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Abstract—We consider the problem of sinusoidal parameter es-
timation using signed observations obtained via one-bit sampling
with time-varying thresholds. In a previous paper, a relaxation-
based algorithm, referred to as 1bRELAX, has been proposed to
iteratively maximize the likelihood function. However, 1bRELAX
can only be used in applications involving a small number of
sinusoids due to the time-consuming exhaustive search procedure
needed in each iteration. In this paper, we present a majorization-
minimization (MM) based 1bRELAX algorithm, referred to
as 1bMMRELAX, to enhance the computational efficiency of
1bRELAX. Using the MM technique, 1bMMRELAX maximizes
the likelihood function iteratively using simple FFT operations to
reduce the computational cost of 1bRELAX while maintaining its
excellent estimation accuracy. Numerical examples are presented
to demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Low-resolution quantization technology has attracted much
attention due to its low cost and low power consumption
advantages and for allowing for ultra-high sampling rates [1].
It has many potential applications, including spectral sensing
for cognitive radios and radars [2], [3], channel estimation
for massive multiple-input multiple-output (MIMO) systems
[4]–[12], and target detection using automotive radars for
autonomous driving [13]–[15]. As an extreme form of low-
resolution quantization, one-bit sampling (which quantizes the
signals using a simple comparator with some reference levels)
has been studied from many aspects [4]–[12], [16]–[28]. This
paper considers the problem of sinusoidal parameter estima-
tion using signed measurements via one-bit sampling with
time-varying thresholds, which allows for accurate amplitude
estimation [29]–[31].

One-bit sampling with time-varying thresholds has been
recently considered to enable accurate amplitude estimation
from signed measurements [29]–[31]. In [30], the maximum-
likelihood (ML) estimator and the corresponding Cramer-Rao
bounds (CRBs) are presented and it was shown that one-
bit sampling with time-varying thresholds allows accurate
amplitude estimation. Since the direct implementation of the
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ML estimator is computationally prohibitive, a relaxation-
based method, referred to as 1bRELAX, is proposed in [31] to
iteratively maximize the likelihood function. The 1bRELAX
algorithm provides a good performance but still suffers from
a high computational burden due to the time-consuming ex-
haustive search needed for each iteration step. Additionally,
sparse methods based on the l1 penalty and logarithm penalty
are proposed in [29], but the numerical examples in [31]
have demonstrated that 1bRELAX outperforms these sparse
methods.

In this paper, we present a computationally more effi-
cient algorithm than 1bRELAX, referred to as majorization-
minimization (MM) based 1bRELAX, or 1bMMRELAX. Us-
ing the MM approach [32], [33], 1bMMRELAX maximizes
the likelihood function iteratively via simple FFT operations
instead of the more computationally intensive search proce-
dures of 1bRELAX. Numerical examples are presented to
show that 1bMMRELAX can reduce the computational cost
while providing a similar estimation accuracy as compared to
the 1bRELAX algorithm.

II. BACKGROUND

A. Signal Model

Consider a sinusoidal signal st (θ):

st (θ) =

K∑
k=1

Aksin (ωkt+ φk)

=
K∑

k=1

aksin (ωkt) + bkcos (ωkt) ,
(1)

where K is the number of sinusoids, Ak, ωk, and φk denote
the amplitude, frequency, and phase of the kth sinusoidal
component, respectively, and t denotes the time variable. The
unknown sinusoidal parameter vector is denoted by θ =
[a1, b1, ω1, · · · , aK , bK , ωK ]

T ∈ R
3K with ak = Ak cosφk ∈

R and bk = Ak sinφk ∈ R. (·)T is the transpose operator and
the symbol R means the real space.
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Suppose we have N noisy, signed measurements, obtained
via one-bit sampling with time-varying thresholds, given by:

yn = sign (sn (θ) + en − hn) , (2)

where en is the additive noise, hn is the known time-varying
threshold which allows for the accurate amplitude estimation,
n, n = 0, 1, · · · , N − 1, is the time index, and sign (·) is the
sign operator defined as:

sign (x) =

{
1 if x ≥ 0,
−1 if x < 0.

(3)

Under the assumption that the additive noise en is i.i.d.
Gaussian with zero-mean and known variance σ2, the likeli-
hood function is given by [30], [31]:

L (θ) =
N−1∏
n=0

Φ

(
yn

sn (θ)− hn

σ

)

=
N−1∏
n=0

Φ

⎛
⎝yn

(∑K
k=1 aksin (ωkn) + bkcos (ωkn)

)
− hn

σ

⎞
⎠ ,

(4)

where Φ(x) denotes the cumulative distribution function (cdf)
of the standard normal distribution.

We are interested in recovering the parameter vector θ based
on the signed measurements y = [y0, y1, · · · , yN−1]

T .

B. Maximum Likelihood Algorithm

The ML estimate of the parameter vector θ can be obtained
by minimizing the following negative log-likelihood function
l (θ) [30], [31]:

θ̂ = argmin
θ

l (θ) = argmin
θ

N−1∑
n=0

−log

⎡
⎣Φ

⎛
⎝yn

(∑K
k=1 aksin (ωkn) + bkcos (ωkn)

)
− hn

σ

⎞
⎠
⎤
⎦ .

(5)

Let ω = [ω1, ω2, · · · , ωK ]
T be a vector composed of the

frequencies of st (θ). For given ω, the above optimization
problem is convex in {ak}Kk=1 and {bk}Kk=1, and therefore
can be solved by any of several global methods [30], [31].
With this fact in mind, the ML estimator can be directly
implemented by performing a K-dimensional search of ω
on the feasible space of frequencies [0, π]

K . Supposing that
there are L points to search in each dimension, the 2K-
dimensional convex problem must be solved O

(
LK

)
times.

As the number of sinusoids K increases, the search over the
high-dimensional frequency space becomes computationally
prohibitive and more efficient algorithms must be considered
[29], [31].

C. 1bRELAX

Inspired by the infinite precision RELAX algorithm [34],
the 1bRELAX algorithm is proposed as a relaxation-based
approach to iteratively maximize the likelihood function [31].
The steps of 1bRELAX can be summarized as follows:

Step 1: Assume K = 1. Obtain {â1, b̂1, ω̂1} by solving (5)
via the exhaustive search (over ω1) approach.

Step 2: Assume K = 2. Obtain {â2, b̂2, ω̂2} by solving (5)
via the exhaustive search approach with {a1, b1, ω1} replaced
by their most recent estimates {â1, b̂1, ω̂1}.

Next, redetermine {â1, b̂1, ω̂1} by solving (5) via the ex-
haustive search approach with {a2, b2, ω2} replaced by their
most recent estimates {â2, b̂2, ω̂2}.

Iterate the previous two steps until practical convergence,
i.e. the relative change of cost function is small enough.

Step 3: Assume K = 3. Obtain {â3, b̂3, ω̂3} by solving
(5) via the exhaustive search approach with {ai, bi, ωi}2i=1

replaced by their most recent estimates {âi, b̂i, ω̂i}2i=1.
Next, redetermine {â1, b̂1, ω̂1} by solving (5) via the ex-

haustive search approach with {ai, bi, ωi}3i=2 replaced by
their most recent estimates {âi, b̂i, ω̂i}3i=2. Then, update
{â2, b̂2, ω̂2} by solving (5) via the exhaustive search approach
with {ai, bi, ωi}i=1,3 replaced by their most recent estimates
{âi, b̂i, ω̂i}i=1,3.

Iterate the previous three steps until practical convergence.
Remaining steps: Continue until the desired or estimated

model order is reached.
In each step, 1bRELAX estimates the parameters of a new

sinusoid based on the sinusoids obtained in the previous steps
and then updates the parameters of each sinusoid iteratively.
Since the update procedure is implemented by means of an
exhaustive search , 1bRELAX is rather time-consuming.

Note that if we do not update the parameter estimates of
each sinusoid iteratively in each step, then the 1bRELAX al-
gorithm becomes a CLEAN-like algorithm [34]–[36] hereafter,
which we refer to as 1bCLEAN. Compared with 1bRELAX,
the 1bCLEAN algorithm has a lower computational complex-
ity, but provides poorer resolution and estimation accuracy.

III. 1BMMRELAX

In this section, we derive a majorization-minimization (MM,
see [32], [33]) based 1bRELAX algorithm, referred to as 1b-
MMRELAX, to reduce the computational cost of 1bRELAX.

A. The MM Approach

We first derive a computationally efficient MM approach
to solve the optimization problem in (5). Let us define an
auxiliary vector x (θ) = [x0 (θ) , · · · , xN−1 (θ)]

T , with

xn (θ) = yn

(
sn (θ)− hn

σ

)
, n = 0, 1, · · · , N − 1. (6)

The cost function in (5) can be rewritten as

l (x (θ)) = −
N−1∑
n=0

logΦ (xn (θ)) =
N−1∑
n=0

f (xn (θ)) , (7)
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where f (x) � −logΦ (x). At any given point x̂, we have
η ∈ [x, x̂] such that:

f (x) = f (x̂) + f ′ (x̂) (x− x̂) +
f ′′ (η)

2
(x− x̂)

2
. (8)

Note that for any given x [37], [38],

0 < f ′′ (x) < 1. (9)

We can obtain the following upper bound for f (x):

f (x) ≤ f (x̂) + f ′ (x̂) (x− x̂) +
1

2
(x− x̂)

2
, (10)

which becomes an equality for x = x̂.
Inserting (10) into (7), we can find a majorizing function

for l (x (θ)):

G [x (θ) |x̂] =
N−1∑
n=0

f (x̂n) + f ′ (x̂n) [xn (θ)− x̂n]

+
1

2
[xn (θ)− x̂n]

2
.

(11)

With this observation in mind, the updating formula at the
(i+ 1)th iteration of the MM approach is given by:

min
θ

G
[
x (θ) |xi

]
= min

θ

N−1∑
n=0

[
xn (θ)−

(
xi
n − f ′ (xi

n

))]2 (12)

where the index i is the iteration number and xi = x
(
θi
)

is
the estimate obtained at the ith iteration.

Inserting (6) into (12), we note that the above update
formula is equivalent to

min
θ

N−1∑
n=0

[
sn (θ)− zn

(
θi
)]2

, (13)

where
zn (θ) = σyn [xn (θ)− f ′ (xn (θ))] . (14)

Note that the optimization problem (13) can be interpreted as a
sinusoidal parameter estimation problem for infinite precision
data. Viewing

{
zn

(
θi
)}N−1

n=0
as the input signal, the infinite

precision RELAX algorithm [34] provides a computationally
simple and efficient approach, due to using FFT operations, to
decrease the objective function in (13).

B. 1bMMRELAX

We now present a new method to efficiently estimate the
sinusoidal parameters from signed measurements based on the
aforementioned MM technique. This method, referred to as
1bMMRELAX, speeds up the 1bRELAX algorithm by using
the MM approach. The 1bMMRELAX algorithm begins by
assuming K = 1. In the kth step, K is assumed to be k, and
we first use the exhaustive search (in the frequency domain)
to get the initial parameters of the kth sinusoid making use
of the (k − 1) sinusoids obtained in the previous (k − 1)
steps. Next, the algorithm refines the parameter estimates of
the k sinusoids by using the MM approach to maximize the

TABLE I
SINUSOIDAL SIGNAL PARAMETERS

Parameter 1 2 3 4 5 6
Amplitude 1 1 0.7 0.8 0.6 0.6

Freq. (rad/s) 0.22 π 0.22π+2π
N

0.4π 0.6π 0.74π 0.9π
Phase (rad) 2

3
5
3

0 7
4

4
3

1
2

likelihood function. Then, we increase the model order k to
k+1 and the algorithm proceeds until the desired or estimated
model order is reached.

The 1bMMRELAX algorithm can be summarized as fol-
lows:

Step 1: Assume K = 1. Obtain {â1, b̂1, ω̂1} by solving (5)
via the exhaustive search (in the frequency domain) followed
by the MM procedure (see subsection A).

Step 2: a) Assume K = 2. Obtain {â2, b̂2, ω̂2} by solv-
ing (5) via the exhaustive search (in the frequency domain)
with {a1, b1, ω1} replaced by their most recent estimates
{â1, b̂1, ω̂1}.

b) Next, redetermine {âi, b̂i, ω̂i}2i=1 by solving (5) via the
MM approach (see subsection A) with the initialization θ0 =[
â1, b̂1, ω̂1, â2, b̂2, ω̂2

]
provided by Step 1 and sub-step a).

Remaining steps: Continue until the desired or estimated
model order is reached.

IV. NUMERICAL EXAMPLES

We now present numerical examples to compare the pro-
posed algorithm with 1bRELAX and 1bCLEAN in terms of
the estimation accuracy and computational complexity. The
case considered is a signal consisting of six sinusoids with
different frequencies, amplitudes and phases. The parameters
of these sinusoids are shown in Table I. Note that the first two
frequencies are closely spaced. The signal length is varied with
N = 128, 256, 512, 1024 and the signal-to-noise ratios (SNRs)
are set to 10 dB and 15 dB, where the SNR is defined as:

SNR = 10log10

K∑
k=1

A2
k

2σ2
. (15)

We generate the signed measurements by comparing the
original signal with a time-varying threshold. The threshold
{hn}Nn=1 is generated randomly from a discrete set of 8 values
uniformly distributed in [−1, 1]. Two hundred independent
Monte Carlo trials are run and each trial has the independent
noise and threshold realization. The average mean-squared
errors (MSEs) over the six sinusoidal signals are employed
to evaluate the performance of the estimators. The maximum
number of the MM iterations is set to 50. The simulations are
conducted in a PC with 3.10 GHz CPU and 16.00 GB RAM.

Fig. 1 shows the average frequency and amplitude MSEs,
the correponding CRBs, as well as the probabilities of correct
frequency estimation Pd. In each trial, the frequency detection
is considered correct if the maximum absolute error of the
frequency estimate is less than 2π

N . We see that 1bMMRE-
LAX and 1bRELAX provide lower frequency and amplitude
MSEs as well as higher Pd values than 1bCLEAN in most
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Fig. 1. Sinusoidal parameter estimation performance of 1bCLEAN, 1bMMRELAX, and 1bRELAX for a time-varying threshold: average frequency MSEs
vs. N when (a) SNR = 10 dB and (b) SNR = 15 dB, average amplitude MSEs vs. N when (c) SNR = 10 dB and (d) SNR = 15 dB, and probabilities of
correct frequency detection vs. N when (e) SNR = 10 dB and (f) SNR = 15 dB.
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Fig. 2. Average running time vs. N for 1bCLEAN, 1bMMRELAX, and
1bRELAX for SNR=10 dB.

cases. 1bCLEAN cannot achieve a good amplitude estimation
performance even when N is large due to the lack of parameter
refinement procedure. The MSEs of the estimates obtained by
using 1bMMRELAX and 1bRELAX are close to the CRBs
when N ≥ 512. Additionally, as N increases, Pd goes to 1,
and the increase of SNR by 5 dB results in an improvement
in Pd for all three algorithms, as expected.

The average computational times needed by these three
algorithms are recorded in seconds and plotted in Fig. 2 when
the SNR is 10 dB. The required times for SNR = 15 dB

are quite similar to those for SNR = 10 dB and omitted.
As expected, 1bMMRELAX and 1bCLEAN require similar
computational times, and both are much faster than 1bRELAX.
This fact makes 1bMMRELAX a desirable algorithm for
sinusoidal parameter estimation using signed observations. We
also remark that as the number of sinusoids increases, the
computational complexity reduction offered by 1bMMRELAX
becomes more significant.

V. CONCLUSIONS

In this paper, we have considered the sinusoidal parameter
estimation problem for signed measurements obtained via one-
bit sampling with time-varying thresholds. Using the MM
technique, we have introduced the 1bMMRELAX algorithm
to reduce the computational complexity of the 1bRELAX
algorithm. The computational cost is reduced via using simple
FFT operations rather than the exhaustive searches for fre-
quency estimation. Numerical examples have been presented
to demonstrate that the 1bMMRELAX can significantly reduce
the computational complexity while maintaining the excellent
estimation performance of 1bRELAX.
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