) + by cos (wkt) R (1)
k=1

where K is the number of sinusoids, A, € R™, w; € [0,7),
and ¢; € [0,27) denote the amplitude, frequency, and phase
of the kth sinusoidal component, respectively, and ¢ denotes
the time variable. The unknown sinusoidal parameter vector
is denoted by 0 = [ay, by, wi, ..., ax, bk, wi] € R¥ with
ap = A cos ¢, € R and by, = Ay sin ¢y € R.

Suppose that we have N noisy, 1-D real-valued signed mea-
surements, obtained via one-bit sampling with a real-valued

time-varying threshold {h,, }"_1, given by:
Yn = Sign (571 (9) +e, — hn) 5 (2)
where e = [eg,...,en_1]" € RV is the unknown additive

noise vector, h = [h, ..., hy_1]" € R is the known thresh-
old vector, 7 is the time index, and sign (-) is the sign operator
defined as:

en () 1 ifx >0, 3)
sign (z) =
& 1 ifz <o
Under the assumption that the additive noise e,, is i.i.d. Gaus-
sian with zero-mean and unknown variance o2, the likelihood
function of the signed measurements is given by [26], [34]:

L<ﬁ>=ﬁ¢(yHW%)

ag
n=0

(Zle agsin (wgn) + by.cos (wkn)) — h,

N-1 ’
= H @ Yn )
n=0 o
)

where @ (x) denotes the cumulative distribution function (cdf)
of the standard normal distribution and the unknown parameter
vector is 3 = [0, o] (To simplify the notation, we assume
that the sampling period is unity.)

We are interested in estimating the parameter vector 3, as
well as the order I, based on the signed measurement vector

Yy = [yoyylv"wnyl}T € {71’+1}AV

III. MAXIMUM LIKELIHOOD ESTIMATION AND 1BRELAX
A. Maximum Likelihood Estimation

The maximum likelihood (ML) estimator is a theoretically
appealing approach for sinusoidal parameter estimation since it
has many desirable properties including consistency, asymptotic
efficiency and asymptotic normality. One can obtain the ML
estimate of the parameter vector 3 by minimizing the negative
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log-likelihood function [26]:

~

"’: inl > _ .
B argngn (,8) argn}émlz

K

—log |® |y, Z&'ksin(wkn) —&-chos(wkn) — )\hn>> ,
=1

(5

where \ = % ap = %ak, b, = %bk, and the unknown pa-

rameter vector is rewritten as (3 = [gT, AT with 6=
[Zil,bl,wl, . ,5]{,bK7wK']T.

Letw = [wy,wa, ... ,wK]T be a vector composed of the fre-
quencies of s;(8). For given w, the above optimization problem
is convex in {a@; }/ |, {bx }£_, and \. Therefore, for fixed w,
globally optimal methods can be employed to find the minimiz-
ing values of {ay, }1_,, {by }+_, and X [26], [34]. With this fact
in mind, the ML estimator can be summarized as follows. First,
perform a K -dimensional search of w on the feasible space of
frequencies [0, )", then compute the corresponding optimal

{@x 1, {br}_, and X as functions of w. The details on the
implementation of the K -dimensional frequency search can be
found in [34].

Note that a direct grid-based implementation of the ML al-
gorithm requires a K -dimensional search on [0, 7)X . Suppose
that there are L points in each dimension. Then, the (2K + 1)-
dimensional convex optimization problem should be solved
O(L%) times. As the number of sinusoids K increases, the
search over the high-dimensional frequency space becomes
computationally prohibitive and more efficient algorithms must
be considered [26], [34].

B. IDRELAX and IbCLEAN

Inspired by the RELAX algorithm, which is a conceptually
and computationally simple method for harmonic retrieval pro-
posed for the infinite precision quantization case [56], the IbRE-
LAX algorithm was proposed as a relaxation-based approach to
maximize the likelihood function [34].

The detailed steps of IbRELAX are depicted in Table I. The
exhaustive search procedure in the 1bRELAX iterations is im-
plemented by first performing a coarse search on a uniform grid
of N frequencies in [0, 7). Then, a finer estimate is obtained
by minimizing the objective via the Matlab fmincon function
over the interval [0, — &, Wr + %], where &y, is the coarse fre-
quency estimate. The “practical convergence” for each assumed
model order, i.e., in each step of the IbRELAX algorithm is de-
termined by checking the relative change of the objective values
l (,B) between two consecutive iterations. IbRELAX estimates
the parameters of a new sinusoid based on the sinusoids esti-
mated in the previous steps, and then updates the parameters of
each sinusoid iteratively in each step. Since the update procedure
is implemented by means of an exhaustive search, IbRELAX is
rather time-consuming.

Note that if we do not update the parameter estimates of each
sinusoid iteratively for each model order, i.e., in each step, of
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TABLE I
IBRELAX

I: Input: Signed measurement vector y, the desired or estimated
model order K, and the maximum number of update iterations Ir.
2: Assume K = 1. Obtain {El,'gl,al} and A by solving (5)
via the exhaustive search (over wy).

3: for K =2: K

4: i=0;

5:  Repeat:

6: Obtain {/E\K,EK,QK} by solving (5) via the exhaustive
search with {ag, bq, wq}f;ll and A replaced by their
most recent estimates {gq,gq, Gq}é{;ll and X;

7 Redetermine {;7\1,51, @1} and B by solving (5) via the
exhaustive search with {ag, bg, wq}f:2 replaced by
their most recent estimates {gq,gq,@q}éiQ;

8: if K >2

9: fork=2:K—-1

10: Update {3k,gk,®k} by solving (5) via the exhaustive

search with {ag, b, wq}é(;l 421 and A replaced by

their most recent estimates {ag, bq,@q}f:l’q;ék and A.
11: end
12: end
13: =14+ 1;
14:  Until practical convergence or ¢ reaches the maximum number /.
15: end

16: Output: {ax | = (@}, /N b, = (B}, /X
{wi}E |, and X

IbRELAX, then the IbRELAX algorithm becomes a CLEAN-
like algorithm (see [59], [60], and for an overview, see Section
6.5.7 in [55]), referred to as IbCLEAN hereafter. Specifically,
in the K'th step, IbCLEAN estimates the parameters of the K'th
sinusoid and updates h\ by solving (5) via the exhaustive search
approach based on the parameters of the (K — 1) sinusoids
obtained in the previous steps. Compared with 1bRELAX, the
IbCLEAN algorithm has a lower computational complexity due
to avoiding the update of the sinusoidal parameters, but provides
less accurate parameter estimates than 1bRELAX, especially
when the sinusoidal frequencies are closely spaced.

Remark 1: The above discussion assumes that the noise vari-
ance is unknown, which is the common case in practical appli-
cations. If ¢ is known, the negative log-likelihood function can
be minimized more easily since A in (5) is known. The sinu-
soidal parameter estimation algorithms for known o are similar
to those for unknown o and we do not present them to keep this
paper concise.

IV. MAJORIZATION-MINIMIZATION BASED 1BRELAX

In this section, we derive a majorization-minimization (MM)
based 1bRELAX algorithm, referred to as IbMMRELAX, to
reduce the computational cost of IbRELAX. We first derive a
computationally efficient MM approach to minimize the nega-
tive log-likelihood function I(3) in (5). After that, we introduce
the ILMMRELAX algorithm to estimate the 1-D real-valued si-
nusoidal parameters from signed measurements. The Bayesian
information criterion (BIC) is used with IbMMRELAX to esti-
mate the number of sinusoids, i.e., the model order, from the one-
bit observations. Finally, the proposed algorithm is extended to
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parameter estimation problems associated with one-bit mea-
surements of both 1-D and 2-D complex-valued sinusoids.

A. Negative Log-Likelihood Minimization Using MM

In this subsection, we introduce a majorization-minimization
(MM) based method to minimize the negative log-likelihood
function I(B) for the signed measurements, i.e., to solve the
optimization problem (5).

1) Majorization-Minimization Algorithms: We start by
briefly reviewing the basic idea of MM. MM refers to a type of
iterative methods that can transform a hard optimization prob-
lem into a sequence of simpler ones [46]-[50]. Initialized at a
feasible solution 3", a typical MM algorithm for solving (5)
consists of two steps at the ith iteration: the majorization step
and the minimization step [46]—[50]. Specifically, the majoriza-
tion step s to find a majorizing function G(3|3") for I(3), such
that:

1(B) <c (BB, ©)
(B) =c(818), ()

where LN")” is the estimate obtained at the :th MM iteration.
Then the second minimization step is to update the parameter
vector by solving the minimization problem:

Bt = arguninG (813'). (®)

The objective function /(3) is guaranteed to monotonically
decrease since

Z(Bi) :G<Bi|Bi> ZG(,BHI\,BZ) Zl(gz#l). 9)

The equality follows from (7), the first inequality from (8),
and the second inequality from (6). Note that the monotonic-
ity property of MM still holds under the weaker condition
G(B|3") < G(B'|B'). Consequently, the minimization of
G(B|B') is not strictly necessary. We only need to decrease the
criterion in (8) within the MM framework [46], [47].

2) Majorizing the Negative Log-Likelihood: Finding an ap-
propriate majorizing function is the key step for developing an
efficient MM algorithm. To construct a majorizing function for

the negative log-likelihood [(3), we proceed as follows: first, de-

fine an auxiliary vector x(83) = [z0(8),71(8), ..., zn_1(8)]"
with

@, (5) =y (sn (5) - /\h,,,)  m=0,....N—1. (10)
Then the objective function in (5) can be rewritten as:
~1
1(8) =1(x(8)) =~ > rox (@ . (8)))
N-1
S @)

where f(x) £ —log(®(x)). Next, we prove the following
results.
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Fig. 1.  The second-order derivative of f(z).

Lemma 1: Let f(x) & —log(®(x)), z € R. Then:
1) For all z € R, f(z) has a bounded second-order deriva-
tive:
0< f"(z) <1 (12)
2) For all z,u € R, the following inequality implied by

Taylor’s theorem (which is a simple corollary of the mean
value theorem) holds:

F) < F @)+ @)@ — )+ g (-, ()

Note that (13) becomes an equality for x = u.
Proof: The first inequality in (12) is a direct corollary of a

classical result on the inverse Mills ratio (IMR) [61], [62]. Note
that the first derivative of f(z) can be calculated as:

1 B e
F0="5a) [FoeTdt [CTeTdt
= —Ip(-x), (14)

where ¢ () is the standard normal probability density function,
and I (x) is known as the IMR. It has been proven that the first
derivative of IMR, I}, (x), belongs to the interval (0, 1) for all
x € R [61], [62]. Therefore, 0 < f"(x) = I (—z) < 1 for all
x € R. Fig. 1 illustrates this bounded property of f”(z).

Then, invoking the second-order Taylor theorem [63] for any
u € R, f(x) can be written as:

f"(n)
;@

fl@)=f@+f (u)(@—u)+ —u)’, (19

where 7 lies between x and . Since f”(n) is upper bounded as
in (12), we obtain the upper bound in (13) for f(x). [ ]

It follows from the above lemma that given x' = x(3'), the
estimate obtained at the ith MM iteration, we can majorize the
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objective function of (5) by:
() =6 (x(3) ) - 3 1
n=0
760 (50 (B) 1) 2 o (B) 1)

3) Update Rule and Computationally Efficient Implementa-
tion: With the above observations in mind, the updating formula
at the (7 + 1)th iteration of the MM approach has the following
form:

(16)

N -1

min G (x(B) 1) =min 3 1 s
#1/() (o0 (B) =) 5 (o0 (B) 1)

A simple calculation shows that:
(s(3) )
Z % [m (ﬂ) =2 (z, = f'(2,)) (B)} + const

N-
1 ~ ) 12
- Z 5 20 (B) - @ = 7 (@) +eonst. 8)
It follows from (18) that the minimization of G(x(3)|x") in
(17) is equivalent to the following problem:
. 12
mlnz [1,, ( ) —(z!, = f (x;))} (19)
n=0
Inserting (10) into (19) yields:
Imn g (,5’ | 57)
~ 92
- HllIl Z |:3n ( ) - — Yn ( €T, — f/ (J?ib)):| 5 (20)

n=0

We need to solve (20) at the (z + 1)th MM iteration. Note that
the optimization problem (20) can be interpreted as a sinusoidal
parameter estimation problem for infinite precision data.

Let z(ﬁ) = [zo(ﬁ) JEN— 1(ﬁ)] with
= (3) - (e ()~ (s (3) =01
Using this notation, we can write the optimization problem in

(20) as follows:
tmizg (5,/\|57") min NZ [Sn ( ) fn = 2 (Bi)r
- (22)

N —1.
21

The minimization of the objective function in (22) can be con-
veniently achieved by a cyclic algorithm [47] that alternates
between the minimization of g(6, \|3") with respect to A for
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fixed 6 and the minimization of g(8, A|3') with respect to 8 for
given \. The solution of the first step can be easily obtained in

closed-form as follows:
b [s (61) -3 (5)]

h”h ’

i+1
>\m+

; =max | 0, (23)

where s(0111) = [so(6F1), ..., sy_1(6:F1)]7 € RY, and the
index m denotes the iteration number in the cyclic minimization
performed at the ¢th MM iteration. Note that the monotonicity

property of the cyclic algorithm holds if
(93,,“ X+1|ﬁi) (02+1 Xmﬂﬂﬁi)
> g (0,0 XL 1BY)
The first inequality in (24) follows from the minimization of
g(6F1 |8 with respect to A, and the second inequality can be

mo ~
ensured by decreasing g(0 A |3") with respect to 6. Viewing

N b + 2 (ﬁ’)}n o as the input data, g(6. )\giﬂﬁi) can

be decreased efficiently by an N;-point zero-padded FFT and
subsequent spectral zoom operations, i.e., No-point chirp z-
transforms (CZTs) [64], [65], iteratively, for one sinusoid at a
time [56]. Note that the CZT can be implemented by simple FFT
and IFFT operations [64], [65]. [V is selected as the smallest
power of 2 greater than or equal to NV, and N> is chosen as a
proper number so that the FFTs and IFFTs performed in CZT
are for powers of 2 operations. Additionally, since there exists
a simple closed-form solution for A, we redetermine A\ after
updating each sinusoid.

The MM approach for solving the optimization problem in
(5) is summarized in Table II. The “practical convergence” of
the cyclic algorithm within each MM iteration is determined by
checking the relative change of the objective values of (22) be-
tween K consecutive iterations, and the “practical convergence”
of the MM iterations is obtained when the relative change of the
objective values of (5) between two consecutive iterations is
below a small threshold.

4) Discussions: Now we consider the convergence of the
MM algorithm. The technical conditions in [48] (see Propo-
sition 2.6 in [48]) guaranteeing that the proposed MM algo-
rithm converges to a stationary point of the function in (5) can
be shown to hold under some mild assumptions, by means of
straightforward calculations (which we omit in the interest of
brevity).

Then, we briefly discuss the computational complexity of
the MM algorithm for maximizing the likelihood function for
signed measurements. Since the MM algorithm is implemented
by means of simple FFT operations, the per inner-iteration com-
putational complexity of the MM algorithm is O(N log, N).

(24)

B. IbMMRELAX

We now present the IbLMMRELAX algorithm for efficiently
estimating the 1-D real-valued sinusoidal parameters from
signed measurements. The basic idea is to speed up the 1bRE-
LAX algorithm through the use of the MM technique. The
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TABLE II
MM ALGORITHM FOR (5)

I: Input: Signed measurement vector y, known threshold vector h,

initializations 8° and \°, maximum number of MM iterations Iy,
model order K, and 7 = 0.

2: Repeat:

3:  Update: B = PiT,/\i T,

4 %0 (BY) =y (wn (B) = 1" (20 (BY)) ) m =00 N =1,
55 6t =6.m=0k=K.

6: Repeat: » -

7 Update /\i:il = max <07 —hT[S(e:ﬁ;Lii(ﬁz)] );

. k _ > i i+1 K
8: Up = Zn (@1) + A fihn — Zp:l,p;ék
{E;Tnllsin (w;'f#bn +‘l;;'f',,llcos (w;t,an) bn=0,-- ,N—-1,

. =it Tl i+1 : .
9: Update {1(\172’71”4'17 byt 1) Whmy 1t DY using Ni-point FFT
EANZ

on {vn}n_zfl i1 i1

10: Refine {ct}cm_'_17 b;“m_'_l,w,’“m_'_l} by using Na-point CZT
spectral zoom on {vﬁ}ﬁ’;ol within the frequency
. i+1 27 i+l 2r
interval [“’k,m+1 — N Ykl + N

11: Redetermine {@:"1 ., biTL ol % by using Na-point

: kym+10 Pk, m410 Yk mp1J DY USINg Na-p
CZT spectral zoom on {vﬁ}ﬁ’;ol within the
: i+l ar i+1 4
frequency interval [“Jk,m+1 ~ N N3 Wkima1 + N1N2]
. i+l _ [=i+1 Tit1l il ~i+1 T+l i1
12: 01 = |01 s 01 s W 7ak,m,+1’bk,m+17wk,m,+1’
~i41 i+l il
: ’aK,7n’bK4,m’ K,m |’

13: k = mod (k, K) + 1, where mod(-) denotes the modulo
operation;

14: m=m-+1;

15:  Until practical convergence.

16: 1=1+1;

17: Until practical convergence or ¢ reaches the maximum number ;.
18: Output: 0, \.

IbMMRELAX algorithm is obtained by replacing the update
procedure of IbRELAX (see Step 7-14 of Table I) by the MM
algorithm proposed in the above subsection. Specifically, the
IbMMRELAX algorithm begins by assuming K = 1. In the
Kth step, we first use the N-point exhaustive coarse search
(in the frequency domain) to get the initial parameters of
the K'th sinusoid making use of the (K — 1) sinusoids ob-
tained in the previous (K — 1) steps. Next, the algorithm re-
fines the parameter estimates of the K sinusoids, starting with
the K'th sinusoid, by using the MM technique to maximize
the likelihgod function. TlAme MM algorithm is initialized with
0" = [51,31,@1, . ,EK,EK,(DK] and \' = Xprovided by the
previous (K — 1) steps and the coarse search of the K'th step.
We then increase the model order by one in the next step and es-
timate the signal parameters similarly. The algorithm proceeds
until the desired or estimated model order is reached.
We conclude this subsection with the following comments:
1) A good initial estimate is of significant importance to the
MM approach since the objective function in (5) is not
convex in {wy; }X_ . With the exhaustive coarse search
used for initialization at each model order, i.e., El each step
of IbMMRELAX, good initial estimates {ay, by, & }X_,
are provided to the MM approach.
2) The IbMMRELAX algorithm refines the parameter esti-
mates via the MM approach based on simple FFT opera-
tions with a low computational cost. Therefore, the main
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computational burden of IbMMRELAX is due to the ex-
haustive coarse searches used for initializations. Conse-
quently, IbLMMRELAX has a computational complexity
of O(K'N?), similar to that of IbCLEAN. Compared to
the O(CKN? + CK?N?) flops required by 1bRELAX,
where C' is the number of iterations required to achieve
practical convergence at each model order, the proposed
IbMMRELAX algorithm has a significantly lower com-
putational complexity, especially when the number of si-
nusoids is large.

C. Determining the Number of Sinusoids

To determine the number of sinusoids, i.e., the model order
K, from signed measurements, we will use the one-bit Bayesian
information criterion (1bBIC) with 1bMMRELAX. Suppose
that B ¢ is the vector of parameter estimates obtained by the
IbMMRELAX algorithm for an assumed model order K ; then
the 1bBIC cost function is given by [54]:

o N-1 Sn (é\ﬁ’) —hy,
1bBIC (K) = 2> log [ @[y, &
g
n=0
+ 5KlogN. (25)

The estimate K of K is determined as the integer that minimizes
the 1bBIC cost function with respect to the assumed number of
sinusoids K.

D. Extension to the Case of 1-D Complex-Valued Sinusoids

The proposed IbMMRELAX algorithm for estimating 1-D
real-valued sinusoidal parameters from 1-D real-valued signed
measurements can be modified to deal with the 1-D complex-
valued harmonic retrieval problem. The data model for the 1-D
complex-valued case can be written as:

K
St (0) = ZAkej(wktJﬁ(bk)
k=1

K
[ak, COS (wkt) - bk sin (wkt)]

=~
Il
—

+ 7 lagsin (wgt) + by.cos (wit)] , (26)
where A,e/? = a5, + jby., and the unknown sinusoidal param-
eter vector is @ = [ay, by, wi, ..., ax,bx,wi]’ € R3X. For
notational simplicity, we use the same symbol s; (6) to denote
the signal, as in (1), despite the fact that it is a complex-valued
quantity in this section (the same is true for other symbols used
in the equations that follow).

By comparing the noisy signal samples to a complex-valued
reference threshold vector h = [hy, .. ., hN,l]T € C"N, we ob-
tain N complex-valued signed measurements y = [y, ..,

yv1)" € {144,014, -1+4,-1- 5"

Yn = SigHC (Sn (0) +e, — hn) ) (27)
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where e = [eg, .. .,eN,l}T € CV is the unknown additive
noise vector, and signc (+) is the sign-like operator for complex-
valued data:
signe (z) = sign (Re (z)) + jsign (Im (z)) . (28)
Assume that the additive noise e,, is i.i.d. circularly sym-
metric complex-valued Gaussian w1th zero-mean and unknoy;vn
variance 02, i.e., Re(e, ) ~ N(0, & “)andIm (e, ) ~ N(0, ).
Then, the likelihood function for the complex-valued signed
measurements is given by:

N-1
Re (s, (0)) — Re (hn)>
L3 = TTo/(Re,
® = T # (ren) =20
Im (s, (0)) — Im (hn)>

@ (Im (Yn) NG ;o (29
where the unknown parameter vector is 3 = [67, 0] or, equiv-
alently, 3 = [T, \]T with A = =7 f

For the 1-D complex-valued signed measurements, the
(i + 1)th MM iteration becomes

sn( )—)\h

N-1

mmg (0 /\\ﬁ ) = mm Z

3
= e e (5 () -7 (v o (3)
it (1 o (3)) (s () 1

o 6) =t o (3 )
+ 1 () (Tm (s (B) = A ) ) -

Similarly to the real-valued case, (30) can be conveniently
solved by the same type of cyclic algorithm. At the (m + 1)th
cyclic iteration performed within the (i + 1)th MM iteration,

(32)

minimizing (30) for fixed 0,1 yields:
. re {n" [ (61) -7 ()]}

ALl =max |0, W h . (33)
where s(0571) = [so(011), ..., sy_1 (05717 € CV, and
Z(B) = [Z(8Y),..., Zn- 1(52)} € CN. Next, for given
Aitl), the function g(@,\,'!|3") can be decreased effi-

ciently by using FFTs and CZT spectral zooms as discussed in
Section IV.A. We omit further details of IbMMRELAX for 1-D
complex-valued signed measurements since the modifications
are straightforward.
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Note that for 1D complex sinusoids, the 1bBIC function be-
comes [54]:

1bBIC (K)
N-1 Re (sn <§)> —Re (hy)
:—2;)log ® [ Re(yn) i
N-1 Im (sn (§)) —Im (h,)
—2ngolog ® [ Im (y,) NG
+ 5KlogN. 34

E. Extension to the Case of 2-D Complex-Valued Sinusoids

The IbMMRELAX algorithm can also be straightforwardly
extended to the case of 2-D complex-valued sinusoids. The 2-D
complex-valued sinusoidal signal can be expressed as:

K
§ A e] (wigt1 +worta+oy)

k=1

Sty tz 92D

K

= Z [akcos (wlkt1 + w2kt2) — bysin (wlktl + u.)zk;tg)]
k=1

+ 7 [axsin (wipts + wagts) + bycos (wigpts + warta)],
(35)

where 020 = [al,bl,wu,wgl, .. .,aK,bK7w1K,w2K]T €
R*K is the unknown signal parameter vector, a; = A,cosdy.,
b, = Agsingy,, with Ay and ¢, being the amplitude and phase
of the kth sinusoidal component, and ¢; (I = 1, 2) is the time
index for the /th dimension.

Similar to (28), the 2-D complex-valued signed mea-
surements Yoo ={¥n, i, €{14+751—J,—-1474-1—
j}Vi>N2 can be obtained by comparing the noisy signal to the
threshold Hop = {hy,, ,,, } € CN1 M2

- hm N ) )

where Eop = {e,, 1, } € CV1*N2 is the unknown additive
noise matrix with e,, ,, being i.i.d. circularly symmetric
complex-valued Gaussian with zero-mean and unknown vari-
ance 0.

In the 2D complex-valued case, the (i + 1)th MM iteration

becomes

Ynin, = Signc (3711 Ny (OQD) + €nyns (36)

Ni—1N;-1
min gop (02D7)\|ﬁ2D) = mln g E
GZD A 0:p n1 =0 ny=0

Sy s (521)) — My s — Zrms (ﬁ;D) e

where 3yp = [§2TD , AJ7 is the unknown parameter vector with
_ 1
A= o/V2

7 and z,, ,, is defined similarly to (31). The cyclic

algorithm for solving (37) can be obtained by replacing h, s
and z in (33) by vec(Hap ), vec(Sap ) and vec (ZQD , respec-
tively, and by appropriately modifying the steps used to decrease



2180

92D (5213, )\ﬁjﬂ@]}) by means of 2-D FFT and 2-D CZT
spectral zooms. We once again omit the details because the
modifications are straightforward.

Finally, note that for 2-D complex-valued sinusoids, the
IbBIC cost function can be shown to be:

Ni—1N,—1

BIC (K) = 2 3 3" log
0 o
® | Re (Yn,.n,) Re (s"‘v”z <§>> —Re (hn, n,)

G/\2

Ni—1Ny—1

—QZ Zlog

n1=0 ny=0

Im (87“7”2 (é\)) —Im (hmma)
G/V2

(b Im (y721~,n2 )

+ 6KlogN; Ns. (38)

V. SIMULATED AND EXPERIMENTAL EXAMPLES

In this section, we present both simulation and experimental
examples to demonstrate the performance of the proposed algo-
rithms for estimating the sinusoidal parameters and for deter-
mining the number of sinusoids using signed measurements. We
start by presenting numerical examples of 1-D sinusoidal param-
eter estimation from real-valued signed measurements obtained
via one-bit sampling with both time-varying and fixed non-zero
thresholds. The proposed IbMMRELAX algorithm is compared
with IbCLEAN and 1bRELAX in terms of estimation accuracy
and computational complexity, and the model order determina-
tion performance of 1bBIC is also evaluated. Then, we present
experimental examples of using IbMMRELAX with 1bBIC for
range-Doppler imaging using measured automotive radar data.
All the examples were run on a PC with 3.10 GHz CPU and
16.00 GB RAM.

A. Implementation Details

In our implementation of IbMMRELAX, we terminate the
MM iterations if the relative change of the negative log-
likelihood function [ (B) between two consecutive iterations is
less than 10~ or a maximum number of the MM iterations
Iy = 30 is reached. Within each MM iteration, we terminate
the inner loop if the relative change of the objective function in
(22) is less than 107°. Ny is set as the smallest power of 2 larger
than or equal to IV, and N, is set such that the length of FFTs
and IFFTs included in CZTs is 2/V; . Additionally, we terminate
the update iterations of 1bRELAX for each model order when

the relative change of [(/3) is less than 10~° or the maximum
number of the update iterations I = 30 is reached.
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B. Sinusoidal Parameter Estimation

1) Time-Varying Threshold: We first study the estimation ac-
curacy and the computational complexity of the IbMMRELAX
algorithm when compared to IbCLEAN and 1bRELAX.

Example 1: We consider a signal composed of K =6
sinusoids with frequencies {0.11 x 2w, (0.11+ 1/N) x 2,
0.2 x 27m,0.3 x 2m,0.37 X 27,0.45 x 27}, amplitudes {1,1,
0.7,0.8,0.6,0.5}, and phases {77/6,7/6, 7/2,7/4,117/6,
7}. Note that the first two frequencies are closely spaced. A
time-varying threshold, which is randomly generated from a
discrete set of 8 values uniformly distributed over [—1, 1], is
used to obtain the signed measurements. To evaluate the estima-
tion accuracy, the average mean-squared errors (MSEs) of the
sinusoidal parameter estimates are estimated from 200 Monte
Carlo runs. Note that each trial corresponds to an independent
noise and threshold realization.

We plot the average frequency and amplitude MSEs, the cor-
responding CRBs, as well as the probabilities of correct fre-
quency detection P; as functions of /N and SNR in Fig. 2 and
Fig. 3, respectively. In each trial, the frequency detection is con-
sidered correct if the maximum absolute error of the frequency
estimates is less than 21\—7 Note that the missed detection trials
are not taken into account in the computation of the average
MSE:s. Note also that since it is too slow to perform 200 Monte
Carlo trails for IbRELAX for large NV scenarios, IbRELAX for
N > 2048 is not shown in Fig. 2, where SNR = 10 dB. Inspect-
ing these results for various N in Fig. 2, we see that IbRELAX
and IbMMRELAX always provide lower MSEs and higher Py
values than 1bCLEAN. Specifically, IbCLEAN cannot provide
a good amplitude estimation performance (especially for the first
two closely spaced sinusoids) even when N is large. The MSEs
of the estimates obtained by using 1bRELAX and 1bMMRE-
LAX are close to the CRBs when N > 512. Furthermore, the
results in Fig. 3, where N = 1024, demonstrate that IbMMRE-
LAX and IbRELAX have better noise tolerance than IbCLEAN
and provide excellent estimation performance when SNR > 0
dB. Additionally, as N increases, P; goes to 1, and the increase
of SNR results in an improvement in P, for all three algorithms,
as expected.

The average computation times needed by the aforementioned
algorithms, obtained using 5 Monte Carlo trials are recorded in
seconds and plotted on a logarithmic scale (10 log;(+)) in Fig. 4
for various N when the SNR is 10 dB. The required times for
other SNR values are similar to those for SNR = 10 dB. As pre-
dicted, IbMMRELAX and 1bCLEAN require similar computa-
tional times, and both are much faster than IbRELAX. Specifi-
cally, IbMMRELAX is more than an order of magnitude faster
than 1bRELAX, while maintaining similar sinusoidal parameter
estimation accuracy. Regarding certain penalized/sparse algo-
rithms proposed in the literature for sinusoidal parameter esti-
mation from signed measurements [34], [36], we do not consider
them in this comparative study because they are slow for large
values of IV and have worse performance than IbRELAX [34].

Example 2: To further illustrate the resolution capability and
estimation accuracy of 1bCLEAN, IbMMRELAX and 1bRE-
LAX, we consider a signal composed of two sinusoids with a
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Fig. 2. Sinusoidal parameter estimation performance of 1bCLEAN,

IbMMRELAX, and 1bRELAX for a time-varying threshold and varying
sample lengths N when SNR = 10 dB: (a) average frequency MSEs vs. IV,
(b) average amplitude MSEs vs. NV, and (c) probabilities of correct frequency
detection vs. V.

small frequency separation and the same amplitudes and phases.
The parameters of the two sinusoids are: w; = 0.108 x 2,
Wy = (0.108+ ﬁ) X 27‘(, A1 = A2 = 1, and ¢1 = ¢2 = %TF.
We set NV = 1024 and SNR = 10 dB. The same type of time-
varying threshold as in Example 1 is used here to obtain the
signed measurements. The two sinusoids are separated by only
+ and therefore it is a challenging task for IbCLEAN to resolve
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Fig. 3. Sinusoidal parameter estimation performance of IbCLEAN, 1bMM-
RELAX, and 1bRELAX for a time-varying threshold and varying SNRs when
N = 1024: (a) average frequency MSEs vs. SNR, (b) average amplitude MSEs
vs. SNR, and (c) probabilities of correct frequency detection vs. SNR.

them. We show the simulation results of 200 Monte Carlo runs
in Fig. 5. Specifically, in Fig. 5(a), the blue scatterers and black
scatterers show the sinusoids obtained via the first step and sec-
ond step of IbCLEAN, respectively. Inspecting the results, we
can see that 1bCLEAN cannot properly resolve the two sinu-
soids, whereas 1bRELAX and IbMMRELAX can resolve them
and thus possess super resolution capability.
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In sum, taking into account the resolution capability, esti-
mation accuracy, noise tolerance, and computational complex-
ity, the examples suggest that IbLMMRELAX is preferred over
IbCLEAN and 1bRELAX. We also remark that as the number
of sinusoids increases, the computational complexity reduction
offered by IbMMRELAX over 1bRELAX becomes even more
significant.

2) Fixed Non-Zero Threshold: We next consider using the
low cost fixed non-zero threshold to obtain the signed measure-
ments, assuming that the signal does not have a DC component.
The signal is the same as in Example 1. The fixed non-zero
threshold is {h, = 0.5}"_,. Fig. 6 and Fig. 7 show the aver-
age frequency and amplitude MSEs as well the probabilities of
correct frequency detection P; over 200 Monte Carlo trials as a
function of N (when SNR = 10 dB) and SNR (when N = 1024),
respectively. As mentioned before, the MSEs are only for the
correctly detected cases (see Example 1 for details). Inspecting
these results, it can be seen that using the fixed non-zero thresh-
old can yield a good frequency and amplitude estimation perfor-
mance when N > 512 and SNR > 0 dB. Compared with using
the time-varying threshold, using the fixed non-zero threshold
saves hardware cost, while providing similar frequency and am-
plitude MSEs as well as similar P, values. The caveat is that
the choice of the fixed threshold should be done more care-
fully than that of the time-varying threshold, as it might be
expected.

3) Model Order Determination via IbBIC: We finally test
the model order determination performance of IbMMRELAX
with 1bBIC. Signed measurements obtained with both fixed
non-zero and time-varying thresholds are utilized in this exper-
iment, and the same signal as in Example 1 is considered. Fig. 8
and Fig. 9, respectively, show the success rates of correct order
determination as a function of N (when SNR = 10 dB) and
SNR (when N = 1024). It can be seen that IbMMRELAX with
1bBIC provides accurate order estimates as /N or SNR increases.
Again, similar performances are obtained using fixed non-zero
threshold and time-varying threshold.
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for two closely spaced sinusoids in 200 Monte Carlo trials, for N = 1024 and
SNR = 10 dB, and a time-varying threshold.

Note that all of the above experiments have considered the
unknown o case. The performance improves slightly when o is
known, as expected, but we will not show the results for known o
in this paper as they are of a somewhat limited practical interest.

C. Range-Doppler Imaging

We use experimental data from a 24 GHz radar sensor to
demonstrate the performance of IbMMRELAX with 1bBIC for
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Fig. 6.  Sinusoidal parameter estimation performance of IbMMRELAX for a
fixed non-zero threshold and varying sample lengths N when SNR = 10 dB:
(a) average frequency MSEs vs. IV, (b) average amplitude MSEs vs. IV, and (c)
probabilities of correct frequency detection vs. N.

range-Doppler imaging from 2-D complex-valued signed mea-
surements. The radar sensor, which is placed on a pedestrian
bridge over the road, transmits periodic linear frequency mod-
ulated continuous waveform (LFMCW) sequences, with band-
width B = 25 MHz and pulse repetition interval 7" = 80 us.
The received signal is sampled by high-precision ADCs. The
measured data contain additive noise with unknown noise vari-
ance. The signed measurements are obtained by comparing the
original high-precision data with a fixed non-zero threshold
H = {h,, n, = v1 + jva}, which can be implemented using
a hardware similar to the common zero threshold case. The di-
mensions of the 2-D data matrix are N; = 64 and Ny = 512.
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Fig. 7. Sinusoidal parameter estimation performance of 1bMMRELAX for
a fixed non-zero threshold and varying SNRs when N = 1024: (a) average
frequency MSEs vs. SNR, (b) average amplitude MSEs vs. SNR, and (c) prob-
abilities of correct frequency detection vs. SNR.

For illustration purposes, assuming that A is the maximum of
the modulus of the original signal, v; and v are both chosen as
%. Note that in practical applications where A will be unknown,
we can chose proper v; and vy based on the dynamic range of
the radar receiver.

We plot the benchmark range-Doppler image obtained by ap-
plying 2-D FFT to the original high-precision data in Fig. 10(a).
There appears to be 9 strong targets and 2 weak targets in the
scene of interest as well as background clutter. Fig. 10(b) shows
the range-Doppler image obtained from the high-precision data
using the conventional RELAX algorithm with the conventional
BIC [66]. The estimate of the model order K obtained via the
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conventional BIC is K = 81. Inspecting the image in Fig. 10(b)
and comparing it with Fig. 10(a), it can be seen that the con-
ventional RELAX algorithm retrieves all the targets and quite
a bit of the clutter from the high-precision measurements. The
range-Doppler images obtained from the signed measurements
using IbCLEAN and IbMMRELAX with 1bBIC are shown in
Figs. 10(c) and 10(d), respectively. The corresponding model or-
der estimates obtained are K’ = 7 and K = 19, respectively. We
see that IbMMRELAX provides excellent range-Doppler imag-
ing performance with all the targets detected clearly, whereas
1bCLEAN misses quite a few targets. It is interesting that the
clutter is absent in Figs. 10(c) and 10(d) while it is present in
Fig. 10(b). Note that we do not consider IbRELAX for this 2-D
application because it is computationally too demanding. Also,
note that not every vehicle in the scene corresponds to a sin-
gle scatterer (i.e., sinusoid) in the measured data. Consequently,
multiple scatterers are usually needed to represent one vehicle
in Figs. 10(b)-10(d) for the experimentally measured data and
therefore the estimated model order is not equal to the number
of vehicles.
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ventional RELAX with BIC, both using original high-precision data, as well
as with (c) IbCLEAN and (d) IbMMRELAX with 1bBIC, both using signed
measurements.
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VI. CONCLUSIONS

We have considered the problem of sinusoidal parameter es-
timation using signed measurements obtained with either fixed
non-zero or time-varying thresholds. Making use of the MM
technique, we have introduced the IbMMRELAX algorithm
with the main goal of improving the computational efficiency
of the IbRELAX algorithm. We have shown via multiple nu-
merical examples that ILMMRELAX can significantly reduce
the computational complexity of IbRELAX while maintaining
its excellent estimation performance. We have also shown that
1bBIC performs well for model order determination when used
with IbMMRELAX. Furthermore, we have presented examples
showing that both fixed non-zero and time-varying thresholds
can be used to obtain accurate sinusoidal parameter and or-
der estimates from one-bit measurements. Finally, experimental
results have been presented to show that ILMMRELAX with
1bBIC can be a useful technique for range-Doppler imaging in
automotive radar applications.
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