IEEE LETTERS OF THE COMPUTER SOCIETY 2018

HyPE: A Hybrid Approach toward Policy Engineering in
Attribute-Based Access Control

Saptarshi Das!, Shamik Sural', Senior Member Jaideep Vaidya?, Senior Member and Vijayalakshmi Atluri?, Senior
Member
lIndian Institute of Technology, Kharagpur, India
2Rutgers University, Newark, NJ, USA
saptarshidas13@iitkgp.ac.in,shamik@cse.iitkgp.ac.in, jsvaidya@rutgers.edu, atluri@rutgers.edu

Abstract—Successful deployment of attribute-based access control requires the process of policy engineering which involves
constructing a set of appropriate rules, known as a policy. Policy engineering is performed either by a top-down approach that may
ignore some of the existing accesses in the organization or a bottom-up approach that may form rules which are not relevant to the
organizational processes. In this work, we propose a hybrid approach toward policy engineering that addresses the limitations of the
top-down and the bottom-up approaches while preserving their individual advantages.

Index Terms—Attribute-based access control, Policy engineering, Hybrid approach, Entropy.

1 INTRODUCTION

In recent years, Attribute-Based Access Control (ABAC) [8]
has emerged as the desired access control model for many
organizations. Although contemporary access control models
like Role-Based Access Control (RBAC) [15] suffice in situations
involving a known set of subjects, they are not that effective
in dynamic situations, i.e., scenarios where resource sharing
among organizations is unexpectedly necessary, which is where
ABAC shines. This necessitates organizations to migrate to
ABAC for which an ABAC policy is essential. In ABAC, a sub-
ject’s request to perform an operation on an object is permitted
or denied based on the attributes of the requesting subject, the
requested object, the environment in which the request is made,
and a policy (set of rules) specified in terms of those attributes.
In other words, ABAC policies mediate access to objects by
evaluating rules against the attributes of the requesting subject
and the requested object, operations, and the environment to a
request. Each such permitted request is called an access.

It may be noted that, before the advent of ABAC, RBAC
served as the workhorse access control model instantiated
in various forms. For successful deployment of RBAC, an
appropriate set of roles had to be identified using a process
commonly referred to as role engineering. Likewise, defining
an appropriate policy is crucial for successful deployment of
ABAC. This process, known as policy engineering [9], has been
identified as one of the most difficult and costliest components
in implementing ABAC [6]. Policy engineering is similar to the
problem of role engineering in RBAC and like role engineering,
there are two basic approaches to policy engineering, namely,
top-down and bottom-up.

In the top-down approach, the organizational processes are
decomposed into functionally independent units by discussions
with the various organizational authorities. These functional
units are then associated with accesses, from which the rules are
constructed. Although the formed rules provide a perspective
on the organizational processes, this approach is not scalable
and requires extensive human intervention. Interestingly, the

Manuscript submitted: 20-Oct-2018; Manuscript revised 27-Nov-2018; Final
manuscript received: 24-Dec-2018.

issues of scalability and extensive human intervention are
also endemic to the top-down role engineering approaches in
RBAC [13] and, therefore, impair their usability. In contrast,
the bottom-up approach, also called policy mining, takes into
account the existing accesses for constructing the rules. While
the accesses already present in the organization are preserved,
the formed rules often tend to overlook the organizational
business processes, thus making it difficult for employees to
comprehend the same. It may be noted that the aforementioned
shortcoming of ABAC policy mining is similar to that of role
mining in RBAC where the formed roles may not reflect the
organizational processes [13]. For large organizations, identify-
ing and decomposing all the organizational processes, as well
as obtaining all the existing accesses is arduous. Therefore,
depending exclusively on either a top-down or bottom-up
approach is not effective.

Every organization has a governance body (IT team), mem-
bers of which are responsible for the management of all identity,
credential as well as access management capability deployment
and operation. We refer to the members of such a governance
body as Security Officers (SOs). It is expected that the security
officers (either individually or collectively) can provide a yes or
no answer when asked if a given subject is permitted to perform
a specific operation on an object. Obviously, this may in specific
cases, require consultation of an organization wide policy,
consultation with peers or managers, domain knowledge, or
other constraints. However, such consultation, if required, can
be done off-line and essentially, we assume that the SO has the
ability to provide a clear answer for all possible cases.

With the above context in mind, we propose a hybrid
approach for policy engineering in ABAC which first uses a
top-down approach to choose an access relevant to the organi-
zational processes and ask the SO whether the chosen access
is permitted or denied and then, using a bottom-up approach,
forms the rules using the accesses resolved by the SO. This
procedure is used iteratively until all the organizational pro-
cesses are covered and a complete ABAC policy is constructed.
The accesses to be resolved by the SO are chosen based on
the entropy of an attribute. Entropy is the measure of the
information content of each attribute. Attributes with higher

IEEE LETTERS OF THE COMPUTER SOCIETY 2018

entropy are more likely to influence the access decisions. Using
such a metric for selecting accesses minimizes the number of
accesses resolved by the SO for constructing the ABAC policy.

2 PRELIMINARIES

An ABAC system consists of a set of subject attributes (S,),
object attributes (O,), environment attributes (F,) and possible
operations (O P). Each attribute a € S, UOq,UE, has a set (AV,)
of possible values. The attributes and their assigned values for
all subjects are represented as a matrix (M) where, each row
and column represents a subject and an attribute, respectively.
Each element of M, contains a value assigned to an attribute.
The matrices M, and M. are similarly represented for object
attribute-value matrix and environment attribute-value matrix,
respectively. In this work, we consider only one operation
named access. The current work can easily be extended for
multiple operations. Each rule is denoted by a 4-tuple (SC, OC,
EC, OP), where SC, OC, EC and OP, respectively represent a
set of subject attribute-value pairs, object attribute-value pairs,
environment attribute-value pairs and an operation.

Generally, numerous subject and object attributes are avail-
able in an organization, but the majority of it seldom influences
the access decisions. Usually, the attributes which have more
number of possible values and the occurrence of those values
are evenly distributed are more likely to influence access deci-
sions. For instance, a university offers more number of courses
to the students as compared to the number of departments.
If we consider the projects assigned to students as objects,
the assignment of projects to students usually depends on the
course undertaken by the student rather than the department
to which the student belongs. Attributes with a large number of
possible values contain more information as compared to other
attributes. Shannon Entropy [16] or simply entropy is used to
quantify the information content of probability distributions.
In this work, we compute the entropy of an attribute using the
probability distribution of occurrence of its possible values. The
entropy (H) of a given attribute X is computed as follows:

Hx = — Zp(ﬂfi)logzp(fvi) 1
=1

where, z1, 2, ..., z, are the possible values of X and p(z;) is
the fraction of subjects having the value x; for attribute X.

3 HYBRID PoLICY ENGINEERING PROBLEM

In this section, we formally define the hybrid policy engineer-
ing (HyPE) problem.

3.1 Problem Definition

As discussed in Section 1, policy engineering is crucial for
deploying ABAC in an organization. We also saw that both
the top-down and bottom-up approaches used for policy
engineering have their own limitations. In an organization,
many employees have similar attribute values. Therefore,
resolving an access involving a given subject s enables us to
resolve all the accesses involving all the subjects which have
the same attribute values as s. In this context, we propose the
HyPE problem as defined below.

Definition 3.1. HyPE

Given a set S of subjects, set O of objects, set Sq of subject attributes,
set Oq of object attributes, a subject attribute-value matrix M,
an object attribute-value matrix M, and a set OP of operations,

2

construct an ABAC policy P by repeatedly resolving accesses from
the SO in such a way that no extraneous access is permitted by P
and the number of accesses resolved by the SO is minimum.

Thus, solving HyPE enables an organization to deploy
ABAC by constructing a policy. An overarching requirement is
that the constructed policy must satisfy all the existing accesses
and no extraneous access must be permitted.

3.2 Complexity Analysis

Here, we do a formal analysis of the complexity of HyPE. We
show that the problem is NP-Complete. To initiate the proof,
we first formulate a decision version of HyPE.

Definition 3.2. Decision Version of HyPE (D-HyPE)

Given a set S of subjects, set O of objects, set S, of subject attributes,
set Oq of object attributes, a subject attribute-value matrix M, an
object attribute-value matrix M, and a set OP of operations, is it
possible to construct an ABAC policy P by repeatedly resolving
accesses from the SO in such a way that no extraneous access is
permitted by P and the number of accesses resolved by the SO is
<k?

To prove that D-HyPE is NP-Complete, we utilize a known
NP-Complete problem, namely, the Minimum Set Cover (MSC)
[7] problem, which is defined below.

Definition 3.3. Minimum Set Cover (MSC) Problem

Given a universal set U and a collection ST of subsets of U, find a
minimum number of subsets st1, sta, ..., stm where, each st; € ST
and st1 U sta U ... U sty, = U.

Definition 3.4. Decision Version of MSC (D-MSC) Problem
Given a universal set U and a collection ST of subsets of U and
an integer t, does there exist a collection of subsets st1, sta, ..., stm
which covers all the elements in U and m < t?

Theorem 1. D-HyPE is NP-Complete.

We prove that D-HyPE is NP-Complete by first showing that
D-HyPE is in NP, followed by a reduction of D-MSC to D-HyPE
in polynomial time. For the proof, we consider the SO as an
entity which, when given an access, tells whether the access is
permitted or denied.

Let A be the set of all possible |S| x |O| accesses in the
organization. Each access resolved by the SO covers all the
accesses that have the same associated attribute-value pairs. Let
A be a collection which contains sets of accesses corresponding
to each access resolved by the SO. Given a certificate consisting
of a set of accesses A, a collection A. with each element
ac € P(A) (the power set of A) and a collection A, such that
As C Ac, where all the given accesses in each element of A,
are resolved by the SO. It can be verified in polynomial time
whether |A;| < k by counting the number of elements of A,.
Further, it can be proved that A and A. are consistent with
As by verifying that all the subsets of accesses in A, are also
present in A. and the union of all the subsets of accesses in A
contains all the accesses in A. Thus, D-HyPE is in NP.

Now, we prove that D-MSC <, D-HyPE. Let < U, ST, t > be
an input instance of D-MSC. Then, an instance of D-HyPE can
be generated in polynomial time by the assignments A = U,
Ac. = ST and k = t. Here, A is the set of all possible accesses
and A. is the set of subsets of A. Now, let H and A, be the
solutions to the instances of D-MSC and D-HyPE, respectively.
To conclude the proof, we show that the output instance of D-
MSC, i.e., H is such that |[H| < ¢, if and only if the output
instance of D-HyPE, i.e., A, is such that |A,| < k.

IEEE LETTERS OF THE COMPUTER SOCIETY 2018

Now, the solution to the instance of D-HyPE can be acquired
from H as follows: Since U = A, each element in U can be
mapped to an access in A and each subset of elements in ST
can be mapped to a set of accesses in A.. Now, if the union of
all the elements of H contains all the elements in U, then the
union of all the subsets of accesses in A is bound to contain
all the accesses in A. Thus, the solution to the instance of D-
HyPE obtained from the solution to the instance of D-MSC is
a correct solution. The converse also holds in exactly the same
way. Thus, D-HyPE is NP-Hard.

Since D-HyPE is in NP and is NP-Hard, it is NP-Complete.
Note that this essentially means that we cannot expect to get
an exact solution in polynomial time. One possible approach
to get an exact solution is to use integer linear programming
(ILP). In fact, such an approach has been formulated in the
past for role mining [12], where a candidate set of roles is first
identified and then the ILP chooses the optimal set from among
them. In our case this corresponds to finding the candidate
set of access resolution requests and choosing from among
them. If all possibilities are to be considered, the candidate
space grows exponentially, which is not scalable. Otherwise,
the effectiveness of the approach depends crucially on how
the candidates are generated. While the ILP approach could be
one alternative, it is also possible to create an effective greedy
heuristic, which is presented below.

3.3 Heuristic approach for solving HyPE

Algorithm 1 presents a greedy heuristic that takes a subject
attribute-value matrix M, an object attribute-value matrix M,,
a set of subject attributes S,, a set of object attributes O, as
inputs and returns an ABAC policy as output by resolving
accesses with the help of a SO.

Step 1: Compute the entropy of each attribute

This step (Lines 1-2) computes the entropies of all the subject
attributes using equation 1, and sorts them in non-increasing
order of their entropies. It returns an ordered list consisting of
entropies of all the subject attributes. Similarly, the entropies
of all the object attributes are also computed. The worst case
time complexity of this step is O(|Sa| + |Sallog|Sa| + |Oal| +
[Ouliog|Oul).

Step 2: Compute the frequency of each attribute value

In the second step (Lines 3-4) of Algorithm 1, we first find
the frequencies of all the attribute values. Then we sort the
frequencies of all the subject attribute values in non-decreasing
order and object attribute values in non-increasing order.
The worst case time complexity of this step is O(]S||O] +
1Sa|(|Sav|log|Sav|) + 10a|(|Oavllog|Oavl)).

Step 3: Form the rules of the policy

In the third step (Lines 5-45) of Algorithm 1, a subject attribute-
value pair is selected in such a way that the attribute has the
highest entropy and the value has the lowest frequency. Next,
an object attribute-value pair is selected such that the attribute
has the highest entropy and the value has the highest frequency.
The subject and object attributes with the highest entropies are
selected because they are more likely to influence the access
decisions. For the selected subject attribute, the value with the
lowest frequency is selected which is associated with a few
subjects. While, for the object attribute, the attribute value with
the highest frequency is chosen which is associated with more
number of objects. As only a few subjects in an organization are
permitted to access a large number of objects, such a selection
criterion generates meaningful rules with less number of visits
to the SO. Then, the two selected attribute-value pairs are given

Algorithm 1: HyPE(M,, Mo, Sa, Oa)

1 SA. < sub. attr. sorted w.r.t their entropies

2 OA. < obj. attr. sorted w.r.t their entropies

3 SA, < sub. attr. values sorted w.r.t. their frequencies

4 OA, «+ obj. attr. values sorted w.r.t. their frequencies

5 Qso < 0, policy <[], Di + [], Qu <[]

6 Qi < rules consisting of sub. attr. with highest entropy and
value with lowest frequency and obj. attr. with highest
entropy and value with highest frequency

7 fori < 1to |Q;| do

8 | Qso+ Qso+1

9 | if SO(Q;[i] == ND) then

10 DZ — DZ UND

1 Qu + Qu U Q4[i]

12 end

13 if SO(Q;[i] ==Y) then

14 D, D;,UY

15 policy <+ policy U Q;i]

16 end

17 end

18 for a + 2 to |S.| do

v | Q]

20 fori + 1to|Qu| do

21 for j < 1to|SA,[SAc[a]]| do

- Qulil[SAclal] = SA[SA.[a]][j]
23 for k < 1to |OA,[OAc[a]]| do
2 Qulil[OAc[a] + |Sal] = OAL[OAc[a]][K]
5 Q: QiUQu[]

26 end

27 end

28 end

2 | D []5Qu< (]
30 forieltoQ; do

31 Qso + Qso +1

32 if SO(Q;[i] == N D) then
3 D, « D,UND

4 Qu Qu U Qi

35 end

36 if SO(Q;[i] ==Y) then
37 D; + D; UND

38 policy < policy U Q; 7]
39 end

40 end

a | Qi=0Q;;Qu=Qq,
4 if ND not in D, then

43 ‘ break
44 end
45 end

46 post_process(policy)
47 return Qs,, policy

to the SO. If all the subjects having the chosen subject attribute-
value pairs can access all the objects having the chosen object
attribute-value pairs, the SO resolves such an access as yes (Y)
and as no (V) otherwise. If the SO fails to resolve the access,
it returns a not decided (N D). When the SO resolves an access
as Y, all the accesses corresponding to the subjects and objects
which have the same subject attribute-value pairs and object
attribute-value pairs, respectively, are set to Y. Likewise, if the
SO resolves an access as N, all the accesses corresponding to
the subjects and objects which have the same subject attribute-

IEEE LETTERS OF THE COMPUTER SOCIETY 2018

value pairs and object attribute-value pairs, respectively, are set
to N. The subject and object attribute-value pairs for which the
SO returns a Y are formed into a rule.

The subject and object attributes are selected in a cumulative
manner. First, one subject attribute and one object attribute
is selected. The values of the chosen attributes are selected
in increasing and decreasing order of their frequencies, for
subject attributes and object attributes, respectively. This has
a worst case time complexity of O(|Sav||Oav|). When all the
selected attribute-value pairs are resolved by the SO but there
are unresolved accesses, two subject, and object attribute-value
pairs are selected in a similar manner. Resolving accesses
for two subject and object attributes has a worst case time
complexity of O(|Sas|?|Oav|?). This procedure is repeated
until all the accesses are resolved. Finally, post-processing is
performed on the formed rules.

Step 4: Post-processing

In this step (Line 46) of Algorithm 1, the rules obtained so
far are simplified wherever possible. For instance, if there are
two rules with similar set of subject attribute-value pairs, we
form a single rule by merging the object attribute-value pairs
of the rules, by adding multiple values to the object attributes.
For instance, if 1 =< {S.DESG = PROF;S.DEPT =
CSE},{O.TYPE = TND;O.DEPT = CSE},access >, and
ry =< {S.DESG = PROF;S.DEPT = CSE},{O.TY PE =
TND}O.DEPT = FIN},access > with their
subject parts same, we form a single rule ri2 by
merging the object parts of the rules 71 and 72 where,
rs =< {S.DESG = PROF; S.DEPT = CSE},{O.TYPE =
TND;O.DEPT = CSE,FIN},access >.

3.4

Now, we illustrate our proposed solution using an example.
Let us consider an university having two departments, namely,
Computer Science and Engineering (C'SE) and Civil Engineer-
ing (CE). Each member of the college is associated with a
designation (S.DESG) among Student (STU) and Professor
(PROF). The subjects belong to one of the aforementioned
departments (S.DEPT). The objects in the organization in-
clude Assignment (ASGN), Tender (I'ND) and Attendance
Log (ATTL). Each object also belongs to a specific department
(O.DEPT) among the ones mentioned previously.

Now, we try to form a policy using our proposed heuristic
solution to HyPE. First, the entropies of all the subject and
object attributes are computed. Let us consider how the entropy
of the attribute S.DESG is computed using Equation 1. In
Table 1, the subject attribute S.DESG has 2 possible values,
namely, STU and PROF. If a subject is chosen randomly,
the probability of it having the value STU associated with
the attribute S.DESG is %, ie, P(STU) = %. Similarly,
P(PROF) = 1. Computation of entropy for S.DESG is given
below.

lllustrative Example

Hs prse = —P(STU)loga P(STU) — P(PROF)log2P(PROF)

1 1 1 1
= —55092(5) - 51092(5)
=1.0

Similarly, the entropies for the attributes S.DEPT, O.DEPT
and O.TY PE are computed as 1.0, 1.0 and 1.5, respectively.

The accesses along with the decisions of the SO are given
in Table 2 where, the highlighted rows represent the formed
rules. Here, out of 16 possible accesses, the SO resolves only 10
accesses to form an ABAC policy.

TABLE 1: Entities with their attribute-value assignments
S | S.DESG _S.DEPT | O | O.TYPE _O.DEPT

51 STU CSE 01 ASGN CSE
52 STU CE 02 ASGN CE
53 PROF CSE 03 ATTL CSE
S4 PROF CE 04 TND CE

TABLE 2: Accesses resolved by the SO and their decisions
P S.DESG S.DEPT OTYPE O.DEPT DEC.

71 STU — ASGN — ND
T2 STU - ATTL — N
73 STU — TND — N
T4 PROF = ASGN = Y
5 PROF = ATTL = Y
76 PROF = TND = Y
7 STU CSE ASGN CSE Y
T8 STU CSE ASGN CE N
T9 STU CE ASGN CSE N
710 STU CE ASGN CE Y

4 EXPERIMENTAL RESULTS

We evaluated the performance of HyPE on a number of syn-
thetically generated data sets consisting of sets of subjects,
objects, subject attribute-value matrices and object attribute-
value matrices. The algorithm was implemented in Python
2.7.13 and executed on a 2.5 GHz Intel i5 CPU having 4 GB of
RAM. We present the obtained results with number of subjects
(IS]), number of objects (|O|), number of subject attributes
(ISal]), object attributes (|Oql), subject attribute values (|Sav|),
object attribute values (|Oq.|), percentage of accesses resolved
by the SO (V) and the execution time (T').

Table 3 shows the variation in the percentage of accesses
resolved by the SO and the execution time with the number of
subjects and the number of objects. It is seen that the percentage
of accesses resolved by the SO doesn’t change significantly
when the number of subjects and objects is varied. We also see
that the execution time of the algorithm increases with the num-
ber of subjects and object. Table 4 shows the variation in the per-
centage of accesses resolved by the SO and the execution time
with the number of subject and object attributes. It is observed
that the percentage of accesses resolved by the SO increases
with the number of subject attributes and object attributes.
When the number of subject and object attributes increases, it
results in more unique attribute-value pair combinations which
increases the percentage of accesses to be resolved by the SO.
This also increases the execution time of HyPE.

Table 5 shows the variation in the percentage of accesses
resolved by the SO and the execution time with the number of
subject attribute values and object attribute values. It is seen
that the percentage of accesses resolved by the SO increases
with the number of subject and object attribute values. As the
number of unique attribute-value pair combinations increases
with the possible number of attribute values, it necessitates a
greater percentage of accesses to be resolved by the SO. Similar
to Table 4, less variation in execution time is observed. From
Tables 4 and 5, it is seen that the number of possible values
of an attribute has a greater influence on the percentage of
accesses resolved by the SO than the number of subject and
object attributes. Thus, HyPE performs well when many entities
have similar attribute-value pairs and the possible number of
values an attribute can have is small.

5 RELATED WORK

Brickman et al. [3] present a reference design which uses
commercially available technologies to demonstrate a sample
ABAC platform. RBAC Policy-Enhance [1] provides a standard
framework with specifications to handle the relationship be-
tween roles and dynamic constraints in RBAC, e.g., time of day,

IEEE LETTERS OF THE COMPUTER SOCIETY 2018

TABLE 3: Variation in the percentage of accesses resolved by
the SO and time (in sec.) for different |S| and |O|

‘Sav‘ =5, |Oav‘ =5, |Sa| =10, ‘Oal =10

[S[= 100 [S]= 500 [S[= 1000
O T N | T [JOo [N [T o] N]T
100 | 0.10 | 0.10 | 100 | 0.11 | 0.10 | 100 | 0.12 | 0.10
500 | 0.12 | 011 | 500 | 0.12 | 0.10 | 500 | 0.12 | 0.10
1000 | 0.12 | 011 | 1000 | 0.12 | 0.12 | 1000 | 0.12 | 0.12

TABLE 4: Variation in the percentage of accesses resolved by
the SO and time (in sec.) for different |S,| and |O|

[S[= 500, |O] = 500, [Sav] = 5,]0a0] = 5

[Sal =5 [Sa| =10 [Sal =20
[Oal N T [Oal N T [Oal N T
5 0.06 | 0.07 5 0.11 | 0.12 5 0.13 | 0.16
10 0.10 | 0.11 10 0.14 | 0.13 10 0.19 | 0.18
20 0.13 | 0.15 20 0.18 | 0.17 20 0.22 | 0.22

TABLE 5: Variation in the percentage of accesses resolved by
the SO and time (in sec.) for different |S,,| and |Ogy|

[S]= 500, [O] = 500, [Sq] = 10, |O,] = 10
[Sav] =5 [Sav| =10 [Sau] = 20
Oa] | N T | [Oa] | N T | [Oal | N T
5 0.11 | 0.10 5 0.28 | 0.35 5 0.70 | 0.62

10 0.28 | 0.34 10 0.63 | 0.59 10 144 | 0.83
20 0.73 | 0.65 20 1.39 | 0.81 20 238 | 1.04

location of access, etc. Coyne and Weil [4] discuss the possibility
of simultaneously achieving the advantages of both RBAC and
ABAC. Kuhn et al. [11] present a framework that merges RBAC
and ABAC by adding attributes to RBAC. They claim that
adding attributes to RBAC makes it suitable for distributed
and dynamic environments. Bijon et al. [2] present a work on
suitable attribute assignment to entities in an ABAC system
to prevent unauthorized access. Xu and Stoller [19] propose a
framework for mining parameterized role-based policies that
supports a basic version of ABAC where roles are considered
as subject attributes. Krautsevich et al. [10] construct an ABAC
policy by defining values of attributes while deciding an access.

Vaidya et al. [18] present a change detection-based approach
that enables policy migration. Given a set of policies of sim-
ilar or distinct access control semantics, they find a common
organizational policy with the lowest cost of migration. Xu et
al. [20] propose the first known algorithm for mining ABAC
policies using a bottom-up approach. Talukdar et al. [17] show
that the problem of policy mining in ABAC is similar to that of
identifying functional dependencies in database tables. In this
context, they propose an ABAC policy mining algorithm which
exhaustively enumerates all possible subject-object pairs. Das
et al. [5] present a solution to the problem of policy mining in
ABAC that uses Gini impurity to form an ABAC policy. They
also include the environment attributes while mining the policy.
Narouei et al. [14] propose a top-down policy engineering
framework for ABAC that extracts policies from unrestricted
natural language documents using a deep recurrent neural
network.

All the above-mentioned approaches assist in ABAC policy
engineering using either a top-down approach or a bottom-up
approach. However, none of them use a hybrid approach for
policy engineering as attempted by us.

6 CONCLUSION AND FUTURE WORK

In this work, we have addressed the problem of policy engi-
neering in ABAC using a hybrid approach. We have discussed
a method which uses entropy and frequency to construct an
ABAC policy. Future work in this domain includes the design

5

of novel heuristics which are independent of parameters such
as the number of attributes and the number of attribute values.

ACKNOWLEDGMENTS

Research reported in this publication was supported by the Na-
tional Institutes of Health under award R0O1GM118574 and by
the National Science Foundation under awards CNS-1564034,
CNS-1624503, and CNS-1747728. The content is solely the re-
sponsibility of the authors and does not necessarily represent
the official views of the agencies funding the research.

REFERENCES

1. “Role based access control 4€” policy-enhanced,” American National
Standards Institute (ANSI), vol. INCITS 494-2012, 2012.

2. K. Z. Bijon, R. Krishnan, and R. Sandhu, “Towards an attribute
based constraints specification language,” International Conference
on Social Computing (SocialCom), pp. 108-113, 2013.

3. N. Brickman, P. Burden, S. Jha, B. Johnson, A. Keller, T. Kolovos,
S. Umarji, and S. Weeks, “Attribute based access control”.
NIST Special Publication,” https:/ /www.nccoe.nist.gov/projects/
building-blocks/attribute-based-access-control’’, 2017.

4. E. Coyne and T. R. Weil, “ABAC and RBAC: Scalable, flexible, and
auditable access management,” IT Professional, pp. 14-16, 2013.

5. S. Das, S. Sural, J. Vaidya, and V. Atluri, “Using gini impurity to
mine attribute-based access control policies with environment at-
tributes,” ACM Symposium on Access Control Models and Technologies
(SACMAT), pp. 213-215, 2018.

6. D. Ferraiolo, R. Chandramouli, V. Hu, and R. Kuhn, “A comparison
of attribute based access control (ABAC) standards for data service
applications”. NIST Special Publication,” https:/ /nvlpubs.nist.gov/
nistpubs/SpecialPublications /NIST.SP.800-178.pdf"’, 2016.

7. M. R. Garey and D. S. Johnson, “Computers and intractability: A
guide to the theory of np-completeness,” W. H. Freeman & Co., 1979.

8. V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin,
R. Miller, and K. Scarfone, “Guide to attribute based access con-
trol (ABAC) definition and considerations”. NIST Special Publica-
tion,” https:/ /nvlpubs.nist.gov /nistpubs/specialpublications /nist.
sp.800-162.pdf"’, 2014.

9. L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin,
“Towards policy engineering for attribute-based access control,”
International Conference on Trusted Systems (INTRUST), pp. 85-102,
2013.

, “Towards attribute-based access control policy engineering
using risk,” International Workshop on Risk Assessment and Risk-driven
Testing (RISK), pp. 80-90, 2014.

11. D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding attributes to role-
based access control,” IEEE Computer, pp. 79-81, 2010.

12. H. Lu, J. Vaidya, and V. Atluri, “An optimization framework for
role mining,” Journal of Computer Security, vol. 22, no. 1, pp. 1-31,
2014. [Online]. Available: https://doi.org/10.3233/JCS-130484

13. B. Mitra, S. Sural, J. Vaidya, and V. Atluri, “A survey of role
mining,” ACM Computing Surveys, pp. 50:1-50:37, 2016.

14. M. Narouei, H. Khanpour, H. Takabi, N. Parde, and R. Nielsen,
“Towards a top-down policy engineering framework for attribute-
based access control,” ACM Symposium on Access Control Models and
Technologies (SACMAT), pp. 103-114, 2017.

15. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” IEEE Computer, pp. 38-47, 1996.

16. C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal, pp. 379423, 1948.

17. T. Talukdar, G. Batra, J. Vaidya, V. Atluri, and S. Sural, “Efficient
bottom-up mining of attribute based access control policies,” IEEE
International Conference on Collaboration and Internet Computing (CIC),
pp. 339-348, 2017.

18. J. Vaidya, B. Shafiq, V. Atluri, and D. Lorenzi, “A framework
for policy similarity evaluation and migration based on change
detection,” International Conference on Network and System Security
(NSS), pp. 191-205, 2015.

19. Z. Xu and S. D. Stoller, “Mining parameterized role-based poli-
cies,” ACM Conference on Data and Application Security and Privacy
(CODASPY), pp. 255-266, 2013.

20. ——, “Mining attribute-based access control policies,” IEEE Trans-
actions on Dependable and Secure Computing (TDSC), pp. 533-545,
2015.

10.

