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1 Introduction

1.1 Background and motivation

Over the past few decades, evidence for a recent era of cosmic acceleration has accumulated
from a diverse set of cosmological observations and is now overwhelming. These observations
include type Ia supernovae [1–4], anisotropies of the cosmic microwave background radiation
(CMB) [5, 6], and large scale structure (LSS) surveys [7–9]. The most common explanation
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for the current phase of cosmic acceleration is dark energy, with a cosmological constant being
its simplest realization.1 Besides dark energy, which accounts for about 70 percent of the
Universe’s overall energy, observations have long supported the notion that about a quarter
of the energy content of the Universe is in the form of non-luminous, non-relativistic, and
weakly interacting matter that is commonly referred to as (cold) dark matter. As for dark
energy, the evidence for dark matter has various origins, with the oldest pieces of evidence
coming from the observations of galaxy rotation curves [11, 12] and the more recent though
somewhat indirect ones coming from observational cosmology, e.g. the CMB anisotropies [5].
Non-dynamical dark energy, or cosmological constant, along with cold dark matter form the
so-called ΛCDM model of cosmology, which is by far the most successful model describing
the history of our Universe from well before the epoch of matter-radiation equality. In
conjunction with the standard predictions of inflation, the ΛCDM model provides nearly
perfect theoretical fits to the CMB anisotropy data [13].

Despite its overwhelming success, the ΛCDM model faces some theoretical and obser-
vational challenges. A long standing theoretical challenge to non-dynamical dark energy is
the well known cosmological constant problem [14]. With observations indicating that the
cosmological constant has a present value Λ0 ∼ (10−3 eV)4 [5], a large amount of fine tun-
ing is necessary to cancel out loop corrections of about (102 GeV)4 that it receives from the
Standard Model fields alone over the energy ranges at which the Standard Model is known
to be valid. On the observational end, a prominent challenge to the ΛCDM model is the
discrepancy in the deduced values of the Hubble constant H0 from observations of Cepheid
variables [15] and the CMB data collected and analysed by the Planck collaborations [5].

Dynamical dark energy models, of which there are many [10], are a useful theoretical
foil for analysing dark energy observations. They can also potentially address the Hub-
ble discrepancy problem [16]. Generically they do not address the fine tuning problems of
the cosmological constant [14], and in fact generically have additional fine tuning problems
associated with matter couplings [17].

If dark energy is indeed dynamical and driven by a single degree of freedom, then its
dynamics can be described by an effective field theory (EFT) where the dark energy pertur-
bations are the pseudo Nambu-Goldstone bosons that spontaneously break the approximate
de Sitter symmetry of the background spacetime [18–20].2 A question then arises as to how
the dark energy field couples to other forms of matter, including dark matter. If the matter
sectors are incorporated in the EFT of dark energy, all generic interaction terms that are com-
patible with the assumed internal symmetries of the matter sectors must be included. Such
interaction terms amount to the dark energy field mediating a new kind of force, the so-called
“fifth” force, among particles of various kind, in violation of the weak equivalence principle
(WEP) or the universality of free fall for test particles in an external gravitational field.3

More specifically, one can classify violations of the WEP into three types:

1. Baryonic-Baryonic (BB): this is the type of WEP violation most commonly considered
in the past. An additional scalar field (here the dynamical dark energy field) couples in
different ways to different sectors of the standard model. Then the total gravitational
force between two bodies (tensor plus fifth force) can depend on for example baryon

1See [10] for a comprehensive review of the many theories of cosmic acceleration.
2This EFT formulation is analogous to the effective field theory of inflation developed in refs. [21, 22].
3The weak equivalence principle is expected to be violated in generic theories where dynamical dark energy

interacts with dark matter. See [23] and [24] for some of the first studies of WEP violation for dark matter.
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number as well as total mass. This scenario is now tightly constrained thanks to a
variety of satellite and Earth-based experiments.4

2. Baryonic-Dark Matter (BD): this occurs when dark matter particles and baryonic mat-
ter experience different accelerations. As an example,5 suppose that the action for the
baryonic fields Ψb and dark matter fields Ψd can be written as

Sb[e
2αb(φ)gab,Ψb] + Sd[e

2αd(φ)gab,Ψd] (1.1)

for two different coupling functions αb and αd to the spacetime metric gab. The effective
Newton’s constant then becomes a matrix with elements [26]

Gij ∝ 1 + 2m2
pα
′
i(φ)α′j(φ), (1.2)

where i and j run over the dark and baryonic sectors d and b. Since the dark matter
is observed only through its gravitational effects, the individual constants Gdd and
Gdb are not directly observable. A rescaling of the form ρd → eνρd, Gdd → e−2νGdd,
Gdb → e−νGdb, where ρd is the dark matter density, has no effect on the dynamics of
visible matter and is thus not observable. Hence only the combination Gdb/

√
GddGbb

is observable, and its deviations from unity are a measure of the WEP violation [27].

3. Dark Matter-Dark Matter (DD): finally, if the couplings between the dark energy and
dark matter fields have generic forms, then not only is there a violation of the WEP
between dark matter and baryons, but also within the dark matter sector alone. This
means that the dark matter couples not just to a combination of the metric and dark
energy field, as in eq. (1.1) above, but to the metric and dark energy fields individually.
In this case, if there is more than one species of dark matter particle, the acceleration
experienced by a freely falling particle can vary from one species to another.

In the absence of direct detection of dark matter, the status of WEP violations of the
DD type is currently unknown. Violations of the BD type can be constrained by a variety of
astrophysical and cosmological observations. One constraint comes from observations of tidal
streams of tidally disrupted satellite galaxies [27]. An analysis of dark matter clustering in
the Abell Cluster A586 also hinted at the possibility of a dark energy-enhanced gravitational
interaction for dark matter particles over baryons [28, 29]. On the other end, in observational
cosmology, it has been suggested that weak lensing and redshift space distortions can be used
to search for the WEP violation between dark matter and baryons if the dark matter density
perturbations obey the ΛCDM continuity equation [30]. Moreover, existing and upcoming
CMB and LSS observations provide a large amount of information that can be used to
constrain dark energy interactions with dark matter, which in turn can be used to constrain
WEP violations between the dark and baryonic matter sectors [31–41].

1.2 Outline of the paper

In this paper, we generalize the EFT of dark energy by incorporating a dark matter sector.
We model dark matter as a complex scalar field with a global U(1) symmetry,6 which has

4The so-called Eötvös parameter, which is a dimensionless measure of the amount of the WEP violation
for baryons, is currently constrained down to

[
− 1± 9(syst)± 9(stat)

]
× 10−15 by the recent MICROSCOPE

experiment [25].
5More general WEP violating interactions are discussed in the following sections.
6The number of the EFT operators are reduced if fermions are used in place of scalar fields.
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some similarities to axion dark matter models.7 Coherent excitations of this field can act like
a pressureless fluid, at the level of the background cosmology and of linearized perturbations,
as we discuss in more detail below. Since the WEP is not a symmetry, it is generically
violated by EFT operators in the dark matter sector in this and similar models [43].

The structure of this paper is as follows. In section 2 we introduce the basics of the
dark matter model under study. After a brief review of the systematics of the WEP in a
field theoretic Lagrangian, we show in sections 2.1.1 and 2.1.2 that with a suitable choice
of parameters, the basic dark matter model gives rise to the same background and linear
perturbations phenomenology as cold dark matter. We then move on to formulating the
EFT of dark matter interactions with dark energy in section 3. After identifying the EFT
operators and expressing the action in sections 3.2 and 3.3, we discuss the regime of validity
of the EFT in section 3.4. We work out the EFT dynamical equations for the background
cosmology and linear perturbations in section 4. Finally, as an example of how the WEP
violation modifies the cosmological and astrophysical observables, we derive the effective
Newton’s constant for dark matter in section 5.

1.3 Summary of the main results

The following summarizes our main findings in the present analysis:

• In the space of solutions of the background equations, there are fairly generic solutions
for which the background stress energy tensor of the dark matter candidate converges
exactly to that of a pressureless fluid in the limit of complete cosmological constant
domination, without the need to fine tune its mass. This is in contrast to axion mod-
els, where the equation of state parameter for dark matter becomes nearly zero after
averaging over a period large compared to the period of oscillations [42].

• As for axions, the sound speed of dark matter linear perturbation modes8 is close to
zero when averaged over a period large compared to the period of oscillations. For
this to hold today, the dark matter mass should be at least a few orders of magnitude
larger than the Hubble constant. If this is to be true at the time when the shortest
linear mode became subhorizon, then the dark matter mass is required to be at least
ten orders of magnitude larger than the Hubble constant. This is consistent with the
lower bound on the mass of ultralight axion dark matter that was found in [44].

• We have not analysed the dark matter perturbations in non-linear regime to see if they
continue to behave as perturbations of a pressureless fluid. This is an open question.

• There are thirteen dark energy-dark matter interaction operators in the EFT with
dimension ≤ 4 that are relevant for analysing the background and linear perturbations.
The results of analyses performed in [38] and [39] are used to constrain the coefficients
of some of these operators. However, most of these constraints are weak.

• Some fine tuning in the EFT coefficients is necessary if the model is to successfully
reproduce the ΛCDM background cosmology. The fine tuning becomes more severe as
the dark matter mass becomes lighter.

7For a recent review of axion cosmology and axion models of dark matter see [42].
8I.e. modes with physical momenta kphys & 0.1 Mpc−1.
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• As far as observations are concerned, we can only talk about the WEP violations of
the BD type. An astrophysical signature of this effect is a modification of the Newton’s
constant for dark matter as compared to baryons. However, we show that a similar
modification can be obtained from a non-minimal coupling of dark matter to gravity.
In order to differentiate the two effects, one can potentially exploit the fact that the
latter correction to the Newton’s constant is scale dependent.

2 A first step: a simplified model of gravity-dark matter-dark energy in-
teractions

Before introducing our more comprehensive effective action for the interactions of dark matter
and dark energy in section 3, we find it instructive to study the preliminary aspects of such
interactions using a simpler model. We model the dark energy field using a single real scalar
field φ and the dark matter field using a complex scalar field Π. We require the dark matter
sector to respect a global U(1) symmetry.

The action is given by9

S[gab, φ,Π
†,Π, ψ] = Sgravity[gab] + SDE[gab, φ] + SDM-DE[gab, φ,Π

†,Π] + Sb[gab, ψ], (2.1)

where the gravitational action, dark energy and dark matter actions are

Sgravity[gab] ≡ SEH[gab] =

∫
d4x
√
−g

m2
p

2
R, (2.2a)

SDE[gab, φ] =

∫
d4x
√
−g

[
X − V1(φ)

]
, (2.2b)

SDM-DE[gab, φ,Π
†,Π] =

∫
d4x
√
−g e−2α

[
eαY − V2(φ,X,Π†Π)

]
. (2.2c)

Also Sb is the baryonic action of the Standard Model fields collectively denoted by ψ. Here
we have defined

X ≡ −1

2
gab∇aφ∇bφ, (2.3a)

Y ≡ −gab∇aΠ†∇bΠ. (2.3b)

In eq. (2.2) “EH” stands for Einstein-Hilbert, R is the Ricci scalar, and α is a smooth but
otherwise arbitrary function of φ.

If the dark matter potential V2 does not depend on φ and X,

V2(φ,X,Π†Π) = V2(Π†Π), (2.4)

then the conformal transformation
ĝab = e−αgab (2.5)

removes all direct couplings between the dark matter and the dark energy fields. The action
is then cast in the form

Ŝ[ĝab, φ,Π
†,Π, ψ] = Ŝgravity[ĝab, φ] + ŜDE[ĝab, φ] + ŜDM[ĝab,Π

†,Π] + Sb[e
αĝab, ψ], (2.6)

9Our convention is to set c = ~ = 1 and define the reduced Planck mass m2
p = (8πG)−1. The metric has

signature (−+ ++).
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where

Ŝgravity[ĝab, φ] =

∫
d4x
√
−ĝ

eαm2
p

2

[
R̂− 3ĝab∇̂a∇̂bα−

3

2
ĝab∇̂aα∇̂bα

]
, (2.7a)

ŜDE[ĝab, φ] =

∫
d4x
√
−ĝ e2α

[
e−αX̂ − V1(φ)

]
, (2.7b)

ŜDM[ĝab,Π
†,Π] =

∫
d4x
√
−ĝ
[
Ŷ − V2(Π†Π)

]
, (2.7c)

and X̂ and Ŷ are the same as X and Y with gab replaced with ĝab. We will refer to the
hatted frame as the Jordan frame and the unhatted frame as the Einstein frame, in a slight
generalization of the common terminology. Note that dark matter has no violations of the
WEP of the DD type in the model (2.6) satisfying the condition (2.4), since from the form of
the action dark matter particles freely fall along the geodesics of the metric ĝab. However, it
will have violations of the BD type whenever α′(φ) 6= 0. Allowing the potential V2 to depend
on φ and X will generically result in additional violations of the DD type. The dark energy
field φ then mediates an extra force on dark matter particles. In section 3.3 we will express
the EFT action in the hatted (generalized Jordan) frame associated with ĝab. However, we
will conduct most of the following analysis in the unhatted (Einstein) frame.

In what follows we shall neglect the baryonic contributions to the equations of motion.
The equations of motion derived from the action (2.1), neglecting baryons, are the coupled
Klein-Gordon equations for the dark energy and the dark matter fields,

−∇a∇aφ+∇a
[
e−2α∇aφV2,X

]
+ α,φe

−α
[
Y − 2e−αV2

]
+ V1,φ + e−2αV2,φ = 0, (2.8a)

−∇a
[
e−α∇aΠ†

]
+ e−2αV2,Π = 0, −∇a

[
e−α∇aΠ

]
+ e−2αV2,Π† = 0, (2.8b)

and the Einstein’s equations

m2
pGab ≡ m2

p

[
Rab −

1

2
Rgab

]
= TDE

ab + TDM-DE
ab . (2.9)

Here the dark energy and dark matter stress-energy tensors are

TDE
ab ≡

−2√
−g

δSDE

δgab
= Xab + gab

[
X − V1

]
, (2.10a)

TDM-DE
ab ≡ −2√

−g
δSDM-DE

δgab
= e−α

[
2Yab − e−αV2,XXab + gab

(
Y − e−αV2

)]
. (2.10b)

Also Rab is the Ricci tensor, Xab ≡ ∇aφ∇bφ, Yab ≡ ∇aΠ†∇bΠ, and we use the notation
A,B ≡ ∂BA. Note that all indices are raised and lowered using the metric gab.

Note that by virtue of the Bianchi identity ∇aGab = 0, we have

∇a(TDE
ab + TDM-DE

ab ) = 0, (2.11)

despite each individual stress energy tensor not being covariantly conserved. However, if V2

did not depend on φ and X, we could analyse the model in the Jordan frame using the action
given in eqs. (2.6) and (2.7). Then it is not difficult to see that the dark matter stress energy
tensor defined with respect to ĝab,

T̂DM
ab ≡

−2√
−ĝ

δŜDM

δĝab
, (2.12)

– 6 –
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is covariantly conserved, i.e. ∇̂aT̂DM
ab = 0, by virtue of the dark matter equations of motion

derived from the action (2.6).

2.1 A study of the minimally coupled dark matter model

In the following subsections, we show that the dark matter model (2.2c) admits a fluid
description which comports with two of the main properties of cold dark matter, namely that
it has negligible equation of state parameter and sound speed at the level of the background
and the linear perturbations respectively. To simplify this analysis, we assume that the dark
matter field is minimally coupled to gravity, so that α = 0 in the action (2.2c). We also
assume that dark energy is non dynamical and described by a cosmological constant with a
value of Λ0 ∼ 10−120m4

p. We take the dark matter potential to be

V2(Π†Π) = ±m2Π†Π + λ(Π†Π)2, (2.13)

where m and λ are some constants. There are several ways of expressing Π in terms of two
real scalar fields. The parametrization

Π ≡ Reiζ , (2.14)

in terms of the radial and angular variables R and ζ makes the presence of the global U(1)
symmetry in the dark matter sector manifest, and simplifies the analysis of the background
dark matter equations of motion. The dark matter potential V2 in this case becomes

V2(R2) = ±m2R2 + λR4. (2.15)

Another parametrization is

Π ≡ 1√
2

(
ϕ1 + iϕ2

)
, (2.16)

which is useful for deriving an effective fluid description beyond the background level (par-
ticularly when λ = 0). We will return to this latter point in section 2.1.2.

2.1.1 Background dynamics

We assume that the background geometry is described by the spatially flat Friedmann-
Robertson-Walker metric

ds2 = a(η)2[−dη2 + dr2 + r2dΩ2], (2.17)

where a is the scale factor, η is the conformal time, and dΩ2 is the metric on the unit 2-sphere.
At the background level, all fields are functions of η alone. We denote the background values
of all quantities using subscript 0.

The background Einstein equations are the two Friedmann equations that are derived
from eqs. (2.9) and (2.10a) (set α = 0),

3m2
p

H2

a2
=

1

a2

(
TDE
ηη,0 + TDM

ηη,0

)
= ρDE

0 + ρDM
0 , (2.18a)

m2
p

(
H2

a2
− 2a′′

a3

)
=

1

a2

(
TDE
ii,0 + TDM

ii,0

)
= pDE

0 + pDM
0 , (2.18b)

– 7 –
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where i denotes a spatial index, H ≡ a′/a, and

ρDE
0 = Λ0, pDE

0 = −Λ0, (2.19a)

ρDM
0 =

1

a2

[
R′20 +R2

0ζ
′2
0

]
±m2R2

0 + λR4
0, (2.19b)

pDM
0 =

1

a2

[
R′20 +R2

0ζ
′2
0

]
∓m2R2

0 − λR4
0. (2.19c)

In addition, the following background Klein-Gordon equations are derived from eq. (2.8) for
the dark matter fields

R′′0
R0

+ 2HR
′
0

R0
− ζ ′20 ± a2m2 + 2a2λR2

0 = 0, (2.20a)

2R′0ζ ′0 +R0ζ
′′
0 + 2HR0ζ

′
0 = 0. (2.20b)

It is also helpful to define the following quantities

wDM ≡ pDM
0

ρDM
0

, ΩDM ≡ a2ρDM
0

3m2
pH2

, (2.21)

where the quantity defined on the left is the equation of state parameter and the one on the
right is the density parameter for the background dark matter.

Equation (2.20b) can be integrated to give

a2R2
0ζ
′
0 = c, (2.22)

for some constant c. The integrability of this equation is the result of the U(1) symmetry
of the dark matter action.10 The conserved quantity given in eq. (2.22) can be thought of
as angular momentum in the dark matter field space. Thus, the background dark matter
equations of motion reduce to a single non-linear ODE given by

R′′0
R0

+ 2HR
′
0

R0
− c2

a4R4
0

± a2m2 + 2a2λR2
0 = 0. (2.23)

Prior to conducting a detailed analysis of the background equations (2.18) and (2.20),
we find it illuminating to discuss some overall aspects of the solutions to these equations.
This is largely determined by the form of the dark matter potential given in eq. (2.13). See
figure 1 for the four different possibilities for the dark matter potential.

Since we expect the dark matter energy density to continue to get diluted into the
future, we look for background solutions where the dark matter field R0 eventually settles
at a minimum of its potential. Thus, we discard the potential −m2R2 − |λ|R4 as it has
no minima. Also note that one needs to add the constant term m4/(4|λ|) to the Higgs-like
potential −m2R2 + |λ|R4 in order to set the minimum of the potential to zero, Otherwise the
dark matter’s energy density will eventually be dominated by its non-zero potential, which in
turn renders its equation of state parameter wDM → −1. Adding this constant is compatible
with the internal U(1) symmetry of the dark matter action, though doing so is a fine-tuning
of the potential.

10Cosmological dark matter models with internal U(1) symmetries have previously been previously explored
in ref. [45].
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ℛ

V2

Figure 1. Different shapes of the dark matter potential V2 are drawn here. we have suppressed the
angular dependence of the potential. The solid blue potential corresponds to m2R2 + |λ|R4 , the
dashed red potential to −m2R2 − |λ|R4, the orange dashed-dotted one to −m2R2 + |λ|R4, and the
dotted green one to m2R2 − |λ|R4.

We first analyse the future asymptotics of eq. (2.23) for the potentials m2R2 ± |λ|R4.
Assuming that the overall background energy density is dominated by Λ0 in this limit, we
approximate a and H using

a(η) =
−
√

3mp√
Λ0η

+O(η), H =
−1

η
+O(η), (2.24)

where −∞ < η < 0 and η → 0− is the future limit. Moreover, as the dark matter fields roll
towards the minimum of their potential at R0 = 0, we ultimately have R2

0 � m2/|λ| (unless
m = 0). Using this approximation and eq. (2.24), the background dark matter equation (2.23)
reduces to

R′′0
R0
− 2

η

R′0
R0
− Λ2

0c
2η4

9m4
pR4

0

+
3m2

p

Λ0η2
m2 = 0. (2.25)

If c 6= 0 we can find a solution R0 = αη3/2 where α satisfies

− 9

4
− Λ2

0c
2

9m4
pα

4
+

3m2
pm

2

Λ0
= 0. (2.26)

It is easy to check that for this solution, we have

pDM
0 =

1

a2

[
R′20 +

c2

a4R2
0

]
−m2R2

0 = 0. (2.27)
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This set of solutions therefore correspond to pressureless dark matter solutions in the asymp-
totic future. Although the choice of the value of α satisfying eq. (2.26) is a fine tuning, one
can check that linearized perturbations around this solution are stable.11

Turning to the Higgs-like potential V2 = −m2R2 + |λ|R4 + m4/4|λ|, eq. (2.23) in the
vicinity of the minima of the potential at R = m/

√
2|λ| is approximately

δ′′0 −
2

η
δ′0 −

23/2|λ|3/2Λ2
0c

2η4

9m3m4
p

+
6m2m2

p

Λ0η2
δ0 = 0, (2.30)

where we used eq. (2.24) and defined δ0 ≡ R0 − m/
√

2|λ|. If c = 0, one arrives at a
conclusion similar to the previous case; namely that by fine-tuning the value of m, one can find
asymptotically pressureless background solutions for the dark matter fields. Alternatively, if
c 6= 0, one finds that δ0 ∝ η6. However, it is not difficult to check that wDM → 1 in this case.
We therefore disregard the Higgs-like potential for the following discussions in this section.

We now use R0 = αη3/2 as an approximation for R0 when R2
0 � m2/|λ|. We set

c2/Λ0m
2
p = 1 and require α to satisfy (2.26). We then numerically integrate the background

equations given in (2.20) away from R0 = 0. We do this for the potentials V2 = m2R2±|λ|R4

for two separate cases:

• First, we set λ = 0 while varying m2m2
p/Λ0 (see figure 2).

• Next, we assume λ 6= 0 and vary m2/(m2
pλ) (see figure 3).

Note that all numerical results are plotted as functions of the numberfold N≡ log a/ log a0,
where a0 is the value of the scale factor today.

2.1.2 Dynamics of linear scalar perturbations

We now turn to analysing the linear scalar perturbation theory of the minimally coupled
dark matter. We take the dark matter potential to be V2 = m2Π†Π and show that the sound
speed for the dark matter perturbation modes in the linear regime can be averaged to near
zero values for sufficiently large values of the dark matter mass m.

For the purpose of analysing perturbations, we find it convenient to express Π in terms
of ϕ1 and ϕ2 using eq. (2.16). Then the dark matter stress energy tensor can be written as a
sum of two separate stress energy tensors, each associated with one of the real scalar fields.
Using eq. (2.10a) (with α = 0) we have

TDM
ab [gab,Π,Π

†] = (1)TDM
ab [gab, ϕ1] + (2)TDM

ab [gab, ϕ2], (2.31)

11On the other hand if c = 0, the general solution to eq. (2.25) is

R0 = α1η
3+ν
2 + α2η

3−ν
2 , (2.28)

for constants αi, where ν =

√
9− 12

m2
pm

2

Λ0
Using this solution, we compute the background equation of state

parameter for dark matter in this limit to be

wDM ≈
R′20
a2
−m2R2

0

R′20
a2

+m2R2
0

=
η2να2

1

[
3Λ0 − 4m2m2

p + Λ0ν
]

+ α2
2

[
3Λ0 − 4m2m2

p − Λ0ν
]

η2να2
1

[
3Λ0 + Λ0ν

]
+ 8m2m2

pα1α2ην + α2
2

[
3Λ0 − Λ0ν

] . (2.29)

It can be seen from above that as η → 0−, wDM → 0 if and only if m2 → 3Λ0/(4m
2
p). In other words, one is

required to fine-tune the value of the dark matter mass to be on the order of the Hubble constant today in
order to find asymptotically pressureless solutions in this case.
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Figure 2. We plot the equation of state parameter and the density parameter for the background
dark matter when λ = 0 and dark energy is approximated using the cosmological constant at all
times. N = 0 corresponds to today and N < 0 corresponds to the past. In particular, N = −3 roughly
corresponds to the redshift z ≈ 19. We also defined µ2 ≡ m2m2

p/Λ0. As can be seen from the plots,
the larger the value of µ2, the smaller the equation of state parameter will be as we go to the past.
Also note that the density parameters almost completely coincide in all cases.
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Figure 3. Here we plot the equation of state parameter and the density parameter of the background
dark matter for different values of γ ≡ m2/(m2

pλ) when λ 6= 0 and the dark energy is approximated
using the cosmological constant at all times. While it is evident from the above plot that the negative
values of γ result in a smaller equation of state parameter for the background dark matter, this
observation need not hold asymptotically to the past.

where

(1)TDM
ab [gab, ϕ1] = ∇aϕ1∇bϕ1 + gab

[
− 1

2
∇aϕ1∇aϕ1 −

1

2
m2ϕ2

1

]
, (2.32a)

(2)TDM
ab [gab, ϕ2] = ∇aϕ2∇bϕ2 + gab

[
− 1

2
∇aϕ2∇aϕ2 −

1

2
m2ϕ2

2

]
. (2.32b)
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The above stress energy tensors can be cast in the perfect fluid form.12 The energy density,
pressure, and four-velocity associated with ϕ1 are given by13

(1)ρ = −1

2
∇aϕ1∇aϕ1 +

1

2
m2ϕ2

1, (2.33a)

(1)p = −1

2
∇aϕ1∇aϕ1 −

1

2
m2ϕ2

1, (2.33b)

(1)ua =
∇aϕ1√

−∇aϕ1∇aϕ1
, (2.33c)

with similar expressions holding for ϕ2. We can then compute the sound speed associated
with each dark matter degree of freedom for any given mode k by

(1)c2
s

∣∣∣∣
k

=
(1)δp
(1)δρ

∣∣∣∣
k

=
δ
(
−∇cϕ1∇cϕ1 −m2ϕ2

1

)
δ
(
−∇cϕ1∇cϕ1 +m2ϕ2

1

)∣∣∣∣
k

, (2.34a)

(2)c2
s

∣∣∣∣
k

=
(2)δp
(2)δρ

∣∣∣∣
k

=
δ
(
−∇cϕ2∇cϕ2 −m2ϕ2

2

)
δ
(
−∇cϕ2∇cϕ2 +m2ϕ2

2

)∣∣∣∣
k

. (2.34b)

Another quantity of interest is the relative boost ∆u between the two components of dark
matter, which can be parametrized in terms of

∆u

∣∣∣∣
k

≡

√∣∣∣∣δ((1)ua(2)ua + 1
)∣∣∣∣
k

. (2.35)

To compute these quantities, we need to track the evolution of the scalar perturbations
in the gravity-dark matter system from the moment that they enter the Hubble horizon up
until today.14 Here we are interested in doing this for the perturbation modes that are in
the linear regime, i.e. for the modes with wavenumbers 1 . k/H0 . 450, where H0 is the
conformal Hubble constant today. To begin, recall that the linearly perturbed Friedmann-
Robertson-Walker metric in the Newtonian gauge is given by

ds2 = a(η)2
[
−
(
1 + 2Φ[η, xi]

)
dη2 +

(
1− 2Ψ[η, xi]

)
(dxi)2

]
, (2.36)

where i is an spatial index and Φ and Ψ are the metric perturbation functions. We also
perturb the dark matter fields ϕ1 and ϕ2 by writing

ϕ1(η, xi) = ϕ1,0(η) + δϕ1(η, xi), ϕ2(η, xi) = ϕ2,0(η) + δϕ2(η, xi), (2.37)

where ϕ1,0 and ϕ2,0 are their background values.

When there is no anisotropic shear in the stress energy tensor of dark matter, as is the
case for the minimally coupled dark matter model under study, it follows from the Einstein
equations that Φ = Ψ.15 Therefore, a complete dynamical description of the linear scalar

12although generally not an isentropic fluid.
13There are ambiguities with defining a comoving frame for the stress energy tensor of a scalar field. For

instance, if the background solutions ϕ1,0 are oscillatory, then (1)ua,0 is discontinuous. In addition it is required
that ∇aϕ1 and ∇aϕ2 be timelike.

14We ignore radiation and other forms of matter for this analysis.
15See any introductory book on the cosmological perturbation theory, e.g. [46].
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perturbations can be obtained by solving for Φ, δϕ1, and δϕ2. To do this, we linearize the
dark matter Klein-Gordon equations given in (2.8) as well as

m2
p

3∑
i=1

Gii =
3∑
i=1

(
− Λ0gii + TDM

ii

)
(2.38)

in Φ, δϕ1, and δϕ2. The resultant equations, after Fourier decomposing the perturbation
functions16 are

δϕ′′1 + 2Hδϕ′1 + δϕ1

[
k2 +m2a2

]
+ 2m2a2ϕ1,0Φ− 4ϕ′1,0Φ′ = 0, (2.39a)

δϕ′′2 + 2Hδϕ′2 + δϕ2

[
k2 +m2a2

]
+ 2m2a2ϕ2,0Φ− 4ϕ′2,0Φ′ = 0, (2.39b)

m2
pΦ
′′ + 3m2

pHΦ′+Φ

[
2m2

p

(
2
a′′

a
−H2

)
+ ϕ′21,0 + ϕ′22,0 −

1

2
m2a2

(
ϕ2

1,0+ϕ2
2,0

)
− a2Λ0

]
+

1

2
m2a2

(
ϕ1,0δϕ1 + ϕ2,0δϕ2

)
− 1

2

(
ϕ′1,0δϕ

′
1 + ϕ′2,0δϕ

′
2

)
= 0, (2.39c)

where k is the wavenumber associated with a given mode. We integrate the system of
equations (2.39) for a given mode k from the time it enters the Hubble horizon, i.e. at the
time ηi given by k = H(ηi), up until today. If no entropy perturbations were generated
during the inflationary period, the initial conditions for the perturbation functions Φ, δϕ1,
and δϕ2 at the time of horizon entry are given by [46]

Φ(k)
∣∣
k=H(ηi)

= C(k)

[
− 1 +

H(ηi)

a(ηi)2

∫ ηi

−∞
a2 dη

]
, (2.40a)

δϕ1(k)
∣∣
k=H(ηi)

= −C(k)
ϕ′1,0(ηi)

a(ηi)2

∫ ηi

−∞
a2 dη, (2.40b)

δϕ2(k)
∣∣
k=H(ηi)

= −C(k)
ϕ′2,0(ηi)

a(ηi)2

∫ ηi

−∞
a2 dη, (2.40c)

where C(k) ≈ i10−4k−3/2 is the superhorizon value of the so-called comoving curvature
perturbation for a single field slow roll model of inflation at the energy scale of ∼ 10−2mp [47].

Upon solving eqs. (2.39), we compute the sound speeds and the relative four-velocity
using eqs. (2.34) and (2.35) for any given mode k. Evaluated in the Newtonian gauge, the
results are

(1)c2
s

∣∣∣∣
k

=
ϕ′1,0

(
δϕ′1 − ϕ′1,0Φ

)
−m2a2ϕ1,0δϕ1

ϕ′1,0
(
δϕ′1 − ϕ′1,0Φ

)
+m2a2ϕ1,0δϕ1

∣∣∣∣
k

,

(2)c2
s

∣∣∣∣
k

=
ϕ′2,0

(
δϕ′2 − ϕ′2,0Φ

)
−m2a2ϕ2,0δϕ2

ϕ′2,0
(
δϕ′2 − ϕ′2,0Φ

)
+m2a2ϕ2,0δϕ2

∣∣∣∣
k

,

∆u

∣∣∣∣
k

=

√√√√k2

2

(
δϕ1

ϕ′1,0

∣∣∣∣
k

− δϕ2

ϕ′2,0

∣∣∣∣
k

)2

. (2.41)

16We Fourier decompose a perturbation function using

F(η, ki) =

∫
d3x

(2π)3/2
e−iδijx

ikjF(η, xi).
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Figure 4. This is the plot of ∆u (left), (1)c2s (right-yellow), and (2)c2s (right-blue) for the mode
k/H0 = 1. Here we have taken m/H0 = 102. Note that the sound speeds are highly oscillatory with
a nearly vanishing mean value throughout. Also, the relative four-velocity between the dark matter
components is negligible.
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Figure 5. This is the plot of ∆u (left), (1)c2s (right-yellow), and (2)c2s (right-blue) for the mode
k/H0 = 11. Here we have taken m/H0 = 102. Note that the sound speeds begin with a value of
about one, and eventually become highly oscillatory with a nearly vanishing mean value. Also, the
relative four-velocity between the dark matter components is negligible.

As an example, we numerically compute the two sound speeds and the relative four-velocity
for the modes with k = H0 and k = 11H0. We plot the results in figures 4 and 5 respectively.
Note that in doing so we have made use of the background solutions found in section 2.1.1.

The qualitative features of the plots in figures 4 and 5 can be explained as follows.
First, note that the sound speeds for both modes exhibit highly oscillatory behaviour as they
evolve towards the present time (and in fact, well into the future). This is the result of
the oscillatory behaviour of the background dark matter fields ϕ1,0 and ϕ2,0 and their linear
perturbations δϕ1 and δϕ2. In fact, for the background solutions that we specialized to in
section 2.1.1, it follows from eqs. (2.22) and (2.26) that ϕ1,0 and ϕ2,0 roughly oscillate with
frequencies ζ ′0/a = c/(a3R2

0) ∼ m in the η → 0− limit. This observation remains valid as
long as pDM

0 ≈ 0, as this relation implies ζ ′0/a ∼ m for m � H0. On the other hand, we
have already seen in the numerical results presented in the previous section that for values
of m that are large compared to the Hubble constant today, the dark matter model under
study maintains a near zero background pressure for a longer duration as we evolve the
background solutions towards the past.17 Therefore, for sufficiently large values of m, we can

17See figure 2.
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find background solutions for which ϕ1,0 and ϕ2,0 oscillate with frequencies comparable to m
and larger than the Hubble parameter from the moment that the shortest mode in the linear
regime enters the Hubble horizon up until today.

Similarly, the oscillatory behaviour of the perturbations δϕ1 and δϕ2 in the η → 0− limit
can be surmised from eq. (2.39). By taking the future limit of the latter set of equations, we
arrive at

δϕ′′1 + 2Hδϕ′1 +m2a2δϕ1 + 2m2a2ϕ1,0Φ− 4ϕ′1,0Φ′ = 0, (2.42a)

δϕ′′2 + 2Hδϕ′2 +m2a2δϕ2 + 2m2a2ϕ2,0Φ− 4ϕ′2,0Φ′ = 0, (2.42b)

m2
pΦ
′′+3m2

pHΦ′+a2Λ0Φ+
1

2
m2a2

(
ϕ1,0δϕ1+ϕ2,0δϕ2

)
− 1

2

(
ϕ′1,0δϕ

′
1+ϕ′2,0δϕ

′
2

)
= 0, (2.42c)

where we used the background solutions found in section 2.1.1. It is not difficult to see that
in the future limit, δϕ1 and δϕ2 decouple from Φ. Indeed, if we ignore the couplings in
eq. (2.42), then

δϕi, δϕ2 → cη3/2η
±i m

H0

√
1−

9H2
0

4m2 , (2.43a)

Φ → c1η + c2η
3, (2.43b)

where c, c1, and c2 are some constants. Notice the frequency of oscillations for δϕ1 and δϕ2

which is identical to their background counterparts ϕ1,0 andϕ2,0 when m� H0.18 To see that
this decoupling is consistent with the set of equations (2.42), observe that the corrections
due to the Φ terms to the first two equations become

2m2a2ϕ1,0Φ− 4ϕ′1,0Φ′ → η1/2 or η5/2, (2.44)

which induce corrections in δϕ1 and δϕ2 that decay as η5/2 or η9/2. Thus, the corrections
due to Φ are subleading in the η → 0− limit. On the other hand, the corrections due to δϕ1

and δϕ2 to the Φ equation decay at least as η, which is the same decay form as given by the
Φ terms if Φ → c2η

3 solution is selected. If Φ → c1η is selected instead, then the Φ terms
in the same equation blow up as η−1, which implies that the asymptotic dynamics of Φ is
unaffected by its couplings to δϕ1 and δϕ2. In fact, the leading corrections to the asymptotic
solution for Φ in this latter case are of η3 form. Numerical solutions to eq. (2.39) confirm
the asymptotic decoupling of the perturbation functions. Also, the asymptotic solutions for
Φ turn out to be of the Φ→ c1η form.

Next, note that the qualitative form of the sound speeds for k = H0 and k = 11H0

modes at the onset of horizon entry are quite different, with the former quickly becoming
oscillatory and the latter remaining close to one for roughly an e-fold. Numerical investiga-
tions suggest that if ma . H at the time of horizon entry for a given mode, then all three
sound speeds associated with that mode initially remain close to one, whereas a sharply os-
cillatory behaviour results for modes with ma � H at the time of their horizon entry. On
the other hand, we observe that the sound speeds for both modes end up oscillating with
a nearly constant amplitude as they evolve to the present time. This is consistent with the

18Note that a ∝ η−1 ∝ eH0t in the η → 0− limit. Thus,

η
±i m

H0

√
1−

9H2
0

4m2 ∝ e±imt
√

1−
9H2

0
4m2 .
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previously found asymptotic forms for the perturbation functions. In fact, using Φ ∝ η and
δϕ1, δϕ2 ∝ η3/2 along with the asymptotic forms of the background solutions, one finds that
the numerators and denominators of the sound speeds given in eq. (2.41) decay as η to the
leading order. This implies that the amplitude of oscillations approaches a constant value in
the η → 0− limit. Note that it is more difficult to analytically infer the period of oscillation
in this limit, though numerically we have found it to be much shorter than m−1.

The other noteworthy feature seen in figures 4 and 5 is the negligible relative velocity
between the two dark matter fields. This is expected theoretically, because ∆u defined
in (2.35) is roughly k/(mpH0) × δϕ � kϕ/(mpH0) ∼ kphys/m. Therefore, for a sufficiently
large value of dark matter mass m, this quantity remains small for linear perturbations.

To close this discussion, we remind the reader that an averaged out near zero sound
speed for the dark matter candidate is achievable should one select the dark matter mass
m to be sufficiently large. More specifically, in order that the modes with wavenumbers
1 . k/H0 . 450 have negligible sound speeds at the present time, one needs m/H0 & 450.
Requiring these modes to have negligible sound speeds as early as they become subhorizon
necessitates m/H0 & H(η∗)/H0 ∼ 1010, where η∗ is the conformal time at which the mode
k/H0 = 450 becomes subhorizon, assuming that the dark matter candidate generates the
CDM background cosmology up until then. This is similar to the conclusion of a detailed
study in [44] that uses ultralight axions for dark matter.

3 The effective field theory of interacting dark energy and dark matter

3.1 Overview

In this section we expand the analysis of the preceding section to allow for more general
couplings between the dark matter and dark energy fields. We use the techniques that were
previously employed in constructing the EFT of single clock inflation [21] to construct an
EFT of both dark energy and dark matter.19 Such methods have already been applied in
constructing EFTs of dark energy [19, 20, 49, 52, 53].20 The successful application of EFT
methods in these scenarios is based on the fact that the degrees of freedom driving the current
and the primordial phases of cosmic acceleration determine a preferred choice of spacetime
foliation.

We now review the basic idea of the construction as applied to the present context, in
a language that does not refer to coordinate choices. Suppose that we start with a general
action S = S[gab,Π, φ] for the metric gab, dark energy field φ and dark matter field Π. This
action is diffeomorphism invariant:

S[ψ∗gab, ψ∗Π, ψ∗φ] = S[gab,Π, φ] (3.1)

where ψ is any smooth diffeomorphism and ψ∗ is the pullback operation. Suppose now that
we are given a background solution gab,0,Π0, φ0. We choose to use the foliation determined
by the dark energy background solution φ0, and define a modified action functional

S1[gab,Π, δφ] = S[gab,Π, φ0 + δφ]. (3.2)

19See [22] for an extension of the single clock formalism to multifield models of inflation. There have also
been more recent extensions of this EFT [48, 50]. Also see [51] for a different EFT formalism for inflation.

20A different kind EFT valid under certain assumptions about the UV physics can be found in [54].
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which is a functional of the scalar field perturbation δφ. The action S1 is invariant under the
transformations

gab → ψ∗gab, Π→ ψ∗Π, δφ→ ψ∗δφ+ ψ∗φ0 − φ0. (3.3)

The action of these symmetries is linearly realized only for foliation preserving diffeomor-
phisms, those for which

ψ∗φ0 = φ0. (3.4)

More general diffeomorphisms are realized nonlinearly, from eq. (3.3).
We next define a new action functional of the metric and dark matter fields by setting

δφ to zero:
S2[gab,Π] = S1[gab,Π, 0]. (3.5)

Because of the gauge redundancy in the description of the theory, the action S2 still contains
complete information about the theory. However it is no longer invariant under the full
diffeomorphism group: the relation

S2[ψ∗gab, ψ∗Π] = S2[gab,Π] (3.6)

is valid only for the foliation preserving diffeomorphisms that satisfy (3.4). The action S2

describes the theory specialized to unitary gauge.
We can reconstruct from the action S2 the fully covariant version of the theory by

performing the so-called Stueckelberg trick.21 We define a new action functional that depends
on gab, Π and an arbitrary smooth diffeomorphism ξ : M →M by

S3[gab,Π, ξ] = S2[ξ∗gab, ξ∗Π]. (3.7)

This action is invariant under general diffeomorphisms:

S3[ψ∗gab, ψ∗Π, ψ
−1 ◦ ξ] = S3[gab,Π, ξ]. (3.8)

From the action S3 one can obtain the original action S, coming a full circle, as follows.
We have

S3[gab,Π, ξ] = S2[ξ∗gab, ξ∗Π] = S1[ξ∗gab, ξ∗Π, 0], (3.9)

from eqs. (3.7) and (3.5). Now applying the invariance (3.3) with ψ = ξ−1 gives

S3[gab,Π, ξ] = S1[gab,Π, (ξ
−1)∗φ0 − φ0] = S[gab,Π, φ]. (3.10)

Here we have used (3.2) and defined φ = (ξ−1)∗φ0; the action S3 depends on ξ only through φ.
The key idea of the EFT of inflation/dark energy is to apply the usual rules of EFT to

the unitary gauge form (3.5) of the action. One proceeds by writing down all possible oper-
ators that are invariant under foliation preserving diffeomorphisms, which for perturbations
about FRW solutions includes all time dependent spatial diffeomorphisms. This can be done
efficiently using the 3 + 1 ADM splitting of the metric, which splits the spacetime metric gab
into a spatial metric hij , lapse N , and shift vector N i via

ds2 = hij(dx
i +N idt)(dxj +N jdt)−N2dt2. (3.11)

21See [55] for an excellent review of this technique and its applications in gauge theory as well as gravitational
theories.
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Here the surfaces of constant t are chosen to coincide with surfaces of constant φ0. Neglecting
for the moment the dependence on the dark matter field Π, the most general unitary gauge
action that is invariant under foliation preserving diffeomorphisms is

S2[gab] =

∫
d3x

∫
dt
√
hL[t, hij , N,Kij , Di, ∂t − L ~N ], (3.12)

where Di is the 3D covariant derivative associated with hij and Kij = (ḣij − DiNj −
DjNi)/(2N) is the extrinsic curvature, with Ni = hijN

j . This process is more efficient
than other approaches since the field φ does not appear anywhere in the action (3.5). After
all the appropriate operators have been identified, one can always return to the fully covariant
form of the theory using the Stueckelberg trick.

The action (3.12) can depend on the three dimensional Riemann tensor (3)Rijkl through
the derivative Di. It is convenient to re-express this dependence and the dependence on the
lapse and the extrinsic curvature in terms of the perturbations

δN ≡ N − α(t), (3.13)

δKij ≡ Kij − β(t)hij , (3.14)

δ(3)Rijkl ≡ (3)Rijkl − γ(t) [hikhjl − hjkhil − hilhjk + hjlhik] . (3.15)

Here the functions α(t), β(t) and γ(t) parametrize the background solution, and are regarded
as fixed functions of time, which are allowed in the action (3.5). Finally the dependence on
three dimensional curvature can be re-expressed in terms of a dependence on four dimensional
curvature and on the extrinsic curvature using the Gauss-Codazzi equations [21].

In the following subsections we follow this approach, but generalize previous treatments
by including the dark matter field Π. For simplicity, we disregard baryonic matter. In
section 3.2 we identify all the relevant (dimension ≤ 4) and marginally relevant (dimension
= 4) operators in the dark matter sector.22 Just as in the EFT of dark energy, we only
include the geometric objects that are either spacetime tensors or tensors intrinsic to the
surfaces of constant dark energy field. We find it convenient to implement the Stueckelberg
trick from the beginning by expressing all terms in the action in their covariant forms. We
present the EFT action in section 3.3, discuss the EFT regime of validity in section 3.4,
and derive the relevant equations of motion in section 4. Our present work is intended to
complement previous attempts to formulate a generalized interacting theory of dark energy
and dark matter [56–60].23

3.2 The effective field theory operators for the dark matter sector

In this section we identify all the operators of dim ≤ 4 that appear in the dark matter effective
action up to the second order in perturbations. The goal is to replace the action (2.1) with
a more general action. Following [21] we perform a field redefinition

φ→ φ̄ = φ̄(φ) (3.16)

so that in the new coordinates on field space the background solution is just φ̄0(t) = t. We
denote the perturbation to the scalar field in these field space coordinates by

τ(t, xi) = δφ̄(t, xi) = φ̄(t, xi)− φ̄0(t) = φ̄(t, xi)− t. (3.17)

22Irrelevant operators (dimension > 4) could be important if one is interested in probing the dynamics of
energy scales that are comparable to the cutoff scale of the EFT. See section 3.4 for a discussion.

23See [61, 62] for studies on some aspects of the effective field theory of dark energy in presence of matter.
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Background Perturbations dimension

Π†Π X X 2

δf Π†Π 7 X 2

na∇aδf Π†Π 7 X 3

δK Π†Π 7 X 3

(Π†Π)2 X X 4

gab∇aΠ†∇bΠ X X 4

hab∇aΠ†∇bΠ 7 X 4

gab∇a∇bδf Π†Π 7 X 4

hab∇a∇bδf Π†Π 7 X 4

na∇aδK Π†Π 7 X 4

δK2 Π†Π 7 X 4

δ
[
KabK

ab
]

Π†Π 7 X 4

habδRabΠ
†Π 7 X 4

R Π†Π X X 4

Table 1. Operators that are relevant for the effective linear perturbation theory of interacting dark
energy-dark matter. Here we have defined f ≡ gabφ̄,aφ̄,b. Also, for any object X, δX ≡ X −X0 with
X0 being its background value.

As discussed above, the allowed operators can be constructed from scalar functions such as
the dark matter field Π, spacetime tensors such as gab and Rabcd, and foliation dependent
tensors such as the unit normal na, induced metric hab, and extrinsic curvature tensor Kab.
After covariantizing using the Stueckelberg trick, these quantities can be written as

na =
gabφ,b√
−gcdφ̄,cφ̄,d

, (3.18)

hab = gab + nanb, (3.19)

Kab = ha
chb

d∇cnd. (3.20)

The independent operators in the dark matter sector are given in table 1. Some of the
operators are relevant for both the background and the linear perturbation theory as discussed
in the subsequent sections. [See appendix C for a more detailed discussion of all possible
operators.]

3.3 The effective field theory action

We are now ready to express the EFT action. This action provides a complete picture for
the dynamics of the background and the linear scalar perturbation theory of interacting dark
energy and dark matter. The general EFT action in the “hatted frame”24 with metric ĝab is

24This is a slight generalization of the commonly used Jordan frame. For a general interacting theory of
dark energy and dark matter, there could be no conformal frame in which all couplings between the two
sectors are eliminated. The hatted frame here coincides with the standard Jordan frame if we set αi = βi = 0.
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given by [see eqs. (2.5) and (2.6)]

Ŝ[ĝab, φ̄,Π
†,Π, ψ] = Ŝgravity[ĝab, φ̄] + ŜDE[ĝab, φ̄] + ŜDM-int[ĝab, φ̄,Π

†,Π] +Sb[e
αĝab, ψ]. (3.21)

Here Ŝgravity / DE are the effective gravitational / dark energy actions that were worked out

in ref. [19, 20], and ŜDM-int. is the effective dark matter action which includes its interactions
with the dark energy field and gravity. Since our focus in this paper is on the dynamics of
dark matter, we choose the following simple forms for the effective gravitational and dark
energy actions

Ŝgravity[ĝab, φ̄] =

∫
d4x
√
−ĝ

eαm2
p

2

[
R̂− 3ĝab∇̂a∇̂bα−

3

2
ĝab∇̂aα∇̂bα

]
,

ŜDE[ĝab, φ̄] =

∫
d4x
√
−ĝ e2α

[
−e−α

2
Λ0f̂ − Λ̃

]
, (3.22)

where
f̂ = ĝab∇̂aφ̄∇̂bφ̄ (3.23)

and Λ̃ ≡ Λ0(1 + β1) for some function β1 of φ̄. This is essentially the same action for gravity
and dark energy that was given in eq. (2.7). Using the operators listed in table 1, the effective
dark matter action takes the following form

ŜDM-int[ĝab, φ̄,Π
†,Π] =

∫
d4x
√
−ĝ

[
− ĝab∇̂aΠ†∇̂bΠ + α1ĥ

ab∇̂aΠ†∇̂bΠ− λ̃(Π†Π)2

+
(
∓m̃2+γ̃R̂+µ2α2δf̂+µα3n̂

a∇̂aδf̂+[α4ĝ
ab+α5ĥ

ab]∇̂a∇̂bδf̂+µα6δK̂

+α7n̂
a∇̂aδK̂ + α8δ[K̂

2] + α9δ[K̂abK̂
ab] + α10ĥ

abδR̂ab

)
Π†Π

]
, (3.24)

where αi are some functions of φ̄ and µ is some constant of mass dimension one. Also,
m̃2 ≡ m2(1 + β2), λ̃ ≡ λ(1 + β3), and γ̃ ≡ γ(1 + β4) for some constants m2, λ, and γ and
some functions βi of φ̄.

The action (3.24) incorporates different possibilities for dark matter interactions. The
term proportional to α1 is associated with local Lorentz violation for the dark matter pertur-
bations. The term proportional to γ̃ encodes non-minimal coupling to gravity. Note that this
term does not result in the violation of the WEP as long as β4 = 0. All terms proportional
to αi result in the violation of the WEP by virtue of being foliation dependent.

Finally, note that expressing Λ̃, m̃, λ̃, and γ̃ in terms of constant terms and the βi
functions is a gauge dependent procedure. To compare the predictions of this model with
observations, one would need to fix the values of the βi functions at a fiducial redshift.

3.4 The effective field theory regime of validity

We now determine the domain of validity of the EFT constructed in the previous section.
We first examine the bounds on the UV cutoff of the EFT by estimating the magnitude of
the dark matter irrelevant operators and requiring them to be suppressed compared to the
relevant operators. We then complement our estimates by demanding radiative stability for
the coefficients of the main operators, namely the masses and the leading coupling constants
of the dark matter and dark energy fields. Here we do not speculate on the nature of the UV
physics from which this EFT results in the infrared limit.
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H0 mϕ m Λ0
1/4 〈ϕ〉  mp

m λ-1/2, ...
〈Π〉

Figure 6. An illustration of the various energy scales E in the effective field theory, where H is the
Hubble parameter. Here 〈Π〉 and 〈φ〉 denote the present values of the dark matter and dark energy
fields respectively. The UV cutoff C of the EFT is generically expected to be larger than 〈Π〉 and
〈φ〉 and the masses m and mφ of the dark matter and dark energy fields. Radiative stability for the
parameters of the dark matter-dark energy Lagrangian places an upper bound on the cutoff C. One
such upper bound is mλ−1/2 which comes from the one loop contribution of λ(Π†Π)2 to the mass m
of the dark matter fields.

Since we have multiple degrees of freedom in the EFT, it is possible that the scales at
which different sectors of the EFT become strongly coupled are substantially different. In
this work, our estimates for the range of the UV cutoff are based on the dark matter sector,
including dark matter-dark energy interactions. Our main conclusion is that in order to
minimize the amount of fine tuning for the parameters of the EFT Lagrangian,

• the hierarchy between the dark matter mass m and the dark energy mass mφ should
not be more than a few orders of magnitude,

• the dark matter mass should be many orders of magnitude larger than the Hubble
parameter today, and

• the UV cutoff C should be several orders of magnitude larger than Λ
1/4
0 ∼ 10−3 eV.

See figure 6 for an illustration of these conclusions.

3.4.1 Cutoff estimation based on the dark matter potential

Let us begin by ignoring the dark matter interactions with dark energy and gravity. Focusing
on the operators with dim ≤ 4, the effective dark matter Lagrangian that we formulated in
section 3.3 has two parameters, namely the mass m of the dark matter fields and the dark
matter coupling constant λ. As a first step, it is reasonable to demand that the UV cutoff C
be within the range m � C � mp. Note that m � H0 as the dark matter mass is required
to be several orders of magnitude heavier than the Hubble constant.25

It is necessary in any EFT that irrelevant operators be suppressed compared to relevant
and marginally relevant operators in the regime where EFT is expected to be predictive.
To examine this more closely, consider non-derivative self-interactions in the dark matter
potential which we parametrize as

∑
n≥1

σn
(Π†Π)n

C2n−4
, (3.25)

where σn are some dimensionless constants.The dark matter mass m and coupling constant
λ are expressed as

√
σ1C and σ2 respectively. The condition m . C requires σ1 to be small

25See the analysis given in section 2.1.2. Also, the lightest dark matter candidates that can account for the
entire CDM content of the Universe have m & 10−24 eV ∼ 109H0 [44].
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compared to unity. If we assume that dark matter is weakly interacting with itself, then

λ(Π†Π)2 ∼ λΛ2
0

m4
� Λ0, (3.26)

where we used m2Π†Π ∼ Λ0. This implies that λ � m4/Λ0. If m . Λ
1/4
0 , then λ must be

suppressed compared to unity.26 Setting λ to values much smaller than unity is a fine tuning
if no assumptions regarding the UV physics have been made.

Turning to terms in eq. (3.25) with n ≥ 3 (irrelevant operators), we have

σn
(Π†Π)n

C2n−4
∼ σn

Λn0
m2nC2n−4

� Λ0 (3.27)

which using Λ0 ∼ m2
pH

2
0 ∼ (10−3 eV)4 requires the cutoff to be bounded below by

C � σ
1

2n−4
n

√
mpH0

(
m√
mpH0

)− n
n−2

. (3.28)

Assuming σn ∼ O(1) this gives a lower bound below 10−3 eV for m & 10−3 eV, but a more
stringent lower bound above 10−3 eV for larger m. If the dark matter fields are similar to the
QCD axions, then m & 10−6 eV,27 which implies C & O(1) MeV. Note that m & 10−13 eV as
C cannot exceed mp.

If one allows σn � 1, then smaller values for m are feasible at the expense of fine
tuning. This may be necessary if one is interested in significant interactions between dark
matter and dark energy fields when the dark energy field has a mass mφ ∼ H0.28 We can
rearrange eq. (3.28) to derive the following upper bound on σn

σn �
H2

0

m2
p

(
C
mp

)2n−4( m

H0

)2n

. (3.29)

We expect m/H0 ≥ 109 if the dark matter candidate accounts for all of dark matter in the
Universe [44]. For n = 3 and using C . mp this gives σ3 � 10−68, which is an extreme fine
tuning. If we lower the cutoff scale to C ∼ eV, the fine tuning of σ3 becomes more severe,
where now it becomes bounded above by 10−120. Overall, the smaller the hierarchy between
the cutoff scale and the dark matter mass, and the lighter the dark matter fields, more severe
fine tunings should be expected. However, this is not particularly surprising because fine
tuning is a generic problem of dynamical dark energy models which has now become more
severe as a result of dark energy coupling to dark matter. This level of fine tuning may not
harm the self consistency of the EFT model as long as the EFT parameters are stable under
radiative corrections. Whether extreme fine tuning of parameters can prevent the EFT from
admitting a well defined UV completion is a relevant question which we will not address in
the present work.

26Recall that our analysis in section 2.1.1 indicated that smaller values of λ result in wDM � 1 for higher
redshifts and therefore are better suited for reproducing the background ΛCDM cosmology.

27See [63–66]. The lower bound on the mass of the QCD axions can be significantly lowered if one allows
for fine tuning of its parameters [67, 68].

28Ultralight dark matter fields can interact significantly with dark energy if the hierarchy between their
respective masses is not too large [69].
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3.4.2 Bounds on the cutoff from radiative corrections

Unless prohibited or strongly constrained by a symmetry, radiative corrections can induce
large changes in the parameters of a Lagrangian. Such corrections, which are cutoff depen-
dent, are then absorbed by carefully tuned “bare” Lagrangian parameters in order to produce
“physical” Lagrangian parameters, which are cutoff independent.29 This process requires fine
tuning of bare Lagrangian parameters. If this fine tuning is undesirable, then the cutoff needs
to be suitably lowered in order to keep radiative corrections under control. By demanding
radiative stability at one loop order for a number of primary EFT parameters, we derive an
upper bound for the EFT cutoff C.

For simplicity, we ignore direct couplings of gravity to dark energy and dark matter.30

We restrict attention to modes with momenta k � H for which we can neglect the influence
of background geometry on the mode dynamics. The EFT action that we formulated in
section 3.3 can then be written as (ignoring irrelevant operators)31

Sk�HDE-DM[φ,Π†,Π] =

∫
d4x

[
− 1

2
∂aφ∂

aφ− V (φ)− ∂aΠ†∂aΠ−m2Π†Π− λ(Π†Π)2

−µφΠ†Π− εφ2Π†Π

]
, (3.30)

where µ and ε are constants of dimension one and zero respectively. The dark energy potential
V (φ) is assumed to be sufficiently flat with a current value of approximately Λ0. If we take
this potential to be V (φ) = m2

φφ
2/2, we have

V (〈φ〉) =
1

2
m2
φ〈φ〉2 ≈ Λ0, (3.31)

where 〈φ〉 is the present value of the dark energy field. Potential flatness then requires

mφ . Λ
1/4
0 . 〈φ〉.32 The interaction terms in action (3.30) result from expanding m̃2 in

eq. (3.24) in powers of φ. If m̃2 has an analytic dependence on φ, we can write

m̃2(φ) = m2

[
1 +

∞∑
i=1

ξi

(
φ

C

)i]
, (3.32)

for some constants ξi. In the EFT framework, the strong coupling limit occurs when φ ∼
C/ξ1/i

i . This parametrization gives µ ≡ ξ1m
2/C and ε ≡ ξ2m

2/C2. Note that we should
require ε, λ� 1 in order to rely on perturbation methods for computing radiative corrections.
This latter requirement implies in particular that ξ2 � C2/m2, which is not a stringent
constraint given that C & m.

29We are using brute-force cutoff as a method of regularization.
30In our case, these direct couplings take the forms eαR and γ̃RΠ†Π that appear in eqs. (3.22) and (3.24)

respectively.
31We ignore foliation dependent operators as they result in local Lorentz violation. Note, however, that we

have no direct evidence that dark matter or dark energy respect local Lorentz symmetry. Here we do so to
simplify our analysis.

32For the dark energy potential to be flat, we require |V ′/V 3/4|, |V ′′/V 1/2| � 1.
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DM DE

δm2 ∼ λ C2 ∼ ε C2

δm2
φ ∼ ε C2

δµ ∼ λµ log
( C
m

)
δλ ∼ λ2 log

( C
m

)
∼ ε2 log

( C
mφ

)
δε ∼ λε log

( C
m

)
Table 2. Leading one loop corrections to mφ, m, µ, ε, and λ due to the dark matter (DM) and dark
energy (DE) loops based on the interactions terms that appear in eq. (3.30). One loop corrections
that are inversely proportional to C are omitted.

Figure 7. One loop corrections to mφ (left) and m (right) from φ2Π†Π operator, as well as the one
loop correction to m (center) from (Π†Π)2.

Our objective here is to keep the one loop radiative corrections to mφ, m, µ, λ, and
ε not large compared to their bare values. The estimates for radiative corrections to these
parameters are provided in table 2. Among these parameters, m and mφ are most sensitive
to the UV cutoff where δm2, δm2

φ ∝ C2. The most stringent bounds on C result from these
corrections (see figure 7 for the Feynman diagrams associated with these loop corrections).
Requiring δm2 . m2 and δm2

φ . m2
φ gives

C . min

{
m√
λ
,
m√
ε
,
mφ√
ε

}
. (3.33)

Several remarks should be made regarding the above relation. First, using the definition
given in eq. (3.32) for ε we have

min{m,mφ}√
ξ2m

& 1, (3.34)

which necessitates fine tuning of ξ2 to values smaller than order unity unless mφ & m.
Additionally, while lowering λ increases mλ−1/2 classically, the quantum corrections to λ
from dark energy loops require λphys ≡ λbare + δλ & ε2 log (C/mφ). if we assume mφ ∼ m,
this lower bound on λphys gives

C . m×min

{
1√
ε
,

1

ε
√

log
(
ε2

2

)
}

=
m√
ε

(3.35)

for ε � 1. Finally, note that ε too is not protected from quantum corrections even if we
classically set ε = 0. Indeed, one loop corrections to λ and ε from φΠ†Π operator are roughly
µ4/C4, which using the definition of µ become roughly ξ4

1m
8/C8 (see figure 8 for the relevant

Feynman diagrams). This gives

C . m
√
εphys

=
C4

ξ2
1m

3
⇒ C & ξ

2/3
1 m, (3.36)
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Figure 8. One loop corrections to λ (left) and ε (right) from φΠ†Π operator.

which, while consistent with our expectations that m . C for ξ1 ∼ O(1), does not provide
any upper bounds on C. Therefore, the UV cutoff cannot be constrained using eq. (3.33) if λ
and ε are tuned to zero classically and φΠ†Π is the only interaction operator. In that case,
an upper bound for C is obtained by requiring the one loop correction δm2

φ to the mass of

the dark energy field to be bounded by m2
φ, which gives log (C/m) . m2

φ/µ
2. In particular,

if C is larger than m by at least a few orders of magnitude, then µ2 . m2
φ.

4 The effective field theory dynamical equations

In this section we derive the effective dynamical equations for the gravitational and the
dark matter fields by varying the action (3.21) with respect to gab, Π†, and Π. Given the
parameterization (3.17) of the dark energy field as φ̄, we find it more convenient to derive the
dark energy background and linear perturbation equations separately in sections 4.1 and 4.2
respectively.

The Einstein equations are (we drop the hat from the operators in section 3.3)

Gab = TDE
ab + TDM

ab + T int
ab (4.1)

where the gravitational tensor Gab is defined as

Gab ≡
2√
−g

δSgravity

δgab
= eαm2

p

[
Gab +

1

2
gab

(
2gab∇a∇bα+

1

2
gab∇aα∇bα

)
−∇a∇bα

+
1

2
∇aα∇bα

]
, (4.2)

the effective dark energy stress energy tensor TDE
ab is given by

TDE
ab ≡

−2√
−g

δSDE

δgab
= eαΛ0fab + e2αgab

(
− 1

2
e−αΛ0f − Λ̃

)
, (4.3)

the effective dark matter stress energy tensor TDM
ab is given by

TDM
ab ≡

−2√
−g

δSDM-int

δgab

∣∣∣∣
αi=βi=γ=0

= 2∇(aΠ
†∇b)Π + gab

[
− gcd∇cΠ†∇dΠ∓m2Π†Π

−λ(Π†Π)2
]
, (4.4)
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and the effective stress energy tensor T int
ab for the dark matter interactions with dark energy

and gravity is given by

T int
ab ≡

−2√
−g

δSDM-int

δgab
− TDM

ab = −2α1∇(aΠ†∇b)Π + gab

[
α1h

cd∇cΠ†∇dΠ + (∓m2β2 + γ̃R)

×Π†Π− λβ3(Π†Π)2 − 2gcd∇c∇d(γ̃Π†Π)
]
− 2γ̃RabΠ

†Π− 2α1n
c
[
∇cΠ† ∇(aΠ nb) +∇cΠ

×∇(aΠ† nb)

]
+ 2α1Jab n

cnd∇cΠ†∇dΠ + 2∇a∇b(γ̃Π†Π) +

[
µ2α2

{
gabδf − 2δfab

}
+ µα3

{
gab

×nc∇cδf − 2n(a∇b)δf + Jabn
c∇cδf

}
+ α5

{
gabh

cd∇c∇dδf − 2∇(a∇b)δf − 4ncn(a∇b)∇cδf

+2Jabn
cnd∇c∇dδf

}
+ µα6

{
gabδK − 2δ

(
Kab −

1

2
JabK

)}
+ α7

{
gabn

c∇cδK + 2δ
[
K
(
Kab

−1

2
JabK

)]}
+ α8

{
gabδK

2 − 4δ
[
K
(
Kab −

1

2
JabK

)]}
+ α9

{
gabδ

(
KcdK

cd
)
− 4δ

(
Kc

(aKb)c

−1

2
JabK

cdKcd

)}
+ α10

{
gabh

cdδRcd − 2
(
δRab + 2ncδRc(anb) − ncndδRcdJab

)}]
Π†Π− 2δfab

×
[
− µ∇c(α3n

cΠ†Π) + gcd∇c∇d(α4Π†Π) +∇c∇d(α5h
cdΠ†Π)

]
− gabgcd∇cδf∇d[α4Π†Π]

+2∇(a

[
α4Π†Π

]
∇b)δf − gcd∇d

[
α5hab∇cδfΠ†Π

]
+ 2∇c

[
α5∇(aδf h

c
b)Π
†Π
]
+ 2δ

{
∇c
[(
n(ahb)

c

−1

2
habn

c
)}(

[µα6 − α7K]Π†Π− nc∇c[α7Π†Π]
)]
− 2∇c

[
α7

(
n(ahb)

c − 1

2
habn

c
)
δKΠ†Π

]
+2∇c[α7Π†Π]

[
ncδ
(
Kab −

1

2
JabK

)
+δK

(
δc(a nb)−

1

2
ncJab

)]
+4δ

{
∇c
[
K
(
n(ahb)

c− 1

2
habn

c
)}

×α8Π†Π

]
+4δ

{
∇c
[(
n(aKb)

c− 1

2
ncKab

)}
α9Π†Π

]
+δ

{
2∇c∇(b

}[
α10ha)

cΠ†Π
]
−δ
{
gcd∇c∇d

}
×
[
α10habΠ

†Π
]
− δ
{
gab∇c∇d

}[
α10h

cdΠ†Π
]
. (4.5)

In eqs. (4.2), (4.3), (4.4), and (4.5) we defined fab ≡ φ̄,aφ̄b, δfab ≡ (φ̄,aφ̄,b − a2δηaδηb), and
Jab ≡ φ̄,aφ̄,b/(φ̄,cφ̄,c). We also used the notation X(aYb) ≡ (XaYb +XbYa)/2.

For much of the subsequent analysis we use the dark matter parameterization in terms
of R and ζ defined in eq. (2.14). We therefore find it convenient to express the dark matter
and interactions stress energy tensors as a sum of stress energy tensors each associated with
R and ζ.33 The dark matter stress energy tensor given in eq. (4.4) is written as

TDM
ab = RTDM

ab + ζTDM
ab (4.6)

where

RTDM
ab = 2∇aR∇bR+ gab

[
−∇cR∇cR∓m2R2 − λR4

]
,

ζTDM
ab = R2

[
2∇aζ∇bζ − gab∇cζ∇cζ

]
. (4.7)

33The ζ pieces of both stress energy tensors actually include factors of R2. This is expected because ζ is
dimensionless.
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Similarly, we write the interactions stress energy tensor given in eq. (4.5) as

T int
ab = RT int

ab + ζT int
ab (4.8)

where

ζT int
ab = R2α1

[
− 2∇aζ∇bζ − 4nc∇cζ∇(aζ nb) + 2Jabn

cnd∇cζ∇dζ + gabh
cd∇cζ∇dζ

]
,

RT int
ab = −2α1∇aR∇bR− 4α1n

c∇cR∇(aR nb) + 2α1Jabn
cnd∇cR∇dR− 2γ̃RabR2

+2∇a∇b[γ̃R2] + gab
[
α1h

cd∇cR∇dR+ (∓m2β2 + γ̃R)R2 − λβ3R4 − 2∇c∇c(γ̃R2)
]

+non-covT int
ab

∣∣∣∣
Π†Π=R2

. (4.9)

In the above equation, non-covT int
ab refers to the operators in the interaction stress energy

tensor that are expressed in the non-covariant format.
Lastly, the dark matter equations of motion are

∇a∇aΠ† −∇a
[
α1h

ab∇bΠ†
]

+
[
∓ m̃2 − 2λ̃[Π†Π] + γ̃R+ µ2α2δf + µα3n

a∇aδf

+
(
α4g

ab + α5h
ab
)
∇a∇bδf + µα6δK + α7n

a∇aδK + α8δK
2 + α9δ

(
KabK

ab
)

+α10h
abδRab

]
Π† = 0, (4.10)

along with its complex conjugate. Expressed in terms of the radial and angular fields R and
ζ, they become(

gab − α1h
ab
)
∇a∇bR−∇a

(
α1h

ab
)
∇bR−R

(
gab − α1h

ab
)
∇aζ∇bζ +

[
∓ m̃2 − 2λ̃R2

+γ̃R+ µ2α2δf + µα3n
a∇aδf +

(
α4g

ab + α5h
ab
)
∇a∇bδf + µα6δK + α7n

a∇aδK + α8δK
2

+α9δ
(
KabK

ab
)

+ α10h
abδRab

]
R = 0,

∇a
(
R2
[
gab − α1h

ab
]
∇bζ

)
= 0. (4.11)

4.1 Background equations revisited

The EFT action that was worked out in section 3.3 subsumes the original action of section 2.
Due to the dark energy parametrization, the effective action’s dependence on the dark energy
field is partly disguised in our choices for the EFT functions α, αi, and βi. This dark energy
parametrization significantly simplifies the study of the background dynamics. We now use
the results of the previous subsection to derive the effective background equations.

The Einstein equations (4.1) evaluated on the flat FRW background reduce to the
following two Friedmann equations

1

a2
Gηη,0 =

1

a2
TDE
ηη,0 +

1

a2
TDM
ηη,0 +

1

a2
T int
ηη,0 = ρDE

0 + ρDM
0 + ρint

0

⇒ eαm2
p

(
3
H2

a2
+

3α′2

4a2
+ 3
Hα′

a2

)
= e2α

(e−α
2

Λ0 + Λ̃
)

+
R′20
a2

+R2
0

ζ ′20
a2
− 6H

a2

(
γ̃R2

0

)′
+

(
± m̃2 + λ̃R2

0 −
6H2

a2
γ̃

)
R2

0,
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1

a2
Gii,0 =

1

a2
TDE
ii,0 +

1

a2
TDM
ii,0 +

1

a2
T int
ii,0 = pDE

0 + pDM
0 + pint

0

⇒ eαm2
p

(
H2

a2
− 2a′′

a3
− α′′

a2
− Hα

′

a2
− α′2

4a2

)
= e2α

(
e−α

2
Λ0 − Λ̃

)
+
R′20
a2

+R2
0

ζ ′20
a2

+
2

a2

(
γ̃R2

0

)′′
+

2H
a2

(
γ̃R2

0

)′
+

(
∓ m̃2 − λ̃R2

0 +

[
4
a′′

a3
− 2
H2

a2

]
γ̃

)
R2

0, (4.12)

where i is a spatial index and we used the dark matter parametrization in terms of R and ζ
given in eq. (2.14).

The background dark matter equations of motion evaluated using eq. (4.10) are

R′′0
R0

+ 2HR
′
0

R0
− ζ ′20 +

(
± a2m̃2 + 2a2λ̃R2

0 − 6
a′′

a
γ̃

)
= 0 (4.13)

and the same equation as in (2.20) for ζ0.
Finally, to derive the background equation associated with the dark energy field we

expand the effective action (3.21) to linear order in the dark energy perturbation function τ ,
then vary the resultant expression with respect to τ . Doing this we get

m2
p

2a
eαα′

(
6
a′′

a3
+ 3

α′′

a2
+

3α′2
2a2

+ 6
Hα′

a2

)
− e2α

(
e−α

2a
Λ0[α′ + 6H] +

Λ̃

a

[
2α′ +

Λ̃′

Λ̃

])
+

(
∓m2β′2 − λβ′3R2

0 + 6γβ′4
a′′

a3

)
R2

0

a
+ 2µ2a3α2R2

0

(
α′2
α2

+ 3H + 2
R′0
R0

)
+2µa2α3R2

0

(
3H2 + 10HR

′
0

R0
+ 2
R′20
R2

0

+ 5Hα
′
3

α3
+ 4
R′0α′3
R0α3

+ 3
a′′

a
+ 2
R′′0
R0

+
α′′3
α3

)
−2aα4R2

0

(
6HR

′2
0

R2
0

+ 12HR
′
0α
′
4

R0α4
+ 6
R′20 α′4
R2

0α4
+ 4

a′′R′0
aR0

+ 2
a′′α′4
aα4

+ 6HR
′′
0

R0
+ 6
R′0R′′0
R2

0

+6
α′4R′′0
α4R0

+ 3Hα
′′
4

α4
+ 6
R′0α′′4
R0α4

+ 2
R′′′0
R0

+
α′′′4
α4

)
+ 24aα5R2

0

(
−H3 + 2H2R′0

R0
+H2α

′
5

α5

+2Ha
′′

a

)
= 0. (4.14)

As expected, the above equation is non-dynamical, rather it enforces a constraint that is
to be satisfied by the background and the EFT functions. It can be seen from the above
derivations that we have a total of five background equations for a total of three background
functions which are the FRW scale factor a and the dark matter fields R0 and ζ0, as well
as all the EFT functions in the action (3.21) except α1, α6, α7, α8, α9, and α10. Therefore,
thirteen of fourteen EFT functions can be freely specified.

Lastly, we find it worthwhile to relate the results of our EFT formalism to the phe-
nomenological models for interacting dark matter and dark energy, where such interactions
are typically represented via the non-conservation of the dark matter stress energy ten-
sor [30, 70–72]. To derive the background continuity equation for the dark matter, we begin
by noting that

∇aTDM a
η = ∇aGa η −∇aTDE a

η −∇aT int a
η (evaluated on background)

⇒ ρDM ′
0 + 3H(ρDM

0 + pDM
0 ) = −ρint ′

0 − 3H(ρint
0 + pint

0 )− ρDE ′
0 − 3H(ρDE

0 + pDE
0 )

−(Gη η,0)′ − 3H(Gη η,0 − Gi i,0). (4.15)
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Using eqs. (4.12) and (4.14) we find

ρDM ′
0 + 3H(ρDM

0 + pDM
0 ) = −2R0R′0

(
±m2β2 + 2λβ3R2

0 − 6γ̃
a′′

a3

)
−2µ2a4α2R2

0

(
α′2
α2

+ 3H + 2
R′0
R0

)
−2µa3α3R2

0

(
3H2 + 10HR

′
0

R0
+ 2
R′20
R2

0

+ 5Hα
′
3

α3
+ 4
R′0α′3
R0α3

+ 3
a′′

a
+ 2
R′′0
R0

+
α′′3
α3

)
+2a2α4R2

0

(
6HR

′2
0

R2
0

+ 12HR
′
0α
′
4

R0α4
+ 6
R′20 α′4
R2

0α4
+ 4

a′′R′0
aR0

+ 2
a′′α′4
aα4

+ 6HR
′′
0

R0
+ 6
R′0R′′0
R2

0

+6
α′4R′′0
α4R0

+ 3Hα
′′
4

α4
+ 6
R′0α′′4
R0α4

+ 2
R′′′0
R0

+
α′′′4
α4

)
−24a2α5R2

0

(
−H3 + 2H2R′0

R0
+H2α

′
5

α5
+ 2Ha

′′

a

)
. (4.16)

As expected from our choice of frame in the effective action (3.21), the background dark
matter continuity equation deviates from the standard CDM result34 by terms that either
break the WEP or are associated with non-minimal gravitational interactions.

In ref. [39], the current value of the right hand side of eq. (4.16) is roughly parametrized
as ξH0Λ0, where the CMB anisotropy maps together with the matter power spectrum are
used to show that |ξ| � 0.1. We apply this constraint individually to the terms appearing
on the right hand side of eq. (4.16), upon which we arrive at the following set of constrains:

|γ̃| � 0.1
m2

H2
0

,

|β2| � 0.1, |β3| � 0.1
m4

λΛ0
,

|α2| � 0.1
m2

µ2
, |α3| � 0.1

m2

µH0
, |α4|, |α5| � 0.1

m2

H2
0

, (4.17)

where we estimated m2R2
0 ∼ Λ0, ∂nηR0 ∼ HnR0, ∂nηαi ∼ Hnαi, and set a0 = 1. Of the

above constraints, only the ones on β2 and possibly α2 are stringent. Indeed, following the
arguments provided in section 3.4, we have

H0 � m,
m4

λΛ0
� 1, (4.18)

which implies that the above upper bounds on γ̃, β3, α4, and α5 are large compared to unity.
Furthermore, as we argued in section 3.4, we require µ . mφ. Given that a small hierarchy
between m and mφ is preferred based on the fine tuning arguments previously outlined, we
can have µ . m. This latter implies that while the above upper bound on α3 is not stringent
at all, the upper bound on α2 could be somewhat stringent if m2/µ2 . 10.

4.2 Linear perturbation equations in the Newtonian gauge

We now derive the linearly perturbed Einstein equations (4.1), the dark matter equa-
tions (4.11), and the dark energy equation in the Newtonian gauge. The latter is derived

34Note that for CDM one has pDM
0 � ρDM

0 . Here we did not omit pressure from the continuity equation.
However, in section 2.1.1 we showed that pressureless solutions can be found.
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by expanding the EFT action (3.21) to second order in the scalar perturbations and then
varying the resultant expression with respect to τ .

We express the components of the Einstein equations in the following way:

δ(Gabnanb) = δ(TDE
ab n

anb + TDM
ab nanb + T int

ab n
anb)

⇒ eαm2
p

[
Φ

(
− 6
H2

a2
− 6
Hα′

a2
− 3

2

α′2

a2

)
+ 3τ

(
Hα′2

2a3
+
α′3

4a3
+
Hα′′

a3
+
α′α′′

2a3

)
−α

′

a3
∂2τ +

2

a2
∂2Ψ + 3

(
Hα′

a3
+
α′2

2a3

)
τ ′ − 3

(
2
H
a2

+
α′

a2

)
Ψ′
]

= δρDE + δρDM + δρint,

(4.19)

δ(Gabhab) = δ(TDE
ab h

ab + TDM
ab hab + T int

ab h
ab)

⇒ eαm2
p

[
Φ

(
− 6
H2

a2
+ 6
Hα′

a2
+

3α′2

2a2
+ 12

a′′

a3
+ 6

α′′

a2

)
+ 3τ

(
− Hα

′2

2a3
− α′3

4a3

−α
′a′′

a4
+
Hα′′

a3
− 3α′α′′

2a3
− α′′′

a3

)
+ 2

α′

a3
∂2τ +

2

a2
∂2[Φ−Ψ] + 3

(
Hα′

a3
− α′2

2a3
− 2

α′′

a3

)
τ ′

+3

(
α′

a2
+ 2
H
a2

)
[Φ′ + 2Ψ′]− 3

α′

a3
τ ′′ +

6

a2
Ψ′′
]

= 3(δpDE + δpDM + δpint), (4.20)

δ(Gabh(a
in
b)) = δ(TDE

ab h
(a

in
b) + TDM

ab h(a
in
b) + T int

ab h
(a

in
b))

⇒
eαm2

p

2

[(
4
H2

a2
− 2

a′′

a3

)
∂iτ −

(
2H+ α′

a

)
∂iΦ +

α′

a2
∂iτ
′ − 2

a
∂iΨ

′
]

=

(
∂iτ −

a∂iδR
R′0

)
[RρDM

0

+RpDM
0 + Rρint

0 + Rpint
0 ] +

(
∂iτ −

a∂iδζ

ζ ′

)
[ζρDM

0 + ζpDM
0 ] +

1

4
RCint

i , (4.21)

δ(Gabha ih
b
i)−

1

3
δ(Gabhabhii) = δ(TDE

ab h
a
ih
b
i + TDM

ab ha ih
b
i + T int

ab h
a
ih
b
i)

−1

3
δ(TDE

ab h
abhii + TDM

ab habhii + T int
ab h

abhii)

⇒
eαm2

p

6

[
∂2

(
Φ−Ψ +

α′

a
τ

)
− 3∂2

i

(
Φ−Ψ +

α′

a
τ

)]
= RΣint

ii ,

δ(Gabha ih
b
j)−

1

3
δ(Gabhabhij) = δ(TDE

ab h
a
ih
b
j + TDM

ab ha ih
b
j + T int

ab h
a
ih
b
j)

−1

3
δ(TDE

ab h
abhij + TDM

ab habhij + T int
ab h

abhij)

⇒ −
eαm2

p

2
∂i∂j

[
Φ−Ψ +

α′

a
τ

]
= RΣint

ij , (4.22)

where we used eq. (4.2) and the results of the last subsection. The functions δρ, δp, δp,
Ci, and Σij are the energy density perturbation, the pressure perturbation, the “generalized
pressure” perturbation, the “heat flow” covector, and the “anisotropic stress” tensor for the
dark matter, dark energy, and interaction sectors. We have borrowed this terminology from
imperfect relativistic fluids, which we briefly review in appendix B. The complete definition
for these quantities and their expressions in the Newtonian gauge is provided in appendix B.1.
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Similarly, we derive the linearized dark matter equations using eq. (4.11). For the radial
dark matter perturbation δR we find

− 1

a2
(∂2
η − [1− α1]∂2)δR− H

a2
δR′(2 + 9α1)− δR

(
± m̃2 + 6λ̃R2

0 − 6γ̃
a′′

a3
− ζ ′20
a2

)
+2
R0ζ

′
0

a2
δζ ′ + Φ

(
2µ2R0 + 6

H2

a2
R0[α7 − 3α8 − α9 − α10] + 3

H
a
µα6R0 − 2R0

ζ ′20
a2

+2
R′′0
a2

+ 2
HR′0
a2

(2 + 9α1)− 3R0
a′′

a3
[4γ̃ + α7 + 2α10]

)
− 6α10R0

(
H2

a2
+
a′′

a3

)
Ψ

+
τ

a

(
∓m2R0β

′
2 − 2λR3

0β
′
3 − 9R′0α′1

H
a2

+ 6γR0β
′
4

a′′

a3

)
+

Φ′

a

(
− 2µα3R0 +

R′0
a

−H
a
R0[6γ̃ + 4α4 + 6α5 + 3α7 + 3α10]

)
+
R0

a
Ψ′
(

3µα6 + 3[1 + 3α1]
R′0
aR0

+
H
a

[−18γ̃ + 3α7 − 18α8 − 6α9 − 15α10]

)
+
R0

a
τ ′
(
− 6
H2

a2
α5 − 2µ2α2 − 2α4

a′′

a3

)
+
R0

a2
τ ′′(2µα3 + 6α5)− 2

R0

a2
α4Φ′′ − 3

R0

a2
(2γ̃ + α7 + α10)Ψ′′ +

R0

a2
∂2τ

(
α1
R′0
aR0

+µα6 + 2α7 − 6α8 − 2α9

)
− R0

a2
∂2Φ(2γ̃ − 2α4 − 2α5 + α10) + 4

R0

a2
∂2Ψ(γ̃ + α10)

+2
R0

a3
α4τ

′′′ − R0

a3
∂2τ ′(2α4 + 2α5 + α7) = 0, (4.23)

and for the angular dark matter perturbation δζ we find

−R
2
0

a2
(∂2
η − [1− α1]∂2)δζ − 2

R2
0

a2

(
H+

R′0
R0

)
δζ ′ − 2

R0ζ
′
0

a2
δR′ + 2

R′0ζ ′0
a2

δR+
R2

0ζ
′
0

a2
(Φ′ + 3Ψ′)

+
R2

0α1ζ
′
0

a3
∂2τ = 0, (4.24)

where we used eq. (2.22).

Finally, we derive the linear perturbation equation for the dark energy field by varying
the perturbed effective action with respect to τ . In doing so, for simplicity and due to our
focus being on the dark energy interactions with dark matter, we only keep the second order
perturbation terms in SDM-int that depend on the dark matter perturbations. Other terms
that are either quadratic in τ or the metric perturbations, or are products of τ and the metric
perturbations, are discarded as they would be generated by the EFT of dark energy. Doing
this we find

4
eα

a2

(
2Λ0 −

3m2
pα
′2

a2

)
[τ ′′ − ∂2τ ] + 4

eα

a2

(
2Λ0[2H+ α′]− 3

m2
p

a2

[
α′3 + 2α′α′′

])
τ ′

+2
eα

a2

(
Λ0

[
10Hα′ + 2α′2 + 2α′′ − 4eα{Hβ′1 − 4α′β′1 − β′′1 }

]
− 8eαΛ̃

[
Hα′ − 2α′2 − α′′

]
+3

m2
p

a2

[
4H2α′2 −Hα′3 − α′4 + 4Hα′ a

′′

a
− 2α′2

a′′

a
− 2Hα′α′′ − 5α′2α′′ − 4α′′

a′′

a
− 2α′′2

−2α′α′′′
])
τ +

eα

a

(
Λ0[−24H− 4α′] + 16Λ̃eαα′ + 8eαΛ0β

′
1 + 6

m2
p

a2

[
2Hα′2 + α′3 + 2α′

a′′

a
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+4α′α′′ + 2α′′′
])

Φ + 3
eα

a

(
Λ0[−24H− 4α′]− 16Λ̃eαα′ − 8eαΛ0β

′
1 + 6

m2
p

a2

[
2Hα′2 + α′3

+2α′
a′′

a
+ 4α′α′′ + 2α′′′

])
Ψ +

32R0

a

(
µ2α2

{
− 3H− R

′
0

R0
− α′2
α2

}
+ µα3

{
− 3
H2

a
− 5
HR′0
aR0

−5
Hα′3
aα3

− 2
R′0α′3
aR0α3

− 3
a′′

a2
− R

′′
0

aR0
− α′′3
aα3

}
+ α4

{
2
a′′R′0
a3R0

+ 3
HR′′0
a2R0

+
R′′′0
a2R0

+
6HR′0α′4
a2R0α4

+2
a′′α′4
a3α4

+ 3
R′′0α′4
a2R0α4

+ 3
Hα′′4
a2α4

+ 3
R′0α′′4
a2R0α4

+
α′′′4
a2α4

}
+ α5

{
3
H3

a2
− 3
H2R′0
a2R0

− 6
Ha′′

a3
− 6

a′′R′0
a3R0

−3
HR′′0
a2R0

− 3
a′′′

a3
− 3
H2α′5
a2α5

− 6
HR′0α′5
a2R0α5

− 6
a′′α′5
a3α5

− 3
Hα′′5
a2α5

}
+
m2β′2

2
+ λβ′3R2

0 − 3γβ′4
a′′

a3

)
δR

+
16R0

a2

(
− α1

R′0
aR0

+ α4

{
− 2
H
a
− 2
R′0
aR0

− 2
α′4
aα4

}
+ α5

{
− 2
H
a
− 2
R′0
aR0

− 2
α′5
aα5

}
− µα6

−2α7
H
a

+ 6α8
H
a

+ α9

{
H
a
− R

′
0

aR0
− α′9
aα9

})
∂2δR− 16α1

R2
0ζ
′
0

a3
∂2δζ + 8eαm2

p

α′

a3
∂2[Φ− 3Ψ]

+32
R0

a

(
− µ2α2 + µα3

{
− 5
H
a
− 2
R′0
aR0

− 2
α′3
aα3

}
+ α4

{
6H R

′
0

a2R0
+ 2

a′′

a3
+ 3

R′′0
a2R0

+ 6
Hα′4
a2α4

+6
R′0α′4
a2R0α4

+ 3
α′′4
a2α4

}
+ α5

{
− 3
H2

a2
− 6
HR′0
a2R0

− 6
a′′

a3
− 6
Hα′5
a2α5

})
δR′ + eα

a

(
− 8Λ0 + 12

m2
p

a2

×[Hα′ + α′2 + α′′]

)
(Φ′ + 3Ψ′)− 16

R0

a3
(2α4 + 2α5 + α9)∂2δR′ + 32

R0

a2

(
− µα3 + α4

{
3
H
a

+3
R′0
aR0

+ 3
α′4
aα4

}
− 3α5

H
a

)
δR′′ + 24eαm2

p

α′

a3
Ψ′′ + 32α4

R0

a3
δR′′′ = 0. (4.25)

We will be using these equations in the next section to compute the effective Newton’s
constant for dark matter in this EFT.

5 Effective Newton’s constant for the weak equivalence principle violating
dark matter

In order to compute the effective Newton’s constant GDM
eff for dark matter, we first take the

Newtonian limit of the Einstein equations (4.19) and (4.20), the dark energy equation of
motion (4.25), as well as the angular dark matter equation of motion (4.24) by omitting all
terms that include a perturbation functions with conformal time derivatives35 and dropping
all background function of dimension two36 in favour of k2, where k is the wavenumber
of a given mode. We also disregard all components of the stress energy tensors for the
dark energy, dark matter, and interactions besides the energy densities. In addition, we
make two simplifying assumptions regarding the EFT functions, namely that {α, β1} → 0
and all terms involving the EFT functions with two or more conformal time derivatives are
vanishingly small. The former is assumed in order to disregard the Universal corrections to
the Newton’s constant,37 and the latter is done assuming that the EFT functions are slowly
varying with time.38

35In the Newtonian limit, the gravitational potentials Φ and Ψ are assumed to be nearly time independent.
The situation for the dark matter perturbation functions is less obvious. However, a numerical study shows
that terms like δR′′ and δζ′′ are suppressed compared to terms k2δR and k2δζ.

36E.g. H2, a′′/a,R′′0/R0, . . .
37I.e. corrections that are not specific to dark matter.
38In consistency with approximate de Sitter invariance of the spacetime.
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After implementing the above approximations, the Einstein equations (4.19) and (4.20),
the dark energy equation of motion (4.25), and the angular dark matter equation of mo-
tion (4.24) reduce to (we set ∂2 → −k2)

m2
p

[
− 6
H2

a2
NΦ− 2k2

a2
NΨ

]
≈ NδρDE + NδρDM + Nδρint,

NΦ ≈ NΨ,

8Λ0k
2

a2
Nτ − 24Λ0H

a
(NΦ + 3NΨ) +

32R0

a

[
R′0k2

2a2R0
α1 + µ2α2

{
− 3H− R

′
0

R0
− α′2
α2

}
+ µα3

×
{
− 3
H2

a
− 5
HR′0
aR0

− 5
Hα′3
aα3

− 2
R′0α′3
aR0α3

− 3
a′′

a2
− R

′′
0

aR0

}
+
k2

a2
α4

{
H+

R′0
R0

+
α′4
α4

}
+
k2

a2
α5

{
H+

R′0
R0

+
α′5
α5

}
+
k2

2a
µα6 +

k2H
a2

α7 − 3
k2H
a2

α8 −
k2

2a2
α9

{
H− R

′
0

R0
− α′9
α9

}
±m

2β′2
2

+ λβ′3R2
0 − 3γβ′4

a′′

a3

]
NδR+ 16α1

R2
0 ζ
′
0 k

2

a3
Nδζ ≈ 0,

−R
2
0k

2

a2
[1− α1] Nδζ − 2

R0

a2

(
2Hζ ′0 +

R′0ζ ′0
R0

+ ζ ′′0

)
NδR− R

2
0k

2α1ζ
′
0

a3
Nτ ≈ 0, (5.1)

where the left superscript “N” on the perturbation functions stands for “Newtonian”. In
this limit, the perturbed energy densities for the dark energy, dark matter, and interactions
become

NδρDE ≈− Λ0
NΦ,

NδρDM = N,RδρDM + N,ζδρDM ≈ 2R0
NδR

[
±m2 + 2λR2

0 +
ζ ′20
a2

]
− 2

[
R′20
a2

+R2
0

ζ ′20
a2

]
NΦ,

Nδρint ≈ 2R0

[
±m2β2 + 2λβ3R2

0 −
2k2

a2
γ̃

]
NδR+R2

0

[
12

a2
γ̃

(
H2 + 2

HR′0
R0

+
Hγ̃′

γ̃

)
− 2µ2α2

+ 2
k2

a2
α5 −

6

a
µHα6 + α7

(
− 6H2

a2
+

3a′′

a3

)
+

6H2

a2
(3α8+α9)+6α10

(
H2

a2
+
a′′

a3

)]
NΦ

+ 2
R2

0k
2

a2
(2γ̃ + 3α10)NΨ +

R2
0

a

[
±m2β′2+λβ′3R2

0 −
k2

a2

{
2γ̃′+4α7

(
R′0
R0

+H+
α′7
α7

)
− 2H(3α8 + α9)

}]
Nτ, (5.2)

where we used eqs. (B.5), (B.6), (B.8), and (B.9).

Using the above equations we find the following Poisson equation for the dark matter
perturbations,

− k2

a2
NΨ = 4πGDM

eff
NδρDM, (5.3)

where the effective Newton’s constant GDM
eff is given by

GDM
eff

G
= 1 +

∆γ + ∆γ=0

m2 +
ζ′20
a2 + 2λR2

0

+O(2). (5.4)
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Here O(2) stands for terms that are second order or higher in the EFT functions, and we
defined

∆γ = −2
k2

a2
γ̃ +O(k0),

∆γ=0 = m2β2 + 2R2
0λβ3 − 8πGR2

0

(
m2 +

ζ ′20
a2

+ 2λR2
0

)
(α5 + 3α10) +O(k−2), (5.5)

where ∆γ vanishes when γ → 0 and ∆γ=0 has no dependence on γ. The above linearization
in the EFT functions is based on the assumption that the violation of the WEP and the
non-minimal coupling between the spacetime curvature and the dark matter fields are small
effects that can be incorporated as perturbations to the standard minimally coupled dark
matter. This assumption is reasonable if dark matter has similar gravitational/dark energy
interactions to baryonic matter.

As can be seen from eq. (5.5), only five of the nearly dozen EFT operators introduced
in section 3.2 contribute significantly in the Newtonian limit. We now use the results of
the analysis performed in ref. [38] to derive individual constraints on the five EFT functions
γ̃, β2, β3, α5, α10.39 From ref. [38] we have

GDM
eff

G
− 1 . 10−5, (5.6)

which gives

|γ̃| . m2

k2
phys

10−5,

|β2| . 10−5, |β3| .
m4

Λ0λ
10−5,

|α5|, |α10| .
m2

H2
0

10−5. (5.7)

Here kphys denotes the current value of the wavenumber k and we used the approximations
m2 + ζ ′2/a2 + 2λR2

0 ∼ m2 and m2R2
0 ∼ Λ0. Given that m & 10−24 eV and kphys . 10−30 eV

for the CMB modes, the functions γ̃, α5, and α10 are not strongly constrained. On the other
hand, the above constraint on β2 is quite strong. Likewise, unless m4/(λΛ0) & 105, β3 is
tightly bounded. Note that the constraints given in eq. (5.7) on γ̃, β2, β3, and α5 are far
more stringent than the ones obtained from eq. (4.17).

6 Concluding remarks

Our main objective in this paper was to incorporate dark matter in the EFT of dark energy.
Unfortunately, our current understanding of dark matter physics does not provide us with a
preferred model for dark matter. We chose to model dark matter using a complex scalar field,
the coherent excitations of which corresponds to the usual notion of dark matter particles.
In this respect, the dark matter model under study overlaps with axion dark matter models.

39In ref. [38], the authors use the induced changes to the location of the acoustic peaks of the CMB anisotropy
spectra to constrain the difference between the inertial and gravitational masses of dark matter. Note that
the constraints are valid for the modes with physical wavelengths λphys & O(1) Mpc.
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The formulated EFT has a total of fourteen relevant and marginally relevant operators
in the dark matter sector, ten of which only contribute to the linear perturbation theory while
the other four contribute to the background dynamics as well. The former set of operators
necessarily violate the WEP in the dark matter sector. We used the results of two cosmo-
logical studies to constrain the coefficients of eight of these operators. However, the most
meaningful constraint only applied to one of these coefficients, namely β2(φ) which enters the
dark matter effective action via m2β2(φ)Π†Π. The most stringent bound on this quantity was
obtained from a study of the CMB acoustic peaks [38], which places an upper bound of 10−5

on its magnitude. This is the best observational evidence constraining the WEP violation in
the dark matter sector. It should be noted, however, that the majority of the EFT operators
are not constrained or at least well constrained by the current observational data.

It was noted that the astrophysical and cosmological signatures of the WEP violation,
primarily the effective Newton’s constant GDM

eff for dark matter, is degenerate with the effects
of non-minimal coupling between dark matter and gravity. This coupling is negligible for
background cosmology as R ∼ H2

0 � m2. However, its contribution to GDM
eff is proportional

to k2
phys/m

2, which becomes significant on scales shorter than the Compton wavelength of
the dark matter particles. Such a coupling could significantly modify structure formation on
sub-galactic scales, particularly for ultralight dark matter fields. Moreover, since the dark
matter perturbations in this model are expected to have a significant sound speed on scales
shorter than their Compton wavelengths [42], it would be interesting to explore through N-
body simulations how non-minimal couplings to gravity alter structure formation on small
scales as predicted by this model.

Finally, as we noted in section 3.4, the EFT constructed here requires a certain degree
of fine tuning to both successfully reproduce the background ΛCDM cosmology and to be
sensible as a radiatively stable EFT. Discovering any connections with UV theories from
which such an EFT can result would be of primary interest.
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A Some background geometric tensors

We find it useful to reminder the reader of the values of some of the geometric tensors
evaluated on the spatially flat FRW background that we used in the construction of the EFT
given in section 3. We gather this information in table 3.

B The stress energy tensor for imperfect relativistic fluids

Here we review the basic formalism and definitions for the stress energy tensor of imperfect
relativistic fluids. For a more comprehensive discussion, one may consult [73].
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Background Value

1 φ̄ t

2 ~n − 1
a
~∂η

3 ∇cnc −3Ha

4 nc∇cnd 0

5 hcd a2δcd

6 Kcd −a′δcd

7 Rcddx
cdxd 3

(
H2 − a′′

a

)
dη2 +

(
H2 + a′′

a

)
dxidxi

8 R 6a
′′

a3

Table 3. The background values for some of the geometric tensors used in the EFT formalism.

For imperfect fluids, one typically expresses the stress energy tensor using the following
ansatz

Tab = euaub − C(a ub) + phab + Σab, (B.1)

where ua is the unit normal vector field associated with the fluid’s comoving frame, e ≡
Tabu

aub is the locally measured energy density in the fluid’s comoving frame, Ca ≡ Tcdh(c
au

b)

is regarded as the heat flow covector for fluids in thermal equilibrium, hab ≡ gab + uaub is
the spatial metric intrinsic to the surfaces of constant time in the fluid’s comoving frame,
p ≡ Tabhab/3 is the generalized pressure for the fluid, and Σab ≡ Tcdhcahdb −Tcdhcdhab/3 is the
anisotropic stress tensor for the fluid. The generalized pressure p is typically decomposed in
the following way

p ≡ p− ν∇aua, (B.2)

where p is regarded as the pressure and ν > 0 is called the bulk viscosity. For fluids in
thermal equilibrium, Ca is proportional to the temperature gradient, though its interpretation
for fluids that are not in thermal equilibrium is somewhat obscure. Also, note that Σab is
symmetric and traceless by definition.

B.1 Stress energy tensors in comoving frames

Here we compute the dark energy, dark matter, and interactions stress energy tensors up
to linear order in the scalar perturbations in the Newtonian gauge defined in eq. (2.36). To
begin, we express each stress energy tensor in terms of its components in the corresponding
comoving frame by writing40

TDE
ab = eDEnanb − n(aC

DE
b) + pDEhab + ΣDE

ab ,

RTDM
ab = ReDM Rua

Rub − Ru(a
RCDM

b) + RpDM RHab + RΣDM
ab ,

RT int
ab = Reint Rua

Rub − Ru(a
RCint

b) + Rpint RHab + RΣint
ab ,

ζTDM
ab = ζeDM ζua

ζub − ζu(a
ζCDM

b) + ζpDM ζHab + ζΣDM
ab ,

ζT int
ab = ζeint ζua

ζub − ζu(a
ζCint

b) + ζpint ζHab + ζΣint
ab . (B.3)

40The stress energy tensors are analogous to that of an imperfect relativistic fluid. The analogy, however,
is superficial in that a general interacting field theory does not admit a fluid description.
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energy density generalized pressure heat flow anisotropic stress

β1 † †
β2 X X
β3 X X
γ̃ X X X X
α † †
α1

α2 X X X
α3 X X
α4 X X X
α5 X X X
α6 X X
α7 X X X
α8 X X X
α9 X X X X
α10 X X X X

Table 4. Above is a summary of the contribution of the EFT functions and their associated operators
to the dark energy (denoted with †) and the radial interactions (denoted with X) stress energy tensors.

For each stress energy tensor above, e is the locally measured energy density in the comoving
frame of the given fluid component, p is the generalized pressure, and Ca and Σab are the
analogous heat flow vector and anisotropic shear stress tensor for an imperfect fluid. We also
define the four velocities and the spatial metrics associated with the surfaces of constant R
and ζ using

Rua ≡
∇aR√

−gcd∇cR∇dR
, ζua ≡

∇aζ√
−gcd∇cζ∇dζ

,

RHab ≡ gab + Rua
Rub,

ζHab ≡ gab + ζua
ζub. (B.4)

Our objective then comes down to computing e, p, Ca and Σab for each of the above stress
energy tensors up to linear order in the scalar perturbations. A summary of the contribution
of the EFT operators to the stress energy tensors is given in table. 4.

For the dark energy stress energy tensor we find

eDE = ρDE
0 + δρDE = e2α

[
e−α

2
Λ0 + Λ̃

]
+ eα

[
Λ0

(
− Φ +

α′

2a
τ +

τ ′

a

)
+
eα

a
Λ̃τ
(

2α′ +
Λ̃′

Λ̃

)]
,

pDE = pDE
0 + δpDE = e2α

[
e−α

2
Λ0 − Λ̃

]
+ eα

[
Λ0

(
− Φ +

α′

2a
τ +

τ ′

a

)
− eα

a
Λ̃τ
(

2α′ +
Λ̃′

Λ̃

)]
,

CDE
i = ΣDE

ab = 0, (B.5)

and for the angular dark matter and interactions stress energy tensors we find

ζpDM = ζeDM = ζρDM
0 + ζδρDM = R2

0

ζ ′20
a2

+ 2R0

[(
δR−R0Φ

)ζ ′20
a2

+R0
ζ ′0δζ

′

a2

]
,

ζCDM
i = ζΣDM

ab = 0, (B.6)
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and
ζpint = ζeint = ζCint

a = ζΣint
ab = 0, (B.7)

where i denotes a spatial index. For the radial dark matter stress energy tensor we find

ReDM = RρDM
0 + RδρDM =

R′20
a2

+R2
0

[
±m2 + λR2

0

]
+ 2R0δR

[
±m2 + 2λR2

0

]
−2R′20

a2
Φ +

2R′0δR′

a2
,

RpDM = RpDM
0 + RδpDM =

R′20
a2

+R2
0

[
∓m2 − λR2

0

]
+ 2R0δR

[
∓m2 − 2λR2

0

]
−2R′20

a2
Φ +

2R′0δR′

a2
,

RCDM
i = RΣDM

ab = 0. (B.8)

As expected, the dark matter stress energy tensor is that of a perfect fluid.
Finally, for the radial interactions stress energy we find

Reint = Rρint0 + Rδρint = R2
0

[
±m2β2 + λβ3R2

0 −
6

a2
γ̃

(
H2 +

Hγ̃′

γ̃
+ 2
HR′0
R0

)]
+ 2R0δR

×
[
±m2β2 + 2λβ3R2

0 −
6

a2
γ̃

(
H2 +

HR′0
R0

+
Hγ̃′

γ̃

)]
+R2

0Φ

[
12

a2
γ̃

(
H2 + 2

HR′0
R0

+
Hγ̃′

γ̃

)
−2µ2α2 −

6

a
µHα6 + α7

(
− 6H2

a2
+

3a′′

a3

)
+

6H2

a2
(3α8 + α9) + 6α10

(
H2

a2
+
a′′

a3

)]
− 6
R2

0

a2
α10Ψ

×
(

2H2 +
2HR′0
R0

+
Hα′10
α10

)
+
R2

0

a
τ

[
±m2β′2 + λβ′3R2

0 −
6

a2
γ̃′
(

2
HR′0
R0

+
Hγ̃′′

γ̃′

)]
+

4γ̃R0

a2
∂2δR

+
R2

0

a3
∂2τ

[
2γ̃′ + 4α7

(
R′0
R0

+H+
α′7
α7

)
− 2H(3α8 + α9)

]
− 2
R2

0

a2

[
α5∂

2Φ + (2γ̃ + 3α10)∂2Ψ

]
−12γ̃HR0

a2
δR′ − 2R2

0

a
τ ′
[

3

a2
γ̃′H+ µ2α2 +

2

a
µα3

(
2
R′0
R0

+ 3H +
α′3
α3

)
− 2

a2
α4

(
2
R′20
R2

0

+ 2
R′′0
R0

+5
HR′0
R0

+
α′4
α4

{
5H
2

+
4R′0
R0

}
+
α′′4
α4

)
+

3

a2
α5

(
3H2 +

4HR′0
R0

+
2a′′

a
+

2Hα′5
α5

)]
+
R2

0

a2

[
Φ′

×
(

2α4

{
2R′0
R0

+
α′4
α4

}
+ 3H(−2α5 + α7)

)
+ 3Ψ′

(
2γ̃

{
2H+ 2

R′0
R0

+
γ̃′

γ̃

}
+ α7

{
4R′0
R0

+ 5H

+2
α′7
α7

}
− 2H(3α8 + α9)− α10

{
2H+

2R′0
R0

+
α′10
α10

})]
+
R2

0

a3
(2α5 + α7)∂2τ ′ +

R2
0

a2

[
τ ′′

a3

{
6Hα5

−2α4

(
2
R′0
R0

+
α′4
α4

)}
+ 3α7Ψ′′

]
, (B.9)

Rpint = Rpint0 + Rδpint = R2
0

[
∓m2β2 − λβ3R2

0 +
2

a2
γ̃

(
−H2 + 2

HR′0
R0

+ 2
R′20
R2

0

+
Hγ̃′

γ̃

+4
R′0γ̃′

R0γ̃
+ 2

a′′

a
+ 2
R′′0
R0

+
γ̃′′

γ̃

)]
+ 2R0δR

[
∓m2β2 − 2λβ3R2

0 +
2

a2
γ̃

(
−H2 +

HR′0
R0

+
Hγ̃′

γ̃

+2
R′0γ̃′

R0γ̃
+ 2

a′′

a
+
R′′0
R0

+
γ̃′′

γ̃

)]
− 8γ̃R0

3a2
∂2δR+ 4

γ̃R0

a2
δR′′ + 4

a2
γ̃R0δR′

[
H+ 2

R′0
R0

+ 2
γ̃′

γ̃

]
+R2

0Φ

[
4

a2
γ̃

(
H2 − 2

HR′0
R0

− 2
R′20
R2

0

− Hγ̃
′

γ̃
− 4
R′0γ̃′

R0γ̃
− 2

a′′

a
− 2
R′′0
R0
− γ̃′′

γ̃

)
+ 2µ2α2 − µα6

(
2R′0
aR0

+
α′6
aα6

)
− α7

(
19
HR′0
a2R0

+ 9
a′′

a3
+ 2
R′20
a2R2

0

− R′′0
a2R0

+

{
8H
a2

+ 4
R′0
a2R0

}
α′7
α7

+
α′′7
a2α7

)
+ 3α8

(
− 2H2

a2
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+8
HR′0
a2R0

+ 4
a′′

a3
+ 4
Hα′8
a2α8

)
+ 2α9

(
− H

2

a2
+ 4
HR′0
a2R0

+ 2
a′′

a3
+ 2
Hα′9
a2α9

)
+ 2α10

(
2
HR′0
a2R0

+
Hα′10
a2α10

)]
−2R2

0Ψ

[
µα6

(
3
H
a

+ 2
R′0
aR0

+
α′6
aα6

)
+ α7

(
3
H2

a2
+ 10

HR′0
a2R0

+ 3
a′′

a3
+ 2
R′20
a2R2

0

+ 2
R′′0
a2R0

+ 5
Hα′7
a2α7

+4
R′0α′7
a2R0α7

+
α′′7
a2α7

)
− 6α8

(
H2

a2
+ 2
HR′0
a2R0

+
a′′

a3
+
Hα′8
a2α8

)
− 2α9

(
H2

a2
+ 2
HR′0
a2R0

+
a′′

a3
+
Hα′9
a2α9

)
−α10

(
H2

a2
+ 8
HR′0
a2R0

+ 3
a′′

a3
+ 4
Hα′10
a2α10

)]
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α′5
α5

)]
+2
R2

0α5

a2
Φ′′ + 2

R2
0

a2
Ψ′′(−2γβ4 − 3α7 + 3α8 + α9 + α10)− 2

R2
0

3a3
∂2τ ′(3α7 − 3α8 − α9)− 2

R2
0α5

a3
τ ′′′,

(B.10)

RCint
i = R2
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, (B.11)

where ∂2 ≡ δij∂i∂j .
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dimension

1 δΠ†δΠ 2

2 ∇aδΠ†δΠ, c.c 3

3 ∇aδΠ†∇bδΠ 4

Table 5. Operators that are quadratic in dark matter perturbations.

C The effective field theory dark matter operators

The effective action for the dark matter sector expressed in eq. (3.24) consists of all the
relevant and marginally relevant dark matter operators that independently contribute to
the equations of motion at linear order in scalar perturbations. Some of the operators are
expressed in their perturbed forms since their contributions to the background equations of
motion are degenerate with those of the unperturbed operators. Our intention in this section
is to show that any effective dark matter operator that is quadratic in perturbations can
be expressed in terms of the operators listed in table 1. To this end, we first analyse the
operators that are quadratic in the dark matter perturbations and then move on to the ones
that are linear in the dark matter perturbations.

C.1 Second order operators in the dark matter sector

We list all such operators up to dimension four in table 5. The indices are contracted using
the background na, hab, and gab.

All operators listed in the table above, except the second one, directly result from
perturbing the operators that are listed in table 1. The second operator can enter the
effective Lagrangian density (3.24) in the following form

µ̄na
(
κ∇aδΠ†δΠ + κ∗δΠ†∇aδΠ

)
, (C.1)

for some complex function κ and some constant µ̄ of dimension one. It is not difficult to see
that a rescaling of the dark matter fields Π and Π† by some complex function, together with
a redefinition of the functions α, α1, m̃2, and λ̃ removes this extra term.

C.2 First order operators in the dark matter sector

Up to integration by parts, these operators enter the effective action in the form

O × (δΠ†Π0 + c.c) , 41 (C.2)

where O is first order in the gravitational / dark energy perturbations and up to dimension
two. All such operators must be perturbations to the operators that transform covariantly
under spacetime diffeomorphisms, and when expressed in the dark energy uniform density
gauge they must transform covariantly under the foliation preserving diffeomorphisms. They

41One might consider the more general linearly perturbed dark matter operator

κδΠ†Π0 + c.c,

for some complex function κ. This term is consistent with the global U(1) symmetry. However, such a term
would have to result from perturbing an operator in the form of (Π†Π)m, which then implies that κ has to be
a real function.
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dimension

1 δgab, δna, δf 0

2 ∇cδgab, ∇cδna, ∇cδf , δKab 1

3 ∇d∇cδgab, ∇d∇cδna, ∇d∇cδf , ∇dδKab, δR
(3)
abcd, δRabcd 2

Table 6. Operators that are linear in gravitational / dark energy perturbations. Recall that f ≡
gabφ̄,aφ̄,b. R

(3)
abcd is the Riemann curvature tensor on surfaces of constant φ̄.

are listed in table 6. The indices on the operators listed above are contracted using the
background values of gab and hab (or alternatively gab and nanb). Also note that the covariant
derivative is evaluated using the background FRW metric.

We begin by noting that the operators associated with δgab are generated in the first
line of action (3.24). For instance, the operator

gabδgab (δΠ†Π0 + c.c) (C.3)

comes from the term
√
−gΠ†Π. Through simple algebraic operations, such as integration by

parts, the same can be seen to be true for ∇cδgab and ∇d∇cδgab.
The operator δna, which should appear in the effective action as naδna, and δf provide

a similar set of information about the spacetime foliation function φ̄, with both being propor-
tional to the lapse function Φ defined in eq. (2.36) in the dark energy uniform density gauge.

As for ∇bδna and ∇c∇bδna, they encode information about the changes to the unit
normal vector field to the surfaces of φ̄. This information is provided by the extrinsic curva-
ture and changes to the extrinsic curvature along the unit normal to surfaces of φ̄, as well as
the operators ∇aδf and ∇a∇bδf . Therefore we regard the operators associated with δna as
being redundant.

The operators associated with δKab appear in the effective action in one of the two
following forms

nanbδKab, habδKab. (C.4)

Note that habδKab is generated by δK, and nanbδKab vanishes. This latter results from

nanbKab = 0→ δ
(
nanbKab

)
=
(
δnanb + δnbna

)
Kab + nanbδKab = 0, (C.5)

together with ~n = −~∂η/a and the fact that the background extrinsic curvature is purely
spatial. As for the ones corresponding to ∇aδKbc, they should enter the action in the follow-
ing forms

nahbc∇aδKbc, nanbnc∇aδKbc, nbhac∇aδKbc. (C.6)

The middle term in eq. (C.6) vanishes by simple algebraic operations and using eq. (C.5).
The first term can be written as

nahbc∇aδKbc = na∇a[hbcδKbc]− naδKbc∇ahbc = na∇a[δK − δhbcKbc]− naδKbc∇ahbc

= na∇aδK − δKbcn
a∇a[nbnc]− na∇a[δhbcKbc] = na∇aδK − na∇a[δgbcKbc],

(C.7)

where we used na∇anb = 0 and naKab = 0. It is evident from the last expression in
eq. (C.7) that this operator is already accounted for in the effective action. Similarly, we
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write nbhac∇aδKbc as

nbhac∇aδKbc = hac∇a[nbδKbc]− hacδKbc∇anb = hac∇a[nbδKbc]− δKbcK
bc

= −hac∇a[δnbKbc]− δKbcK
bc. (C.8)

This term can be generated from δ[KabK
ab] along with operators associated with δf in the

effective action.

Finally, the remaining two geometric objects are the Riemann curvature tensors for the
leaves of foliation and for the spacetime. It follows from

R
(3)
abcd = ha

ehb
fhc

ghd
hRefgh −KacKbd +KbcKad (C.9)

that the perturbations to the Riemann curvature tensor of the leaves of foliation can be
expressed in terms of δna (or δf), δKab, and δRabcd. As for the spacetime curvature tensor,
the following terms

δRabcd n
ancgbd, δRabcd g

acgbd (C.10)

along with their various indices-permuted counterparts should be included in the effective
action. We instead choose the perturbations to the Ricci tensor δRab for the spacetime. The
difference is absorbed in the terms involving the operators δf and δgab.
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