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We demonstrate single-shot imaging and narrow-line cooling of individual alkaline-earth atoms in
optical tweezers; specifically, strontium trapped in 515.2-nm light. Our approach enables high-fidelity
detection of single atoms by imaging photons from the broad singlet transition while cooling on the narrow
intercombination line, and we extend this technique to highly uniform two-dimensional tweezer arrays with
121 sites. Cooling during imaging is based on a previously unobserved narrow-line Sisyphus mechanism,
which we predict to be applicable in a wide variety of experimental situations. Further, we demonstrate
optically resolved sideband cooling of a single atom to near the motional ground state of a tweezer,
which is tuned to a magic-trapping configuration achieved by elliptical polarization. Finally, we present
calculations, in agreement with our experimental results, that predict a linear-polarization and polarization-
independent magic crossing at 520(2) nm and 500.65(50) nm, respectively. Our results pave the way
for a wide range of novel experimental avenues based on individually controlled alkaline-earth atoms
in tweezers—from fundamental experiments in atomic physics to quantum computing, simulation, and

metrology.
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I. INTRODUCTION

Optical tweezers and related optical micropotential tech-
niques (OTs) have matured into a powerful tool for quantum
science experiments with individually controlled atoms,
illustrated by a variety of recent results spanning quantum
simulation with Rydberg atoms [1-3], entangling operations
[4-7], bottom-up assembly of Hubbard models [8,9], and
cavity QED implementations [10—12]. In these experiments,
individual atoms are directly captured from laser-cooled
clouds with tweezers or long-wavelength optical lattices
[13-15]. Some of the more recent technical advances
include, e.g., sideband cooling close to the motional ground
state in tweezers [16,17], which has enabled experiments
based on coherent collisions [7] and trapping in the vicinity
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of nanophotonic structures [10]. Further, the recently
developed atom-by-atom assembly technique [18—23] pro-
vides means to generate defect-free arrays of currently up
to ~60 atoms from initially stochastically loaded OTs
[7,8,15,24-26], which has led to the most recent Rydberg
quantum simulation applications [1-3].

In terms of key characteristics, such as effective coher-
ence times, scalability, and controllability, these experi-
ments are now comparable with, and in many ways
complementary to, other quantum science platforms with
local control, e.g., quantum gas microscopes [27], ion traps
[28,29], or superconducting qubits [30]. An open question,
however, is how distinct properties of nonalkali species can
be harnessed for novel and improved implementations in
combination with single-atom control via OTs. Of particu-
lar interest are alkaline-earth(like) atoms (AEAs), which
offer important features, e.g., narrow and ultranarrow
optical transitions, which have already had a strong impact
in various scientific fields, ranging from quantum metrol-
ogy [31-33] and simulation [34-39] to novel approaches
for atomic and molecular control [40,41].

Here we demonstrate trapping, imaging, and narrow-line
cooling of individual AEAs (strontium-88) in an optical
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tweezer, and extend our imaging technique to highly
uniform two-dimensional arrays of 121 tweezers. Our
approach builds upon previous experiments for high-
resolution imaging of AEAs, including quantum gas
microscopes for ytterbium [42,43] and fluorescence imag-
ing in optical lattice clocks [44]. In addition to resolved
sideband cooling, we study a previously unobserved
narrow-line Sisyphus cooling mechanism [45,46] that
counteracts fluorescence recoil heating over a wide param-
eter regime. Interestingly, such single-atom experiments in
OTs provide a new tool for determining several important
atomic properties of strontium, which we compare to
theoretical models. We expect our results to open up an
entire spectrum of experiments with individual AEAs
controlled with OTs, as described in Sec. VII.

II. TWEEZER TRAPPING OF STRONTIUM

Tweezer trapping makes use of the ac Stark shift [47],
attracting atoms to the point of maximum intensity in a
tightly focused light beam [14]. We create a single tweezer,
with a beam waist of wy = 500 nm, in the center of an
ultrahigh vacuum cell using a high-resolution objective
[Fig. 1(a); see also Appendix C]. Generating tweezer arrays
is discussed in Sec. IV, and we restrict the discussion to
a single tweezer here. To load the tweezer, we overlap it
with a laser-cooled cloud of ®Sr atoms in a narrow-line
magneto-optical trap (MOT) [48,49]. Specifically, we load
the tweezer for 12 ms with red MOT beams detuned to the
red by a few hundred kilohertz from the frequency used in
the final stage of the red MOT. At least one atom remains in
the tweezer after the MOT cloud is dispersed with a
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probability greater than 99.95%, which corresponds to a
mean number of at least 7 atoms, assuming a Poisson
distribution for the loading statistics. Subsequently, we
induce light-assisted collisions that efficiently remove pairs
of atoms [14,50]. As a consequence, the tweezer is filled
with at most one atom with an observed occupation
probability of ~50% (Appendix D and Sec. III).

For single-atom detection, we collect blue fluorescence
photons while simultaneously applying narrow-linewidth
cooling to mitigate recoil heating [Figs. 1(b) and 1(c)]. To
this end, we implement a particular type of Sisyphus cooling
mechanism [45,46] that relies on the excited state of a
narrow optical transition being less trapped than the ground
state. In contrast, resolved sideband cooling requires
“magic” conditions, i.e., a situation where the ground and
excited states experience the same trapping potential
[32,51,52].

In our narrow transition to the 3P, manifold, we are able
to realize both conditions simultaneously for different
sublevels, allowing us to study Sisyphus and sideband
cooling in a single experimental setting. Specifically, we
tune the polarizabilities of the 3P, sublevels by varying the
ellipticity angle y of the tweezer polarization [Fig. 1(d); see
also Appendix B]. For one of these sublevels, we find a
“magic angle” [53,54] that equalizes ground- and excited-
state polarizability, enabling sideband cooling. The other
two sublevels experience significantly weaker trapping for
all polarizations, enabling Sisyphus cooling without the
need for fine-tuning.

We compare our measurements of differential polariz-
ability at 515.2 nm to theoretical models in Appendix A.
We find good agreement for the ratio of differential
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Tweezer trapping of strontium. (a),(b) A single strontium atom is trapped in an optical tweezer (propagating upward along the 2

direction) created by focusing a 515.2-nm laser beam through a microscope objective with NA = 0.5 (bottom objective). The atom is
imaged by scattering photons on the broad blue transition (461 nm) from a transverse imaging beam, while simultaneously being cooled
on the narrow red transition (689 nm) with three red MOT beams (one red beam, overlapped with the imaging beam, is not shown).
Fluorescence photons are collected with the bottom objective, while the top objective is mainly used for monitoring the tweezer light.
(c) The applied narrow-line cooling mechanisms, sideband and Sisyphus cooling, depend crucially on the relative trapping potential
between ground and three excited sublevels of P;. In a linearly polarized tweezer, these sublevels can be labeled with angular
momentum projection quantum numbers m; = —1, 0, 1. In elliptical light, rotational symmetry is broken and the sublevels are generally
not angular momentum eigenstates anymore. Hence, we label these states with a different notation: |¢¢), [pa), |pp) (from left to right).
Two of the states shift as a function of ellipticity (dashed compared to solid lines). (d) Differential trap depth (proportional to differential
polarizability) of the three sublevels of >P; as a function of tweezer ellipticity angle y, measured with excitation-depletion spectroscopy
(Appendix B and Sec. VI). The tweezer polarization is given by €(y) = cos(y)x + i sin(y)3. The solid lines are a fit to the eigenvalues of
the ac Stark Hamiltonian (Appendix B). At the magic ellipticity angle 7 = 4-24°, the differential polarizability between 'Sy and 3P, |¢4)
vanishes (dash-dotted line). The other two sublevels experience a weaker trapping potential (positive differential trap depths) for all y.
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polarizabilities at linear polarization. This quantity provides
a new benchmark for theoretical models—sensitive to even
small changes in several matrix elements. Our theoretical
models further predict a magic crossing in linearly polarized
light at a wavelength of 520(2) nm and a polarization-
insensitive magic crossing at 500.65(50) nm.

III. IMAGING IN A SINGLE TWEEZER

Under typical conditions, the observed fluorescence
signal on an electron multiplying charge-coupled device
(EMCCD) camera enables single-shot single-atom resolved
detection with high fidelity. Specifically, the histogram of
photons detected in a 7 x 7 box of pixels separates into two
resolved peaks of approximately equal area: a zero-atom
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FIG. 2. Imaging in a single tweezer. (a) Histogram of detected

photons acquired under typical imaging conditions, showing
good discrimination between a zero-atom and single-atom peak.
Results are for a single tweezer with magic polarization. Inset:
Averaged fluorescence image of a single atom (see Sec. IV for
details). (b) Imaging fidelity and loss probability as a function
of imaging time. Fidelity, defined as the accuracy of image
classification, reaches a maximum of F = 99.3(9)% for suffi-
ciently long imaging times. However, loss also increases with
imaging time. Fidelity is ultimately limited by the estimated
number of atoms lost before they can emit enough photons to be
detected. (c) The loss coefficient y = —(In(p,)/N), where p; is
the survival probability and N is the number of scattered photons,
as a function of detuning of the cooling light. A narrow regime of
cooling to the red-detuned side is interpreted as sideband cooling,
while a much broader regime to the blue-detuned side is
interpreted as Sisyphus cooling. Both regimes achieve the same
optimal value of y. (d) y as a function of estimated scattering rate
for a fixed imaging time of 200 ms. Data shown are for a 1.4-mK
trap under Sisyphus cooling. Below 60 kHz, y approaches a
constant minimum value, indicating that losses are dominated by
depopulation (white region) and not heating. As the scattering
rate increases beyond 60 kHz, cooling can no longer mitigate
heating losses (red region). Inset: y versus imaging time, taken
at the scattering rate indicated by an arrow (~27 kHz). y stays
roughly constant even at very long times.

background peak and a single-atom peak [Fig. 2(a)]. These
results are consistent with a single atom occupying the trap
in ~50% of the repetitions (see also Appendix D).

We compute a single-shot imaging fidelity F via the
accuracy of image classification. Images are classified into
positives (atom detected) and negatives (no atom detected)
by choosing a threshold of detected photons. The accuracy
of classification is defined as the fraction of correctly
identified images. Via an estimate of false positives and
false negatives, we compute this quantity to reach F =
99.3(9)% in the limit of long imaging times [Fig. 2(b); see
also Appendix E]. These values are quoted for a trap depth
of 1.4 mK. We have briefly studied imaging in shallower
traps and are able to achieve fidelities higher than 98% for
traps at least as shallow as 300 uK.

Although we are able to correctly identify the presence
or absence of an atom with high fidelity, we find that a
small fraction of atoms is lost during the imaging process.
In the histogram, loss manifests itself as a small, roughly
flat distribution bridging the single- and no-atom peaks.
This bridge stems from atoms that are lost before the end of
the imaging period and, therefore, result in fewer scattered
photons. We emphasize, however, that loss during imaging
does not imply that an atom was not detected, as most
atoms that are lost still emit enough photons to be above the
classification threshold. Nonetheless, the imaging fidelity
at long times is ultimately limited by atoms lost before they
can emit enough photons to be detected (Appendix E).

To quantify loss, we take two consecutive images and
define the survival probability p, of detected atoms as the
probability of detecting an atom in the second image
conditional on an atom being detected in the first. As loss
grows with imaging time, there is a compromise between
fidelity and survival fraction. As typical numbers, we quote
F~99% at a survival probability of p, ~97% for an
imaging time of ~20 ms [Fig. 2(b)].

Under optimized imaging conditions, we find that the
experimentally observed survival probability p, is compat-
ible with an exponential loss in scattered photons, p~
exp(—yN), where N is an estimator for the number of
scattered blue photons [Figs. 2(c) and 2(d) and Appendix E].
For example, we observe that the loss coefficient y, defined
as y = —[In(p,)/N], is constant as a function of imaging
time during which N grows [inset of Fig. 2(d)]. For
optimized cooling parameters, we find that y is roughly
independent of scattering rate for blue scattering rates below
~60 kHz [Fig. 2(d)]. Furthermore, in this limit of low blue
scattering rates, we find approximately the same y in a wide
range of red cooling parameters [Fig. 2(c)].

These observations are compatible with a loss mecha-
nism that depopulates the excited state ' P, via a weak decay
channel 'P, — 'D, [Fig. 1(b)]. In our trapping wavelength,
ID, is strongly anticonfined such that we expect atoms to
be ejected faster than they can decay into the triplet
manifold. Assuming that all decay into 'D, results in loss,
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2! provides a lower bound for the branching ratio between
decaying back into 'S, compared to decaying into 'D,.
We find y~! to be in the range from 17(3) x 10° to
24(4) x 10°, depending on our assumption on the blue
emission pattern (Appendix E). This lower bound is con-
sistent with an ab initio prediction for the branching ratio of
20.5(9) x 10° (Appendix A). Note in comparison the com-
monly quoted branching ratio of 50 x 10% [55]. We discuss
strategies for mitigating this depopulation loss in Sec. VII.

We find the lowest loss coefficients y in two distinct red
cooling regimes, attributed to sideband and Sisyphus
cooling [Fig. 2(c)]. We cool atoms with the 689-nm light
simultaneously while driving the blue transition. On the
red-detuned side of the 689-nm free-space resonance, we
observe a narrow cooling feature, which we interpret as
sideband cooling on the magic-tuned transition to |¢h4).
On the blue-detuned side, where we excite a nonmagic
transition, there is a much broader feature, which we
interpret as Sisyphus cooling (Sec. V). For detunings away
from the cooling features, the loss coefficient increases as
heating losses become dominant. The cooling light is
provided by three counterpropagating red MOT beams,
although we have observed that a single noncounterpro-
pagating beam achieves similar fidelity in the Sisyphus
regime, compatible with the interpretation that cooling in
this regime is not provided by photon recoil but rather
by differential potential energy between ground and
excited state.

IV. TWEEZER ARRAYS

We now generalize this imaging strategy to two-
dimensional arrays of tweezers. At the same time, this
serves as a proof of principle for larger-scale two-
dimensional tweezer array generation with acousto-optic
deflectors (AODs), which have previously been employed
for one-dimensional arrays of up to 100 sites [19] and
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two-dimensional arrays of four [56] or 16 sites [57]. To this
end, we generate a square array of 11 x 11 = 121 tweezers
using two AODs oriented perpendicularly to one another
[Figs. 3(a)-3(c)], each driven by a polychromatic radio
frequency (1f) signal (Appendix C). Having shown effective
cooling in a magic-tuned tweezer, we choose linear tweezer
polarization here instead. This choice aides in maintaining
polarization uniformity across the array and lets us explore
how cooling features change with modified differential
polarizabilities.

We achieve homogeneous trap depths across the array
with a peak-to-peak variation of < 5% and a standard
deviation of 2% [Fig. 3(d)]. To obtain this level of
uniformity, we start by coarsely uniformizing the trap
depths by imaging the trapping light onto a CMOS camera
and feeding back to the amplitudes of the rf tones. Fine
uniformization is achieved by spectroscopy on the 'S, <>
3P|¢¢) transition, which offers a precise measure of trap
depth due to its large differential polarizability and narrow
linewidth. We ultimately use this signal as feedback to
calibrate out imperfections in our imaging onto the CMOS,
and to measure uniformity after the iteration is complete.

Our measured trap depth and radial trap frequency (see
Sec. VI) are consistent with a nearly-diffraction-limited
tweezer waist of ~500 nm. We additionally confirm this
value by imaging the focal plane of the trap light with an
ultrahigh resolution objective. However, the observed size
of our single-atom point spread function [Figs. 2(a) and
3(b)] is larger than the theoretical diffraction-limited value.
We suspect thermal spatial broadening, pixelation effects,
chromatic shifts between the green trap and blue fluores-
cence, and/or aberrations in the imaging system to be
responsible for this. We leave this for further investigation
as this does not directly impact the results presented here.

We observe cooling features across the linearly polarized
array similar to those of a single tweezer with magic
polarization [Fig. 3(e)]. We again find a narrow red-detuned
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Tweezer arrays. (a) We create two-dimensional arrays of tweezers with two perpendicular acousto-optic deflectors (AODs). A

4f telescope (not shown) maps the light between the two AODs. Each AOD is driven by a polychromatic rf waveform with tones
uniformly spaced in frequency. (b) Average fluorescence image (of 6000 experimental runs) of single strontium atoms in a square array
of 11 x 11 tweezers. The interatomic distance is ~9 pum. (c) Single-shot image of single strontium atoms in a square array of 11 x 11
tweezers. The filling fraction is close to 0.5. (d) Trap depth for all 121 tweezers, as measured by spectroscopy on the 'Sy <> 3P, |¢¢)
transition. Inset: Histogram of trap depths across the array. The standard deviation of relative trap depths is 2%, demonstrating
homogeneity. (e) The loss coefficient y as a function of cooling frequency, averaged over an 11 x 11 linearly polarized array. Features
are similar to those seen in a single magic tweezer, but pushed farther away from the free-space resonance due to larger differential
polarizability in linear light. Inset: y versus blue scattering rate under Sisyphus cooling, averaged over the array.

041055-4



ALKALINE EARTH ATOMS IN OPTICAL TWEEZERS

PHYS. REV. X 8, 041055 (2018)

cooling feature, but further to the red than that in magic
polarization. We expect this feature to be a combination of
sideband cooling and Sisyphus cooling in the regime of a
more strongly trapped excited state [45,46]. The blue-
detuned Sisyphus feature is also still present, albeit
extending even further to the blue. These observations
are consistent with how we expect excited-state polar-
izabilities to shift with tweezer polarization -ellipticity
[Fig. 1(d)]. For optimal cooling conditions, we again see
that the loss coefficient y reaches the same minimum value
over a broad range of settings [Fig. 3(e)], although with a
higher value than observed in a single magic tweezer. We
leave this observation for further investigation and at this
point only hypothesize that it may be partly due to an
altered fluorescence radiation pattern because of the differ-
ence in tweezer polarization (Appendix E).

V. SISYPHUS COOLING

We now investigate the mechanism behind the broad,
blue-detuned cooling feature observed during fluorescence
imaging. The feature spans a range of frequencies for which
a local resonance condition of the nonmagic 'S, <>
3P|¢g) transition exists in the trap [Fig. 4(a)]. As the
red transition is much narrower than the differential trap
depth (AI' <« |AU|), selective excitation of narrow equi-
potential manifolds in the trap is possible. By appropriate
choice of detuning, an atom can lose energy by exciting on
a manifold where the energy of the absorbed photon is
smaller than the energy of the photon emitted after
oscillating in the excited-state potential. This is only
effective when the atom spends time in the excited state
that is at least commensurate with the trapping period, so
the condition I' < @ must also hold. Such a cooling scheme
is reminiscent of Sisyphus cooling between ground hyper-
fine manifolds of alkali atoms [58]. Narrow linewidth
versions of Sisyphus cooling have been discussed theo-
retically in Refs. [45,46], although with the excited
state experiencing stronger trapping, which—as we detail
below—Ileads to different behavior compared to the case
studied here where the excited state experiences weaker
trapping.

We measure the equilibrium energy reached during
fluorescence imaging with simultaneous Sisyphus cooling
and observe a linear dependence on the detuning [Fig. 4(b)].
We confirm that an equilibrium is reached by also mea-
suring the mean energy as a function of imaging time
and finding that it saturates after an initial linear growth
[Fig. 4(c)]. These measurements are performed via adia-
batic ramp-down of the trap to probe the energy distri-
bution [59] [Fig. 4(d) and Appendix F]. We quote a mean
energy instead of temperature as it is a priori not clear
whether the reached equilibrium state corresponds to a
thermal distribution.

Our interpretation for the linear behavior of mean energy
versus detuning is as follows: as atoms scatter blue photons,
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FIG. 4. Sisyphus cooling. (a) Diagram illustrating the mecha-
nism of Sisyphus cooling on the 'S, <> 3P,|¢z) transition in the
regime where the excited state is less trapped than the ground
state. The red cooling beam at frequency v is blue detuned away
from free-space resonance, effectively creating a resonance
condition for ground-state atoms with energy Ec,,. During
fluorescence imaging, atoms are heated up until their energy
reaches the Sisyphus cap, at which point they are excited and
preferentially decay back to the ground state with lower motional
energy. (b) Mean equilibrium energy of the atom after fluores-
cence imaging, as a function of the Sisyphus detuning. The solid
line is a linear fit to the experimental data. The shaded region
represents the equilibrium energy after fluorescence imaging
with sideband cooling instead of Sisyphus cooling. (¢) Mean
equilibrium energy of the atom versus imaging time for a
Sisyphus detuning of 1.2 MHz. The energy initially increases
linearly (solid line, # < 15 ms) and later saturates. (d) Survival
probability versus normalized final trap depth after adiabatically
ramping down the trap depth, for various Sisyphus cap energies
(Appendix F).

they heat up, eventually reaching an energy manifold that is
resonant with the red cooling light. Here, Sisyphus cooling
counteracts recoil heating. An equilibrium is reached as
recoil heating pushes the energy up against a “Sisyphus cap.”
Detunings closer to the free-space resonance, resonant with
equipotentials near the top of the trap, result in higher energy
caps. Detunings further to the blue of free space, resonant
with equipotentials deep in the trap, result in lower energy
caps. Consistent with this interpretation, the observed mean
energies are slightly below the calculated cap energy, and
follow the cap energy in a linear fashion.

We further observe that if the Sisyphus detuning is
suddenly changed to a value further to the blue of what it
was upon equilibration of the energy, rapid heating and
atomic loss occurs even if blue fluorescence is turned off
(not shown). These observations, which are supported by
numerical simulation, paint a broader picture of the
Sisyphus mechanism acting as a repeller in energy space.
That is, atoms with an energy below that of the resonant
manifold are pushed to lower energies while atoms with an
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energy higher than the resonant manifold are heated to even
higher energies. We note that we drive a transition such that
the excited state experiences weaker trapping than the
ground state (a, < a,). Previous proposals of narrow-line
Sisyphus cooling [45,46] have mostly focused on the
opposite regime (@, > @), in which the Sisyphus mecha-
nism acts as an attractor in energy space instead. The latter
regime has been proposed as a mechanism for ground-state
cooling, while our regime is not as amenable to this because
cooling stops after the atom has been cooled to some
energy that is no longer resonant with the repeller; however,
a dynamically swept detuning may achieve very low
energies, which we leave for further investigation.

VI. SIDEBAND COOLING IN A SINGLE TWEEZER

Finally, we show a proof of principle for resolved
sideband cooling in a tweezer, hence demonstrating direct
optical control of motional degrees of freedom of a tightly
trapped single atom. Related work on Raman sideband
cooling has been performed with alkali atoms [16,17], and
narrow-line resolved sideband cooling has been previously
observed with alkaline-earth(like) atoms [32,42] and
trapped ions [60,61]. Here, we use the 'Sy <> 3P |¢,)
transition in an elliptically polarized tweezer tuned to the
magic angle. The vanishing differential polarizability of
this transition simplifies sideband cooling and spectroscopy
because sideband transition frequencies do not (up to
effects of anharmonicity) depend on the motional state.
However, we do not discount the possibility of high-fidelity
sideband cooling in nonzero differential polarizability, and
leave this for future studies.

Since the linewidth of the 'S, <> 3P, transition (7.4 kHz)
is smaller than our trap frequencies, we can selectively
drive red sideband transitions that reduce the motional
quantum number [Fig. 5(a)]. Specifically, for our trap depth
of 1.4 mK (29 MHz), the radial (axial) trap frequency is
v, = 211(4) kHz [v, = 32.2(8) kHz]. Cooling hinges on
the propensity for the atom to preserve its motional
quantum number while decaying from the excited state,
a condition that is achieved when the Lamb-Dicke param-

eter # is small, i.e., n = ky/(h/4nmv) < 1. For us, the
radial direction has #, = 0.15 and the axial has 7, = 0.39.

Before the start of the cooling sequence, the atom is
imaged with Sisyphus cooling and has equilibrated at a
mean energy where we expect negligible ground-state
population (Sec. V). To cool close to the motional ground
state, we perform sideband cooling by alternating 100-us
pulses of three beams, two orthogonal beams in the radial
plane and one beam in the axial direction collimated
through our objective. None of the beams are retrore-
flected. We break cooling into two stages: the first stage
targets the fifth red axial sideband, while the second stage
targets the first red axial sideband. Both stages target the
first red radial sideband. The first stage is repeated for

100 consecutive cycles, while the second is repeated
for 50.

To extract information about the final motional state, we
probe the sideband spectrum after cooling by performing
excitation-depletion spectroscopy on the 'Sy <> 3P, tran-
sition [Fig. 5(b)]. We first excite the ground-state atoms on
the 'S, <> 3P, transition with an excitation pulse of 74 us.
We then pump atoms in 3P to the 3P, and P, metastable
dark states via the 35, state with a depletion pulse of 10 us
at 688 nm. This excitation-depletion cycle is repeated
3 times to increase signal. Thus, population of 3P, is
measured as apparent loss upon performing a second
fluorescence image.
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FIG. 5. Sideband cooling. (a) Diagram of the approach to
resolved sideband cooling on the magic-tuned 'Sy <> 3P,|¢p4)
transition. Optical excitation of the red sideband is spectrally
resolved, and the subsequent decay conserves the motional
quanta with high probability. (b) Measurement protocol for
sideband spectra. Atoms in the 'S, ground state are excited
(solid double arrow) to the 3P; excited state by an excitation pulse
at 689 nm. Atoms in the 3P, excited state are then excited (solid
double arrow) to the 35, state by a depletion pulse at 688 nm,
where they radiatively decay to the *P, and 3P, metastable dark
states. (c) Radial sideband spectrum before (inset) and after
sideband cooling. Overlaid is a simulated spectrum with 0.80
ground-state fraction (solid gray line). The bumps visible in the
simulated spectrum are Fourier peaks due to the finite 74-us
excitation pulse. The first radial sidebands are separated from the
carrier frequency by 211(4) kHz. The amplitude of the red
sideband is highly suppressed after cooling, as is the width of the
blue sideband—both indicating larger ground-state fraction.
(d) Axial sideband spectrum before (inset) and after the second
stage of axial cooling. Overlaid is a simulated spectrum with 0.50
ground-state fraction (solid gray line). The first axial sidebands
are separated from the carrier frequency by 32.2(8) kHz. Sup-
pression of the red sideband and enhancement of the carrier both
indicate larger ground-state fraction.
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We observe that a sideband asymmetry appears after
cooling [Figs. 5(c) and 5(d)], which did not exist before
cooling (insets), directly demonstrating reduced motional
energy. A similar level of asymmetry is observed in the
orthogonal radial spectrum (not shown). To quantify
the final motional state, we fit our data to simulation of
the probe spectroscopy that includes the effect of finite
decay (Appendix G). We find our data to be compatible
with a thermal ground-state fraction in the interval of [0.69,
0.96] in the radial direction and [0.45, 0.59] in the axial.
These values refer to the motional state right after sideband
cooling, before the probe is applied.

We finally note that we observe a small loss probability
during sideband cooling and hypothesize that this may be
due to off-resonant excitation from the trapping light while
the atom is in 3P,. Such excitation could induce loss by
populating states outside our imaging and cooling cycles.
A longer wavelength trap would likely reduce these losses
by being further detuned from higher-lying states.

VII. OUTLOOK

We demonstrate trapping, high-fidelity detection, and
narrow-line cooling of individual AEAs in optical tweezers.
Our imaging technique is based on fluorescence imaging
while cooling with a novel narrow-linewidth Sisyphus
scheme.

The robust operation of the Sisyphus mechanism away
from finely tuned magic conditions opens the possibility
for aiding single-atom imaging in a myriad of situations.
Specifically, this presents a viable option for cooling during
imaging of essentially any atomic species with sufficiently
narrow optical lines, such as other AEAs or dipolar atoms
[62,63]. As a point of reference, we have demonstrated
high-fidelity imaging in trap depths as low as 300 K and
anticipate extensions to even shallower depths with further
optimization. We note that Sisyphus cooling can be
achieved with a single beam as it relies on energy transfer
from differential trapping instead of photon momentum.
This is often an advantage in such imaging applications as
stray light can be minimized.

Concerning strontium itself, Sisyphus cooling can enable
imaging in various useful wavelengths. For example,
quantum gas microscopes could be operated with 1064-
nm light, where high-power lasers exist. Another intriguing
possibility is trapping and imaging in 813.4 nm, which is
a magic wavelength for the 'S, <> 3P, clock transition.
Importantly, for these wavelengths, we expect that the 'D,
state will be trapped, such that imaging loss from depop-
ulation can be further mitigated by repumping in the triplet
and/or singlet manifold.

More broadly, the presented results open the door for a
wide range of experimental possibilities enabled by com-
bining OT-based single-atom control techniques with the
intriguing features of AEAs. For example, the unique
spectral properties of AEAs are currently exploited in

optical lattice clocks [31]. Here, combining single-atom
control with such high spectral resolution could be
employed to explore systematic shifts introduced by
dipole-dipole interactions [64] or to implement single-
experiment interleaved clock operation [65]. Further, the
combination of long-range interactions mediated by
Rydberg states [66,67] or cavity modes [68] with OTs
could be used to controllably introduce and detect entan-
glement in the clock transition—a possible pathway to
quantum-enhanced clock operation.

We further note new avenues in quantum simulation and
computing. Previously, a combination of high-precision
spectral control, unique spin properties [35,69], and orbital
spin exchange interactions [36,37] has been experimentally
explored and proposed in a range of AEA quantum
simulation applications, including the generation of spin-
orbit coupling in synthetic dimensions [38,39] or work
towards Kondo-like systems [34,70,71]. Related ideas
appear in a whole array of quantum computing protocols
for AEAs [72-75]. Specifically, such quantum computing
architectures require dedicated single-atom control tech-
niques, which could be realized with OTs [76] instead of
optical lattices as originally envisioned. In a modification
of these protocols, Kondo-type models [34,69,71,77] could
be explored in a bottom-up manner similar to Hubbard
models [8] either with OTs alone or by combining OTs with
degenerate quantum gases to introduce impurities.

Further, our experiments will allow control of AEA
Rydberg interactions [66,78-83] at the single-atom level,
which could lead to an increase in effective coherence time
(compared to alkalis) by using metastable intermediate
states [66,83]—an important aspect for further advances in
Rydberg-based quantum simulation and computing.

Finally, we consider OT-based strategies for basic atomic
physics experiments. For example, we envision controlled
ionization of an alkaline-earth atom trapped in a tweezer,
providing a new pathway to optical trapping and control of
ions [84]. Further, we note the possibility of generating
cold molecules involving AEAs [85] in an atom-by-atom
fashion using optical tweezers [86].
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APPENDIX A: CALCULATION OF
POLARIZABILITIES, MAGIC WAVELENGTHS,
AND BRANCHING RATIO

1. Overview

The trapping potential experienced by an atom prepared
in its internal state i is equal to the product of the state-
dependent polarizability ;(4, &) and the intensity profile of
the optical tweezer I(r, z) such that

Ui(r,z) = —a;(4,8)I(r, z)/2¢yc, (A1)
where ¢ is the vacuum permittivity and c is the speed of
light in vacuum [88]. The state-dependent polarizability
a;(4,€) depends on both the wavelength A and the polari-
zation vector € of the trapping light [32,88]. The polar-
izability of the 'S, ground state is independent of
polarization, whereas the polarizabilities of the three
sublevels of the *P; excited state depend on the polarization
due to vector and tensor components of the polarizability.

We calculate the polarizability of the 'S, and 3P, states
(Fig. 6) using both ab initio and recommended values for
the transition wavelengths and dipole matrix elements (see
Table I for the computed and recommended values, as well
as the breakdown of contributions to the polarizability).

L — 1S, recommended
1900 --- 1S, ab initio
1800~ — 3P, m=0 recommended
1700 -=- °P, m=0 ab initio
— 1600 [~ — 3P, m=I1] recommended
3 o .. 3 _ P
3 1500 | P, m=I11 ab initio

> 1400
3 1300
8 1200
§ 1100
1000
900
800
700

L L L L L L R

500 502 504 506 508 510 512 514 516 518 520 524
Wavelength [nm]

FIG. 6. Polarizabilities of the 55> 'S, and 5s5p 3P, states for Sr
at linear trap polarization. Calculations with both ab initio
(dashed lines) and recommended (solid lines) values predict
the same magic wavelength at 520(2) nm for the 'S, <> 3P;|m =
0) transition with a = 880(25) a.u. Calculations with recom-
mended values predict another magic wavelength at A=
500.65(50) nm for the 'Sy <> 3P;[m; = =+1) transition with
a = 1230(13) a.u. We note that this latter crossing is valid even
for elliptical trap polarizations, as it pertains to an excited
sublevel with polarization-insensitive polarizability.

The recommended values combine theoretical calculations
with experimental measurements to compute estimates
of the electric-dipole matrix elements and polarizabilities.
At linear trap polarization, we predict a magic wavelength
on the 'Sy <> *Py|m} = 0) transition at 520(2) nm using
both ab initio and recommended values. We predict another
magic wavelength on the 'Sy <> °Py|m} = £1) transition
at 4 = 500.65(50) nm using recommended values.

The wavelength of our tweezers is 515.2 nm, such
that for linear polarization the trapping potential in the
3P1\mj? = 0) (|m] = £1)) excited state is larger (smaller)
than the trapping potential in the 'S, ground state by 5%
(30%). We achieve a magic-trapping condition by tuning to
elliptical polarization as detailed in Appendix B.

2. Calculating polarizabilities
and magic wavelengths for Sr

The frequency-dependent scalar polarizability a(w) of
an atom in a state { may be separated into a core polar-
izability a., and a contribution from the valence electrons
a”(w). The core polarizability is a sum of the polarizability
of the ionic Sr>* core and a counterterm that compensates
for Pauli principle violating core-valence excitation from
the core to the valence shells. The ionic core polarizability
is small and a static value calculated in the random-phase
approximation (RPA) gives sufficient accuracy [89].

The total polarizability for linear polarization is given by

3mi—J;(J; + 1)
1)

Ji(2J; =
where J; is the total angular momentum quantum number
of the state i, m; is the magnetic quantum number
associated with the projection of the angular momentum
along the polarization axis of the tweezer (X), and «; and
are the scalar and tensor polarizabilities, respectively. The

total polarizability for the J; = 1 state is given by

(A2)

a= o, + o

a=a, —2a, (A3)

for m; = 0, and

a=a,+a, (A4)
for my = £1.

We calculate the valence polarizabilities using a hybrid
approach that combines configuration iteration and a
linearized coupled-cluster method [CI + all-order] [90].
The application of this method to the calculation of
polarizabilities is described in Refs. [89,91]. Briefly, the
valence part of the polarizability for the state i with the total
angular momentum J; and projection m; is determined by
solving the inhomogeneous equation of perturbation theory
in the valence space, which is approximated as [92]
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TABLE L

Contibutions to the Sr scalar o, and tensor a, polarizabilities for the 55> 'S, and 5s5p 3P, states at

520 and 515.2 nm in a.u. Correspoding energy differences AE in cm™! and reduced electric-dipole matrix elements

D in a.u. are also listed.

520 nm 515.2 nm
Contribution AE D o a, oy a,
55218, polarizability

5s5p°P, 14504 0.151 -0.3 -0.3

5s5p P, 21698 5.248(2) 865.7 929.4

Other 7.2 7.3

Core 5.3 53

Total 878.0 941.8

555p 3P, polarizability

55218, —14504 0.151 0.1 —-0.1 0.1 -0.1
5s4d°D, 3655 2.322(11) -2.7 -1.3 -2.6 -1.3
5s54d3D, 3714 4.019(20) -8.2 0.8 -8.1 0.8
5s4d'D, 5645 0.190 0.0 0.0 0.0 0.0
556538, 14534 3.425(17) -52.4 -26.2 -50.2 -25.1
55651S, 16 087 0.045 0.0 0.0 0.0 0.0
555d'D, 20223 0.061 0.1 0.0 0.1 0.0
555d°D, 20503 2.009(20) 79.9 39.9 92.5 46.3
5s5d°D, 20518 3.673(37) 263.9 -26.4 305.2 -30.5
5p%3P, 20689 2.657(27) 122.4 —122.4 138.9 —138.9
5p%3P, 20896 2.362(24) 85.1 42.6 94.9 47.5
5p*3P, 21170 2.865(29) 108.2 -10.8 118.6 -11.9
5p*'D, 22457 0.228 0.4 0.0 04 0.0
5p% 1S, 22656 0.291 0.7 -0.7 0.7 -0.7
557538, 22920 0.921 6.1 3.0 6.4 3.2
Other 65.8 0.2 66.9 0.2
Core 5.6 0.0 5.6 0.0
Total 674.7 —-101.3 769.4 —110.5

(Ey, = Hetr) ¥ (v, m})) = Degr | Wo(v. Jiomy)).  (AS)
The parts of the wave function W(v,m’) with angular
momenta of J; = J;,J; = 1 are then used to determine the
scalar and tensor polarizabilities. The Hg includes the all-
order corrections calculated using the linearized coupled-
cluster method with single and double excitations. The
effective dipole operator D includes RPA corrections.
This approach automatically includes contributions from
all possible states. To improve accuracy, we extract several
contributions to the valence polarizabilities using the sum-
over-states formulas [93]:

2 (k||D||i)*(Ex - Ey)
as(‘”)_3(21i+1)z (E,—E)f -

1 Jk}
J 2

k
a(w) = 4CZ(—1)‘]f+jk{ Jli

(k|IDIi)* (Ey - E;)
(Ex—E)’ —o” ’

where C is given by

B 57;(2J; - 1) 1/2
€= <6(J,~ +1)(2J; + 1) (2J; + 3)) '

We calculate two such contributions for the 'S, polar-
izability and 15 contributions for the 3P, polarizability with
ab initio energies and matrix elements that exactly corre-
spond to our calculations using the inhomogeneous
Eq. (AS) and determine the remainder contribution of all
other states. Then we do the same calculation using the
experimental energies and recommended values of matrix
elements from Ref. [91] where available. The recom-
mended value for the 'S, <> 'P, matrix element is from
the 'P, lifetime measurement [94]. We add the core and the
remainder contribution from the other states (labeled as
“Other” in Table I) to these values to obtain the final results.

The results of this calculation for 520 and 515.2 nm are
listed in Table I in atomic units (a.u.), as well as the energy
difference AE = E;, — E; in cm™" and the absolute values
of the reduced electric-dipole matrix elements D in ag|e]
(a.u.), where a is the Bohr radius and e is the elementary
charge. The core and remainder contributions are also
listed. [We use the conventional system of atomic units
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(a.u.), in which e, the electron mass m,, and the reduced
Planck constant A have the numerical value 1, and the
electric constant ¢, has the numerical value 1/(4rx). The
atomic units for a can be converted to SI units via
a/h[Hz/(V/m)?] = 2.48832 x 10~8a [a.u.], where the
conversion coefficient is 4zeya3/h and the Planck constant
h is factored out.] We carry out the same calculations for the
other wavelengths to determine the magic wavelengths for
which 'S, and 3P, polarizabilities have the same values.
The results of the ab initio calculation and the calculations
corresponding to Table I (recommended) are illustrated
in Fig. 6.

3. Calculating the Q value

We use the polarizability results to calculate the Q value,
defined as the ratio of differential polarizabilities:

_a('Sy) —aCPi|m; = £1))

C = a(S0) — a(P\m, = 0))

(A7)

Our results are summarized in Table II. We note that
varying the recommended matrix elements D within their
estimated uncertainties AD, i.e., using the D + AD and
D — AD values of the matrix elements, gives Q = —4 and
Q = —10 values despite only 2% changes in the 3P,
polarizabilities. Therefore, Q is an excellent new bench-
mark of the theoretical methodologies, since it is extremely
sensitive to even small changes in several matrix elements.
We note that only the uncertainties in the values of 5 matrix
elements, 5s5d°D,, and 5p®3P,,,, contribute signifi-
cantly to the uncertainty of the Q value. We compare
the theoretical Q value to experimental measurements in
Appendix B 3.

4. Calculating the branching ratio

We obtain (!D,||D||'P;) =1.956 a.u. in the CI + all-
order approximation with RPA corrections to the effective
dipole operator. Including other small corrections described
in Ref. [89] yields the final value, ('D,||D||'P,) =
1.92(4) a.u. The E1 transition rate A is determined using

TABLE II. Polarizabilities and Q values of the 5s*>'S, and
5s5p 3P, states in a.u. at 515.2 nm for Sr. The recommended Q
values (Recm.) are obtained using the polarizability values
provided in Table I. The Q values listed in the row labeled
“Expt. energy” are obtained using the experimental energies and
theoretical matrix elements.

aCP,) Y
Method  a('$y) a,(CPy) a,(P) m;=0 m; =+l
Ab initio 910 754  —103 960 651 5.1
Expt. energy 951 776 —113 1002 664 5.6
Recm. 942 769  —111 990 659 5.8

202613 x 10"®

v r SED: (A8)

where the transition wavelength A is in A and the line
strength S is in atomic units. Using ('Sy||D||'P;) =
5.243(2) a.u., we obtain

A('P, = 'Dy) =9.25(40) x 10* s™!,  (A9)
A('P, = 1S,) = 1.9003(15) x 108 s~'.  (A10)
The resulting ratio is
A(P, !
(P = So) ~20500(900). (A11)

A(IPI g ]Dz)

APPENDIX B: EXPERIMENTAL TUNING AND
MEASUREMENT OF POLARIZABILITIES

1. Polarizability tuning with elliptical polarization

The dependence of polarizability (and hence trap depth)
on trap polarization can be derived analytically by solving
for the eigenvalues of the ac Stark Hamiltonian [88,95]. We
begin by writing the optical trapping field in a particular
point in space as

E(l) — E‘(-‘r)e—imt + E(—)eJrimt’ (Bl)

where E(Y) = Eye, E7) is the complex conjugate of E™M),

and ¢ is the complex unit polarization vector. We para-
metrize the ellipticity of € by the ellipticity angle y [54,96],
writing

é(y) = cos(y)x + isin(y)3. (B2)

Here, we use a Cartesian coordinate system defined by the

unit vectors {%, 9,2}, with 2 oriented along the k vector
of the optical tweezer. We neglect axial components and
spatial variation of the polarization caused by nonparaxial
effects near the focal plane [17]. Linear polarization is
given by y = 0 and circular by y = z/4.

The trapping field acts as a perturbation to the bare
atomic Hamiltonian, causing energy shifts (often referred to
as ac Stark shifts or light shifts) and mixing of electronic
levels. Using second-order time-dependent perturbation
theory, and after organizing terms into a scalar, vector,
and tensor contribution, we can write the perturbation on
a particular sublevel manifold as a time-independent ac
Stark Hamiltonian [88,95]:

H = —a,E} +ﬂ391§eff(av) J
3, (1 =) 5260 71 )
2% (AEW T EC) U+ 1DE ),
J(2]—1)(2{ ! 3 V+DEg

(B3)
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where {-,-} is the anticommutator, a;, «,, and «, are the
scalar, vector, and tensor polarizabilities, g; is the Landé ¢

factor, Eeff is an effective magnetic field (discussed below),

and J is a vector whose components are the angular
momentum operators. Here, we constrain ourselves to
the 3P, sublevel manifold that has J = 1. Hence, in our
case H is a 3 x 3 matrix.

We define the effective magnetic field in Eq. (B3) as

G (E) % BO)

E ff(av) = -
¢ Hp9sJd

(B4)

E} -
— W70 g (2y)e..

B5
UpgsJ ( )

This term, which is nonzero when the polarization has any
ellipticity, induces a perturbation identical to that of a
magnetic field perpendicular to the plane of ellipticity
(in our case, along Z). Writing the Stark Hamiltonian
in this way makes it easy to add the contribution of some
external real magnetic field EO by replacing Eeff(av) with
B = Beff<av) + By. -

In the absence of external magnetic field (B, = 0), the
eigenvalues of the Stark Hamiltonian are given by

hve(y) = —(ay + a,) Ej, (B6)
hop(y) = —{a, —[a, - f(a,. a;;7)]/2}E5.  (B7)
hvy(y) = —{a; — [a, + f(a,. a:7)]/2}EG.  (B8)

where

flag, asy) = \/905t2c0s2 (2y) + 4aZsin®>(2y) (B9)

is a mixing factor that depends on the vector polarizability,
tensor polarizability, and ellipticity angle. Analytical for-
mulas for the corresponding eigenvectors are possible for a
quantization axis along Z, and are given, in unnormalized
form, by

[pc(r)) =lm5 =0), (B10)

[Ps(r)) = 9-(r)|Ims = +1) + [mi = -1),  (BI1)

[9a(¥)) = =g, (r)|m§ = +1) + [ms = -1),  (Bl2)
where

gu(r) = fla,, a;y) £ 2a, sin (2y) (B13)

3a, cos (2y)

The |¢c(y)) = [m; = 0) eigenstate is independent of the
ellipticity angle as is its corresponding eigenvalue, whereas

the |¢p(y)) and |p4 (7)) eigenstates depend on the polari-
zation ellipticity due to mixing of the bare |m; = +1)
sublevels by the optical field.

For the special case of linear polarization (y = 0),
we have f(a,,a,;0) = 3a,, such that the eigenvalues are
given by

hve(0) = —(a; + ) E5,. (B14)
hws(0) = —(a, + @) B3, (B15)
huy(0) = —(a, — 2a,)E3. (B16)

The unnormalized eigenvectors for a quantization axis
chosen along the propagation axis of the tweezer (Z) are
given by

|4 (0)) = [mj = 0), (B17)
|#5(0)) = [mj = +1) + |mj = 1), (BI8)
#4(0)) = —|mj = +1) + |mj = =1). (B19)

A more common choice of quantization axis (used in
Appendix A) is along the tweezer polarization (%). For this
choice, it is also more convenient to choose a different basis
in the subspace of the degenerate |¢p) and | ) states, such
that we can equivalently write (up to degeneracy)

#c(0)) = |mj = £1), (B20)
#5(0)) = |mj ==F 1), (B21)
|#4(0)) = |mj = 0). (B22)

In the presence of an external longitudinal magnetic
field, B, = B,Z, an analytical form for the eigenvalues and
eigenvectors of the Stark Hamiltonian can be obtained by
replacing the vector polarizability by

gJMBBz
4+ ),
%*@v%me

This would be observed as an asymmetry in the energy
spectra between left- and right-handed ellipticities. We
measure this asymmetry in our spectra and find it to be
consistent with a longitudinal magnetic field on the order of
~15 mG. It is also possible to diagonalize the Stark
Hamiltonian in the presence of transverse magnetic fields
(i.e., in X or ), although the resulting formulas are
cumbersome. A transverse field would cause splitting of
the otherwise degenerate |¢p5) and |¢b¢) eigenstates at linear
polarization (y = 0). Within our precision, we do not
observe such a splitting and conclude that external trans-
verse fields are sufficiently well nullified.

(B23)
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2. Measuring the differential trap depth

We measure the differential trap depth as a function of
the ellipticity y by performing excitation-depletion spec-
troscopy [Fig. 5(b)] on the 'S, <> 3P, transitions and fitting
the spectroscopy signal to a thermally broadened and power
broadened spectral line [Fig. 7(a)]. Specifically, we assume
the spectroscopy signal measured after n repetitions of the
excitation-depletion cycle to be expressed by S,(v) =
So[l = p,(v)]", where S is the baseline signal measured
in the absence of excitation-depletion pulses and p,(v) is
the probability of pumping the atom from the ground state
into a metastable dark state following a single excitation-
depletion cycle. We further assume the transition proba-
bility to be proportional to the thermal energy distribution
in the 'S, ground state, ie., p,(v) x f(E(v))®O(E(v)),
where f(E) =1[1/(kT)*|E?e E/%T is the Boltzmann
energy distribution for a three-dimensional harmonic oscil-
lator and ®(E) is the Heaviside function, which restricts the
evaluation of the function to positive energy values.

The resonance condition for an atom at energy E can be
written as E[l — (a./a,)] = AU — hAv. Here, a, and a,
are the polarizabilities of the excited and ground state,
respectively. The differential trap depth is AU and the
detuning from free-space resonance is Av. Importantly,
when the detuning matches the differential trap depth, E is
zero. Hence the edge of the thermal distribution yields the
differential trap depth. Using this approach, we fit the
spectroscopy signal to the thermally broadened spectral line
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FIG. 7. Differential trap depth spectroscopy. (a) Spectroscopy

signal measured on the 'Sy <> 3P||¢) transition for the non-
magic ellipticity angle y = 28°. The signal is fitted to a purely
thermally broadened line shape (blue dashed curve) and to a
purely power broadened line shape (red dash-dotted curve). The
vertical lines indicate the position of the edge frequency (blue
dashed line) and center frequency (red dash-dotted line). We
expect the true rescaled differential trap depth to lie between these
two values as a combination of power and thermal broadening
determines the true line shape. (b) Differential trap depth
measured on the three 'Sy <> 3P, transitions for various ellipticity
angles assuming a thermally broadened line shape (dark markers)
and a power broadened line shape (light markers). The measured
values are simultaneously fitted to the analytical solution of the
eigenvalues of the Stark Hamiltonian with three free parameters.
At the magic ellipticity angle |y| = 24° (black dash-dotted line),
the differential trap depth on the 'S, <> 3P,|¢,) transition
vanishes.

and extract the differential trap depth (Fig. 7). To account
for possible estimation errors associated with power broad-
ening, we further fit the spectroscopy signal to a purely
power broadened spectral line, S, (v) « g(v), where g(v) is
a normalized Lorentzian function. The mean of the
Lorentzian fit provides a bound on the differential trap
depth extracted from the cutoff edge that we use as a
systematic error bar in Fig. 1(d). (Even in the limit of
extreme power broadening we expect the true value
between the edge frequency and the center frequency of
the Lorentzian fit.) Were the saturation parameter precisely
known from independent measurements, the signal could
be fit to a composite line shape using S, (v) « S,(v) * g(v).

3. Comparing polarizabilities between measured
and computed values

We use the analytical form of the light shifts from
Egs. (B6)—(B8) to simultaneously fit our experimental
measurements of the differential trap depth [Fig. 7(b)]
using the three free parameters {«y,a,,a;}. Without any
assumptions on E3 or a,, we can estimate the Q value
defined in Eq. (A7) from

-
a, — ac(0)|E?

-

oSS —aCPi = 1)

~ a('Sy) —a(Pymt = 0))

where a¢(0) = a, + @, and a,(0) = a; — 2a,. The mea-
sured Q = —5.1(3) value is consistent with the Q €
[-5.8,=5.1] values estimated from our calculation of the
polarizabilities (Table II).

In addition, without any assumptions on E} or ay,
we can extract the quantity |a,|/|a,] = 0.10(4) from
Avpa(r)/Avpa(0), where Avpy(y) = Avp(y) — Avg(y) =
flla |, leil:7)EG/ .

APPENDIX C: EXPERIMENTAL SYSTEM

Our scientific apparatus has two ultrahigh vacuum
regions: the first region is a high-flux atomic beam oven
and Zeeman slower for strontium (AOSense, Inc.) with
integrated transverse cooling in a two-dimensional
magneto-optical trap; the second region is a large stain-
less-steel chamber connected to a glass cell (Japan Cell) in
which experiments are carried out. We observe vacuum
lifetimes of up to 60 s in a magnetic trap loaded by optically
pumping atoms to the metastable 3P, state.

We utilize four laser systems: a blue laser system, a
red laser system, a repumping laser system, and a green
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trapping laser system. The blue laser system (Toptica
Photonics, TA-SHG Pro System) is a 922-nm diode laser
amplified by a tapered amplifier (TA) and frequency
doubled in a bow-tie second harmonic generation cavity.
The red laser system is a 689-nm diode laser (Toptica
Photonics, DL pro) locked to a high-finesse optical cavity
(Stable Laser Systems) and amplified with a home-built TA
with a maximum output power of 500 mW. The green
trapping laser system has a 10-W fiber laser (Azur Light
Systems) at 515.2 nm operated in free space without any
additional fibers. The repumping laser system has three
diode lasers stabilized by a wave meter (HighFinesse,
WS/7) that are used to drive the 5s5 P3P0,1,2 < 55653,
transitions.

We further divide the red laser beam into three red MOT
beams and three red cooling beams. The vertical and
horizontal MOT beams are angled at 65° with respect to
the vertical axis of the glass cell to pass aside two
microscope objectives mounted vertically, whereas the
transverse MOT beams are aligned with the strong axis
of the magnetic field gradient. The red cooling beams are
oriented along the radial (R1, R2) and axial (A) directions.
The two orthogonal radial cooling beams are angled at 45°
with respect to the transverse axis of the glass cell. The
axial cooling beam is focused at the back aperture of
the bottom objective to make it collimated at the output of
the objective.

We cool atoms in a 3D MOT operating first on the 'S, <>
P, broad dipole-allowed blue transition (1 = 460.9 nm,
I'/27 = 30.2 MHz) and then on the 'S, <> 3P, narrow
spin-forbidden red transition (4= 689.5 nm, I'/27x =
7.4 kHz). We create a blue MOT of 50 x 10° atoms at a
temperature of a few mK that we then transfer to a red MOT
of roughly 10° atoms at a temperature of 1.5 uK. To load
atoms in magic tweezers, we hold the red MOT for 25 ms at
a frequency of 220 kHz detuned to the red from the free-
space resonance and then load atoms into the tweezers for
12 ms at a frequency of 500 kHz detuned to the red from the
free-space resonance. The two pairs of three counter-
propagating blue and red MOT beams are overlapped with
dichroic mirrors.

We calibrate the free-space resonance frequency of the
7.4-kHz 'S, <> 3P, transition by performing excitation-
depletion spectroscopy on the red MOT [see Fig. 5(b)]. We
use an excitation-depletion cycle composed of a 689-nm
excitation pulse of 40 us and a 688-nm depletion pulse
of 10 us. We repeat this cycle up to 5 times to increase
the depletion fraction, without significantly disturbing
the resonance feature. By scanning the frequency of the
excitation pulse in the low saturation regime, we determine
the free-space resonance with statistical error at the kilo-
hertz level. We also use this technique to cancel stray
magnetic fields by minimizing the Zeeman splitting
observed in this feature.

We create two-dimensional arrays of optical tweezers
using two acousto-optic deflectors (AA Opto-Electronic,
DTSX-400-515) driven by polychromatic rf waveforms
produced by two independent channels of an arbitrary
waveform generator (Spectrum Instrumentation Corp.,
M4i6622-x8). We use a series of one-to-one telescopes
(f =300 mm) to image the first AOD onto the second
AOD and then the second AOD onto the back aperture of
the bottom microscope objective. We stabilize the intensity
of a single tweezer by monitoring the optical power after
the first AOD and feeding back the output signal of a servo
controller (New Focus, LB1005) into a voltage-variable
attenuator (VVA) modulating the amplitude of the rf signal
driving the first AOD. We use the same VVA to vary the
trap depth of the tweezer.

We image atoms by scattering photons on the 'S, < 'P,
transition with a transverse imaging beam oriented in the
radial plane of the tweezer. The imaging beam is not
retroreflected to avoid standing waves or polarization
gradients. We collect photons scattered by the atoms using
two microscope objectives. The bottom objective, which is
also used for focusing tweezers, images the scattered
photons on a single-photon sensitive EMCCD camera
(ANDOR, iXon 888), while the top objective collects
additional photons that are retroreflected back through
the bottom objective to increase the photon collection
efficiency.

We perform Sisyphus cooling and resolved sideband
cooling using a combination of the four possible beam
paths of the red laser: red MOT beams, radial cooling
beams (R1, R2), and axial cooling beams (A). Although
cooling can be achieved using several different beam
geometries, we typically use the red MOT beams which
allow us to cool in 3D and provide essentially all polari-
zation components; however, retroreflected cooling beams
are not required for either Sisyphus cooling or sideband
cooling. In particular, effective Sisyphus cooling is possible
with only a single beam.

APPENDIX D: PARITY PROJECTION

We prepare single atoms in tweezers using parity
projection (PP). The initial number of atoms N loaded
into the tweezer from the red MOT is assumed to follow a
Poissonian distribution. This is projected onto a binary
distribution by inducing pairwise loss between atoms in
such a way that even values of N are projected to N = 0 and
odd values of N are projected to N = 1. This approach to
PP, which is ubiquitous in experiments with alkali atoms
such as quantum gas microscopes [97,98] and tweezers
[14], is induced by photoassociation (PA) via diatomic
molecular resonances [50]. Such molecular resonances
have been identified for strontium in the electronically
excited molecular potential which asymptotically corre-
sponds to the 3p, state [41,85]. The first vibrational bound
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state in this potential has a binding energy of —400 kHz
with respect to the bare atomic resonance [41,85].

We induce parity projection with a 60-ms excitation
pulse on the 'S, <> 3P, transition, detuned from the free-
space resonance by —226 kHz [Fig. 8(a)]. The probability
of detecting an occupied tweezer before PP is greater than
99.95% for standard loading parameters, suggesting that
numerous atoms are loaded into the trap on average. The
occupation probability decreases and stabilizes to 0.5 for a
long PP pulse [Fig. 8(a), inset], characteristic of pairwise
loss. Reliable single-atom preparation is further evidenced
by the observation that the post-PP occupation probability
of 0.5 is robust to the initial number of loaded atoms
[Fig. 8(b)], which we can vary by loading our MOT for
variable amounts of time, resulting in variable cloud
densities.

A quantitative understanding of the location and width of
the PA feature is outside the scope of this work, but the
resonance appears to lie between the binding energy of the
molecular state at —400 kHz and the red radial motional
sideband of the atom in the trap at —211 kHz. We note that
the internuclear separation of the molecular bound state in
free space is 27 nm [41] and may be reduced in the tweezer
due to strong harmonic confinement. The Franck-Condon
overlap between the bare atomic 'S, state and the bound
molecular state in P, depends strongly on the internuclear
separation between the atoms in the tweezer. This separa-
tion decreases as the atoms are cooled, so PA rates are
possibly enhanced by cooling, thus skewing this feature
closer to the red radial motional sideband.
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FIG. 8. Preparing single atoms via parity projection. (a) The
probability of detecting an occupied tweezer after a parity
projection (PP) pulse of 60 ms varies with the detuning of the
addressing frequency. The highest step on the left corresponds to
the situation when the PP pulse is detuned away from any atomic
or molecular resonance, such that many atoms remain in the trap.
The lowest step on the right corresponds to the heating on blue-
detuned motional sidebands, which expels atoms out of the trap.
The plateau in the middle corresponds to the PP region where the
occupation probability is 0.5. Inset: The probability of detecting
an occupied tweezer monotonically decreases and saturates to 0.5
as the duration of the PP pulse increases. (b) As the blue MOT
loading time increases, the initial number of atoms in the tweezer
increases, such that the probability of detecting an occupied
tweezer approaches 1.0 before PP (blue squares), but saturates to
0.5 after a PP pulse (red circles). The frequency detuning from
free-space resonance here is —226 kHz.

APPENDIX E: FLUORESCENCE IMAGING
1. Imaging fidelity

We define imaging fidelity as the fraction of correctly
identified images (a measure also known as classification
accuracy). An image is identified as either positive or
negative by counting the number of photons detected in a
certain region of interest and comparing this number to a
fixed classification threshold. We calculate fidelity by
estimating the fraction of false positive and false negative
identifications. These quantities are dependent on the
choice of classification threshold, and different imaging
conditions generally have different optimal choices of
threshold. For our quoted imaging fidelities in Fig. 2(b),
we choose a fixed threshold for all times that is optimal for
long times.

False positives are readily estimated by measuring the
number of false positives in a region of the image near
the region onto which the atom is imaged. We confirm
that this nearby region produces the same number of false
positives as the atomic region by also measuring the
atomic region’s false positives when atom loading is
turned off.

False negatives occur when an atom does not scatter
enough photons to be detected. This may happen because
of two distinct reasons: (1) the imaging time was too short
or (2) the atom was lost before it could scatter enough
photons. False negatives due to (1) are estimated by fitting
the single-atom histogram peak to a Gaussian and comput-
ing the area of this fit that is below the classification
threshold. These types of false negatives tend to zero as
imaging time is increased.

Estimating type (2) false negatives requires knowledge
about the loss mechanisms in play. We show in the main
text that we can reach regimes where losses are dominated
by depopulation, such that the probability of loss is given
by p,(N) = e*N. Having measured y, we estimate type
(2) false negatives by integrating yp,(N) (properly nor-
malized as a probability distribution) from zero up to the N
which corresponds to our classification threshold. These
false negatives depend only on the location of the threshold
and are independent of imaging time for sufficiently long
times. Therefore, in the regime of long imaging times such
that type (1) false negatives are negligible, optimal imaging
fidelity is achieved for a choice of threshold which is a
balance between minimizing false positives (requiring
higher threshold) and minimizing type (2) false negatives
(requiring lower threshold). If imaging were lossless, unity
fidelity could be reached by imaging for a long time and
setting the threshold sufficiently high.

Finally, we note that imaging fidelity may be increased in
postprocessing by weighing the photons detected on each
pixel by the relative weight of that pixel in the averaged
point spread function. We use this technique in all our
quoted fidelities.
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2. Collection efficiency and radiation pattern

We estimate the number of scattered photons by count-
ing photons detected on our camera and estimating the
collection efficiency of our imaging system. This estimate
takes into account the 0.84 sr solid angle of our NA = 0.5
objective, the measured transmission through all optical
elements (0.47), the quoted quantum efficiency of our
camera (0.76 at 461 nm), and a calibration of the camera
gain (390) via characterization of dark images [99]. We
measure the number of detected photons by multiplying the
number of photoelectron counts by a conversion factor
proportional to the gain.

A large systematic error remains from the radiation
pattern of the fluorescing atom. A naive guess is that it
is a dipole pattern [f(6) = sin’(6)] oriented along the
polarization of the imaging beam. In this case, the collec-
tion efficiency varies by up to a factor of 7.3 between a
polarization in the radial plane (best case) and one along the
tweezer axis (worst case).

We observe a dependence of the collection efficiency on
imaging polarization that is consistent with a dipole pattern,
insofar as collection is maximal when polarization is in the
radial plane and minimal when it is axial. We find that
radial polarization not only maximizes detected photons,
but also minimizes loss per detected photon, confirming
that it truly increases collection efficiency and not just the
scattering rate.

However, a complete analysis of the radiation pattern
would require accounting for the projection of the imaging
beam polarization onto the coordinate frame defined by the
tweezer polarization and estimating the scattering rates to
each of the three nondegenerate states of 'P, each of which
have different radiation patterns. We forgo such an analysis
and instead assume that the radiation pattern is in between
spherically symmetric and a dipole pattern along the radial
plane. We argue that this is a reasonable assumption
because our imaging polarization is in the radial plane
and we have confirmed that this does produce the best
collection efficiency. The collection efficiency of a radial
dipole pattern is 1.4 times higher than that of a spherically
symmetric pattern. This factor is the dominant source of
error for y~!.

APPENDIX F: SISYPHUS COOLING

We measure the energy distribution of the atom after
Sisyphus cooling using the adiabatic ramp-down approach
[59,100]. Specifically, we measure the probability of an
atom to remain in the tweezer after adiabatically ramping
down the tweezer depth from its nominal value U, to some
target value U < U,. The cumulative energy distribution of
the atom before the ramp-down, F(E/U), is obtained from
the survival probability of the atom in the trap, p,(U/U,),
after converting the trap depth U/ U, to the initial energy of
the atom E/U using the conservation of action argument

[59]. The mean energy of the atom is computed by
integrating the cumulative energy distribution.

APPENDIX G: SIDEBAND THERMOMETRY

Unlike Raman sideband transitions, which can be
coherently driven without decay [16,17], sideband transi-
tions via direct excitation to 3P, have inherent decay. This
complicates analysis because probing the sideband spec-
trum is unavoidably perturbative. Since probing on the red
sideband cools while probing on the blue sideband heats,
the measured spectrum exhibits exaggerated asymmetry,
and a naive analysis would underestimate the temperature.

We therefore fit our measured sideband spectra to
numerical simulation in order to extract a ground-state
fraction. We simulate a driven 1D quantum harmonic
oscillator, with decay implemented via quantum jumps
[101]. The Hilbert space is defined as a product space of
20 motional states and 2 electronic states (|g) and |e)). The
non-Hermitian effective Hamiltonian is given by

Heg = Ho + H; + Hr, (G1)

Hy = ho <a*a + %) , (G2)

1 . 5
Hy = =héle)(e| + 5 hQ(e™ e} (g + H.e), (G3)

Hr = —i%hF|e><e|, (G4)
where @ is the angular trap frequency, 0 is the detuning, Q
is the Rabi frequency, # is the Lamb-Dicke parameter, and
I' = 27 x 7.4 kHz is the decay rate of the 3P, state.

The simulation proceeds in At =1 us time steps. At
each time step, the evolution operator ¢~ (/MHerA is applied
to the state |w). |y) is then normalized and the probability
of a quantum jump is computed as pqy = pI'At, where
p. = |{e|lw)]? is the excited-state population. A quantum

jump applies the operator e’**|g){e| to |y), where k is the
wave vector corresponding to 689-nm light in a direction
sampled from a dipole pattern. Although the quantum jump
operator is defined in three real dimensions, only its
projection onto the relevant dimension is used.

We run this simulation up to the same amount of time
(74 ps) used for the probe in experiment. In experiment, we
use three such probe cycles, where at the end of each we use
the 688-nm transition to project the electronic state to either
the ground state or one of two 3P, metastable states. In
simulation, this is implemented by running the probe cycle
up to 3 times, where at the end of each cycle the quantum
state is projected to the excited state with probability ap,,
where a = 0.7 is a projection fidelity factor which we
find is necessary for a good fit to our data. If the state
is projected to the excited state, the simulation ends
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FIG. 9. Sideband thermometry. (a),(b) Ratio of red to blue
sideband amplitude as a function of ground-state fraction,
obtained via fitting simulated spectra for the (a) radial and
(b) axial spectra. The dependence on ground-state fraction is
fitted to a quadratic function (red curve). The solid blue line is the
fitted sideband ratio for our experimental data, with dashed lines
representing a lo confidence interval. We quote a range of
consistent ground-state fractions where this confidence interval
intersects the fitted quadratic function.

(representing loss, as measured in experiment). If the state
is projected to the ground state instead, the simulation
either completes one more cycle or ends if 3 cycles have
already been completed. As there is also some baseline
loss in our data, we implement this in postsimulation by
projecting ground-state populations to the excited state with
probability given by our measured baseline loss.

We compare the excited-state population computed in
simulation with the loss fraction measured in experiment.
As quantum jump is a stochastic method, we average over
2000 trials to obtain the final density matrix for each § in
our spectrum. The Q used in simulation is chosen to fit the
width of the carrier peak observed in experiment, and w is
chosen to fit the sideband frequency.

We simulate spectra for various ground-state fractions.
Ground-state fraction is initialized by sampling the initial
quantum state [y(t =0)) from a thermal distribution of
motional eigenstates. For each ground-state fraction, we fit
the amplitude of the red and blue sidebands and compute
the ratio. We compare this to the ratio obtained by
performing the same fit on our experimentally measured
spectra, and find a range of ground-state fractions for which
our data are compatible with simulation (Fig. 9).
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