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The DarkSide-50 direct-detection dark matter experiment is a dual-phase argon time projection chamber
operating at Laboratori Nazionali del Gran Sasso. This paper reports on the blind analysis of a (16 660 +
270) kg d exposure using a target of low-radioactivity argon extracted from underground sources. We
find no events in the dark matter selection box and set a 90% C.L. upper limit on the dark matter—nucleon
spin-independent cross section of 1.14 x 107* cm? (3.78 x 107* cm?, 3.43 x 10~* cm?) for a WIMP

mass of 100 GeV/c? (1 TeV/c?, 10 TeV/c?).

DOI: 10.1103/PhysRevD.98.102006

I. INTRODUCTION

Dark matter, WIMP s, Noble liquid detectors, Low-
background detectors, Liquid scintillators, Blind analysis
Despite much evidence from astronomy for dark matter
(DM), years of laboratory and indirect searches have
yielded no experimental evidence for DM that is not
contradicted by other experiments. Weakly interacting
massive particles (WIMP s) remain a promising candidate
for DM, but direct searches are being pushed to probe lower
WIMP-nuclear interaction cross sections and to lower
(< 10 GeV/c?) and higher (> 1 TeV/c?) DM masses.
Probing lower cross sections requires higher sensitivity
and, hence, larger exposures (target mass x run time) and
also, as importantly, more efficient background discrimi-
nation. This issue is especially acute for spin-independent
scattering for DM masses above 10 GeV/c?, where current
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limits on the WIMP-nucleon cross section are < 10~ cm?,

reaching as low as 4.1 x 10~#’cm? at 30 GeV/c? [1].

Liquid argon time projection chambers (LAr TPCs)
share the scalability and three-dimensional position
reconstruction of liquid xenon TPCs. Moreover, LAr
TPCs have powerful pulse shape discrimination (PSD) in
the scintillation channel that separates the nuclear recoils
(NR) expected from WIMP scattering from the electron
recoil (ER) events from the dominant f- and y-induced
backgrounds. Exploiting this PSD, the single-phase DEAP-
3600 LAr scintillation detector has recently reported the
best available DM-nucleon cross-section limit using an
Ar target, 1.2 x 107* cm? at a DM mass of 100 GeV/c?,
from an initial 9.87 ton-day exposure [2].

In this paper, we report results from a 532.4 live-day
exposure of DarkSide-50, a LAr TPC with an active mass
of (46.4 +0.7) kg of low-radioactivity argon from under-
ground sources (UAr) deployed in a liquid-scintillator veto
(LSV) for neutron, and y-ray rejection and a water
Cherenkov veto (WCV) for shielding and muon detection.
We report here the most sensitive result to date with an
argon target and demonstrate the effectiveness of this
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combination of detectors in rejecting a broad range of
backgrounds. This paper describes the techniques devel-
oped for a blind analysis of the 532.4 live-day data set,
which required detailed prediction of the background and
deployment of new rejection methods.

II. THE DARKSIDE-50 DETECTORS

The DarkSide-50 experiment is located in Hall C of the
Gran Sasso National Laboratory (LNGS) in Italy, at a depth
of 3800 m.w.e. [3]. The DarkSide-50 DM detector is a two-
phase (liquid and gas) argon TPC, described in Ref. [4] and
shown schematically in Fig. 1. Briefly, a cylindrical volume
containing UAr is viewed through fused-silica windows
by top and bottom arrays of 19 3” Hamamatsu R11065
photomultiplier tubes (PMTs). The windows are coated
with indium tin oxide (ITO) which acts as the cathode
(bottom) and anode (top) of the TPC. The PMTs operate
immersed in LAr and are fitted with cryogenic preampli-
fiers [5]. The preamplifiers allow operation at reduced PMT
gain, taming breakdown issues in these PMTs.

LAr is boiled to form a 1 cm-thick gas pocket under the
anode window. A grid 4.7 mm beneath the liquid-gas
interface separates a 200 V/cm drift region in the main
active volume from a higher-field extraction region.

The side wall of the active LAr volume is a Teflon
reflector. The inner surfaces of the Teflon reflector and
the windows are coated with tetraphenylbutadiene (TPB),
which shifts the 128 nm argon scintillation light to 420 nm,
allowing transmission through the windows and detection
by the PMTs.

Interactions in the active volume result in ER or NR
events which produce primary scintillation (S1) as well
as ionization in the LAr. lonization electrons surviving
recombination at the event site are drifted to the liquid-gas
interface, where the extraction field injects them into the
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FIG. 1. The DarkSide-50 TPC. Reproduced from [4] under [6].

gas region. In the gas, the electric field is large enough to
cause the electrons to produce a second signal (S2) by gas
proportional scintillation. S1 and S2 are both measured
with the PMT arrays. S1 (or, for higher resolution, a linear
combination of S1 and S2) measures energy; the drift
time (#4;¢), the time between the detection of S1 and S2,
measures the vertical (z) location of the event; and the
pattern of S2 on the PMT arrays measures the x and y
coordinates of the event.

The DarkSide-50 veto system is described in detail in
Ref. [7]. The LSV is filled with 30t of borated liquid
scintillator that detects neutrons via both prompt signals
from thermalization and delayed signals from capture
products. It detects neutrons producing NR in the LAr
TPC with extremely high efficiency (see Sec. VIC) and
also detects about a third of the y-rays giving ER in the
TPC. The LSV is surrounded by the 1 kt WCV, which
provides shielding for the LSV and a veto for cosmic ray
muons. Radioactive calibration sources for the characteri-
zation of the TPC and LSV are deployed through the WCV
and LSV to the side of the cryostat using an articulated arm
described in Ref. [8].

Under normal running conditions for the WIMP search,
all three detectors are read out upon a trigger from the
TPC that requires at least two PMTs above a threshold of
0.6 PE [5]. Much of the data reported here also includes
0.05 Hz of pulser-generated triggers, which provides an
unbiased sample of detector baselines and signals. Time
stamps are recorded with the data from each detector to
allow later synchronization.

III. DATA DESCRIPTION AND CALIBRATION

Data are recorded from the TPC and both vetoes with
each trigger. TPC data contains the waveforms from the 38
PMTs, digitized at 250 MHz without zero suppression [5].
The digitized waveforms are acquired in a single 440 us
window, beginning 5 us before the trigger time and long
enough to include S1 and S2, given the maximum electron
drift time of 376 us. Data from each PMT in both vetoes are
digitized at 1.25 GHz and zero suppressed with a threshold
of ~0.25 PE. Veto data are recorded in a 200 ps window
beginning 10.5 us before the initiating TPC trigger [9].

A. Reconstruction

Low-level reconstruction of TPC events follows the
steps described in Ref. [4]. The digitized PMT waveforms
that make up the raw data are analyzed using darkart,a
code based on the Fermi National Accelerator Laboratory
art framework [10], which identifies pulses with area
210 PE in the acquisition window. Timing and integral
information are calculated for each pulse. While pulse-
finding is done on the veto data, the WIMP search uses
only integrals over prespecified regions of interest (ROI),
described in VI A 4.
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Of particular interest is the TPC PSD parameter fyq,
defined as the fraction of S1 light detected in the first 90 ns
of a pulse. This parameter allows very strong pulse shape
discrimination between NR and ER [11], as demonstrated
in practice in our previous work [4].

In the current analysis, we perform radial fiducialization
using transverse (x-y) reconstruction. We did not do so in
previous DarkSide-50 analyses, as reconstruction of the x-y
position of events in DarkSide-50 proved to be very
difficult [12,13]. This is believed to be due to the proximity
of the top PMTs to the S2-emission region, which limits
charge sharing among the 3” PMTs. The (x-y) position
reconstruction algorithm used here [12] starts with maps
constructed from Monte Carlo events of the simulated light
response for each PMT vs the true position. Atmospheric
argon data [4], dominated by uniformly distributed 3°Ar
decays, are used to iterate the maps to account for features
in data not modeled in the Monte Carlo. For a given event
in the data, the algorithm compares the measured pattern of
S2 light with the maps, finding the position that gives the
best agreement. The position resolution is estimated to be
about 0.6 cm from the observed spatial separation of events
tagged as a delayed coincidence of 2'“Bi->'“Po decays.
These events were distributed across the full volume and
had an S2 signal size of about 20 x 103 PE. In the absence
of any internal calibration sources with known location,
we found no reliable way to calibrate the resolution vs the
absolute position. We discuss how we dealt with this
situation to estimate the rejection and acceptance of the
radial cut in Secs. VIE and VIF.

After reconstruction, data are stored in a ROOT format
[14]. This is summarized in a secondary output called
SLAD (for SLim Analysis Data), with event and pulse
information for further study by analyzers. Separate SLAD
are made for the TPC and veto data. These are then matched
event-by-event using the time stamps in each data stream.

B. Calibration

The single-photoelectron (SPE) response of each PMT in
the TPC and vetoes is determined by injecting low-light-
level laser pulses into the detector volumes via optical
fibers. The SPE means and widths are determined in the
TPC and vetoes as described in [4,9,15].

The S1 light yield is measured using ®¥Kr introduced
into the recirculating argon [16]. The 3¥"Kr decays to 3Kr
in two sequential transitions, where the second transition
has a mean-life of 222 ns and thus is usually reconstructed
as part of S1. This provides a monoenergetic signal in
the TPC that is also used to calibrate the S1 signal z-
dependence and the S2 signal radial dependence as
described in [4,17]. The zero-field UAr photoelectron yield
at the TPC center, measured at the 41.5 keV 3¥Kr peak,
is (8.0 +0.2) PE/keV. 83"Kr campaigns taken at various
times during the running period indicate that it remained
stable within ~0.4%.

While we use S1 as our primary energy variable in the
WIMP search, the sharing of deposited energy between
scintillation and ionization in a TPC makes a combination
of S1 and S2 a more linear and higher-resolution energy
variable [18,19]. We use such a variable for the determi-
nation of background-generating radioactivity in the
detector—see Sec. IV D. The combined S1-S2 ER energy
scale is established by reconstructing y-ray lines from trace
radioactivity in detector components. These lines at higher
energies consist of multiple Compton scattering events,
requiring special techniques to deal with events with
multiple S2 pulses [18].

We construct the nuclear recoil energy scale from the S1
signal using the photoelectron yield of NRs of known
energy measured in the SCENE experiment [20,21], via the
procedure described in Ref. [4]. Briefly, SCENE measures
the ratio of NR yield at 200 V/cm to that of 83Kr at zero
field. Our zero-field photoelectron yield for 33Kr then
gives the NR PE yield vs S1 in DarkSide-50. We assume
constant NR PE yield above the highest SCENE-measured
energy, 57.3 keV,,.

Initial operations of DarkSide-50 with atmospheric argon
(AAr) [4] provided a large sample of 3°Ar $ decays. This
data set of uniformly distributed, single-sited ER events is
used as our primary calibration of fq, (see Sec. VIE).

Coincident y rays from ®®Co decays in the cryostat steel
are used to determine the LSV light yield and to measure
the time offset between the TPC and LSV signals. Cosmic-
ray muons align the timing of the WCV with the other
detectors.

24lAmBe neutron calibrations are used to determine
the fo, distribution for NR. > AmBe NR candidates are
selected by requiring a single-sited TPC event in prompt
coincidence with an LSV signal consistent with a 4.4 MeV
y ray from the source. The f¢, distributions for each S1 bin
in this data sample are fitted with an analytic model based
on a modified ratio-of-two-Gaussians treatment [22,23].
This analytic model is used only for calculating the
acceptance of the final fo5 vs S1 WIMP search box (see
Sec. VIF).

24AmBe calibrations are used to establish the heavily
quenched visible energy of the neutron captures on 'B that
give the LSV its high efficiency for captures [7]. Coincident
y rays preclude the use of **AmBe for calibrating the
prompt neutron thermalization signal in the LSV. For this,
we use an >*'Am !3C source [24] with a thin degrader that
reduces the a energy below that needed to reach the lowest
excited state of 1°0. With lead shielding to absorb the >*'Am
x-rays, this results in a neutron source very low in coincident
y rays, allowing study of isolated neutrons (see Sec. VIC).

C. Data set

The data set reported in this paper consists of 532.4
live days of UAr data taken from August 2, 2015, to
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October 4, 2017. It does not include the data reported in
Ref. [17]. Aside from TPC laser calibration runs (typically
taken several times per day and lasting ~5 min) and
occasional calibration campaigns (33¥Kr, >*'AmBe, and
2Am 13C, lasting a few days to a few weeks), data were
taken continuously in DM-search mode, and running
conditions were very uniform throughout this period.
Data were usually divided into runs of 6-hour duration.

The trigger rate varied from 1.3 Hz to 1.7 Hz due to
intermittent bipolar noise spikes generated by a high-
voltage power supply. These spikes were completely
removed by our baseline-finding software, leaving a
residual rate of 1.2 Hz mostly due to y rays from detector
materials and ®Kr and residual *°Ar in the UAr [17].

Blinded data (see Sec. V) were checked run-by-run for
hardware and software issues that warranted run removal.
The main causes were oscillations in veto-channel front end
electronics (34.3 live days) and abnormal baseline noise in
TPC PMTsignals (16.2 live days), with smaller losses from
runs shorter than 1000 events (~10 min duration), indi-
vidual TPC PMTs breaking down or emitting light, and
other causes. After eliminating these runs, the total live
time of the data set was 545.6 live days. This is reduced
further by event quality cuts and the veto cut against cosmic
ray activation (see Sec. VI and Table V) to our final
live time of 532.4 live days. With our fiducial mass of
(31.3 £ 0.5) kg (see Sec. VIF), the exposure reported here
is (16660 + 270) kgd.

IV. BACKGROUND SOURCES
AND MITIGATION

Processes that provide backgrounds to the DM search
fall into two main categories. The first category consists of
a decays and neutrons, which yield NR or NR-like signals
strongly resembling DM scatters. The second category
consists of ER-inducing processes, primarily f decays and
y-ray interactions, that, although more copious, are sup-
pressed by the powerful PSD in LAr. In this section, we
describe the major background categories and our miti-
gation strategies. The background rejection levels achieved
and the levels of background expected in the final sample
after all cuts are given in Sec. VI.

A. a decays

For a decays in the active LAr, or on or very near
surfaces touching it, both the «a itself and the recoiling
daughter nuclide give NR-like fo5. Given the highly
radiopure materials selected for construction of the TPC,
the a emitters of interest are primarily radon daughters
either deposited on detector surfaces during fabrication and
assembly or introduced into the circulating LAr during the
experiment.

We have seen and studied both surface and bulk-LAr a
events in DarkSide-50 [25], with an energy spectrum

Energy [MeV]

4 4.5 5 5.5 6 6.5
18005 — T T T~ T T T T [ T T T T T T T
1600 it —— Data
M 1400 R 210,
o 1200i J.+ + 222pn
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>~ 800 # i
3 C f? b
o 600 E +++++
b 400 Y
2] 3+1=_1#1*'
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30000 35000 40000 45000
Sl [PE]
FIG. 2. a spectrum. The events are selected by requiring the

first pulse to be alpha-like (0.5 < fo, < 0.9). Two corrections are
applied to S1. The first corrects for ADC saturation, and the
second corrects for the z-dependence of the light yield [26]. The
22Rn and 2'8Po peaks are fitted with Gaussian 4 exponential
functions, and the energy scale at the top of the plot is set by the
218pg peak [25]. The 2!%Po is fitted with a Crystal Ball function,
the shape of which suggests that the 2!°Po is on the surface
beneath the TPB.

shown in Fig. 2. The measured specific activities of
22Rn and 2'%Po in the LAr are (2.12 4 0.04) uBq/kg
and (1.55+0.03) uBq/kg, respectively [25]. a decays
in the bulk LAr give sharp peaks in S1 which are far
outside the DM NR energy range, leaving surface events to
contend with as background.

The major source of surface background is 2!°Pb-
supported 2'%Po decays. With the full-energy *'%Po a’s
outside the DM-search energy range, the potential back-
ground sources are either @’s degraded in energy or events
with the daughter 2°°Pb atom recoiling directly into the
LAr. The broad lineshape of the >!Po signals identified in
Ref. [25] and shown in Fig. 2 gives clear evidence for
degraded a events. The recoiling atoms alone would not
produce enough light in the LAr to be a background, but
simultaneous « scintillation in the TPB can boost the event
into the DM search region [27].

Surface events on the cathode and grid are easily
rejected by drift time cuts (z fiducialization). The observed
rate of 2'Po a’s on the ~0.4 m? side reflector is
(2.51 £0.01) mBq/m?. Section VIB discusses several
characteristics of surface events, beyond their radial loca-
tion, that allow them to be rejected.

B. Neutrons

Individual elastic scatters of neutrons in the LAr are
indistinguishable from DM-induced scatters, making these
a critical background. Considerable efforts in DarkSide-50
were devoted to reducing and suppressing neutron back-
ground, most notably stringent materials selection and the
development of the veto system.
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Neutrons are produced by cosmic-ray muons interacting
in the rock and other materials surrounding the experiment
(cosmogenic) and by trace radioactivity of detector materi-
als (radiogenic). Many neutron-induced events can be
rejected because, unlike DM particles, the neutrons are
very likely to interact multiple times in our detectors.
Multiple interactions in a single TPC event are detected by
resolving multiple S2 pulses. Both cosmogenic and radio-
genic neutrons leaving WIMP-like signatures in the TPC
also leave signals in the LSV with high probability,
allowing them to be rejected with high efficiency. (See
Sec. VIC for details.) Additional rejection in the TPC
comes from fiducialization (again due to the relatively short
neutron interaction length in LAr), and from requiring S1 to
lie in the WIMP search range. The WCV gives additional
rejection of cosmogenic events.

Radiogenic neutrons come from spontaneous fission of
2381 and from (a, n) interactions, where the a’s come from
uranium and thorium chain activity. In DarkSide-50, the
spontaneous fission events are easily rejected due to the
high LSV efficiency for neutrons and moderate efficiency
for y rays, combined with the average neutron multiplicity
for 28U spontaneous fission of 2.01 and the high y-ray
multiplicity. This leaves (a,n) as the main source of
potential radiogenic neutron background.

Our (a, n) calculations [28], normalized to the assayed
construction materials activities described in Sec. IV D,
indicate that the dominant sources of neutron production in
the TPC and cryostat are the PMTs and a viton o-ring in the
outer cryostat flange. For neutrons that reach the TPC and
give single-scatter NR-like events in the fiducial volume,
Geant4-based Monte Carlo simulations (G4DS) [29] indi-
cate that the o-ring contribution is negligible, and the
PMTs, specifically the borosilicate-glass “stem” and the
ceramic plates that hold the dynodes, are the source of
>90% of the radiogenic neutron background in the TPC.

C. f decays and y rays

The WCYV and LSV provide efficient passive shielding
against f#’s and y rays originating outside the TPC cryostat,
leaving the cryostat and TPC components (including the
LAr) as the only important sources of f/y-induced back-
ground. Argon derived from the atmosphere (A Ar) contains
~1 Bq/kg of cosmic-ray produced *Ar activity [30,31].
¥Ar is a f emitter and dominated the trigger rate and
background in DarkSide-50 when it was filled with AAr
[4]. The DarkSide collaboration has identified, extracted,
and purified argon from underground sources (UAr)
[32-34] that has only (0.73 4+0.11) mBq/kg of *°Ar
activity [17]. The use of UAr drastically reduces the
ER background in DarkSide-50. Even including the 1.9 +
0.1 mBq/kg of 83Kr found in the current DarkSide-50 UAr
fill [17][corrected for the 15.5-y mean life], the dominant
source of ER background is Compton scatters of y rays
from the TPC and cryostat.

PSD via fq, is the major rejector of y-induced ER. In
Ref. [4] we showed that PSD with fy, rejected the single-
sited ER events from *°Ar decay to a level of one in
1.5 x 107. Unlike the ER events from 3°Ar, y-induced
events are often multi-sited and are not uniformly distrib-
uted, so requiring single-scatter events and fiducializing
give additional suppression. Many y-induced events in the
TPC are in prompt coincidence with additional interactions
in the LSV, giving further rejection.

The fundamental limitation on PSD removing single-
sited ER scintillation events is at low energies, where
photoelectron statistics limit rejection. However, among
y-ray-induced events, there are some in which a y ray
multiple-Compton scatters, scattering once in the active
LAr and also in a nearby Cherenkov radiator such as the
Teflon reflector or the fused silica windows of the TPC
or PMTs. The all-prompt Cherenkov light adds to the
prompt component of the normal ER-like S1 and can give
a NR-like fop. As discussed in Sec. VIE, these mixed
scintillation 4+ Cherenkov events, hints of which had
already appeared in Ref. [17], prove to be the dominant
background in the experiment.

D. Determination of activities in detector materials

The y-ray- and neutron-induced backgrounds originate
primarily in the trace radioactivity of detector components.
The DarkSide collaboration carried out an extensive pro-
gram of assays to select radiopure materials and to under-
stand their residual activities. Our background estimates are
based on a radioactivity model that starts with the results
of the assays. However, due to a late-developing need to
use R11065 PMTs instead of the planned lower-activity
R11065-20s, we do not have assays of the PMTs installed
in DarkSide-50, but rather only a single measurement of
three R11065s from early production batches.

For this reason, activities in the PMTs are estimated by
fitting spectra generated by Monte Carlo from activities in
various detector locations to a reconstructed TPC energy
spectrum [18,35]. Since the actual construction materials
used for the cryostat components (stainless steel body,
flanges, nuts, bolts, pipes/feedthroughs, Viton o-ring,
multi-layer insulation) were assayed, their respective activ-
ities in the fitting process are fixed to the assayed values.
The 3°Ar and ®Kr in the LAr are fixed to their values as
reported in [17], with the 3Kr corrected for its decay since
that measurement.

We consider the activities of these isotopes in the PMTs:
80Co, 40K, 232Th, 233U, and >*%U (allowing secular equilib-
rium to be broken, with >?Ra as the top of the lower chain).
The main hosts of radioactivity in the PMTs are the
borosilicate glass stem at the back of the PMT, the ceramic
insulators supporting the dynodes, and the Kovar casing.
Comparing the results of assays of the ceramic insulators,
a Kovar casing, and various versions of whole R11065
PMTs, the fraction of each activity in each PMT component
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TABLE I. TPC component activities, estimated by fitting
22T hppyr, 28U, “%Kpyr, and %%Copyr in sequence, followed
by 2*Upyr and 238Uy while 35Kr and *’Ar are fixed at their
measured rates as reported in [17]. Cryostat activities are fixed at
their measured rates from assays and summed across all cryostat
locations. PMT activities are summed across all locations within
the PMTs and across all 38 PMTs. For comparison, we show the
assayed activities for 3 R11065 PMTs (scaled to 38 PMTs),
which have an estimated additional systematic uncertainty of
about 25%.

Source PMTs [Bq] Cryostat [Bq]
fitted assayed assayed
22Th 0.277 £ 0.005 0.23 + 0.04 0.19 £0.04
4K 2.74 +0.06 3.0+04 0.167002
%Co 0.15 £ 0.02 0.17 £ 0.02 1.4+0.1
238yglow 0.84 £ 0.03 0.69 + 0.05 0.3781 0%
238up 42406 53+ 1.1 13192
35U 0.19 +0.02 027 £0.4 0.045-50%7
Liquid Argon Activity [mBq/kg]
$Kr 1.9+0.1 Ar 0.7 4+0.1

was inferred, and we fit the summed PMT activities keeping
these fractions fixed.

The fit is done iteratively, estimating the PMT activities
by taking advantage of certain high-energy y rays unique to
individual decay chains. 2*’Th activity in the PMTs is
estimated first by fitting the 2.6 MeV 2%T1 peak, where the
contribution from the other decay chains is low. 2*’Th
activity is then fixed at the fitted best value, and the B3y
lower chain (**%U'%) activity is estimated by fitting the
1.76 MeV 2!Bi peak, and so on. The U and the 28U
upper chain (**8U") activities are fitted with one free
parameter to preserve their natural abundance ratio. The
activity estimates from this procedure are presented in
Table I and the resulting energy spectrum is shown in
Fig. 3. We note that leaving 3Kr and *°Ar free in the fit
along with 23U and 238U" returns significantly different
rate estimates for these four decay chains; however,
switching between the rates so-obtained and those pre-
sented in Table I has no impact on the predicted back-
ground in the WIMP search region. Note as well that, while
the WIMP-search region is far to the left in Fig. 3, the
thorium and lower uranium chains, fitted to the right side of
the plot, are the main contributors to Cherenkov radiation,
from electrons scattered by the high energy y rays, and
neutrons, produced by high energy a’s.

The uncertainty on the PMT background activity from
a given chain is estimated by propagating the uncertainty
on the measured cryostat activity in that chain. (The
uncertainties from the fit are negligible.) In particular,
the uncertainties on °°Co, “°K, 232Th, and 238UV, the main
contributors to Cherenkov background due to their high
energy y rays, are estimated to be <13%.
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L

PRSI ST ¥ RS I USSR S | S SRS SRHN MU U
1000 1500 2000 2500 3000

Energy [keV]

R B
0 500

FIG. 3. Measured y-ray spectrum in the TPC (dark green) with
the total from the fit (dark blue) including cryostat activity (light
blue) fixed to assayed values and fitted PMT activities (see
legend). The energy scale is the combined S1-S2 ER energy scale
(see Sec. III B).

V. BLINDING SCHEME

We performed a blind analysis on the 532.4 live-day data
set. This means that candidate selection/background rejec-
tion was designed, and the background surviving cuts was
estimated, without knowledge of the number or properties
of events in the final search region.

Blindness was imposed by a “Blinding Module” in
SLAD. An unblinded SLAD was produced first and kept
in a protected directory. Then the SLAD program operated
on it with the Blinding Module to produce the blinded,
analyzer’s version. Blinded events appear in the output
files, but with all TPC data except the event ID, time
stamps, and the live time associated with the event set to
—1. In the initial blinding, used through most of the
analysis, details of two categories of events were hidden
from users. The first category consisted of events with S1
and fo, falling within the “blinding box”, shown in Fig. 4
superimposed on the published data set from Ref. [17]
before any analysis cuts. The blinding box was designed to
be larger than any expected final WIMP-search box and to
be just above the main ER band. It was applied to all events,

10°
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FIG. 4. fyg vs S1 showing the blinding box (red) applied to the
Ref. [17] data set.
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even those that failed major analysis cuts (e.g., single-pulse
events, events with multiple S2’s, etc.). The second
category consisted of events randomly chosen with a
probability of 2 x 1073, The random fraction was chosen
to have enough fluctuations to obscure the counting of
possible candidate events in the final analysis stages, where
it was anticipated that the number of candidates would be
small or zero when final cuts were applied.

Besides the events outside the blinding box, open data
available to analyzers included the large AAr data set [4],
the initial 70.9-live-day UAr data set [17], laser calibration
data, and all data from campaigns with calibration sources
present. During the analysis, we opened sections of the
blinded data outside of the WIMP search region to provide
samples enriched in particular backgrounds for study, and
later, when the background predictions were mature, to test
the predictions. Several such test regions, described below,
were studied before the final box opening.

VI. BACKGROUND ESTIMATION
AND REJECTION

The goal of the blind analysis is to design a set of criteria
that rejects background to a pre-determined level without
prior inspection of events in the final search region (the
“box”), which itself must be designed as part of the analysis
procedure. We choose 0.1 event of expected background as
an acceptable level, giving a < 10% Poisson probability of
seeing one or more background events in the search box.

A. Event selection

As in earlier DarkSide-50 analyses, the initially domi-
nant ER background and the power of LAr PSD suggest an
analysis structured around the fo, vs S1 distribution. We
thus choose the design of the foq vs S1 box as the final
analysis step, after all other cuts are defined.

We began with the set of analysis cuts developed for
earlier analyses [4,17]. Some of these cuts were modified
for this analysis, and some new ones were developed—the
new or modified cuts are indicated with asterisks. We
introduce all the cuts here with brief descriptions; the full
set is listed in the acceptance table, Table V. The motiva-
tions for some of the cuts will be elaborated on in the
sections describing the relevant backgrounds.

1. Event quality cuts

AllChan: data are present for all TPC channels in
the event.

Baseline: baselines for the digitized waveforms are
successfully found in all TPC channels.

VetoPresent: the event has GPS time stamp-matched
veto data.

TimePrev*: the event occurs at least 400 us after the
end of the inhibit window of the previous trigger (that is,
at least 1.21 ms after the previous trigger). This removes

events that triggered on an S2 whose S1 occurred during
the inhibit window.

2. Basic TPC event cuts

These cuts are designed to ensure that passing events are
single-scatter events that triggered on S1 and have a single
valid S2.

Slstart: the first pulse occurs at trigger time.

Npulse: there is a second pulse, presumed to be S2.
A third pulse is allowed only if its timing is consistent with
the small tertiary pulses produced when S2 light photo-
ionizes the TPC cathode.

Slsat: the first pulse does not saturate the digitizers.

MinS2uncorzr*: the second pulse is required to be
>200 PE before position-based corrections, the approxi-
mate threshold for successful reconstruction of the event’s
radial position. For reference, the uncorrected S2’s of
interest in this analysis are > 400 PE.

S2£90: the second pulse has fo; < 0.20, consistent with
the slow rise time of S2 pulses.

xyRecon: the x-y reconstruction algorithm successfully
derives transverse coordinates of the event from S2.

MinS2/S1: a more refined S2 cut that removes events
with unphysically small S2/S1. The cut is set to remove
events in the lowest 1% of the S2/S1 distribution of
24IAmBe NRs.

3. Surface background cuts

These cuts were all developed for the current analysis
[25]. They are described in Sec. VI B.

LongSltail*: removes events with S1 with a long
tail, consistent with laboratory measurements of a-induced
scintillation in TPB wavelength shifter.

MaxS2/S1*: removes events in the highest 1% of the
S2/S1 distribution of **!AmBe NRs. This cut targets the
“Type 2” surface background with uncorrelated S1 and S2
described in Sec. VIB. This can also be a powerful
discriminant between NR and ER and is the basis of
WIMP discrimination in LXe TPCs. In LAr TPC’s it is
effective against high-energy ERs, but it is not effective at
low S1, where further rejection is most needed.

S2LEshape*: removes events in which the shape of the
leading edge of the second pulse is not consistent with the
shape of a true S2 pulse [36].

S1TBA*: removes events with a z location determined
from the S1 top-bottom asymmetry that is not consistent
with the z location determined from S2 via #g.

4. Neutron background cuts

The neutron veto cuts are essentially unchanged from the
first UAr analysis [7,17].

LSVprompt: rejects events with > 1 PE in the interval
[=50,250] ns relative to the TPC trigger time. This targets
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the thermalization signal from neutrons giving NR in
the TPC.

LSVdelayed: rejects events with > 6 PE in a 500 ns
sliding window covering [0, 189.5] us after a TPC trigger.
This interval can be compared to the capture lifetime of
22 us in the boron-loaded liquid scintillator. The long
acquisition window and search interval allow us to veto
efficiently via the emitted y rays even when the neutron
captures in TPC materials with long capture lifetimes.

LSVpre: rejects events with > 3 PE in a 500 ns sliding
window covering [—10.5, 0] us before a TPC interaction.

CosmicMu: rejects events with a WCV signal >400 PE
or an LSV signal > 2000 PE, integrated over the full 200 us
acquisition window. This vetos cosmic-ray muons or their
showers and thus cosmogenic neutrons.

CosmoActiv*: a“cosmic ray activation veto” is
applied if a TPC event occurs within 0.6 s (shorter than
in previous analyses) following a triggered event failing the
CosmicMu cut. This removes some delayed neutrons
produced by cosmic-ray-activated isotopes in the detectors.

5. ER background cuts

PSD via foq is the primary discriminant against ER
backgrounds and is used to define the final WIMP search
box via the procedure discussed in Sec. VIE. We found
in this analysis that scintillation 4+ Cherenkov events
dominated the tail of the fq, distribution near the WIMP
search region. They, thus, determined the search box
needed to reduce the total background to < 0.1 event in
the full exposure. The other cuts aimed at scintillation +
Cherenkov and other ER events are discussed here.

tdrift: vertical fiducialization via the time between S1
and S2 (z45) 1s effective against y rays from the PMTs,
their primary source. We use the same vertical fiducializa-
tion as in the previous analyses, removing 40 us of drift
time (~4 cm) from the top and bottom of the active volume.
Though the ER background determined the location of the
cut, it is also clearly important for surface background,
notably serving to eliminate a decays occurring on the TPC
cathode and grid.

SlpMaxFrac*: for the “S1 prompt maximum frac-
tion,” removes events with S1 too concentrated in any one
PMT. These events are likely to have interactions giving
Cherenkov light in the fused silica PMT and TPC windows.
A variant of this cut was used in past analyses, but it
was modified for the current analysis to use only prompt
light, boosting its effectiveness as a Cherenkov discrimi-
nant. This cut is extremely effective against fused silica
Cherenkov, leaving scintillation 4+ Cherenkov in the Teflon
reflector as the main surviving ER background.

S1NLL*: squeezes further rejection from the S1 PMT
pattern, targeting the multi-sited nature of scintillation +
Teflon Cherenkov events. The pattern of S1 light on
the PMT arrays is required to be consistent with the
reconstructed x-y position via a negative-log-likelihood
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FIG. 5. Radial cut (red) shown on events in the initial blinding

box shown in Fig. 4. All event quality cuts (Sec. VI A 1), all basic
cuts (Sec. VI A 2) through MinS2uncorr, and vertical fiduci-
alization via 74, have been applied.

comparison to templates derived from A Ar data (dominated
by single-sited *Ar 8 decays).

RadialFid#*: a radial fiducial cut. The radial cut
is a drift-time-dependent radial contour chosen to reject
a fixed fraction of G4DS-simulated scintillation + Teflon
Cherenkov events (see Sec. VIE) in each drift-time bin.
The final cut varies from ~23 mm from the wall at the top
and bottom of the TPC to ~4 mm from the wall at the
center.

The effect of the radial cut is shown in Fig. 5, made after
unblinding. The events (primarily ER background from
PMT and cryostat y rays, including mixed scintillation +
Cherenkov events) are seen to be concentrated near the top
and sides of the detector as expected. Despite the limi-
tations of the reconstruction algorithm, the concentration of
events and the impact of the cut are clear.

B. Surface events

Alphas coming from isotopes embedded in detector
surfaces exhibit a degraded energy spectrum and can fall
within the energy and fo, regions of interest, as can the
recoiling nucleus in an «a decay [27]. We find that the S2
signal for surface events in DarkSide-50 is heavily sup-
pressed, possibly due to loss of drifting electrons very
close to the side reflector of the TPC. Few surface events
have an S2 that is large enough to pass analysis cuts, with
the majority having no discernible S2 pulse. We call these
“S1-only” events.

We therefore consider two cases for a surface decay to
become a background event. Type 1: the rare case of a
surface event with a true S2 that passes analysis cuts.
Type 2: an S1-only event that happens to occur before an
uncorrelated “S2-only” event such that the combination
appears to be a regular event with one S1 and one S2. We
estimate the background rates of these two cases separately.

Type 1: In the open data with S1 > 600 PE, surface
events only pass S2 analysis cuts at energies far above the
region of interest (S1 > 20000 PE) due to the low electron
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collection efficiency along the side wall, with an acceptance
that declines with decreasing S1. Extrapolating this effect
into the WIMP search region and applying it to the
observed rate of SI-only events, we estimate that < 0.07
such events could pass the S2 analysis cuts.

Further reduction of Type 1 surface background is
achieved by using the layer of TPB deposited on detector
surfaces as a veto. It was discovered that alphas passing
through TPB induce millisecond-long scintillation in the
wavelength shifter [37]. The presence of this slow compo-
nent following an S1 pulse tags the event as originating
from a TPB-coated surface. We count the individual
photoelectrons in the region between S1 and S2 and define
a cut based on this count, LongS1tail, that accepts 99%
of 2!AmBe NR events. Applying the cut to a sample of
surface decays obtained in Ref. [37] results in a rejection
factor of more than 100, giving an expectation of < 0.0007
Type 1 surface background events in the current data set.
Additional rejection is expected from the RadialFid and
MinS2uncorr cuts, which is difficult to estimate and not
included in the background estimate.

Type 2: True S2-only events are rare, but apparent S2-
only events are present in the form of ordinary events near
the top of the detector. In these events, S1 and S2 can be so
close in time (#4;; <3 ps) that they are not resolved by
our reconstruction. The real or apparent S2-only events and
S1-only surface events are uncorrelated and of constant
rate, allowing the use of Poisson statistics to predict the
expected number of S1 4 S2 pileup background events.

We mitigate Type 2 background by imposing three
additional requirements on the apparent S2 signal. The
first is the maximum S2/S1 cut, MaxS2/S1, which
removes events with S2/S1 larger than 99% of >*'AmBe
NR events of the same S1. This cut targets Sl-only
events with an accidental S2 either augmented by an
unresolved S1 or simply uncorrelated with S1. The second,
S2LEshape, removes unresolved S1 and S2 by requiring
that the apparent S2 pulse have the ~2 ps rise time of a true
S2 pulse [36] rather than the few-ns rise time of S1. This S2
shape cut is applied via the ratio of the integrals of the first
90 ns and first 1 us of the S2 pulse. The third, S1 TBA,
removes events with ST and S2 pulses that originate from
different positions. We require that the z positions inferred
from the top-bottom asymmetry in the detected S1 light and
from t4, differ by no more than 30, as determined from
uniform 3°Ar events from AAr. These last two cuts are each
designed to have > 99% acceptance for nuclear recoils.
After application of these additional cuts, we expect
0.00092 4 0.00004 surviving Type 2 surface background
events in the current data set.

C. Radiogenic neutrons

The estimate of radiogenic neutron background starts
with a direct measurement of the LSV efficiency for
detecting neutrons that leave WIMP-like signatures in

TABLEIL. Neutron veto efficiencies for >*!Am '3C source data.
Errors are statistical. The prompt cut targets neutron thermal-
ization; the delayed cut neutron capture.

Combined
0.9964 + 0.0004

Prompt cut only
0.9927 +£ 0.0005

Delayed cut only
0.9958 £ 0.0004

the TPC. We do this with the *!Am '3C source (see
Sec. III B) deployed just outside the TPC cryostat. **'Am
13C calibration data are taken in the same trigger configu-
ration as normal WIMP-search data, with the TPC trigger-
ing both vetoes. The standard WIMP analysis is run to find
NR candidates in a preliminary version of the foy vs S1
WIMP-search box. The neutron veto efficiency is then
calculated as the fraction of TPC NR candidates that fail the
standard WIMP-search LSV cuts described in Sec. VI A 4.
From a sample of about 25,000 events that pass TPC NR
cuts, we find the veto efficiencies shown in Table II.
Radiogenic-neutron background events differ from
24IAm 13C -neutron events in their origin point and energy
spectrum, but Monte-Carlo simulations indicate a higher
veto efficiency for radiogenic events; we do not apply that
correction here.

One of the test regions opened prior to the final
unblinding was the “Veto Prompt Tag” (VPT) sample,
which unblinded any event that failed the LSVprompt cut.
The high neutron efficiency of the prompt cut allows
radiogenic neutron events to be counted directly in the
VPT sample. The narrow integration window of the LSV-
prompt cut means that, even with its 1 PE threshold, the
accidental tagging rate is < 1% (see Table V). Thus the
VPT tag accidentally accepts practically no real WIMP
events, and y-induced events are the only background to a
neutron count using the VPT sample.

To get a sample of confirmed neutron events from the
VPT sample, we use a modified version of the LSV-delayed
cut. The modification is needed for two reasons: the sliding
window used for the LSV-delayed cut overlaps the LSV-
prompt window (albeit with a higher threshold), and the
LSV has a high rate of PMT afterpulses, so the delayed
region is heavily populated by afterpulses from the prompt
signal. The modified LSV-delayed cut uses LSV cluster-
finding [7] to identify veto hits. To count as a likely neutron
capture signal, the cluster is required to be > 200 ns after
the veto prompt time, to have the number of PMTs
contributing to the cluster greater than that expected for
afterpulses, and to have an integral > 100 PE, which
includes the a + y capture peak for '9B [7] and captures
on 'H and '?C. The neutron efficiency for this restricted
capture signal is calculated from **'Am !*C data to be
~0.79, with most of the inefficiency coming from exclusion
of the !B a-only capture peak and events from the a + y
capture peak in which the y ray escapes into the cryostat.
(None of these complications or efficiency losses apply to
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FIG. 6. Neutron candidates in the Veto Prompt Tag sample. The
closed curve is the final WIMP-search box, and the dashed curve
is the 50% NR contour, around which neutron-induced events
should be distributed.

the actual neutron vetoing in the WIMP search, which is
done with simple integrals over regions of interest—see
Sec. VIA4)

The selected neutron candidate events are shown in
Fig. 6, where we label neutron candidates that fail the
CosmicMu cut as “Cosmogenic,” and a spectacular event
with three neutron capture signals as “Fission.” There is one
observed radiogenic (@, n) neutron in the WIMP-search
region in the VPT sample. With an acceptance of 0.79 for
the neutron counting and a veto efficiency greater than
e, = 0.9964 £ 0.0004, we predict a radiogenic neutron
background < 0.005 events, with 100% statistical error.

D. Cosmogenic neutrons

The rate of cosmogenic neutron background is estimated
via simulation using FLUKA (version 2011.2c) [38,39].
The simulation is carried out in multiple steps. In the first
and most time-consuming step, cosmic-ray muons are
started 7 m above the ceiling of LNGS Hall C and
propagated through the 7 m of rock. The muon and any
produced secondaries are stopped and stored when they
reach the ceiling of Hall C [40]. The stored events are
restarted and propagated onto the WCV and are only
processed further if there are no muons entering the water
tank with energy > 4 GeV and projected path length in the
water > 2 m, since these would be rejected by the WCV.
We find that for a generated live time of 48.7 yr, the
FLUKA simulation predicts 1388 events in which any
particle reaches the TPC. None of the 1388 events passes
the simulated veto cuts. Only one event is a single neutron
in the TPC with no other accompanying particles. In six
more events, a neutron is accompanied by one other particle
that is not an easily rejected muon, typically a y-ray or
another neutron. None of these seven events have TPC
energy deposits in our WIMP-search region.

If we take a 90% C.L. upper limit of 2.3 of 1388 events
reaching the TPC passing the veto cuts and take the seven

(neutron+ < 1 particle) events as a conservative upper limit
on the number of neutron events passing TPC cuts in
48.7 yr, we predict < 0.00035 cosmogenic neutron events
passing all cuts in the present WIMP search.

When we include the muons with long path lengths and
high energies in the WCV, the rate of simulated single-
scatter neutron events in the TPC depositing energy in the
WIMP search region rises to ~2 per year, in agreement with
our count of 3 cosmogenic neutrons, shown in Fig. 6.

E. Electron recoil backgrounds

With the PSD performance demonstrated in the AAr run
of DarkSide-50 [4] and the reduced rate from the use of
UAr [17], the most tenacious ER background is mixed
scintillation 4+ Cherenkov events. To estimate ER back-
ground surviving cuts, a data/MC hybrid model was
developed, which incorporates our GEANT4 simulation
to model the y-ray kinematics and Cherenkov radiation
while drawing fq, from the AAr data.

A very large sample of Monte Carlo simulated events,
equivalent to about 90 live years of data, was generated.
Statistics this large were needed to ensure that 0.05 events
of ER background in our exposure would be represented by
at least three Monte Carlo events. This was chosen so that,
based on the 68% C.L. interval constructed in [41], the
statistical uncertainty on the background prediction would
be no more than a factor of two. Events were generated
representing the decay chains and TPC components listed
in Table 1. These were later normalized to the activities in
that Table and the accumulated live time of the WIMP
search data. To save on computation time, S1 photons for
individual LAr scatters are typically generated but not
tracked. However, for events with Cherenkov radiation, all
photons—including those from LAr scintillation, if there is
an accompanying scatter in the LAr—are generated and
tracked using optical parameters tuned on data [29].

Cherenkov light can be generated in the fused silica PMT
windows, the fused silica TPC windows, and the Teflon
reflectors surrounding the active LAr volume. The optical
parameters affecting the Cherenkov radiation and collec-
tion are adjusted to match the observed “pure Cherenkov”
events in data, which are easily identified as single-pulse
events with foy =~ 1.0 (all prompt light). A high-statistics
sample of pure Cherenkov events, enriched in events with
Cherenkov light generated in the Teflon side reflector, was
obtained using a 11.2 kBq *’Na source deployed next to
the TPC cryostat. The modeling of the generation of
Cherenkov photons and their collection by the PMTs
was subsequently validated against pure Cherenkov events
from the open UAr data set and from the 2*'Am-Be
calibration data, and the scintillation + Cherenkov back-
ground model was frozen.

The model constructs the fo, of a simulated multiple-
scatter event from the foq’s of its component scatters.
Energy depositions in the LAr with a vertical separation
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FIG. 7. Modeled fq, profiles of single-scatter, unresolved
multiple-scatter, scintillation + fused silica Cherenkov, and
scintillation + Teflon Cherenkov 2-pulse events with 100 < 1 <
180 PE. Decay chains and activities in the various detector
locations in Table I are used. It is clear that the S1pMaxFrac
cut is very effective on high fq, events with a FS Cherenkov
component (blue), hence the most problematic background
comes from Teflon Cherenkov.

< 4.65 mm (motivated by studies using our electronics
simulation) are merged to model our S2 two-pulse reso-
lution. Figure 7 shows that fqo, for unresolved multiple-
scatter events is higher than that of single-scatters with the
same S1, since mean ER fq, increases with decreasing S1.
We estimate that unresolved multiple-scatters are 3% of ER
events with 100 < S1 < 180 PE (the region where this is
estimated to have the most impact).

With a targeted background level of < 0.1 event in 532.4
live days of data, we require reliable predictions far out in
the tail of the ER fq, distribution. For this analysis, we do
not extrapolate using an analytic model fit to data. Instead,
we use our high-statistics AAr data set [4], which is
dominated by uniformly distributed, single-sited ERs
from °Ar p-decays, as the fo, probability distribution
function. In particular, modeled single-scatter events in the
LAr (PAr and ¥Kr f-decays and single Compton scatters
of y rays) draw directly from the AAr f, vs S1 distribution,
unresolved multiple Compton scatter events draw multiple
times, and scintillation + Cherenkov events have their
scintillation S1 and fo, augmented with the Cherenkov
light predicted by the G4DS model, treating the Cherenkov
radiation as entirely prompt. The available AAr statistics,
which represent about 15 years-worth of single-scatter
events in UAr running, are sufficient, given the randomi-
zation that occurs when the scintillation fo,’s are combined
with Cherenkov light.

ER background with Cherenkov light radiated in the
fused silica PMT and TPC windows results in abnormally
large amounts of light concentrated in individual PMTs.
As shown in Fig. 7, the S1 prompt maximum fraction
cut, SlpMaxFrac, is very effective against fused-silica
Cherenkov, leaving Cherenkov in the Teflon, primarily

the cylindrical side wall of the TPC, as the dominant
ER background.

Attempts to find cuts effective against scintillation +
Teflon Cherenkov events were only modestly successful.
A major motivation for introducing a radial fiducial cut
was its observed impact on high-fo, events in the open
data, as discussed below.

Some cuts are difficult or impossible to apply to modeled
events, so their impact in the search region is hard to
estimate. These include cuts based on S2, which was too
costly in computation time to fully simulate in the large
Monte Carlo sample, and cuts based on detector foibles
like the surface background cuts discussed in Sec. VIB.
Although they are applied to the data, we do not include
potential rejection from the S2/S1 cut, the NLL cut,
and the surface background cuts in our ER background
estimate.

Final testing of the model was carried out by unblinding
various test samples. These samples are of two types. The
first type consists of samples created by inverting an
established analysis cut, giving events already tagged as
background. The second type consists of regions with small
WIMP acceptance, outside any plausible final foq vs S1
box, but inside our (initially generous) blinding box.

The first of these tests uses the Veto Prompt Tag sample
described in Sec. VIC. The number of neutrons in this
sample was found to be small, and they are identified and
removed. While the VPT allows us to look in the WIMP
search region without compromising blindness, the statis-
tics are low. We instead test the model in pre-defined
regions near the search region with higher statistics, still
dominated by scintillation + Teflon Cherenkov events.
Agreement in number of events between the data and
model in these regions is within two statistical standard
deviations. Figure 8 shows the data-model agreement in the
Jfoo spectrum.
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FIG. 8. fqy for events with 100 < S1 < 180 PE comparing
single-scatter ER data (**Ar), VPT data passing all major cuts,
notably S1pMaxFrac, and simulated VPT events using the fq,
model including Cherenkov light. The normalization of the
simulation is absolute, using the activities in Table I and the
532.4 live days exposure.
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FIG. 9. fgy vs S1 for events (top: data, bottom: model) passing
all modeled cuts (see text). Overlaid on the plot are the two final
test regions (dashed red), the remaining blinded region (solid red,
and of course hidden in the data plot), and, for reference, NR 90%
and 99% acceptance contours (dashed black) and the final WIMP
search box (solid black). Note: in the bottom plot, the high
Monte Carlo statistics means that individual events have very
small weights after normalization to data live time, as reflected in
the color axis of the plot.

In the final tests, we open two regions in the foq vs S1
plot, regions A and B in Fig. 9, after applying the
LSVprompt cut and all the TPC cuts other than the
radial, NLL, S2/S1, and surface background cuts. From
the model, we expect these regions to be dominated by
scintillation 4+ Teflon Cherenkov events. Table III shows
the data-model comparisons for the two test regions, with
the model normalized to the data live time. The first to be
opened was region A. As can be seen in Table III, the data
and model in region A disagree at about the three-standard-
deviation level statistically.

Region B was designed and opened shortly after observ-
ing the data/model discrepancy in region A to supplement

TABLE III.  Observed and predicted event counts in test regions
A and B, shown in Fig. 9. Note that while the model is normalized
to the same live time as the data, the model has vastly higher
statistics, and thus negligible statistical errors.

Region A events

Data 24 9
Model 13.3 8.7

Region B events

the available data statistics. As can be seen in Table III, the
observed and predicted region B event counts are in
agreement, albeit with poor statistics.

We choose to combine the statistics in regions A and B,
and interpret the observed discrepancy between the data
and model—a factor of 1.5—as a measure of the model’s
systematic error. Accordingly, we scale the model’s output
up by the same factor when making our ER background
prediction.

The observed data events in regions A and B are also
used to estimate the rejection of our radial fiducialization.
After the remaining cuts not used in Table III are applied,
there are 30 events, of which 13 survive the radial cut.
From this a rejection factor of (2.3 4 0.5) is inferred and
applied to the model’s prediction. Hence, to design the
final WIMP search box, we multiply the model back-
ground by 1.5/2.3.

Consistent with previous analyses, we fix the right
edge of the WIMP box at S1 = 460 PE. The presence of
pure Cherenkov events in the data suggests that having a
search box extending all the way to fqy = 1, as in past
analyses, is unnecessarily risky, so we choose to put the
upper edge of the box at fgy = 0.84, which is approx-
imately the contour that excludes 1% of NR. At high S1,
the background studies support a lower fo boundary than
used in previous analyses—we fix it along a curve that
our latest calculations show to be approximately the 99%
NR acceptance contour. At low S1, the box’s lower
boundary is determined by the desired total predicted
background in the box (0.1 events in our case), and in
particular, the ER backgrounds. With near-final estimates
of the other backgrounds in hand, we allocated 0.08
background events to the ER backgrounds; the corre-
sponding lower box boundary is drawn according to this
requirement.

In previous DarkSide analyses [4,17], analytical models
of foo fluctuations were fit to data in bins of S1, and the
resulting functions were used to set a boundary that
admitted equal background in each bin. Adding
Cherenkov light to the mix invalidates that procedure.
We use the ER background model described above for this
purpose, but we do not have adequate Monte Carlo
statistics for bin-by-bin assessment. Instead, the determi-
nation of the boundary is done in two steps: (1) The rough
shape of the boundary is determined where Monte Carlo
statistics are available, by finding the fq, that gives 0.07
leakage events in each 5 PE bin, about 14 times the final
target background. A polynomial is fit to these points.
(2) The fitted curve is translated upward in fq, until the box
defined by its intersection with the other bounds contains
< 0.08 events of ER background. In practice this was
driven by seven Monte Carlo events, to which we attached
an uncertainty of £50% by the construction in [41]. This is
the dominant uncertainty on the predicted ER and total
background estimates.
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TABLE IV. Predicted backgrounds surviving all cuts. The ER
background includes the scintillation + Cherenkov background.
The foq vs S1 search box is defined to give 0.08 4 0.04 surviving
ER background events.

Background Events surviving all cuts
Surface Type 1 < 0.0007
Surface Type 2 0.00092 £ 0.00004
Radiogenic neutrons < 0.005
Cosmogenic neutrons < 0.00035
Electron recoil 0.08 £ 0.04

Total 0.09 £+ 0.04

F. Background summary and cut acceptance

A summary of the predicted backgrounds surviving all
cuts in the full exposure is given in Table IV.

The acceptance for each cut in the analysis except the
fiducial cuts and the final fo9y vs S1 WIMP search box is
given in Table V [35]. With the exception of purely
accidental losses such as those from the veto cuts, accep-
tances are measured with NR events from the **AmBe
calibration data, corrected for spatial nonuniformity when
necessary. Several of the cuts have non-negligible S1
dependence. In these cases, the full S1-dependent accep-
tance (see Fig. 10) is used to calculate the sensitivity of the
analysis, and the Table V entry is an average value.

The impact of the fiducial cuts on sensitivity are counted
in the fiducial mass. The effect of the tdrift cut,
unchanged from previous analyses, is calculated from
the geometry and drift velocity. The acceptance of the
RadialFid cut (see Fig. 5) requires special treatment
because of our lack of an absolute calibration for the x-y
reconstruction and because it is in principle S1 dependent
via the S2-dependent x-y resolution. We use the fact that
Ar events are uniformly distributed like WIMP scatters
and >*'AmBe events have NR S2/S1 like WIMP scatters
to determine the acceptance in two steps: (1) The cut’s
acceptance vs S2 is estimated using *’Ar events in our AAr
data, which are uniformly distributed. (2) Acceptance vs
NR S1 is then estimated by using S2/S1 as measured in our
24IAmBe data to look up acceptance in the corresponding
AAr S2 bin. Averaged over Sl in the WIMP selection
region, the acceptance of this cut (after the drift time
fiducialization) is 0.848 4= 0.002, varying by less than 0.5%
with S1. (This S1 dependence is included in the sensitivity
calculation.) The final fiducial mass is (31.3 +£0.5) kg,
with most of the uncertainty coming from the uncertainty in
the thermal contraction of the Teflon reflector.

The fqo, acceptance vs S1 is determined from the fq,
parametrization as described in Sec. III B. Figure 10 shows
acceptance vs S1 for the analysis cuts.

Having designed a box to achieve our background target
using cuts with understood acceptance, we proceeded to
unblinding.

TABLE V. Summary of cuts and their respective impact on live
time and WIMP acceptance. The average acceptance of Sl1-
dependent cuts are presented; acceptances > 0.999 are shown as
1. The cumulative acceptance is for all cuts except the fiducial
and fo, cuts. Events surviving after each cut were tabulated after
unblinding.

Cut Live time (cumulative)
AllChan 545.6 d
Baseline 545.6 d
TimePrev 5453 d
VetoPresent 536.6 d
CosmoActiv 5324 d
Surviving events
Cut Acceptance (individual) in WIMP box
Slstart 1
Slsat 1 41884
Npulse 0.978 726
tdrift (fiducial mass) 191
SlpMaxFrac 0.948 21
MinS2uncorr 0.996 4
xyRecon 0.997 4
S2f90 1 4
MinS2/S1 0.995 4
MaxS2/S1 0.991 4
S2LEshape 1 4
S1 TBA 0.998 4
LongSltail 0.987 3
S1NLL 0.99 3
RadialFid (fiducial mass) 2
CosmicMu 0.990 2
LSVprompt 0.995 0
LSvVdelayed 0.835 0
LSVpre 0.992 0
Cumulative 0.725 4+ 0.001(stat)
AR
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FIG. 10. Acceptance vs S1. The NR Energy scale at the top
comes from the cross-calibration with SCENE described in
Sec. III B.
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VII. UNBLINDING

Unblinding consisted of changing the access permissions
of the open SLAD (see Sec. V), the blinded versions of
which had been used for the background predictions, and
running the analysis code applying all cuts to it. Figure 11
shows fqp vs S1 after all analysis cuts. With the analysis
cuts applied and the data fully unblinded, no events are
observed in the predefined DM search region.

After unblinding, we tabulated events surviving each cut,
as shown in Table V. The order that the cuts were applied is
not meaningful—the order shown in the table was chosen
to be informative. Each of the last two events in Table V
was cut by both the prompt and delayed veto cuts. They are
the events in the box in Fig. 6 labeled ‘“Radiogenic” and
“Fission candidate.”

Energy [keVn:]
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FIG. 11. Observed events in the foy vs S1 plane surviving all
cuts in the energy region of interest. The solid blue outline
indicates the DM search region. The 1%, 50%, and 99% fq,
acceptance contours for nuclear recoils, as derived from fits to our
241AmBe calibration data, are shown as the dashed lines.
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FIG. 12. Spin-independent DM-nucleon cross section
90% C.L. exclusion limits from the analysis detailed in this
paper, compared to our previous result [17] and selected results
from other experiments using argon (WARP [45], DEAP-3600
[2]) and xenon (LUX [46], XENONIT [1], PandaX-II [47]).
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FIG. 13. Distribution of events in the foq vs S1 plane that
survive all analysis cuts and that in addition survive tightened
radial and S2/S1 cuts (see text for details).

VIII. WIMP SENSITIVITY AND LIMIT

A limit on spin-independent DM-nucleon scattering is
derived assuming the standard isothermal WIMP halo
model, With vegeape =544 km/sec [42], vy = 220 km/ sec
[42], Vgam = 232 km/sec [43], and ppy = 0.3 GeV/
(c? cm?) [44]. The background- and signal-free result is
consistent with up to 2.3 DM-induced scatters (90% C.L.),
which sets an upper limit on the spin-independent DM-
nucleon cross section at 1.14 x 107* cm? (3.78 x
107% cm?, 3.43 x 1074 cm?) for 100GeV/c* (1 TeV/c?,
10 TeV/c?) DM particles. The minimum upper limit is
1.09 x 10~* cm? at 126 GeV/c?. Figure 12 compares this
limit to those obtained by other experiments.

Figure 13 demonstrates available improvements in back-
ground rejection, which we do not use in this analysis. If we
require S2/S1 lower than the median value for nuclear
recoils and also radial fiducialization to about 8 cm from
the wall (r < 10 cm), we obtain an even greater separation
between the events surviving the selection and the pre-
viously defined DM search region. In a multiton detector
[48], these cuts would provide exceptional background
rejection at the cost of an affordable loss in detection
efficiency.
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