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Intersystem crossing (ISC), the non-radiative transition between 
two electronic states with different spin multiplicity, is ubiquitous 
and important in fields ranging from chemical physics to chemi-

cal biology. ISC is involved in a wide range of applications includ-
ing materials science1, molecular photonics2, photosensitizers3 and 
photodynamic therapy for cancer4. It is well known that the ‘heavy 
atom effect’ promotes ISC, because the inclusion of heavy atoms in 
the molecular structure enhances the spin–orbit coupling between 
singlet and triplet states5,6. ISC is also observed in oxygen atom reac-
tions with unsaturated hydrocarbons, in which case the strongly 
bound addition complex is long-lived, increasing the probability for 
the system to access the singlet–triplet seam of intersection where 
ISC occurs7–12. Here, we show that, even in the absence of heavy 
atoms or a strongly bound adduct on the initial triplet potential 
surface, ISC occurs in the course of bimolecular reactions of O(3P) 
with amines. In this case, we propose that ISC is promoted by the 
near degeneracy of the singlet and triplet potential surfaces in the 
exit channel, along with the long-range dipole–dipole interaction 
and high dimensionality of the system that permits a brief period 
of recollision, leading finally to the deep hydroxylamine well on the 
singlet surface.

Here, we investigate the mechanism of the elementary reactions 
in the initial combustion process, reaction of the O(3P) radical with 
amines, dimethylamine (DMA) and trimethylamine (TMA). We 
characterized the translational-energy release and angular distribu-
tions during the reactions using crossed-beam scattering combined 
with universal d.c. slice imaging, as described previously13. High-
level ab initio calculations on the energies, structures and spin–orbit 
coupling along the reaction pathways were also performed to gain 
insight into the underlying dynamics. Combining these experimen-
tal and theoretical studies suggests that ISC from triplet to singlet 
potential energy surfaces (PESs) in the exit channel plays an impor-
tant role in the bimolecular reaction dynamics for O(3P) reaction 
with amines.

Results
The electronic ground-state atomic oxygen, O(3P), was generated 
from the photolysis of SO2 using 193 nm radiation. Amines (DMA 

or TMA) seeded in helium were crossed with the O(3P) beam at 90° 
under single-collision conditions. The scattered products from the 
bimolecular reaction were ionized at the interaction region by an F2 
excimer laser (157 nm, 7.9 eV). The ions were then accelerated onto 
a position-sensitive detector gated to select a specific m/z ratio. The 
resultant ion images were recorded with a charge-coupled device 
camera, using a high-resolution real-time ion counting method 
using our megapixel acquisition program NuACQ14. The sliced and 
centroided images were accumulated, reflecting the product veloc-
ity–flux contour maps with the speed and angular information for 
the reaction.

For the bimolecular reaction of O(3P) with DMA at a collision 
energy of Ecoll =​ 7.8 kcal mol−1 we detected only one product chan-
nel, m/z 44, under our experimental conditions. This indicates an H 
abstraction pathway producing the C2H6N radical with a hydroxyl 
radical (OH) co-fragment. There are two isomers for the C2H6N 
radical: CH3NHCH2 (arising from H abstraction at the methyl site) 
and N(CH3)2 (produced by abstraction at the nitrogen). Ab initio 
calculations performed using the CBS-QB3 method15 implemented 
in the Gaussian09 quantum chemistry software package16 were 
used to determine ionization energies for these product radicals. 
The calculations predict that the CH3NHCH2 radical has a vertical 
ionization energy of 6.7 eV, easily accessed with our detection limit 
of 7.9 eV, whereas the N(CH3)2 radical has a much higher vertical 
ionization energy of 9.5 eV. Therefore, only the CH3NHCH2 radi-
cal product is detected under our experimental conditions, even 
though the N(CH3)2 radical is also a possible product from this reac-
tion. This was also proved by checking the reaction of O(3P) with 
the partially deuterated isotopologue (CD3)2NH (Supplementary 
Experimental Results). Only the CD3NHCD2 radical product was 
observed by our 7.9 eV probe, consistent with the ionization energy 
calculations. This indicates that the H/D removal by the O(3P) radi-
cal we detected occurs at the methyl site rather than the amine site.

The corresponding product scattering image after background 
subtraction and density-to-flux correction is shown in Fig. 1, with 
a Newton diagram superimposed. The scattered radical products 
are examined in three distinct centre-of-mass (c.o.m.) angular 
ranges defined with respect to the DMA beam direction: forward  
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(FW, 0–60°), sideways (SW, 60–120°) and backward (BW, 120–180°). 
Although the FW component is obscured by a strong photochemi-
cal background, the SW and BW components clearly reveal the 
underlying dynamics. The c.o.m. translational-energy release distri-
butions P(ET) of both SW and BW components peak at low energy, 
~10% of the collision energy (Fig. 1e). The c.o.m. angular distribu-
tion T(θ) (Fig. 1c), including both SW and BW contributions, is flat, 
consistent with the isotropic image observed. These experimental 
results clearly indicate an indirect reaction mechanism. Formation 
of a long-lived adduct in a bimolecular reaction results in product 
translational-energy distributions that peak at low energy because 
of randomization of the internal energy over the vibrational degrees 
of freedom in the complex. Additionally, if the complex lifetime is 
much longer than its rotational period, the system loses reference 
to the initial approach direction, giving rise to a symmetric scatter-
ing in the FW and BW directions and identical translational-energy 
distributions in all directions. For complicated polyatomic systems 
in which the scattering is non-planar, this symmetric scattering 
becomes fully isotropic17. Therefore, the low translational-energy 
release and isotropic angular distributions of the scattered products 

indicate the importance of the complex-elimination mechanism in 
a bimolecular reaction of the O(3P) atom with DMA.

Similar low translational-energy release and isotropic angular  
distributions were also obtained here for the O(3P) reactions 
with TMA (Fig. 1d–f) and partially deuterated DMA, (CD3)2NH 
(Supplementary Experimental Results), confirming again that the 
complex-elimination mechanism plays an important role in bimo-
lecular reactions of O(3P) with amines to produce OH and amino-
alkyl radicals. The complex-elimination mechanism observed here 
agrees well with the previous cross-jet reactor study and kinetic 
measurements performed decades ago for the title reactions18,19.

The crucial underlying question now is the pathway for OH 
elimination from the complex. A careful search along the triplet 
and singlet PESs was performed by ab initio calculations at the 
CBS-QB3 level of theory. For the triplet PESs of the O(3P) +​ DMA 
reaction, as shown in Fig. 2, we could not locate any transition 
state for the direct H abstraction pathway to generate the OH  
and CH3NHCH2 products that we probed experimentally. This  
suggests that the direct reaction is barrierless. Interestingly, we  
find a roaming-type transition state (TS-Roam) that has one low 
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Fig. 1 | Velocity–flux contour map analysis of aminoalkyl products from reactions of O(3P) with DMA and TMA. a–f, Shown are d.c. slice images  
(a,b) with Newton diagrams superimposed, and c.o.m. angular T(θ) (c,d) and translational-energy P(ET) (e,f) distributions for the reactions of O(3P) with 
DMA (a,c,e) and TMA (b,d,f) at collision energies of 8.0 and 7.8 kcal mol−1, respectively. The SW (60–120°) component is in blue and the BW component 
in purple (120–180°). The P(ET) curves are fitted by least-squares polynomial regressions to guide the eye. T(θ) values are shown averaged every 10°, 
with error bars (±​σ) estimated by mean absolute deviation of the raw data in the corresponding angle range. The isotropic angular distributions and low 
translational-energy release of the products indicate that such reactions undergo the formation of a complex before OH and aminoalkyl are produced.
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imaginary frequency (190 cm−1), indicating a flat PES in this region, 
and two very low bound frequencies (120 and 180 cm−1) correspond-
ing to motions of the O atom relative to the DMA fragment. This 
roaming-type transition state connects two shallow van der Waals 
complex wells, (CH3)2NHO and CH3NHCH2⋯​OH, in the reaction 
pathway. However, based on the observed long-lived complex for-
mation and relatively high collision energy Ecoll =​ 7.8 kcal mol−1 in 
the experiment, this shallow well is not likely to be a key aspect of 
the reaction. We then searched through the singlet PESs because 
the coupling between singlet and triplet PESs inducing ISC is ubiq-
uitous in chemistry and is widely observed in O(3P) reactions with 
unsaturated hydrocarbons such as C2H4 and CH2CCH2 (refs 8,10,20).  
As shown in the singlet PESs for the O(3P) +​ DMA reaction in  
Fig. 2, one transition state (TS-C) and two very deep com-
plex wells ((CH3)2NHO and CH3NHCH2OH) are located on 
the reaction pathway to form the probed products. However, 
the TS-C found here is followed by a very high barrier energy, 
46.9 kcal mol−1 above the O(3P) +​ DMA reactant asymptotic limit. 
Given the experimental collision energy of 7.8 kcal mol−1, the 
system does not have enough energy to surmount this barrier 
to form the detected products if the reaction accesses the singlet 
(CH3)2NHO entrance complex well via ISC. Therefore, the only 
plausible pathway for the reaction will be that the O(3P) radical 
attacks DMA to initiate direct H abstraction from methyl group. 
Then, due to the long-range dipole–dipole interaction and the 
high dimensionality of the system, OH and CH3NHCH2 radicals 
do not part immediately but undergo multiple collisions. At the 
region where both triplet and singlet PESs have similar energy 
(indicated by the blue oval in Fig. 2), the system hops from triplet 
to singlet surface and then falls into a very deep hydroxylamine 
well, forming CH3NHCH2OH 100 kcal mol−1 lower in energy than 
the reactants. The system will stay in the CH3NHCH2OH well for 
a time much longer than the rotational period of the complex, 
then eliminates the OH radical. In this case, the reaction mecha-
nism features ISC leading to long-lived complex formation rather 
than being caused by it. The analogous PESs for the O(3P) +​ TMA 
reaction were also calculated at same level of theory as shown 

in the Supplementary Calculation Results, indicating the same  
reaction mechanism.

Further effort has been devoted to characterizing the energies 
of the first six states (three singlets and three triplets) at the optimized 
important points ((CH3)2NHO, TS-Roam, CH3NHCH2⋯​OH  
on the triplet surface and CH3NHCH2OH on the singlet surface) 
along the reaction pathway of the O(3P) +​ DMA reaction (Fig. 3). 
These energy calculations were performed in the GAMESS suite 
of programs21,22 using the multi-configuration quasi-degenerate 
perturbation theory (MCQDPT2) method23,24 including dynami-
cal and non-dynamical correlation with the cc-pvdz basis. The 
orbitals were obtained from a six-state averaged complete active 
space self-consistent field (CASSCF) method with an active space 
of six electrons in six orbitals (6,6). Figure 3b shows that the first 
two triplet states (T1 and T2) in the entrance channel complex are 
almost degenerate and about 0.9 eV below the first singlet state. 
At the transition state region, the energy gap between the triplet  
and singlet states is even larger, close to 2 eV, due to the local-
ization on the O atom (whose singlet–triplet splitting is ~2 eV.) 
However, in the exit channel complex region, the energies of the 
first two singlet and two triplet states are very close (ranging from 
0.3 to 2.3 kcal mol−1), giving rise to degenerate surfaces. In addi-
tion, the spin–orbit couplings between these singlet and triplet 
states were calculated at the CASSCF(4,4)/cc-pvdz level of theory. 
Figure 3a shows that the spin–orbit couplings between two pairs 
of singlet–triplet states are close to 60 cm−1 for the exit channel 
complex on the triplet surface and drop to 10 cm−1 or less for the 
CH3NHCH2OH deep well on the singlet surface. The strength of 
the spin–orbit coupling can be understood by the nature of the 
wavefunction at each geometry and the El Sayed rules25. At the 
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Fig. 3 | Spin–orbit coupling and high level energy calculations.  
a, Spin–orbit coupling (calculated at the CASSCF(4,4)/cc-pvdz level 
of theory) along the optimized important points on the pathway of the 
O(3P) +​ DMA reaction. The geometric structures of (CH3)2NHO,  
TS-Roam and CH3NHCH2⋯​OH are optimized on the triplet surface  
and the CH3NHCH2OH structure is optimized on the singlet surface.  
b, Energies (calculated at the MCQDPT2(6,6)/cc-pvdz level of theory)  
of the first three singlet (S0, S1 and S2) and three triplet (T1, T2 and T3)  
states at the same optimized points. All six state energies are relative  
to the lowest energy of the triplet (CH3)2NHO entrance complex.  
The PESs are nearly degenerate in the exit channel, as indicated by  
the blue shaded area. Grey, carbon; blue, nitrogen; red, oxygen;  
white, hydrogen.
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triplet CH3NHCH2⋯​OH van der Waals complex minimum, the 
configurations describing the two singlet and two triplet states are:

Ψ(S0): (MO1)2(MO2)1(MO3)1

Ψ(S1): (MO1)1(MO2)2(MO3)1

Ψ(T1): (MO1)2(MO2)1(MO3)1

Ψ(T2): (MO1)1(MO2)2(MO3)1

where the two unpaired electrons are combined with a singlet spin 
wavefunction while in the triplet states they are combined with a 
triplet spin wavefunction. The corresponding orbitals are shown 
in Fig. 4. According to the El Sayed rules, singlet–triplet spin–orbit 
coupling is stronger when the orbital angular momentum changes 
as the spin changes. The character of the wavefunctions shows that 
S0 and T1 (similarly for S1 and T2) have the same configuration so 
there is no angular momentum change in this case and the corre-
sponding spin–orbit coupling is small (Fig. 3a). However, only one 
electron is required to change from the S0 to T2 configuration (simi-
larly from S1 to T1), and it is accompanied by a change in angular 
momentum but only a small change in electronic density (Fig. 4). 
As a result, the corresponding spin–orbit coupling is large for the 
S0–T2 and S1–T1 pairs.

Discussion
We have shown that the spin–orbit coupling is large and the sur-
faces are degenerate for the ·OH–CH3NHCH2

· radical pair. It 
remains for us to demonstrate that the initial abstraction dynamics 
can give rise to extended interaction between these radicals. To this 
end we performed direct dynamics classical trajectory calculations 
of the H abstraction process on the triplet surface performed using 
a Born–Oppenheimer molecular dynamics (BOMD) model at 
the B3LYP/6–31G(d) level of theory. Significant insight regarding  
the reaction dynamics is gained by looking at representative trajec-
tories. Snapshots of one typical trajectory are illustrated in Fig. 5,  
and its full animation is provided in the Supplementary Movie. 
This trajectory was started from a transition state (located at the 
B3LYP/6–31G(d) level of theory, but disappears at higher levels)  
for the direct H abstraction process with 8 kcal mol−1 initial kinetic 
energy in the reaction coordinate. As shown in Fig. 5, the H atom 
is quickly transferred from the methyl group to the O atom at 

6 fs to produce ·OH and CH3NHCH2
· radicals. Instead of parting 

immediately, the ·OH radical roams around the CH3NHCH2
· radi-

cal for about half a picosecond before elimination. This lifetime 
is too short to account for the isotropic distribution observed 
experimentally, but it is accompanied by a period of recollision, 
which is not unusual for a system of this nature. In addition, due to 
the degenerate singlet and triplet potential surfaces and relatively 
strong spin–orbit coupling in the exit channel region, the intersec-
tion seam of the singlet and triplet surfaces will be crossed many 
times, which permits very efficient ISC and access to the very deep 
well on the singlet surface. Although direct abstraction is possible 
on the triplet surface, the absence of a direct component in the 
experiment (which would be seen as backward scattering and a 
translational-energy distribution peaking away from zero) indi-
cates that this reaction-mediated ISC is very efficient in this case, 
accounting for at least 90% of the flux. ISC must be fast here (a few 
hundred femtoseconds timescale) to be able to compete with the 
direct abstraction process. This fast ISC is attributed to the degen-
eracy of the singlet and triplet states, the relatively strong spin–orbit 
coupling, and the dynamics of the interacting radical pair. Ultrafast 

MO2MO1

MO3

Fig. 4 | Orbitals participating in the wavefunctions of S0, S1, T1 and T2.  
The orbitals are taken from the CASSCF(4,4) calculation at the 
CH3NHCH2⋯​OH geometry illustrated by the lobes with different phases 
(shown in red and blue). Black, carbon; blue, nitrogen; red, oxygen;  
white, hydrogen.
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Fig. 5 | Snapshots of a representative trajectory. The trajectory starts from 
the transition state of the direct H abstraction process to OH +​ CH3NHCH2 
products on the triplet surface. The H atom is quickly transferred to the  
O atom (6 fs) to form OH and CH3NHCH2 radicals. The OH radical does 
not leave immediately but roams around the CH3NHCH2 radical for about 
half a picosecond before dissociation. Grey, carbon; blue, nitrogen; red, 
oxygen; white, hydrogen. An animation of the full trajectory is available  
as a Supplementary Movie.
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ISC in the photoexcitation of 2-nitronaphthalene has recently been 
measured experimentally as 700 fs, which also requires the angular 
momentum of only one electron to change and small geometrical 
arrangements to approach the ISC configurations26. The fact that 
the singlet surface of the O(3P) +​ DMA reaction is much steeper 
in the exit channel probably helps to remove the population very 
quickly after ISC. Once the system undergoes ISC it will rapidly 
move away on the singlet surface toward the minimum, while the 
triplet surface is very flat and there is no strong driving force for 
moving away.

ISC in O(3P) reactions with unsaturated hydrocarbons has been 
well documented, and provides a clear contrast to what is seen here7. 
The trajectory surface hopping calculations from Bowman and co-
workers clearly reveal the mechanism in that case8,20. For O(3P) +​ eth-
ylene, there is a diradical addition complex bound by 25 kcal mol−1 
that supports a long-lived complex. The bound diradical  
system hops to the nearby singlet potential surface where that 
configuration is a transition state connecting oxirane and acetal-
dehyde. The energy gap between the triplet and singlet surfaces is 
~1,150 cm−1 on average, and the spin–orbit coupling is 35 cm−1 at 
the hopping configurations. Once on the singlet surface, a number 
of product channels are open to it. A key feature these two mecha-
nisms have in common is the presence of two radical sites that are 
weakly coupled: for O(3P) +​ ethylene it is within the ·OCH2CH2

· 
diradical, while for O(3P) +​ DMA it is the two radicals ·OH and 
CH3NHCH2

· interacting in the exit channel.
In conclusion, we have investigated the dynamics of the H 

abstraction process from the methyl group of amines (DMA and 
TMA) when reacting with ground state O(3P). Characterization of 
the low product translational-energy release and isotropic angular 
distributions indicates that such reactions undergo complex for-
mation first, before producing OH and aminoalkyl products. Ab 
initio calculations indicate that the reaction is initiated by direct  
H abstraction from O attack, and then proceeds via efficient ISC to 
the singlet surface, forming a long-lived complex before OH elimi-
nation. This fast ISC occurs in the exit channel as a result of inter-
actions between the incipient radical pair. This mechanism is not 
exclusive to amine reactions, and similar dynamics may occur in a 
large range of related systems yet to be studied.

Methods
Crossed-beam slice imaging experiment. The experiments were conducted on 
a crossed-beam scattering apparatus combined with universal d.c. slice imaging 
as described previously13,27,28. Briefly, the apparatus consists of one reaction 
chamber and two source chambers that are perpendicular to each other. 5% 
SO2 seeded in He at a backing pressure of 60 p.s.i.g. was pulsed into one source 
chamber via a piezoelectric stack actuator valve29 into a quartz capillary tube 
(1 mm inner diameter; 10 mm length). The electronic ground state O(3P) beam 
was generated from the photolysis of SO2 by the 193 nm output of an ArF excimer 
laser (GamLaser, Ex200), which was loosely focused along the length of the 
capillary tube using a cylindrical lens. The photolysis of SO2 in this way does 
not generate any electronic excited oxygen O(1D), but only ground state oxygen 
O(3P)30,31. The population distribution of the O(3PJ=2,1,0) fine structure from the 
source was measured to be ~10:3:1 for J =​ 2, 1, 0 assuming equal total two-photon 
absorption cross-sections. Amines, dimethylamine (DMA) or trimethylamine 
(TMA) were seeded in He (5%) and introduced into the second source chamber 
by a piezoelectric pulsed valve with a backing pressure of 60 p.s.i.g. Both 
molecular beams were collimated by a 1-mm-diameter skimmer before entering 
the reaction chamber, and intersected with each other at an angle of 90°. The 
scattered radical products were ionized with vacuum ultraviolet 157 nm radiation 
(7.9 eV) from a F2 excimer laser (GamLaser, Ex10). Ions were initially accelerated 
by a four-electrode d.c. slice ion optics assembly, and velocity-focused onto a 
dual microchannel plate/phosphor screen coupled detector after passing through 
a 75 cm field-free flight tube. The detector was gated for the centre slice of the 
scattered product ions at a specific m/z ratio. Ion images were recorded using a 
charge-coupled device camera, employed with a high-resolution real-time ion 
counting method by our megapixel acquisition program NuACQ14. The data 
presented in the main text are shown after background subtraction and density-
to-flux corrections. Background images were taken with the 193 nm photolysis 
laser off and induced from the photodissociation of amines by the probe laser. 

Density-to-flux correction was performed by scaling the pixel intensity by the lab 
velocity at each point on the image.

Computational methods. Ab initio calculations (including geometric structure 
and energy, and ionization energy calculation) were performed using the CBS-QB3 
method15, B3LYP/6–311G(2d,d,p) and wB97XD/6–311+​G(2d,p) or wB97XD/ 
6–311G(2d,d,p), implemented in the Gaussian09 quantum chemistry software 
package16. Connections between the transition state and local minima were verified 
by intrinsic reaction coordinate calculations at the B3LYP/6–311+​G(2d,p) and 
B3LYP/6–311G(2d,d,p) level of theory. A direct dynamics classical trajectory 
calculation of the H abstraction process on the triplet surface was performed using 
a BOMD model at the B3LYP/6–31G(d) level of theory. This trajectory was started 
from a transition state (located at the B3LYP/6–31G(d) level of theory, but which 
disappears at higher levels) of the direct H abstraction pathway with 8 kcal mol−1 
initial kinetic energy in the reaction coordinate. The whole trajectory was run with 
a time up to 1.2 ps. Further efforts were devoted to determining the energies of 
the first six states (three singlets and three triplets), and spin–orbit couplings were 
calculated for the O(3P) +​ DMA system. The quasi-degenerate perturbation theory 
(MCQDPT2) method23,24, which includes both dynamical and non-dynamical 
correlation, was used to calculate the energies of the first six states at the optimized 
important points ((CH3)2NHO, TS-Roam, CH3NHCH2⋯​OH on the triplet surface 
and CH3NHCH2OH on the singlet surface) along the O(3P) +​ DMA reaction 
pathway. The orbitals were obtained from a six-state averaged CASSCF with an 
active space of six electrons in six orbitals. Dynamical correlation is very important 
for the energies in this case. However, the spin–orbit coupling is expected to 
be relatively insensitive to dynamical correlation. Furthermore, the spin–orbit 
coupling implementation is only available at the CASSCF level in the GAMESS 
suite of programs. Two different active spaces, (6,6) and (4,4), were used, and both 
gave very similar results. The cc-pvdz basis set was used in all calculations, as well 
as the GAMESS suite of programs21,22.

Data availability
The authors confirm that all relevant data are included in the paper and/or its 
Supplementary Information, except raw image data, which are available on 
reasonable request from the authors.
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