Managing Attribute-Based Access Control Policies in a Unified
Framework using Data Warehousing and In-Memory Database

Mahendra Pratap Singh!, Shamik Surall*, Jaideep Vaidya?, Vijayalakshmi Atluri?
L Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India

2 Management Science and Information Systems Department, Rutgers University, USA

Abstract

Over the last few years, various types of access control models have been proposed for expressing
the growing needs of organizations. Out of these, there is an increasing interest towards specification
and enforcement of flexible and dynamic decision making security policies using Attribute Based
Access Control (ABAC). However, it is not easy to migrate an existing security policy specified
in a different model into ABAC. Furthermore, there exists no comprehensive approach that can
specify, enforce and manage ABAC policies along with other policies potentially already existing
in the organization as a unified security policy. In this article, we present a unique and flexible
solution that enables concurrent specification and enforcement of such security policies through
storing and querying data in a multi-dimensional and multi-granular data model. Specifically, we
present a unified database schema, similar to that traditionally used in data warehouse design, that
can represent different types of access control policies and store relevant policies as in-memory data,
thereby significantly reducing the execution time of access request evaluation. We also present a
novel approach for combining multiple access control policies through meta-policies. For ease of
management, an administrative schema is presented that can specify different types of administra-
tive policies. Extensive experiments on a wide range of data sets demonstrate the viability of the
proposed approach.

Keywords: Attribute Based Access control, Meta-policy, Unified security policy, Authorization,

In-memory database, Data warehousing

*Corresponding author
Email addresses: mahoo15@gmail.com (Mahendra Pratap Singh!), shamik@cse.iitkgp.ac.in (Shamik
Surall*), jsvaidya@business.rutgers.edu (Jaideep Vaidya?), atluri@rutgers.edu (Vijayalakshmi Atluri?)

Preprint submitted to Computers & Security July 4, 2019

1. Introduction

Organizations set up access control mechanisms to prevent unauthorized use of their resources,
systems and data. In recent years, the requirements of new and emerging applications and a
changing environment have led to significant advancements in the field of access control. This
has broadened the scope of access control decision dimensions (e.g., security level, category, role,
attribute, etc.) and has resulted in several access control models beyond the traditional models
like Discretionary Access Control (DAC) [17] and Mandatory Access Control (MAC) [6]. Among
these, Role Based Access Control (RBAC) [36] is the most widely accepted access control model in
commercial organizations that groups job functions into roles and provides a mechanism for easy
administration of roles. RBAC has been extended in different dimensions (e.g., temporal[7, 24],
spatial[12, 33] and spatio-temporal[2, 3, 34]) to constrain the availability of roles and permissions
thus enabling fine-grained access to resources.

It may be noted that, not only have the newer access control models been designed to overcome
the limitations which earlier models had regarding specification and enforcement of policies, but
also to address the evolving access control needs of organizations. However, among those that work
towards enhancement, it is mostly the expressive power that has been the target for improvement
through specification of fine-grained policies [11], which allows organizations to specify more pre-
cisely any policy they want to enforce or accurately comply with regulations (e.g., HIPAA, PCI,
etc.). Although highly granular access control seems desirable and their implementation exists in
the literature, very few of them have found deployment in real life. This is primarily due to the
complexity in specifying, enforcing and managing policies of different levels of granularity through
them. Thus, to achieve high granularity, these factors need to be balanced.

ABAC [19] is a recent access control model that addresses some of these concerns. ABAC
considers dimensions as attributes and controls user’s access to resources through policies composed
of attributes of various entities, e.g., users, objects and environment. However, administration of
ABAC is quite complicated, since visualizing the effect of a change in policy or obtaining the
permissions available to a user of a system requires evaluation of a large number of rules.

In essence, RBAC is easily manageable and is widely implemented, whereas ABAC is flexible
and more granular but not yet adopted by many organizations like RBAC. Therefore, the ability
to combine the evolving ABAC model with traditional RBAC model would overcome both of their

drawbacks and enhance policy expressibility. Besides RBAC, being able to specify DAC and MAC in

the proposed unified policy would allow organizations to move over from legacy systems to ABAC. It
may be noted that, support for diverse types of policies could be implemented either by having two
distinct access control models in place or by transforming one policy to the other if at all possible.
Furthermore, there can be some resources for which the access needs to be controlled through more
than one policy (say, RBAC and ABAC) or to be specified simultaneously at multiple levels of
granularity, like DAC, RBAC, etc. Moreover, there may exist certain organization level policies that
cannot be specified using a standard access control mechanism. These types of policies are usually
implemented as application code and are embedded into the system. Thus, the aforementioned
factors further complicate specification, enforcement and maintenance of security policies.

In a panel discussion, Atluri and Ferraiolo [15] emphasized the necessity for a meta-model to
resolve the issue of multiple access control models. In recent years, although several meta-models
[4, 8, 13] have been proposed, they are mainly restricted to the specification of different types
of access control policies and to some extent their enforcement. Moreover, those models do not
consider the different levels of granularity with respect to specification, the complexity of analyzing
the models and enforcement when different features and dimensions are supported. They also
do not consider the issue of flexibility which provides freedom to decide the level of access control
granularity according to different needs, such as user, resource, situation and application. Therefore,
a comprehensive and flexible meta-model is required that allows for (1) specification, (2) evaluation
and (3) maintenance of policies at different granularities and dimensions.

Our key insight is that, while multiple dimensions and granularities make effective access con-
trol complex when viewed from a security perspective, the issue of managing multi-dimensional,
multi-granular (MDMG) data has been effectively addressed by the database community, through
the notion of data warehousing schema. Thus, our key challenge is to explore the data warehousing
model in this regard, and map the MDMG access control issue to the data warehouse environment
for enabling specification and enforcement of flexible access control policies through data warehous-
ing technology. Since data warehouses are general purpose software and not designed specifically
for access control, performance may be an issue. Hence, we also use in-memory database [28] to
address those issues effectively.

As an illustrative example, consider a banking system that provides various financial services
(such as debit and credit cards, foreign currency transaction, etc.) to its customers through different

departments like Branch Banking (BB), Business Banking (BsB), Priority Banking (PB), Forex and

Treasury Banking (TxB), etc. These services involve confidential and sensitive information of both
the customers and well as the bank. A bank primarily has two types of stakeholders, namely,
customer and employee. A branch is headed by an employee of Assistant Vice President (AVP)
grade who is designated as the Branch Head (BrH). Each department of a bank is comprised of
employees in the grades Assistant Manager (AM), Deputy Manager (DM), Manager (M) and Senior
Manager (SM). The BB department is headed by an SM, designated as the Branch Operation
Head (BoH). In this department, employees in the grades AM, DM and M are designated as
Customer Service Officers (CSO), whereas in the BsB and PB departments, they are designated as
Relationship Manager (RM). In the TxB department, employees of the AM, DM, M and SM grades
are designated as TxB Customer Service Officer (TCSO). In any branch of the bank, the BsB, PB
and TxB departments can be headed by employees of M or SM grades.

In the bank, employees are given access (e.g., read, write, debit, credit, approve, etc.) based
on their grade, department and the branch of posting. To carry out daily banking activities, in
addition to the access to resources which can belong to the same or another department, employees
of the departments mentioned above often require approval or involvement of one or more employees
of the same or different departments. Additionally, employees of all grades of the departments can
initiate debit transactions which can only be approved by employees of the BB department of those
grades who have not initiated them and these are within their allowed approval limits. Similarly, all
employees of all grades of these departments can read customer details from the branch of posting,
whose creation, updating or deletion can be initiated by employees of any grade and approved by
SM grade employees of the customer’s home branch BB department. These requirements involve
multiple attributes of various entities (e.g., user, object and environment) that can be MDMG in
nature and need to be adequately addressed via meta-policies.

In this article, we present a unified framework which enables specification and enforcement of
attribute-based policies (namely, ABAC) along with meta-policies as well as role-based policies
(namely, RBAC) and legacy policies (namely, DAC). Additionally, we also present a unified solu-
tion for managing all of these security policies. Furthermore, we discuss efficient implementation
of the proposed approach in terms of specification, maintenance, enforcement and evaluation of
policies through data warehousing schemas, in-memory database and database query language. An
initial version of the unified database schema appeared in [38], where we presented an idea for the

unification of access control policies and demonstrated the specification of DAC, MAC, RBAC and

TRBAC policies. The novel contributions of the work presented in this article are summarized

below:

e First, we develop an extension to the unified database schema presented in [38] that is capable

of specifying ABAC [19] policies.

e We also present a novel approach that enables specification of meta-policies comprising mul-
tiple policies (e.g., RBAC, ABAC, etc.) as sub-policies. These meta-policies can combine
the benefits of different policies and can specify policies for resources that need to be pro-
tected under more than one security policy or simultaneously at multiple levels of granularity.

Further, to determine the result of a meta-policy, different PRCAs have been proposed.

e Database capabilities, such as data warehousing for MDMG database schema and in-memory
database, have been effectively utilized instead of any existing policy specification language

to specify and enforce access control policies.

e For easy administration of security policies, an administrative schema is introduced that can
specify administrative policies, such as role-based administration model for attributes [22]

and ARBACI7 role-based administration of roles [35].

e Finally, we have performed an extensive experimental study that shows the viability of the

proposed approach.

The rest of the paper is organized as follows. Section 2 provides a brief overview of various access
control models, their administrative models and data warehouse. The overall system architecture is
presented in Section 3. Section 4 describes how ABAC and other different types of administrative
policies can be specified. Section 5 explains how relevant access control policies can be stored as in-
memory data while Section 6 presents an approach for specifying and enforcing meta-policies using
PRCAs. Enforcement of policies for evaluating different types of user and administrative requests
is discussed in Section 7. Section 8 presents detailed experimental evaluation of the proposed
approach. Finally, Section 9 reviews related work while Section 10 concludes the article and presents

directions for future research.

2. Preliminaries

This section presents a brief description of ABAC, RBAC and DAC models, and different types
of administrative models, namely, role-based administration model for attributes and ARBAC97.

It also gives an overview of data warehousing.

2.1. ABAC and role-based administration model for attributes

ABAC [19] is well known for flexible policy specification and dynamic decision-making capabili-
ties because it specifies policies using attributes of users, objects and environment. In ABAC, each
user and object can have one or more user attributes and object attributes, and each such attribute
can have one or more values. Access to objects can be restricted by using environment attributes
such as time, location, etc., and each environment attribute can have one or more values. Thus,
ABAC grants permissions according to attributes of entities involved in a request.

The role-based administration model for attributes [22] presents an approach for managing
the user to user attribute value assignment relation. It includes two main components, namely
can_assign and can_delete. These components capture a triple (AR, Cyay,2V4Y), where AR, Cyay

and 2V4V

represent the set of administrative roles, conditions based on user attribute values and
user attribute value ranges, respectively. The relation can_assign allows a user of an administrative
role to assign user attribute values in the specified set of user attribute values to a user if the user
satisfies the condition. Similarly, can_delete allows a user of an administrative role to delete a user

association in the specified set of user attribute values if the user satisfies the condition.

2.2. RBAC and ARBAC97

RBAC [36] grants access to users on objects through roles. A role represents the set of activities
that users can perform in an organization. Each user can be associated with one or more roles either
directly or through a role hierarchy. Role hierarchy is a partial order defined on the set of roles that
specifies which roles are junior to which other roles. In RBAC, a right on an object is known as a
permission. Permissions are assigned to roles, and roles are assigned to users. Thus, RBAC consists
of U, R, P, RH, UA and PA representing the set of users, the set of roles, the set of permissions,
role hierarchy, users to roles assignments and permissions to roles assignments, respectively.

ARBACO7 [35] is a role-based administrative model used to manage the user to role assignment

(URA), permission to role assignment (PRA) and role to role assignment (RRA) relations in RBAC.

ARBAC97 comprises three components, namely, URA97, PRA97 and RRA97. It also contains five
types of relations, namely, can_assign, can_assignp, can_revoke, can_revokep and can_modify. The
relations can_assign and can_assignp capture a triple (AR, CR, 2f), where AR, C'R and 2% represent
the set of administrative roles, prerequisite conditions and role ranges, respectively. The relations
can_revoke, can_revokep and can_modify capture a pair (AR,2%), where AR and 2% represent the
set of administrative roles and role ranges, respectively. In URA97, the relation can_assign allows
a user of an administrative role to assign a user to roles in the role range if the user in regular
roles satisfies the condition; and the relation can_revoke allows a user of an administrative role to
revoke a user’s association with the role range. In PRA97, the relation can_assignp allows a user
of an administrative role to assign permission to roles in the role range if the permission in regular
roles satisfies the condition; and the relation can_revoke allows a user of an administrative role to
revoke a permission association with the role range. In RRA97, the relation can_modify allows a
user of an administrative role to create a role in the role range, delete a role from the role range,

and modify relationship between roles in the role range.

2.3. DAC

DAC [17] is a user-centric access control mechanism in which object owners decide the permis-
sions that users can have on objects. Those permissions can be captured in a matrix which is known
as the access control matrix (ACM). In an ACM, each row represents subjects and each column
represents either a subject or an object. The corresponding row and column entries indicate a right
that a subject has on an object. Thus, an access request can be directly verified through the ACM.
If there exists an entry corresponding to the access request, then the access is granted; otherwise,

access is denied.

2.4. Data Warehouse

A data warehouse is a collection of integrated, subject-oriented data, where each unit of data
is relevant at some moment in time [9]. It is a repository of information that is extracted, in-
tegrated, summarized and stored from multiple sources in order to support different types of
analytical queries. To facilitate complex analysis and visualization, a data warehouse employs
multi-dimensional models to capture all the dimensions of interest. Each dimension again may be

described by a set of attributes.

The typical data models employed to specify a schema using which multi-dimensional data is
stored are star schema, snowflake schema, and the fact constellation schema. In a star schema, the
database consists of a single fact table and one table for each dimension. The dimension tables are
usually de-normalized to provide symmetric access to the fact table. Each column of the fact table
has a foreign key reference to the primary key of the corresponding dimension table that provides
its multi-dimensional coordinates. Each row of the fact table, thus, stores the numeric measures
for a combination of those coordinates. A dimension table consists of columns that correspond
to all the meaningful attributes of that particular dimension. On the other hand, in a snowflake
schema, dimension tables are normalized especially since de-normalization introduces scope for
inconsistency, which could have a negative impact on the system integrity. It may, however, be
noted that many of the data warehouse extensions/toolkits of commercial database management
systems like Oracle, support multi-dimensional visualization of data from star schema only with a
well-defined fact table.

In order to meet both these requirements and before going into the detailed discussion of how
MDMG access control policies can be specified and evaluated using database technologies, we first

present the system architecture in Section 3.

3. System Architecture

Figure 1 shows the overall system architecture of our proposed approach. It comprises a policy
enforcement module, policy decision module, policy specification/maintenance module, policy ad-
ministration module and a policy data warehouse which is named as the policy vault. A detailed
description of the functionality of each module, the role they play, and their integration with other

modules are given below.

3.1. Policy Enforcement Module (PEM)

Each access control system comprises a policy enforcement mechanism that can be either em-
bedded in the user interface or at the application hosting server. In our system, PEM is a part of the
user interface that prepares an access request in the prescribed format and embeds the information
required for evaluating the request. It also forwards an access request to the policy decision module

and conveys the outcome of evaluation to the user.

Security Administrator

Request
(u,o,r)

53 - .
8 Policy Decision
—
2 Policy Policy/Meta-Policy
Users % Enforcement €T Identification Unified Schema
Access 2 Function A
=)

Administrative Schema

A

A

In-Memory Relations

Evaluation Procedure

|
|
|
|
|
|
|
} Policy/Meta-Policy
|
|
|
|
|
|

DAC RBAC ABAC
Security Policy | | Security Policy | | Security Policy

Figure 1: System Architecture

3.2. Policy Decision Module (PDM)

PDM acts as an interface between the PEM and the policy vault (PV). It is comprised of policy
evaluation procedures, which are written in a standard database language (e.g., SQL, PL/SQL, etc.)
and used to evaluate access requests. When the PDM receives an access request from the PEM, it
first identifies a relevant procedure through meta-policy identification function given in Algorithm
7 and then obtains applicable policy and other entity-related data from the PV for evaluating the
request. Finally, PDM conveys evaluation outcome of the request in the predefined format to the

PEM.

3.3. Policy Specification/Maintenance Module (PSM)

Modern organizations require multiple access control policies to protect resources which belong
to different units. The PSM through unified database schema enables the specification of different
types of security policies which are represented at the bottom of Figure 1. It also enables the
specification of constraints at multiple dimensions and granularity levels. In case of any change in
policies or unified schema, administrative users reflect the changes in the policy vault by using the

PSM.

3.4. Policy Administration Module (PAM)

PAM acts as an interface between administrative users and the authorization system through
which an administrative user can access various modules, namely, PSM, PV and PDM. PAM is
similar to PDM and contains administrative policy evaluation procedures which are used to verify
administrative user access requests and are written in a suitable database language. Administrative
users initiate these requests for performing various activities, such as incorporating policy update

in the unified database schema, deletion of a policy, etc.

3.5. Policy Vault (PV)

PV acts as a central repository of the proposed architecture and stores different types of secu-
rity policies. It comprises an administrative schema and a unified database schema that contain
relations which are created in data warehouse and in-memory empowered database (e.g., Oracle
12¢, etc.). These relations are made up of different types of attributes and capture data related
to policies, constraints, and several entities (e.g., user, object, etc.). The relations which capture
policy information are marked as in-memory enable and are stored in the main memory of the
system along with disk-based storage.

The various components inside the box labeled as the “policy data warehouse system” show
how database technologies such as data warehousing schemas, in-memory database and database
languages can be meaningfully used to represent access control systems. We develop a suitable

database schema for supporting various access control models as described in the following sections.

4. Policy Specification

In this section, a unified database schema is presented for specifying ABAC policies along with
RBAC and DAC policies. Furthermore, as access control models have notions of administrative
models to enable decentralized administration and delegation of administrative responsibilities, a
unified administrative schema is also presented that can specify different types of administrative

policies.

4.1. Unified Database Schema

A unified database schema is developed for the specification of various access control policies in

a consistent and integrated manner, as shown in Figures 2 and 3. It may be noted that the entire

10

User_attribute User_attribute_value User
User_attribute_id User_attribute_value_id | User id
User_attribute_name User_attribute_value User_name
User_attribute_id (FK)
Object_attribute Object_attribute_value User_UAV_assignment
Object_attribute_id Object_attribute_value_id il User_id (FK)
Object_attribute_name Object_attribute_value User_attribute_value_id (FK)
Object_attribute_id (FK)
Object Object_OAV_assignment EUE—UA\,L—aSSIQTmeGZ FK
Obiect id - Object id FK) ser. .attrl ute_value_id (FK)
Object_name Obiject_attribute_value_id (FK) — Rule_id (FK)
Rule_right assignment
Rule_OAV_assignment Rule_id (FK)
Object_attribute_value_id (FK) — Right_id (FK)
Rule_id -~] -— |
Right
Environment_attribute Policy Right_id
Environment_attribute_id Rule_id Right_name
Environment_attribute_name Effect
Environment_attribute_value Rule_EAV_assignment
Environment_attribute_value_id ﬁ Bule id (FK)
Environment_attribute_value Environment_attribute_value_id (FK)
Environment_attribute_id (FK)

Figure 2: Schema for representing ABAC Policies

integrated schema has been divided into separate figures for ease of understanding. A common set
of notations is used to unify ABAC, RBAC and DAC policies. The relation User captures the set
of users, and the term user is used to indicate a subject in DAC, as well as a user in ABAC and
RBAC. The relations Object and Right capture the set of resources (that need to be protected) and
access rights (e.g., read, write, delete, etc.), respectively. Similarly, rights on objects are defined as
permissions in RBAC, whereas the term right denotes possible modes of access over an object in
ABAC and DAC. The details regarding specification of various access control policies introduced

in Subsections 2.1-2.3 when using the unified database schema are provided below.

4.1.1. Specification of ABAC Policies

In Figure 2, we present the ABAC schema. The relation User_attribute captures the attributes
of users, whereas the relation User_attribute_value captures the values of user attributes. Each
user can have one or more user attribute values and the relation User UAV _assignment cap-
tures the user to user attribute value assignments. Similarly, the relations Object_attribute and
Object_attribute_value, respectively, capture the attributes of objects and the values of object

attributes, while the relation Object_OAV _assignment captures the object to object attribute

11

Permission
Permission_id 4] - —
Permission_role_assignment Permission_hame Mutually_exclusive_permissions
Permission_id (FK) Permission_role_cardinality_value | —Bermission_id1 (FK)
Role_id (FK) j +— Permission_id2 (FK)
Role Prerequisite_permission_role
L »! Role id — Permission_id (FK)
- Role_name | Prerequisite_permission_id (FK)
Role_hierarchy Role_user_cardinality_value
Role_i (FK) — | Role_permission_cardinality_value
Role_parent_id (FK) — Permission_object_assignment
Prerequisite_user_role U Permission_id (FK)
Role_id (FK) Object_id (FK) 7
Prerequisite_role_id (FK) Right_id (FK)
Mutually_exclusive_roles
Role_id1 (FK) (- - - Roh
Role id2 (FK)] Right_assignment fg t .
— User_id (FK) Right id
Object_id (FK) Right_name
User_role_assignment . .
- Right_id FK -
Role_id (FK) — (FK) Object
User_id (FK) » Object_id -
User Object_name
—» User_id
User_name
User_role_cardinality_value

Figure 3: Schema for representing DAC and RBAC Policies

value assignments. The Environment_attribute and Environment_attribute_value relations cap-
ture the environment attributes (such as time, location, etc.) and their values, respectively. The
relations Policy, Rule UAV _assignment, Rule_ OAV _assignment, Rule_E AV _assignment and
Rule_right_assignment, respectively, capture the set of rules, the association of rules with user
attribute values, the association of rules with object attribute values, the association of rules with
environment attribute values, the association of rules with rights, and are used for representing
the ABAC policies. In ABAC, permissions are granted according to various attributes of entities
involved in an access request. Thus, no separate fact table is required for modeling ABAC.

ABAC specification for the banking system described in Section 1 through the relations shown
in Figure 2 is as follows. Tables 1 and 2 capture user attributes and object attributes, whereas
Tables 3 and 4 capture user attribute values and object attribute values, respectively. Environment
attributes and their values are captured in the 5 and 6. As an example, consider one of the access
control requirements of the banking system, which states that a user #u, who is in Assistant
Manager grade in the Branch Banking department, through the role Customer Service Officer can

initiate a transaction during Working hours from the Branch of posting. These requirements are

12

Table 1: User attribute

Table 2: Object attribute

User_attribute_id User_attribute_name

Object_attribute_id User_attribute_name

1 Grade

1 Object Type
2 Designation ! v

2 Department
3 Department

captured as a policy in Tables 7, 8, 9, 10 and 11.

4.1.2. Specification of RBAC Policies

The proposed unified schema is capable of specifying the access control policies supported
by RBACO, RBAC1 and RBAC2 models. In Figure 3, the relations User, Role, Permission,
User_role_assignment, Permission_role_assignment and Permission_object_assignment are used
to specify RBAC policies. The relation Permission_object_assignment captures the permissions
in the form of rights on the objects. The user role assignment (UA) and permission role assignment
(PA) components of RBAC are represented by the User_role_assignment and Permission_role_assi-
gnment relations, respectively. In RBAC, each user can be associated with one or more roles and
each role can have one or more permissions. A single permission can correspond to one or more
rights on different objects. The relations User_role_assignment, Permission_role_assignment and
Permission_object_assignment act as the fact tables. The relation Role_hierarchy represents the
partial order relation defined on the set of roles called the role hierarchy.

RBAC enforces a variety of constraints in the specification of various types of access control poli-
cies. The most important constraints are Separation of duty (SoD), cardinality and pre-requisites.
SoD is enforced through mutually exclusives roles which are captured in the Mutually_exclusive_rol-
es relation. The proposed schema supports four types of cardinality constraints. These are:
Role_user_cardinality_value (maximum number of users that each role can have) in the role re-
lation, Role_permission_cardinality_value (maximum number of permissions that each role can
have) in the role relation, User_role_cardinality_value (maximum number of roles that each user
can have) in the user relation and Permission_role_cardinality_value (maximum number of roles
that each permission can have) in the permission relation. Finally, the pre-requisites of roles for users
and permissions are captured in the Prerequisite_user_role and Prerequisite_permission_role re-

lations, respectively.

13

Table 3: User attribute value assignments

User_attribute_value_id User_attribute_value User_attribute_id

—_

Assistant Manager
Deputy Manager
Manager
Senior Manager
Assistant Vice President
Customer Service Officer
Relationship Manager

TxB Customer Service Officer

© 0 N O Ut ke W N

Branch Operation Head
Branch Head

=
= o

Branch Banking

—
N}

Business Banking

[
w

Priority Banking

W W W W NNNNDNNND R R =

[a—
S

Forex and Treasury Banking

Table 4: Object attribute value assigments

Object_attribute_value_id Object_attribute_value Object_attribute_id

1 Saving Account
Customer Detail
Transaction

Branch Banking

Priority Banking

NN N ===

2
3
4
) Business Banking
6
7

Forex and Treasury Banking

Table 5: Environment attribute

Environment_attribute_.id Environment_attribute_name

1 Working Hours
2 Branch of Posting

14

Table 6: Environment attribute assignments

Environment_attribute_.name Environment_attribute_id

Environment_attribute_value_id
1 09: 00 AM-07: 00 PM 1
2 NITK Campus 2
3 IIT KGP Campus 2

Table 7: Policy
Rule_id Effect

1 Permit

2 Permit

Table 8: Rule UAV Assignment

Table 9: Rule OAV Assignment

Rule_.id User_attribute_value_id

Rule.id Object_attribute_value_id

1 1

1 6 1 3

1 11

Table 10: Rule EAV Assignment

Table 11: Rule Right Assignment
Rule.id Environment_attribute_value_id
Rule.id Right.id
1 1
1 4

1 3

15

Table 12: User

Userid ~ User_name Table 13: Role
1 Ul Role_id Role_name
2 U2 1 Customer Service Officer
3 U3 2 Relationship Manager
4 U4 3 TxB Customer Service Officer
5 Us 4 Branch Head
6 U6 5 Branch Operation Head
7 ur

For RBAC specification of the banking system described in Section 1, Tables 12, 13, 14 and 15
capture users, roles, objects and access rights, respectively. Tables 18 and 19 capture user to role

assignments and permission to role assignments. The permissions are captured in Table 16.

4.1.8. Specification of DAC Policies

In Figure 3, the relations User, Object and Right are used for representing the DAC policies.
The relation Right_assignment captures DAC policies. All the basic rights supported by the system
are captured in the relation Right. In the data warehousing terminology, the relations User, Object
and Right serve as dimensions, whereas the relation Right_assignment acts as a fact table.

Table 17 captures DAC specification of access requirements of the same banking system.

4.2. Unified Administrative Schema

In this subsection, we present a unified administrative schema for specifying administrative

policies introduced in Subsections 2.1 and 2.2. It may also be noted that, ABAC and RBAC

Table 15: Access Right

Table 14: Object

Right_id Right_name

Object_id Object_name

1 Read
1 01
2 Write
2 02 3 A
pprove
3 03
4 Initiate

16

support role-based administrative models, whereas no explicit administrative model is supported
in DAC. Hence, Figure 4 illustrates the role-based administrative schema.

The relations User, Role and User_attribute_value shown in Figure 4 are the same as the
corresponding ones shown in Figures 2 and 3. However, another disjoint set of roles meant for
administrating users of an RBAC system is specified using the relation Adminrole. The valid
administrative permissions are contained in the relation Adminpermission. Assignment of ad-
ministrative users to administrative roles is done using the relation User_adminrole_assignment,
while permissions belonging to the various administrative roles are maintained in the relation

Adminpermission_adminrole_assignment.

Table 16: Permission Table 17: Right Assignment
Permission_id = Object_id Right_id User.id Object_id Right_id

1 1 1 1 1 1

2 1 2 2 1 2

3 2 3 3 2 3

4 2 4 4 2 4

5 3 5 5 3)

Table 19: Permission Role Assignments

Table 18: User Role Assignments
User id Role id
1 1

Role Permission

1

2
3
4
5
6
7

T xR W N =

W W NN R R s

2
3
4
3
)
3
5

17

Adminrole

>

Adminrole_id
Adminrole_name

Adminrole_user_cardinality_value
Adminrole_adminpermission_cardinality_value

Can_revoke_user

Adminrole_id
Start_rolerange_identifier
Minimum_rolerange_role_id
Maximum_rolerange_role_id
End_rolerange_identifier

Can_assign_user

Adminrole_id
Prerequisite_role_id
Start_rolerange_identifier
Minimum_rolerange_role_id
Maximum_rolerange_role_id
End_rolerange_identifier

Can_revoke_permission

Adminrole_id
Start_rolerange_identifier
Minimum_rolerange_role_id
Maximum_rolerange_role_id
End_rolerange_identifier

Can_assign_permission

Adminrole_id
Prerequisite_role_id
Start_rolerange_identifier
Minimum_rolerange_role_id
Maximum_rolerange_role_id
End_rolerange_identifier

Can_modify

Adminrole_id (FK)
Start_rolerange_identifier
Minimum_rolerange_role_id (FK)

Maximum_rolerange_role_id
End_rolerange_identifier

User

User_id

User_name
User_role_cardinality_value
Security_level_id (FK)

User_adminrole_assignment

User_id (FK)
Adminrole_id (FK)

Adminrole_hierarchy

Adminrole_id (FK)
Adminrole_parent_id (FK)

Adminpermission

Adminpermission_id
Adminpermission_name

Adminpermission_adminrole_cardinality_value

Adminpermission_adminrole_assignment

Adminpermission_id
Adminrole_id

(FK)
(FK)

Can_assign_UAV_user

Adminrole_id (FK)

Prerequisite_ UAV_id (FK)
User_attribute_value_id (FK)

Can_delete_UAV_user

Adminrole_id (FK)

Prerequisite_ UAV_id (FK)
User_attribute_value_id (FK)

User_attribute_value

User_attribute_value_id
User_attribute_value
User_attribute_id (FK)

Role

Figure 4: Schema for representing Role-Based Administrative Policies for ABAC and RBAC

Role_id
Role_name
Role_user_cardinality_value

Role_permission_cardinality_value

4.2.1. Specification of Administrative Policies for ABAC

In Figure 4, the relations Can_assign_-U AV _user and Can_delete U AV _user capture policies for
administrative roles that can assign various ranges of user attribute values to users and delete various
ranges of user attribute values from users, respectively. Similarly, the relations Can_assign_ OAV _o-
bject and Can_delete_.OAV _object can be designed to capture policies for administrative roles that

can assign various ranges of object attribute values to objects and delete various ranges of object

attribute values from objects, respectively.

18

4.2.2. Specification of ARBAC97 Policies

The basic functions supported by the administrative RBAC model include Can_assign, Can_ass-
ignp, Can_revoke, Can_revokep and Can_modi fy. The relations Can_assign_user and Can_assig-
n_permission capture relevant policies for which administrative roles can make changes to User_rol-
e_assignment and Permission_role_assignment relations, respectively, for various ranges of reg-
ular roles. The ability of various administrative roles to revoke user’s membership from roles is
specified in the relation Can_revoke. Similarly, the ability of various administrative roles to revoke
permissions from roles is specified in the relation Can_revokep. Finally, the relation Can_modify
maintains the mapping between various administrative roles and user role ranges whose role hier-
archy they can administer.

Using the administrative policies specified through the set of relations shown in Figure 4, the
relations relevant to the unified database schema can be suitably maintained. For example, the
role hierarchy with the Manager being a role senior to the Deputy Manager can be specified using
the relation Role_hierarchy of Figure 3. If there is an administrative role, say the Senior Security
Officer (SSO), which has the authority to assign or remove users over a role range covering the
Manager and the Deputy Manager, then the same is specified in the relations Can_assign_user
and Can_revoke. Once such a role-based administrative policy has been set up, any user belonging
to the administrative role of SSO can perform the necessary addition and deletion of users to the
roles of Manager and Deputy Manager.

Thus, the proposed unified database schema is extensible and can easily specify ABAC, RBAC
and DAC policies. The unified administrative schema simplifies maintenance of the unified secu-
rity policies. In the next section, we describe use of in-memory database storage and processing

capabilities that enables quick access to policy data from the unified database schema.

5. In-Memory Specification of Policies

In this section, we present an approach for grouping the relations into two broad categories and
also demonstrate how in-memory storage of critical relations helps in reducing the execution time

of access requests.

19

In-Memory Area (In-Memory Column Store)

/ Right Assignment

user_id object_id right_id Index

Metadata
Data SMU2

user_id object_id right_id

/

IMCU2

L

Figure 5: In-Memory Storage of the Relation Right_Assignment

_

5.1. Categorization of Relations based on Evaluation Performance

The schemas shown in Figures 2 and 3 mainly consist of three different types of relations: (1)
relations that store attributes of entities (e.g., user, object, role, etc.), (2) relations that capture
constraints (e.g., mutually exclusive, cardinality, etc.), and (3) relations that capture policy data
and are involved in evaluating access requests (e.g., Right_Assignment, etc). These relations
can be grouped into two broad categories, namely, critical and non-critical, according to access
request evaluation performance. Relations that are involved in the evaluation of access requests are
considered to be critical, whereas the relations which are not directly involved in the evaluation of
access requests are considered to be non-critical. Thus, the aforementioned first and second types

of relations are classified as non-critical, whereas the third type is classified as critical.

5.2. Reduction in Access-Request FEvaluation Time through In-memory Storage of Critical Relations

Execution time of access requests depends on the policy identification and enforcement mecha-
nism. In most cases, access control mechanisms use an approach similar to XACML for identifying
applicable policies. In XACML, a policy is defined as a set of rules, and a rule can be composed of
one or more authorization conditions that a request must satisfy for performing a specific action on
an object. Moreover, for determining whether there is a policy and if so, which rule in that policy
applies to a request, XACML associates a target with each policy and rule that is composed of
user attributes, object attributes and a right. In XACML, although all policies are not applicable

to each request, still each policy target is compared with the request until the applicable policy is

20

found or the last policy is compared. In contrast, we use database products for specifying, enforc-
ing and managing security policies that are not designed by keeping access control terminologies
in mind. Hence, storage/specification of policies as data in relations and retrieval/enforcement of
policies for evaluating access requests through database language can have certain performance
overhead. So, for addressing the aforementioned issues, we present a solution that not only helps in
avoiding irrelevant policy comparison but also enables efficient utilization of database capabilities
for identification and enforcement of policies.

The schemas shown in Figures 2 and 3 are capable of specifying different types of access control
policies that are composed of multiple attributes and are specified in one or more relations. Thus,
enforcement of policies/evaluation of access requests through those relations is similar to executing
database analytic queries. To ensure faster access to security policies, we also store the performance-
critical relations in-memory that enables quick retrieval of a set of attributes or a particular attribute

through the relation(s) as follows.

1. First, a memory chunk, which contains the relation, is located in-memory by using meta-data.
A meta-data acts as an index for a memory chunk and captures various types of information,
such as the names of the specified relation and its columns (attributes), mapping of the
captured values in those columns (attributes) with the actual rows (row-ids) of the relation,

and location (address) of the chunk in the memory.

2. Next, in the memory chunk, it is verified whether the required value falls within the index
range of the concerned column (attribute). If the value is within the range, then the cell
which stores the value is searched and its position (row-id) is noted. Otherwise, the memory
chunk is discarded, and Steps 1 and 2 are repeated with other relevant memory chunks, if any

exists.

3. To retrieve values from the other columns (attributes) of the same memory chunk, the position,
which is obtained in Step 2, is directly referred in those columns because they store the values

in the order of row-id.

It may be noted that, though several relations are stored in-memory, the first step helps in
quickly locating the relevant relation (memory chunk). The second step assists in discarding the
irrelevant comparisons that significantly reduces the search space. Finally, the third step enables

the retrieval of the values of the remaining attributes of the relation in a single comparison.

21

Figure 5 illustrates in-memory storage of the relation right_assignment which captures the
DAC policies and comprises user, object and right attributes (columns). The relation is too large
to fit into a single memory chunk. Therefore, the relation is stored in two memory chunks named
as IMCU1 and IMCU2, and for each memory chunk, a meta-data is also created named as SMU1
and SMU2. Thus, for evaluating a user (#u) specific type of access (#r) on an object (#o0), the
policy decision module of Figure 1 executes the following enforcement query.

SELECT Count (*) FROM right_assignment
WHERE user_id = #u AND object_id = #0 AND right_id = #r;

The enforcement query first refers to the SMU in meta-data and identifies the memory chunk
IMCU1 which contains a part of the relation right_assignment. It then verifies whether the user id
(#u) falls within the index range of the user_id column of IMCUL. If it is, then the position that
stores the user (#u) is captured, and the object (#0) and right (#r) are, respectively, searched in
the object and right columns at that position. If the object and the right exist, then the access is
granted. Otherwise, IMCU1 (entire set of values) is discarded and the whole process is repeated
with IMCU?2.

Thus, in-memory storage of policies helps in reducing the execution time of access requests. In

the next section, we introduce an approach for specifying and evaluating meta-policies.

6. Meta-Policy: An Approach for Combining Different Types of Access Control Poli-

cies

In recent years, combining the benefit of different types of access control policies has gained
increasing importance as a topic of research [25, 37, 14]. Several customized approaches have
been proposed that either modify RBAC to incorporate ABAC [20, 23, 30, 31, 29] or attempt
to infer the final result of policies by combining their common attributes [27, 32]. Generally,
customized approaches put efforts towards unification of access control policies, whereas general
purpose languages (like FAF[21], etc.) enable specification and enforcement of flexible policies. Most
of these approaches either complicate specification, implementation, administration and security
analysis of policies or do not have administrative models for managing them. In contrast, we
present a unique approach which is simple yet powerful and can easily combine various types of

access control policies through specification of meta-policies. The proposed approach makes use of

22

Algorithm 1: EVALUATE_IF_ANY _SUBPOLICY (Ar = (u, 0,7),P = {sp1, spa,...,Spn})

result < false
for each sub-policy (sp) € P do
result « evaluate_subpolicy(sp, Ar)
if (result == true) then
return true

break

end
end

return false

databases and query processing languages for capturing and maintaining policies and hence assumes

the availability of an underlying database management system, which is its potential limitation.
In this section, we first define the different types of meta-policies and present our approaches for

obtaining the final results from them. Moreover, we also demonstrate specification and evaluation

of different types of meta-policies through the unified database schema.

6.1. Specification and Evaluation of Meta-Policies

A meta-policy is defined as a combination of security policies, which contains multiple security
policies as sub-policies. Let us assume that there exist n policies which are represented as spi,
Spa,..., Spn. These security policies can be MDMG, which indicates that the policies can contain
multiple dimensions and each dimension can have different levels of granularity. Depending on the
need of the secure access to be ensured, these security policies can be broadly grouped into two
categories, namely, liberal and strict, which grant access according to the outcome of any one policy
and all policies, respectively. For evaluating the final results of these meta-policies, we present two

types of PRCAs as follows.

6.1.1. Allow access if any sub-policy allows access
This approach is suitable for evaluating the final result of a liberal meta-policy that grants access
according to the outcome of any one sub-policy. The approach “ORs” the results of individual sub-

policies and permits access if the result of at least one sub-policy is true. Thus, the final result of

23

Algorithm 2: EVALUATE_IF_ALL_SUBPOLICIES(Ar = (u,0,7),P = {sp1, $p2,...,SDn})

count < 0
result < false
sp-num < number of sub-policies € P
for each sub-policy (sp) € P do
result « evaluate_subpolicy(sp, Ar)
if (result == true) then
‘ count < count + 1
else
‘ break

end

end

if (count == sp_num) then
return true

end

return false

the approach can be represented as (sp; OR sps OR OR spy,).

Algorithm 1 evaluates an access request through the aforementioned approach. The algorithm
takes a meta-policy, which consists of multiple sub-policies, and an access request as input. Each
sub-policy and the access request are then passed to a function evaluate_subpolicy. If the function

returns true, then the access is granted. Otherwise, the access is denied.

6.1.2. Allow access if all sub-policies allow access

This approach is the opposite of the previous approach and is used to evaluate the final results of
a strict meta-policy that grants access according to the outcomes of all sub-policies. The approach
“ANDs” the results of sub-policies and permits access if each sub-policy outcome is true. Thus, the
final result of the approach can be represented as (sp; AND spa AND AND sp,,).

Algorithm 2, which is based on the aforementioned approach, also takes a meta-policy and an
access request as input. Each sub-policy and the access request are then passed to the function

evaluate_subpolicy. If the function returns true, then the same process is repeated until the last

24

Algorithm 3: Single policy combination and Single PRCA(Ar = {u,0,7})
result < false

P = {sp1,sp2}
result « evaluate_if _all_subpolicy(Ar = (u,0,7),P = {sp1, sp2})

if (result == true) then
| return true

end

return false

sub-policy is evaluated. Otherwise, the algorithm terminates the evaluation of the remaining sub-
policies and returns false (denies access).
The first and second approaches are, respectively, similar to permit-override and deny-override

algorithms of XACML.

6.2. Specification of Meta-policies through Unified Database Schema

The proposed unified database schema shown in Figures 2 and 3 is capable of specifying various
types of security policies, namely, ABAC, RBAC and DAC. For simplicity, the aforementioned
policies are represented as spi, sps and sps, respectively. These security policies have limited
decision making dimensions, and individually, they are not capable of specifying and enforcing
one or more security requirements, such as information flow control, fine-grained access control,
ease of policy management, etc. Hence, combining one security policy with another can help in
overcoming their individual drawbacks. Here, combining two security policies (say, RBAC and
ABAC) means that either an access control requirement is specified through the two policies or
one of the policy specifies the access control element and the other defines a condition for ensuring
fine-grained access. Such combinations also enable specification of MDMG security policies that
consider multiple dimensions (e.g., role, time, location, security level, etc.) and different levels of
granularity of dimensions (e.g., year, hour, minute, sec, etc.).

For specifying and evaluating meta-policies from the unified database schema, we make use of
different types of security policies and PRCAs. Then, as per the need of protection, we group
security policies and PRCAs broadly into four categories to enable specification and evaluation of

different types of meta-policies, which are as follows.

25

6.2.1. Single policy combination and single PRCA

This approach enables specification of a meta-policy which consists of a single combination of
policies (e.g., spl and sp2) and a single PRCA (e.g., allow access if all sub-policies allow access).
Algorithm 3 presents this approach, which takes an access request as input. To evaluate the access
request, it uses the function evaluate_if_all_subpolicy given in Algorithm 2. The function takes a
meta-policy and an access request as input and returns true, if the access is granted.

As an example, let there be an access control requirement of the banking system described in
Section 1, which states that a user #u of the Manager grade in the Branch Banking department,
through the role Customer Service Officer, can perform read and write operations on an object #o
during working hours from the branch of posting. To specify the requirement as a policy, an access
control mechanism (like RBAC) would define a part of the specification as role-based policy and
the rest as application code, whereas ABAC would specify the entire requirements as an attribute-
based policy. However, both of these access control mechanisms have their own advantages and
disadvantages. In contrast, our approach can specify the aforementioned requirement in any one of
the following forms through specification of a meta-policy.

PRCA: Allow access if all sub-policies allow access

RBAC Policy: UR = (u, Customer Service Officer), PR = (Customer Service Officer, Perm),
Perm = (o, {read, write})

ABAC Policy: P, = (P, {Customer Service Officer, Manager, Branch Banking}), P,q, = (P,
Saving account), P. = (P, {read, write}), P.q, = (P, {Working hour, Branch of posting})

OR

PRCA: Allow access if all sub-policies allow access

RBAC Policy: UR = (u, Customer Service Officer), PR = (Customer Service Officer, Perm),
Perm = (o, {read, write})

Attribute-Based Condition: C,., = (C, {Manager, Branch Banking}), Coey = (C, Saving
account), Ceqr = (C, {Working hours, Branch of posting})

The first form specifies requirements as RBAC as well as ABAC policies, whereas the sec-
ond form specifies essential elements as RBAC policy and ensures fine-grained access through
an attribute-based condition. In the aforementioned meta-policy, PRCA ensures enforcement of
both RBAC and ABAC policies or RBAC policy and Arribute-Based Condition on an access
request. In the RBAC policy, UR, PR and Perm represent the user to role assignments, per-

26

mission to role assignments and the set of all permission. These are stored in the relations
user_role_assignment, permission_role_assignment and permission_object_assignment, respectively.
In the ABAC policy, Puav, Poav, Pr and P, represent policy to user attribute value assignments,
policy to object attribute value assignments, policy to right assignments and policy to environment
attribute value assignments. These are stored in the relations rule_uav_assignment, rule_oav_assig-
nment, rule_right_assignment and rule_eav_assignment, respectively. In the attribute based con-
dition, Cyay, Coav and Ceqy, represent the conditions for user attribute value assignments, object
attribute value assignments and environment attribute value assignments. These are stored in the

relations rule_uav_assignment, rule_oav_assignment and rule_eav_assignment, respectively.

6.2.2. Single policy combination and multiple PRCAs

Similar to the previous approach, this approach uses a single combination of policies (e.g., sp1,
and sp2) and enables specification of flexible meta-policies through multiple PRCAs (e.g., allow
access if any sub-policy allows access, allow access if all sub-policies allow access). These meta-
policies protect some of the resources through a set of policies and the remaining resources through
another set of policies.

Algorithm 4 is based on the aforementioned approach, which contains two meta-policies (proce-
dures) named as MP1 and MP2 that use the functions evaluate_if_any_subpolicy and evaluate_if-
_all_subpolicy given in Algorithm 1 and Algorithm 2, respectively. These functions take a set of
sub-policies and a request as input and return true, if the access is permitted. To identify the
applicable meta-policy, the algorithm uses the Meta-policy Identification (MI) function given in
Algorithm 7. MI takes a request as input and returns a meta-policy, if any exist. Then, the request
is evaluated through that meta-policy.

As an example, consider the other three access control requirements of the banking system de-
scribed in Section 1. The first requirement states that a user #u, who is a Manager in the Branch
Banking department, through the role Customer Service Officer, can approve a transaction #7Tx
which is not initiated by that user and is within her approval limit, during working hours from the
branch of posting. The second requirement states that a user #u through the role Relationship
Manager can initiate a transaction #7Tx. The third requirement states that a user #u, who is a
Manager in the Forex and Treasury Banking department, through the role TzB Customer Service

Officer, can initiate a transaction #7Tx during working hours from the branch of posting. These

27

Algorithm 4: Single policy combination and Multiple PRCAs(Ar = {u,0,7})
result < false

Procedure <— MI(Ar, Ryoq,Rooav)
procedure M P, (Ar)

P = {sp1,sp2}
result < evaluate_if_any_subpolicy(Ar = (u, 0,7),P = {sp1, sp2})

if (result == true) then
\ return true

end
end procedure
procedure M P,(Ar)
P = {sp1,sp2}
result« evaluate_if_all_subpolicy (Ar = (u,0,r),P = {sp1, sp2})

if (result == true) then
\ return true

end

end procedure

return false

requirements are captured through specification of meta-policies as follows.

Meta-Policy MP1:

PRCA: Allow access if all sub-policies allow access

RBAC Policy: UR = (u, Customer Service Officer), PR = (Customer Service Officer, Perm),
Perm = (Tx, {approve})

ABAC Policy: P,., = (P, {Customer Service Officer, Manager, Branch Banking}), P,q, = (P,
Transaction), P. = (P, {approve}), P, = (P, {Working hours, Branch of posting, Not initiated
transaction, Within approval limit})

Meta-Policy MP2:

PRCA: Allow access if any sub-policy allows access

RBAC Policy: UR = (u, Relationship Manager), PR = (Relationship Manager, Perm), Perm =
(Tx, {initiate})

28

ABAC Policy: P,,, = (P, {TxB Customer Service Officer, Manager, Forex and Treasury Bank-
ing}), Poay = (P, Transaction), P. = (P, {initiate}), P.q, = (P, {Working hours, Branch of posting})

The meta-policies MP1 and MP2 are composed of ABAC and RBAC policies that are captured
in the schemas shown in Figures 2 and 3, respectively. MP1 specifies the first requirement and
allows those users to approve the transaction #7Tx who possess both role and attribute values
mentioned in RBAC and ABAC policies, respectively. In contrast, MP2 specifies the second and
third requirements and allows those users to initiate the transaction #7z who possess either the

role or the attribute values specified in the RBAC and ABAC policy, respectively.

6.2.3. Multiple policy combinations and single PRCA

This approach enables specification of meta-policies which contain multiple combinations of
policies (e.g., sp1 and sps, sp; and sps, etc.) and a single PRCA (e.g., allow access if all sub-
policies allow access).

Algorithm 5 is based on the aforementioned approach, which comprises two meta-policies (pro-
cedures) named as MP3 and MP4 that use the function evaluate_if_all_subpolicy given in Algorithm
2. In MP8 and MP4, the function takes a different set of sub-policies and an access request as input
and returns true, if the access is permitted. To find the relevant meta-policy, the algorithm takes
an access request as input and passes it to the function MI given in Algorithm 7. If the function
returns a meta-policy, then the access request is verified through that meta-policy. Otherwise, the
access is denied.

As an example, consider the two access control requirements of the banking system described in
Section 1. The first requirement states that a user #u, who is a Manager in the Forex and Treasury
Banking department, through the role TzB Customer Service Officer, can perform read operation on
an object #o during working hours from the branch of posting. The second requirement states that
a user #u, who is a Manager in the Business Banking department, through the role Relationship
Manager, can perform read operation on an object #o during working hours from the branch of
posting, and the user #u has read access right on the object #o0. These requirements are captured
through specification of meta-policies as follows.

Meta-Policy MP3:
PRCA: Allow access if all sub-policies allow access

RBAC Policy: UR = (u, TxB Customer Service Officer), PR = (TxB Customer Service Officer,

29

Algorithm 5: Multiple policy combinations and Single PRCA(Ar = {u,0,7})
result < false

Procedure <— MI(Ar, Ryoq,Rooav)
procedure MP3(Ar)

P = {sp1,sp2}
result < evaluate_if_all_subpolicy(Ar = (u,0,7),P = {sp1, sp2})

if (result == true) then
\ return true

end
end procedure
procedure MP4(Ar)
P = {sp1,sps}
result < evaluate_if_all_subpolicy (Ar = (u,0,7), P = {sp1, sps})

if (result == true) then
\ return true

end

end procedure

return false

Perm), Perm = (o, {read})
ABAC Policy: P,., = (P, {Manager, Forex and Treasury Banking}), P,q, = (P, Saving account),
P, = (P, {read}), Peqv = (P, {Working hours, Branch of posting})
Meta-Policy MP4:
PRCA: Allow access if all sub-policies allow access
ABAC Policy: P,., = (P, {Relationship Manager, Manager, Business Banking}), P,q, = (P,
Saving account), P. = (P, {read}), P.a, = (P, {Working hours, Branch of posting})
DAC Policy: (u, o, {read})

The meta-policies MP3 and MP4 are composed of RBAC and ABAC, and ABAC and DAC
policies, respectively, that are captured in the schemas shown in Figures 2 and 3. MP3 specifies the
first requirement and allows those users to read the object #o0 who possess appropriate role and

attribute values mentioned in RBAC and ABAC policy, respectively. In contrast, MP4 specifies

30

Algorithm 6: Multiple policy combinations and Multiple PRCAs(Ar = {u,0,7})
result < false

Procedure <— MI(Ar, Ryoq,Rooav)
procedure MP5(Ar)

P = {sp1,sp2}
result < evaluate_if_all_subpolicy(Ar = (u,0,7),P = {sp1, sp2})

if (result == true) then
return true

end
end procedure
procedure MP6(Ar)
P = {sp1,sps}
result < evaluate_if_any_subpolicy(Ar = (u, 0,7), P = {sp1, sp3})

if (result == true) then
\ return true

end

end procedure

return false

the second requirement and allows those users to read the object #0 who possess attribute values

specified in the ABAC policy and satisfy the DAC policy.

6.2.4. Multiple policy combinations and multiple PRCAs

Unlike the aforementioned approach, this approach allows specification of meta-policies that use
multiple combinations of policies (e.g., sp; and sps, sp; and sps, etc.) and multiple PRCAs (e.g.,
allow access if all sub-policies allow access, allow access if any sub-policy allows access, etc.) for
obtaining the final results of the meta-policies.

Algorithm 6 is based on the aforementioned approach, which comprises two different meta-
policies (procedures) named as MP5 and MP6 that use the functions evaluate_if-all_subpolicy and
evaluate_if-any_subpolicy given in Algorithms 2 and 1, respectively. These functions take a different
set of sub-policies and a request as input and return false, if the access is not permitted. To identify

the applicable meta-policy, the algorithm takes an access request as input and passes it to the

31

function M1 given in Algorithm 7. If the function returns a meta-policy, then the access request is
verified through that meta-policy. Otherwise, the access is denied.

As an example, consider the other three access control requirements of the banking system de-
scribed in Section 1. The first requirement states that a user #u, who is a Deputy Manager in the
Branch Banking department, through the role Customer Service Officer, can approve a transaction
#Tx which is not initiated by that user and is within her approval limit, during working hours
from the branch of posting. The second requirement states that a user #wu, who is a Assistant
Manager in the Branch Banking department, through the role Customer Service Officer, can ini-
tiate a transaction #7Tx during working hours from the branch of posting. The third requirement
states that any user #u can initiate a transaction #7Tx. These requirements are captured through
specification of meta-policies as follows.

Meta-Policy MP5:

PRCA: Allow access if all sub-policies allow access

RBAC Policy: UR = (u, Customer Service Officer), PR = (Customer Service Officer, Perm),
Perm = (Tx, {approve})

ABAC Policy: Pyq, = (P, {Deputy Manager, Branch Banking}), P,q, = (P, Transaction), P, =
(P, {approve}), Peq» = (P, {Working hours, Branch of posting, Not initiated transaction, Within
approval limit})

Meta-Policy MP6:

PRCA: Allow access if any sub-policy allows access

ABAC Policy: P,., = (P, { Customer Service Officer, Assistant Manager, Business Banking}),
P,o, = (P, Transaction), P, = (P, {initiate}), Peq, = (P, {Working hours, Branch of posting})
DAC Policy: (u, Tx, {initiate})

The meta-policies MP5 and MP6 are composed of ABAC and RBAC policies that are captured
in schemas shown in Figures 2 and 3, respectively. The MP5 specifies the first requirement and
allows those users’ to approve the transaction #71'x who possess role and attribute values mentioned
in RBAC and ABAC policy, respectively. In contrast, MP6 specifies second and third requirements
and permits those users to initiate the transaction #7°x who either possess attribute values specified

in the ABAC policy or satisfy the DAC policy.

32

Procedure_OAV_assignment Policy_Evaluation_Procedure
Object_attribute_value_id (FK) J—, Procedure id

Right_id (FK) Description
Procedure_id (FK)

Figure 6: Schema for Identifying Meta-Policy

6.3. Meta-policy Identification Mechanism

Depending on the sensitivity of objects, a specific type of access (say, read) on the objects can
be controlled by a particular meta-policy (procedure), whereas another type of access (say, write)
on the same objects can be controlled by another meta-policy (procedure). So, there is a need
to capture the information about meta-policy specification which would help in identifying the
appropriate meta-policy to be used for evaluating an access request. One of the simplest ways to
do so is to capture the specification information in the form of a triple (meta-policy, object, right)
which states that the specific meta-policy governs the particular right on the object. However,
such type of representation can cause performance and maintenance overhead in case of frequent
changes in the access types of objects or the creation/deletion of objects. Thus, for minimizing the
overhead and the number of policy combinations, we present a meta-policy identification schema
which captures a meta-policy and a right along with object attributes instead of object id or name.

As shown in Figure 6, the meta-policy identification schema consists of two relations, namely
Policy_Evaluation_Procedure and Procedure_ O AV _assignment. The first relation captures meta-
policies (procedures) and their description. The second relation captures the association of meta-
policies (procedures) with object attribute values and rights, which represents that the particular
meta-policy (procedure) controls the specific types of rights on objects.

An algorithm to identify a meta-policy is presented in Algorithm 7. The algorithm takes an ac-
cess request Ar, the relation procedure oav assignment R4, and the relation object oav assignment
Ry0qv as input and fetches the attribute values associated with the object #o through the relation
Rooav- Then, it searches a meta-policy through the relation ;4. in which object attribute values
are either a subset or same as of the above-fetched object attribute values and access right is same
as the right #r. If the meta-policy exists, then the request is verified through that meta-policy,
otherwise, discarded.

From the above discussions, it may be observed that, Category 1 protects objects through a

33

Algorithm 7: META-POLICY IDENTIFICATION (MI)(Ar = (u,0,7),Rpoq;Rooav)

object_attribute_values|o] + null

Pgp + null

if Ar.o == R,oqv-0bject then
‘ object_attribute_values|o] < object_attribute_values|o] U {oav}

end

if object_attribute_values[o] D object_attribute_values[p].Rpoq AND Ar.r == Rp,q.1ight
then
‘ Pgp < Prp U{p}

end

return Pgp

single combination of policies and a PRCA. Categories 2, 3 and 4 use the meta-policy identification
mechanism and protect a subset of the objects through one meta-policy and the remaining ones
through another meta-policy. Thus, these categories present all possible ways of combining ABAC
with RBAC and DAC policies through PRCAs to enable specification and enforcement of unified

security policies.

7. Policy Evaluation

Once the access control policies have been appropriately specified, the next related issue is their
evaluation. The access control system needs to determine if the existing policies allow access. Such
evaluation of a request is done by issuing a query to the policy vault shown in Figure 1.

It may be noted that users or administrators are not expected to directly express their requests
in the concerned query language statements (e.g., SQL). Rather, these requests would be embedded
in the host language using which the application making the request is developed. There are broadly
two categories of queries, namely evaluation query and enforcement query, that are, respectively,

used to evaluate administrator request (AR) and user request (UR) as given below.

7.1. BEvaluation Query
Evaluation queries are executed by administrative users to either obtain more insight into the

policies or verify the correctness of policies in case of any change in them. Table 20 presents the

34

details of a few ARs as well as access control models and schemas related to them. A detailed
description of the execution of ARs through queries by using the relations shown in Figures 2 and

3 is given below.

e To evaluate AR1, an evaluation query first obtains the attribute values associated with the
user #u through the relation user_uav_assignment. Next, it fetches those rules through the
relation rule_uav_assignment in which user attribute values are either a subset or same as
of the user #u attribute values. Then, it retrieves the object attributes through the relation
rule_oav_assignment in which rules belong to the above-retrieved rules. Finally, it fetches
the objects through the relation object_oav_assignment in which object attribute values are

either a subset or same as of the above-retrieved object attribute values.

e To evaluate AR2, an evaluation query first finds the rules through the relations rule_ua-
v_assignment and rule_oav_assignment in which user attribute values and object attributes
values are either a subset or same as of the user #u attribute values and object #o attribute
values, respectively. Finally, it fetches the rights through the relation rule_right_assignment

in which rules belong to the above-retrieved rules.

e To evaluate AR3, an evaluation query first finds the attribute values associated with the
object #o through the relation object_oav_assignment. Next, it fetches the rules through the
relation rule_oav_assignment in which user attribute values are either a subset or same as
of the object #o attribute values. Then, it retrieves the user attribute values through the
relation rule_uav_assignment in which rules belong to the above-fetched rules. Finally, it
fetches the users through the relation user_uav_assignment in which user attribute values

are either a subset or same as of the above-retrieved user attribute values.

e To evaluate AR4, an evaluation query first finds the rules through the relations rule_oav-
_assignment and rule_right_assignment in which object attribute values are either a subset
or same as of the object #o attribute values and access right is same as the right #r, respec-
tively. Then, it fetches the user attribute values through the relation rule_uav_assignment in
which rules belong to the above-retrieved rules. Finally, it obtains users through the relation
user_uav_assignment in which user attribute values are either a subset or same as of the

above-fetched user attribute values.

35

Table 20: Models and Schemas referred for processing Administrator Requests

AR No. | Model | Schema | Access request

1 Objects that a user #u can access.
2 Rights that a user #u can perform on an
ABAC | Figure 2
object o.
3 Users that can access an object #o.
4 Users that can exercise a right #r on an
object #o.

Users who have a permission #p.

Permissions available to a user #u.

5

6

RBAC | Figure 3

7 Roles that have a permission #p.
8

9

Permissions associated with a role #r.

Roles assigned to a user #u.

10 DAC | Figure 3 | The complete set of privileges various

users have over different objects.

To evaluate ARS, an evaluation query first finds the roles that have the permission #p di-
rectly or indirectly through the relations permission_role_assignment and role_hierarchy,
respectively. Finally, it obtains the users associated with the above-retrieved roles through

the relation user_role_assignment.

To evaluate ARG, an evaluation query first finds the roles assigned to the user #u directly
or indirectly, respectively, through the relations user_role_assignment and role_hierarchy.
Finally, it fetches the permissions associated with the above-fetched roles through the relation

permission_role_assignment.

To evaluate AR7, an evaluation query fetches the roles which have the permission #p di-
rectly or indirectly through the relations permission_role_assignment and role_hierarchy,

respectively.

To evaluate ARS8, an evaluation query first finds the roles available to the role #r directly or

36

Table 21: Models and Schemas referred for processing User Requests

UR No. | Model Schema | Access request

11 RBAC | Figure 3 | A user #u can exercise a right #r

12 ABAC | Figure 2 | on an object #o.

13 ABAC | Figure 2 | A user #u can exercise a right #r
on an object #o at time #t.

14 ABAC | Figure 2 | A user #u can exercise a right #r on an
object #o at time #t and location #lI.

15 Unified | Figures 3 | A user #u can exercise a right #r

16 Policies and 2 on an object #o.

17 DAC Figure 3 | A user #u can exercise a right #r

on an object #o.

indirectly through the relation role_hierarchy. Finally, it retrieves the permissions associated

with the above-retrieved roles through the relation permission_role_assignment.

e To evaluate AR9, an evaluation query fetches the roles assigned to the user #u directly or

indirectly through the relations user_role_assignment and role_hierarchy, respectively.

e To evaluate AR10, an evaluation query directly refers to the relation right_assignment and
enables the administrator know the complete set of DAC privileges which the users have on

different objects.

7.2. Enforcement Query

Enforcement queries are executed for checking whether a user request should be granted. The
details of a few user requests as well as access control models and schemas related to them are

presented in Table 21. The detailed description of user requests evaluation through queries by

using the relations shown in Figures 2 and 3 is given below.

e To verify UR11, an enforcement query first finds the roles associated with the user #u di-

rectly or indirectly, respectively, through the relations user_role_assignment and role_hie-

37

rarchy. Next, it obtains the permissions assigned to the above-fetched roles through the
relation permission_role_assignment. Finally, it searches the permission through the rela-
tion permission_object_assignment that comprises the object #o and right #r, and belongs
to the above-retrieved permissions. If the permission exists, then the access is granted; oth-

erwise, the access is denied.

To verify UR12, an enforcement query first finds the user attribute values and object attribute
values associated with the user #u and object #o0 through the relations user_uav_assignment
and object_oav_assignment, respectively. Next, it finds the rules through the relation rule_ua-
v_assignment in which user attribute values are either a subset or same as of the user #u
attribute values. Then, it fetches the rules through the relation rule_oav_assignment in
which object attribute values are either a subset or same as of the object #o attribute values,
which belong to the above-retrieved rules. Finally, it retrieves the rule through the relation
rule_right_assignment in which right is same as the right #r, which belongs to the above-
retrieved rules. If the rule exists, then the access is permitted. Otherwise, the access is

denied.

To verify UR13, an enforcement query first finds the user attribute values and object attribute
values associated with the user #u and object #o through the relations user_uav_assignment
and object_oav_assignment, respectively. Next, it finds the rules through the relation rule_ua-
v_assignment in which user attribute values are either a subset or same as of the user #u
attribute values. Then, it fetches the rules through the relation rule_oav_assignment in
which object attribute values are either a subset or same as of the object #o attribute values,
which belong to the above-fetched rules. Finally, it retrieves the rule through the relation
rule_right_assignment in which right is same as the right #r, which belongs to the above-
fetched rules. If the above-fetched rule is available at the time #t¢ that is verified through the

relation rule_eav_assignment, then the access is permitted. Otherwise, the access is denied.

To verify UR14, an enforcement query first finds the user attribute values and object attribute
values associated with the user #u and object #o through the relations user_uav_assignment
and object_oav_assignment, respectively. Next, it finds the rules through the relation rule_ua-
v_assignment in which user attribute values are either a subset or same as of the user #u

attribute values. Then, it fetches the rules through the relation rule_oav_assignment in

38

which object attribute values are either a subset or same as of the object #o attribute values,
which belong to the above-fetched rules. Finally, it retrieves the rule through the relation
rule_right_assignment in which right is same the right #r, which belongs to the above-
fetched rules. If the above-fetched rule is available at the time #t and location #I that is
verified through the relation rule_eav_assignment, then the access is permitted. Otherwise,

the access is denied.

e To verify UR15, an enforcement query, which is composed of ABAC, RBAC and DAC policies,
evaluates the request similar to UR11, UR12 and UR17, respectively. If at least one policy

outcome is true, then the access is granted; otherwise, the access is denied.

e To verify UR16, an enforcement query, which is composed of ABAC, RBAC and DAC policies,
evaluates the request similar to UR11, UR12 and UR17, respectively. If each policy outcome

is true, then the access is granted; otherwise, the access is denied.

e To verify UR17, an enforcement query directly searches for an instance which contains the
user #u, object #o0 and right #r in the relation right_assignment. If the instance exists,

then the access is granted. Otherwise, the access is denied.

There could be various other user and administrator requests. However, due to space constraint,
we only considered frequently occurring user and administrative access requests, and described their
evaluation using the schemas shown in Figures 2 and 3. The execution time of these access requests
is reported and discussed in the next section. Similar access requests can also be written to list
the administrative policies, as well as to evaluate administrative access using the schema shown
in Figure 4. Furthermore, requests that check for violation of SoD, prerequisite and cardinality

constraint can also be developed on the schema of Figure 3.

8. Experimental Results

In this section, we present data set descriptions and details of the implementation of the proposed
approach along with the outcomes of experiments on scalability and speed-up. The schemas shown
in Figures 2 and 3 of Section 4 were specified as tables in Oracle 12¢ (imdb) database on a system

having a 3.10 GHz Intel i5 processor, 4 GB RAM and 64 bit Windows 7 operating system.

39

Table 22: Data Set Details showing the Number of Rows in various Relations

Parameters Data Set 1 | Data Set 2 | Data Set 3 | Data Set 4 | Data Set 5
Number of Users 100 500 500 1000 5000
Number of Objects 100 500 1000 5000 25000
Number of Rights 5 10 10 10 10
Number of Roles 10 50 50 100 100
Number of Permissions 150 750 1500 7500 40000
Number of Permission 150 750 1500 7500 40000

Role Assignments

Number of User 200 1000 1000 2000 10000

Role Assignments

Number of User 5 25 25 50 250
Attributes
Number of User 10 50 50 100 500

Attribute Values
Number of User to 200 1000 2000 10000 50000
User Attribute Value

Assignments

Number of Object 5 25 50 250 1250
Attributes

Number of Object 10 50 100 500 2500

Attribute Values

Number of Object to 200 1000 2000 10000 50000
Object Attribute
Value Assignments

Number of ABAC Rules 10 25 50 250 1250

8.1. Data Set Details

Table 22 summarizes the details of different feature sizes of five synthetic data sets. For Data

Sets 1-5, the size of each relation is shown in terms of their number of rows increase. The relations

40

that influence the execution time of requests are shown in Table 22, whereas the remaining relations
are populated as follows. The number of rows in the Right_assignment relation is captured in such
a way that each user can perform at least one right on an object and each object can be accessed
by at least one user through some access right (e.g., read, write, delete, etc.). The number of such
access rights is usually limited in database systems (e.g., insert, update, delete, select, etc.) or
operating systems (e.g., read, write, append, execute, etc.). Therefore, the number of rights was
limited to 5 for Data Set 1, and 10 for Data Sets 2-5.

To emulate real-world scenarios, it has been ensured that each role is part of at least one role
hierarchy, and each role hierarchy has at most four levels. The various parameters of different sizes

shown in Table 22 were selected as follows:

1. To represent from small to large organizations, the number of users was varied from 100 to
5000, and the number of roles was maintained at 10% of the number of users for Data sets
1-4. In Data Set 5, the number of roles was kept the same as Data Set 4, since after a certain
point, the number of roles in an organization does not increase as compared to the number of
users. The number of permissions was created in such a way that each object is included in at
least one permission via a particular access right. However, in permission to role assignment,
every permission was assigned to at least one role and some permissions were assigned to

more than two roles. Roles were assigned to users in a similar manner.

2. For ABAC, the number of user attributes was maintained at 5% of the number of users and
the number of object attributes was also kept at 5% of the number of objects. Every user
attribute and object attribute contained at least one user attribute value and one object
attribute value, respectively. However, in user attribute values to users assignment, every
user attribute value was assigned to at least one user and some of the user attribute values
were assigned to more than two users. Object attribute values were assigned to objects in a

similar manner.

Data Sets 2, 3, 4 and 5 respectively contain all the entries of Data Sets 1, 2, 3 and 4 as well as
some extra entries. Those entries represent various components of ABAC, RBAC, and DAC, such
as user, role, object, permission, user-role assignment, etc. Thus, a data set represents the size of
an organization in terms of users, resources, access rights and authorization policies which restrict

user access to resources.

41

Table 23: Access Request Execution Time (seconds)

Access Request Data Set 4 Data Set 5
Disk-based | In-memory | Speed-up | Disk-based | In-memory | Speed-up
AR 1 185 .102 1.8 .306 118 2.6
AR 2 .007 .004 1.8 .053 .008 6.6
AR 3 011 .004 2.8 .026 .003 8.6
AR 4 .008 .004 2.0 .025 .005 5.0
AR 5 .010 .002 5.0 .026 .003 8.7
AR 6 .008 .004 2.0 .011 .004 2.8
AR 7 .001 .001 1.0 .002 .001 2.0
AR 8 .004 .003 1.3 .005 .003 1.7
AR 9 .002 .001 2.0 .003 .001 3.0
AR 10 .027 .022 1.2 .159 124 1.3
UR 11 .005 .005 1.0 .028 .008 3.5
UR 12 .005 .004 1.3 .009 .003 3.0
UR 13 .010 .007 1.4 .014 .004 3.5
UR 14 247 .202 1.2 .291 126 2.3
UR 15 .016 .012 1.3 .025 .020 1.3
UR 16 .025 .017 1.5 .033 .022 1.5
UR 17 .004 .001 4.0 .039 .001 39.0

For each data set, every request (AR1-AR10 and UR11-UR17) was executed 73 times with

different inputs to ensure 95% confidence level with 5% margin of error. Due to a lower limit on the

data storage size for the in-memory database, none of the relations from Data Sets 1-3 was stored

in-memory. Therefore, no change was observed in the execution time of the requests for Data Sets

1-3.

8.2. Scalability Study and Speed-up Analysis

Scalability of the proposed system, which refers to its ability of handle a small to large variation

in the number of entries of its various components, has been demonstrated by evaluating variation

in execution time of user and administrative access requests against those five data sets. Table

42

23 shows the average disk-based execution time, in-memory execution time and speed-up for AR1-
AR10 and UR11-UR17 for Data Sets 4-5.

AR1-AR4, which retrieve ABAC policy-related information regarding a user, object, or right,
execute in less than 0.3 second and exhibit a gain of 8.6 in the speed-up for Data Set 5. AR5-AR9,
which retrieve policy-related information regarding a particular user or role or permission through
RBAC relations, execute in less than 0.1 second for Data Set 5. Moreover, in-memory execution of
ARS for Data Set 5 shows a substantial gain of 8.7 in the speed-up.

For Data Set 5, AR10 runs in less than 0.2 second and 0.1 second for disk-based and in-memory
based access, respectively. Moreover, AR10 does not exhibit any significant gain in speedup because
retrieving the complete set of rows (privileges) from the relational database (row format) is as fast
as the in-memory database (column format).

UR11 is RBAC enforcement request and executes in less than 0.1 second for Data Set 5. UR12-
UR14 are ABAC enforcement requests that contain the environment attribute as null, time, time
and location, respectively. Among these, UR14 is a computationally expensive request, however,
executes in less than 0.3 second for Data Set 5.

URI15-UR16 are unified access control enforcement requests, which execute in less than 0.1
second for Data Set 5. UR15-UR16 were evaluated through meta-policies which are composed of
ABAC, RBAC and DAC policies, and grant access according to the result of any one policy and all
policies, respectively.

UR17 is a DAC enforcement request that directly verifies access through a dimensionally modeled
relation right_assignment and shows a significant gain of 39 in the speed-up for Data Set 5.

It may also be noted from Tables 22 and 23 that even with 50-fold rise in the number of users,
250-fold rise in the number of permissions, and 250-fold or more rise in the number of objects,
the execution time of user and administrator requests does not grow significantly. Thus, it may
be concluded that the proposed approach is quite scalable from small to large organizations and
in-memory storage of policies results in a significant gain in speed-up and execution time of access

requests.

9. Related Work

In the field of access control, several efforts have been made to develop unified policy specifica-

tions, such as XACML [10] and Ponder [13]. XACML, which is an OASIS standard, is an attribute

43

based policy specification and enforcement language that comprises a policy specification language
and a request/response language coded in XML. Access control policies are described using the
policy specification language, and access requests are validated using the request/response lan-
guage. Moreover, XACML provides an attribute-based profile for the specification of a particular
type of access control policy. XACML has certain potential disadvantages. For example, its Policy
Decision Point is stateless and does not index policies. On the other hand, Ponder is an object-
oriented policy specification language that can specify policies for managing and securing various
applications, such as firewalls, storage, etc. In Ponder, policies are specified using its specification
language which can then be transformed into various security mechanisms for enforcement. Thus,
policy specification is separated from its enforcement, which can also be considered as a drawback
of Ponder.

Barker [4] proposed a meta-model which uses a logic-based language for the specification of
access control policies and demonstrated that several access control policies can be specified using
the meta-model. However, the meta-model does not address the issue of granularity, complexity of
analysis, flexibility, hierarchy and enforcement overhead. On the other hand, Ferraiolo et al. [16]
present a framework, referred to as the Policy Machine (PM), that can specify and enforce various
types of access control policies (e.g., DAC, MAC, Chinese Wall and RBAC). They also introduce a
mechanism for combining these policies. However, Ferraiolo’s framework does not address the issue
of multiple dimensions and granularities.

Several competing proposals, such as role-trust management framework [26], flexible authoriza-
tion framework (FAF) [21], SecPAL [5] and metamodeling with formal semantics [1], have been
made for defining a general, declarative framework that can specify a variety of access control poli-
cies for distributed systems. The role-based trust management framework presents an approach
for combining the benefits of RBAC and trust-management to address the issue of access control
in a large scale, decentralized system. FAF is a unified language based framework that enables
the specification of exclusive policies, such as positive authorization and negative authorization.
It can easily represent traditional access control policies and can capture real-world application
requirements. SecPAL is a declarative logic based authorization language that enables specification
of decentralized policies (e.g., delegation, constraints and negation). Metamodeling with formal se-
mantics is a First Order Logic based approach for specifying a model, meta-model, and an instance

of a meta-model.

44

Kuhn et al. [25] proposed several strategies for combining RBAC and ABAC policies. Follow-
ing this, Huang et al. [20] introduced a two-layered framework for integrating ABAC policies into
RBAC. The two layers are called the aboveground level and underground level. The first layer
represents the extended RBAC, in which user-role assignments and permission-role assignments are
constrained by attribute-based policies. These policies are composed of the attributes of environ-
ments and are defined at the second layer. Jin et al. [23] propose an approach that restricts the
availability of permissions to roles through filter functions based on user and object attributes. The
TargetFilter function maps a subset of filter functions to each object by using conditions which are
composed of object attributes and determines the applicability of filter functions on objects.

Similar to [23], Rajpoot et al. [30, 31] also present a mechanism for restricting the availability
of permissions to roles through conditions which can be composed of attributes of user, object
and environment. Moreover, they define permission as a right on an object expression instead of
a right on an object. An object expression comprises object attributes and is used to identify an
object. Thus, the association of an object expression and conditions with each permission can cause
enforcement and maintenance overhead.

Recently, Qi et al. [29] have proposed an approach for combining the RBAC and ABAC models
that divides access control into two components: static (upper) and dynamic (lower). The upper
part contains RBAC policies, whereas the lower part is constrained by ABAC policies. Unlike
[20, 23], they divide session establishment into two components: session_partl and session_part2.
The first part determines the roles available to a user on the basis of RBAC and ABAC policies
defined by using user, role and environment attributes, whereas second part determines permissions
available to a user on the basis of the roles retrieved in the former part and ABAC policies composed
of role, object and environment attributes. On the other hand, Hong et al. [18] present an approach
which combines time and attributes to restrict the access on time-sensitive data.

It may be noted that, all the above-mentioned approaches either present a language or a frame-
work for specifying various types of access control policies and enforcing the policies. None of these
approaches addresses their implementation, configuration and maintenance. Moreover, the ap-
proaches do not consider multiple dimensions and different granularity levels of policies. Therefore,
most of the aforementioned access control approaches have not been employed in real life.

In contrast, our approach makes use of multi-dimensional data models and effectively addresses

specification, enforcement and maintenance of attribute-based, role-based, standard and unified

45

security policies.

10. Conclusion and Future Work

In this work we have presented a novel approach for the concurrent specification and enforce-
ment of access control policies using data warehousing and in-memory databases. Specifically, we
have designed a unified database schema that is capable of representing various types of access
control policies which is also easily extensible to various access control models. We have also pre-
sented meta-policy specification and evaluation mechanisms, and shown that the decision whether
to actually provide the requested access or not depends on a policy result combination mechanism,
e.g., “Allow access if any policy allows access” and “Allow access if all policies allow access”. To
improve access enforcement performance, we have analyzed the relations and stored critical rela-
tions in-memory. Experimental results show that the proposed approach, when implemented in an
in-memory database like Oracle 12c, is quite scalable from small to large organizations due to a
significant reduction in the execution time of access requests. Beyond specification, management
and enforcement, analysis of security policies is essential for organizations to understand the im-
plications of their policies. Therefore, in future, we plan to introduce a methodology for analyzing

the security properties, such as safety and liveness, of the proposed unified security policies.

Acknowledgments

Research reported in this publication was supported by the National Institutes of Health under
award RO1GM118574 and by the National Science Foundation under awards CNS-1564034, CNS-
1624503, and CNS-1747728. The content is solely the responsibility of the authors and does not

necessarily represent the official views of the agencies funding the research.

References

[1] Jamal Abd-Ali, Karim El Guembhioui, and Luigi Logrippo. Metamodelling with formal seman-
tics with application to access control specification. In Proceedings of the 3rd International
Conference on Model Driven Engineering and Software Development, pages 354-362, February
2015.

46

2]

Subhendu Aich, Samrat Mondal, Shamik Sural, and Arun Kumar Majumdar. ESTARBAC:
Role based access control with spatiotemporal context for mobile applications. Transactions

on Computational Science, IV:177-199, March 2009.

Subhendu Aich, Shamik Sural, and Arun Kumar Majumdar. STARBAC: Spatio temporal role
based access control. In Proceedings of the 2007 OTM Confederated International Conference
on On the Move to Meaningful Internet Systems: CooplS, DOA, ODBASE, GADA, and IS -
Volume Part 11, pages 1567-1582, November 2007.

Steve Barker. The next 700 access control models or a unifying meta-model? In Proceedings
of the 14th ACM Symposium on Access Control Models and Technologies, pages 187-196, June
2009.

Moritz Becker, Cedric Fournet, and Andrew Gordon. Design and semantics of a decentralized

authorization language. Journal of Computer Security, 4(8):619-665, December 2010.

D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Unified exposition and
multics interpretation. Technical report mtr-2997, The Mitre Corporation, Bedford, MA,
March 1976.

Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC: A temporal role-based access
control model. ACM Transactions on Information and System Security, 4(3):191-233, August
2001.

Clara Bertolissi and Maribel Fernandez. A metamodel of access control for distributed envi-

ronments: Applications and properties. Information and Computation, 238(9):187-207, 2014.

Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and olap technology.

SIGMOD Rec., 26(1):65-74, 1997.

OASIS Technical Committee. OASIS extensible access control markup language (XACML).
http://docs.oasis-open.org/xacml/3.0/xacml-profile-saml2.0-v2-spec-en.html, 2015.

Technical Committee. A survey of access control methods.
http://csre.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-

Aug26-2009.pdf, August 2009.

47

[12]

[13]

[15]

[19]

[20]

Maria Luisa Damiani, Elisa Bertino, Barbara Catania, and Paolo Perlasca. GEO-RBAC: A
spatially aware RBAC. In Proceedings of the 10th ACM Symposium on Access Control Models
and Technologies, pages 29-37, June 2005.

Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder policy
specification language. In Proceedings of the Workshop on Policies for Distributed Systems and

Networks, pages 18-39, January 2001.

Arjumand Fatima, Yumna Ghazi, Muhammad Awais Shibli, and Abdul Ghafoor Abassi. To-
wards attribute-centric access control: an abac versus rbac argument. Security and Commu-

nication Networks, 9:3152-3166, 2016.

David Ferraiolo and Vijayalakshmi Atluri. A meta model for access control: Why is it needed
and is it even possible to achieve? In Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies, pages 153-154, June 2008.

David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. The policy machine: A novel
architecture and framework for access control policy specification and enforcement. Journal of

Systems Architecture - Embedded Systems Design, 57(4):412-424, April 2010.

G. Scott Graham and Peter J. Denning. Protection principles and practice. In Proceedings of the
American Federation of Information Processing Societies Spring Joint Computer Conference,

pages 417-429, May 1972.

Jianan Hong, Kaiping Xue, Yingjie Xue, Weikeng Chen, David S. L. Wei, Nenghai Yu, and
Peilin Hong. TAFC: time and attribute factors combined access control for time-sensitive data

in public cloud. IEEE Transactions on Services Computing, pages 1-14, 2018.

Vincent C. Hu, David Ferraiolo, Rick Kuhn, Arthur R. Friedman, Alan J.
Lang, Margaret M. Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller,
and Karen Scarfone. Guide to Attribute Based Access Control (ABAC) Defini-
tion and Considerations (Draft). https://csrc.nist.gov/csrc/media/publications/sp/800-
162/final /documents/sp800_162_draft.pdf, 2013.

Jingwei Huang, David M. Nicol, Rakesh Bobba, and Jun Ho Huh. A Framework Integrating

48

[22]

[25]

[26]

[28]

[29]

Attribute-based Policies into Role-Based Access Control. In Proceedings of the 17th ACM
symposium on Access Control Models and Technologies, pages 187196, June 2012.

Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian. Flexible
support for multiple access control policies. ACM Transactions on Information and System

Security, 26(2):214-260, June 2001.

Xin Jin, Ram Krishnan, and Ravi Sandhu. A role-based administration model for attributes.
In Proceedings of the 1st International Workshop on Secure and Resilient Architectures and

Systems, pages 7-12, September 2012.

Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC: Role-Centric Attribute-Based Access
Control. In Proceedings of the 12th International Conference on Mathematical Methods, Models

and Architectures for Computer Network Security, pages 8496, October 2012.

James B. D. Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A generalized temporal
role-based access control model. IEEE Transactions on Knowledge and Data Engineering,

17(1):4-23, January 2005.

D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. Adding Attributes to Role-Based
Access Control. IEEE Computer, 43(6):79-81, June 2010.

Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust-
management framework. In Proceedings of the IEEE Symposium on Security and Privacy,

pages 114-130, May 2002.

Ninghui Li, Qihua Wang, Wahbeh Qardaji, Elisa Bertino, Prathima Rao, Jorge Lobo, and Dan
Lin. Access control policy combining: Theory meets practice. In Proceedings of the 14th ACM
Symposium on Access Control Models and Technologies, pages 135-144, June 2009.

Oracle Technical Committee. Oracle Database In-Memory.
http://www.oracle.com/technetwork /database/in-memory /overview/twp-oracle-database-

in-memory-2245633.html, July 2015.

Hui Qi, Xiong Luo, Xiaogiang Di, Jinqging Li, Huamin Yang, and Zhengang Jiang. Access

control model based on role and attribute and its implementation. In Proceedings of the

49

[31]

[32]

International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,
pages 6671, October 2016.

Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram Krishnan. Attributes en-
hanced role-based access control model. In Proceedings of the 12th International Conference

on Trust, Privacy and Security in Digital Business, pages 3—17, September 2015.

Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram Krishnan. Integrating
attributes into role-based access control. In Proceedings of the 29th Annual IFIP WG 11.3
Working Conference on Data and Applications Security and Privacy, pages 242-249, June
2015.

Prathima Rao, Dan Lin, Elisa Bertino, Ninghui Li, and Jorge Lobo. An algebra for fine-grained
integration of xacml policies. In Proceedings of the 14th ACM Symposium on Access Control

Models and Technologies, pages 63-72, June 2009.

Indrakshi Ray, Mahendra Kumar, and Lijun Yu. LRBAC: A location-aware role-based access
control model. In Proceedings of the Second international conference on Information Systems

Security, pages 147-161, December 2006.

Indrakshi Ray and Manachai Toahchoodee. A spatio-temporal role-based access control model.
In Proceedings of the 21st Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, pages 211-226, July 2007.

Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for role-based
administration of roles. ACM Transactions on Information and System Security, 2(1):105-135,
February 1999.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
Access Control Models. IEEE Computer, 29(2):38-47, February 1996.

Daniel Servos and Sylvia L. Osborn. Current research and open problems in attribute-based

access control. ACM Computing Survey, 49(4):65:1-65:45, 2017.

Mahendra Pratap Singh, Shamik Sural, Vijayalakshmi Atluri, Jaideep Vaidya, and Ussama

Yakub. Managing multi-dimensional multi-granular security policies using data warehousing.

50

In Proceedings of the 9th International Conference on Network and System Security, pages

221-235, November 2015.

51

