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Wavelengths in the telecommunication window (approximately 1.25-1.65 pm) are ideal for quantum
communication due to low transmission loss in fiber networks. To realize quantum networks operating at
these wavelengths, long-lived quantum memories that couple to telecom-band photons with high efficiency
need to be developed. We propose coupling neutral yiterbium atoms, which have a strong telecom-
wavelength transition, to a silicon photonic crystal cavity. Specifically, we consider the Py «* D
transition in neutral ""'Yh to interface its long-lived nuclear spin in the metastable 2Py “clock™ state
with a telecom-band photon at 1.4 ppm. We show that Yb atoms can be trapped using a short-wavelength
{approximately 470 nm) tweezer at a distance of 350 nm from the silicon photonic crystal cavity. At this
distance, due to the slowly decaying evanescent cavity field at a longer wavelength, we obtain a single-
photon Rabi frequency of g/2r = 100 MHz and a cooperativity of C == 47 while maintaining a high
photon collection efficiency into a single mode fiber. The combination of high system efficiency, telecom-
band operation, and long coherence times makes this platform well suited for quantum optics on a silicon

chip and long-distance quantum communication.
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L INTRODUCTION

Efficient interfaces between single atoms and single
photons could enable long-distance quantum communi-
cation based on quantum repeaters [1-7] and constitute
a novel platform for many-body physics with long-range
interactions [8.9]. While most atom-photon interfaces
to date operate at visible or near-infrared wavelengths
{approximately 7001000 nm), compatibility with tele-
com wavelengths (approximately 1.25-1.65 pm) is highly
desired, both for quantum communication due to low prop-
agation loss in fiberoptic cables and for compatibility with
silicon-based photonics. Accordingly, most approaches to

quantum communication require frequency conversion of

single photons into the telecom window, which often
results in additional noise photons and reduced efficien-
cies [10-12]. A platform combining both long atomic
coherence times and high emission bandwidth at telecom
wavelengths has yet to be developed.

Atomlike defects in solids [13-16] and trapped neu-
tral atoms [17-21] coupled to photonic crystal cavities
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hold a promise to achieve such light-matter interactions.
Atomlike defects in solids require no external trapping
potential since they are held in the crystal field of the host
solid-state environment. However, this environment has
drawbacks, such as inhomogeneous broadening, phonon
broadening, and spectral diffusion [22-24]. Hence, these
systems require cooling to cryogenic temperatures to
reduce phonon broadening and spectral tuning to achieve
indistinguishability [13]. Moreover, the atomlike defects
investigated to date are outside of the telecom window,
have short coherence times, or have low emission band-
widths [22,24].

Optically trapped atoms in free space offer the prospect
of significantly improved coherence properties since inho-
mogeneous broadening and spectral diffusion are negli-
gible. However, an outstanding challenge is to reliably
trap an atom sufficiently close to a photonic device. Pre-
vious trapping efforts were based on evanescent fields
that confine the atom near the device [17.25.26] or were
carried out by forming a standing wave trap via reflec-
tion from the device [18.27]. Surface effects such as van
der Waals forces [28,29], surface patch charges [30],
and Casimir-Polder forees [31-33] complicate these
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approaches. Moreover, the emission wavelengths of the
atomic species used to date—rubidium and cesium—are
approximately 800 nm, well outside the telecom window.

II. OVERVIEW OF THE 5YSTEM

We propose a platform based on short-wavelength opti-
cal tweezer trapping [34-36] to hold an Yb atom near a sil-
icon photonic erystal in order to obtain strong atom-cavity
interactions. The atomic transition is from the metastable
“clock™ state and has a wavelength of & = 1.4 pm. Com-
pared to previous work with tweezers operating at A, =
BOO nm [19]. we use Awe = 470 nm to obtain tighter
focusing. Further, the use of an approximately 2x longer
wavelength transition results in a larger spatial extent
of the evanescent cavity field. Accordingly, we propose
to trap the atom without the use of reflection from the
device. We use a larger distance from the device com-
pared to previous work [36] (dyr = 350 nm), at which
surface forces are reduced by a factor of = 10. The larger
disparity between the trapping and the telecom-transition
wavelengths in Yb enables both a fivefold inerease in
cooperativity and more robust atom trapping.

We focus on quantum communication as a specific
application of this platform and we envision an Yb atom
coupled to a silicon nanophotonic cavity as a node in a
quantum repeater network (Fig. 1). To this end, we propose
a partially open cavity design which enables the emission
of approximately 15-MHz-bandwidth photons entangled
with the nuclear spin of '"''Yb that serves as a long-lived
quantum memory. Further, we consider a fiber gap Fabry-
Perot cavity in Appendix C rather than a photonic crystal,
which may offer a simpler alternative, but is not compatible
with on-chip silicon photonics.

We highlight the use of silicon for the photonic crystal
cavity not only due to low losses but also its maturity as
a fabrication technology [37]. Robust and high-yield elec-
tronic, mechanical, and optical devices have been realized
in silicon-based systems utilizing a wide array of highly
developed micro- and nanofabrication techniques. Indeed,
custom silicon devices are increasingly commercially
available from fabrication foundries (see, e.g., Ref. [38]).
Moreover, silicon is compatible with other photonic tech-
nologies [39] such as electro-optomechanical [40,41] and
optomechanical [42,43] systems.

The precise control of single atoms in our approach
enables scalable extension to multiple atoms by employing
recently demonstrated techniques with tweezer arrays [27,
44.45]. This scalability would enable photonic coupling
within an array of atoms, which could lead to a novel plat-
form for many-body physics [46.47], quantum nonlinear
optics [20,21], and photon-mediated quantum gates [48].
The latter application is relevant to quantum repeaters,
where deterministic two-gubit gates in each node could
enhance entanglement distribution rates by realizing
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FIG. 1. Schematic overview. Silicon photonic crystal cavity
with an '"'Yb atom trapped nearby in an optical tweezer. The
minimum atom-device separation dyz; % 350 nm allowed by
our approach corresponds to an atom-cavity system on a strong
telecom-band transition with vacuum Rabi frequency gy /2w
100 MHz and emission bandwidth of T'p /27 =2 15 MHz, for a
partially open cavity with external coupling x./2m == 2.7 GHz
and atomic free-space linewidth of I'/2x = 0.32 MHz The
nuclear spin projections m; are of the / = 1/2 nuclear spin of
7%k, The photon in the cavity is coupled to an optical fiber with
length 1 ~ 100 km. This system constitutes a node in a telecom
quantum repeater in which entanglement between nodes is estab-

lished by a Bell state measurement using a 50:50 beam splitter
(BS) and single-photon detectors (PD).

efficient Bell state measurements for entanglement swap-
ping operations. Mote that two-qubit gates could also
be accomplished using local exchange [49-51] or Ryd-
berg [52] interactions.

The strong telecom-wavelength transition of ¥'b is from
a metastable state with lifetime t = 26 s (Fig. 2), which
is the crutial state in the optical clock transition [53].
We focus on the 1.4-pum (°Py —* Dy) transition, which is
shown with the orange double arrow (see Appendix A).
Concerning the other transitions available, the one at 1.5
pm (*P; = Dy) is hampered by the short lifetime of
Py, which restricts its use to more complex protocols.
Finally, the 2.1-pm transition (*P; —? Dy) is not suitable
for fiberoptic communication. However, it is an inter-
esting candidate for free-space communication given the
relatively high atmospheric transmission at this wave-
length. We define the states of interest as | |} = 3Py IF =
1/ 2mp=—1/2). | 1) = *Py |IF =1/2,mp = 1/2), and
le) = *Dy |F = 3/2,mp = 3/2) (see Figs. | and 3). Note
that care must be taken to correctly account for mode
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FIG. 2. Level diagram of the relevant states of '"'Yb. (a)
Low-lying states of Yb in the singlet and triplet manifolds. The
telecom transitions from the metastable 6s6p *P; states to the
Sd6s * Dy state are highlighted in the red box. (b) Enlargement of

the highlighted transitions. The nuclear spinin "' Yhis 7 = 1,2,
so the hyperfine states are given by F = 1/2 when J =0 and
= J+ 12,0 — 172} when J = 1. The lifetimes of the 3P,
states, transition wavelengths, and transition linewidths, as well
as the lifetime and hyperfine splitting of the *D; state, are given.
We employ the transition shown with the orange double arrow.

overlap with the cavity field, particularly in the case of
circularly polarized emission (see Appendix A).

I APPLICATION IN A QUANTUM REPEATER

Before providing a detailed description of the photonic
cavity and the coupling of the atom, we briefly highlight
the potential of this platform for quantum communication
{see Appendix B for more details). As an example, we
consider utilizing our system in a quantum repeater archi-
tecture by entangling an '"''Yb nuclear spin and a telecom
photon using the Barret-Kok scheme with time-bin pho-
tonic qubits [34,55]. The key parameters of our system
that impact the entanglement generation rate and fidelity
are summarized in Table 1. We describe in detail in the
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FIG. 3. Spin-photon entanglement scheme and quantum
repeater operation. (a) The relevant (irrelevant) hyperfine states
are shown in solid { semitransparent) colors. The cavity-enhanced
transition wavelength is A aviry. (b) A single trapped "' Yb atom
in a cavity is represented by a green dot inside two curved
semicircles. Local node pairs are shown in the dashed box. Node
pairs are separated by Lp. BS denotes the beam splitter and PD
the single-photon detector. (c) The entanglement distribution
rate versus total distance via direct communication at 10 GHz for
1550 nm (solid blue curve) and 1320 nm (large-dashed orange)
and via a quantum repeater with 2* nodes with (without) local
deterministic entanglement, shown as a solid red (short-dashed
green) curve. Note that a 10-GHz rate for the direct transmission
scheme [62] can he interpreted as an information-theoretic
bound for information distribution without quantum repeaters
if an ideal single-photon source with a 10/1.44 = 6.9-GHz
repetition rate is employed [63]. (d) The entanglement distri-
bution rate over 600 km versus the number of nodes via direct
communication at 10 GHz for 1550 nm (solid blue) and 1390 nm
(large-dashed orange, not visible) and via a quantum repeater
with {without) local deterministic entanglement, shown as a
solid red (short-dashed green) curve.

following sections how these values are achieved in our
platform.

Our system allows a bandwidth of Thp=2r = 15
MHz, which is sufficiently high to not limit the perfor-
mance of the repeater. High bandwidth emission increases
the detection fidelity since the acquisition time is reduced
and the detection of dark counts can be mitigated. While

TABLE 1. The values relevant for a quantum repeater with a
photonic crystal cavity and the sections of the text in which they
are described.

Parameter Section Value
Bandwidth [AY 27 x 15 MHz
Wavelength 11 1.39 pm (0.35 dB/km)
System efficiency v 0.80
Memory 11, Appendix B =26s
Readout fidelity Appendix B = 0.99
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most emitter platforms have sufficient bandwidth, many
of the platforms operating in the telecom band, such as
rare-earth ions in crystals, have slow emission rates. The
bare linewidth of erbium (Er) ions, for instance, is I' /27 ==
14 Hz [56] and, thus, large Purcell enhancement in high-
( nanophotonic cavities [57.58] is required to enhance the
emission rate.

The long-lived memory of the nuclear spin qubit is one
of the strengths of our platform. Some atomlike defects
such as nitrogen-vacancy (NV) centers in diamond also
have long memory [59,60], but their optical transitions are
at visible wavelengths and are hampered by phonon broad-
ening. Further, many of the solid-state systems whose
optical transitions are in the telecom band have short
memories [61]. In our system, the memory is assumed
to be limited to the lifetime of the *Py state, though care
must be taken to mitigate various heating mechanisms
associated with tweezer trapping. A unique feature of
alkaline-earth(-like) atoms is the possibility of cooling via
electronic states while preserving coherence of the nuclear
spin [S0].

Another important characteristic for determining the
quantum repeater performance is the system efficiency,
which describes the probability that a photon emitted by
the atom is acquired into the fiber network. This includes
the coupling to the cavity, the extraction from the cavity
into the waveguide, and the coupling to a fiber. All these
values are described in Sec. [V and the total photon system
efficiency is expected to be 7, = 0.80.

As a concrete demonstration of the potential of this sys-
tem, we calculate the entanglement distribution rate in a
network as shown in Figs. 3(a) and 3(b), and we com-
pare it to direct communication without repeaters (see
Appendix B for analysis). For a repeater system of 16
nodes, we find that the distribution rate exceeds that
of direct communication with a 10-GHz single-photon
source [62,63] for a minimum total distance of 550 km.
The corresponding entanglement distribution rate is 0.1
Hz. However, when local entanglement swapping at a node
can be realized using two-qubit gates rather than prob-
abilistic photon-detection-based schemes, the distribution
rate could be enhanced to 25 Hz. The distribution rate ver-
sus distance for 16 nodes is shown in Fig. 3(c) and the rate
versus number of nodes for 600 km is shown in Fig, 3(d).
These findings indicate that this platform is a competitive
quantum repeater technology in the telecom band. Note
that the fiber gap Fabry-Perot alternative also performs
well (see Appendix C).

As a specific point of reference, we compare to a sys-
tem with the same cavity QED parameters in Table |
but operating at halt the wavelength, in the visible band.
Because of the large attenuation loss of approximately 3.5
dB/km, such a system would require frequency conversion
into the telecom window. Typical conversion efficiencies
realized in alkali-atom [64], trapped ion [11]. and

nitrogen-vacancy-center [12] systems are approximately
25%. We account for this by including it in the overall
system efficiency, which goes from (1.8 to 0.2. Based on the
equations in Appendix B, the corresponding entanglement
distribution rate for 16 nodes becomes 110 nHz (1.6 Hz)
in the case of probabilistic (deterministic) local entangle-
ment swapping. This simple comparison shows the power
of starting with a photon whose wavelength is in the tele-
com band, particularly when local entangling gates are not
available. We also note that frequency conversion results in
additional noise photons owing to the presence of a strong
pump field, which can cause false photon coincidences and
reduced entanglement fidelity.

IV. THE SILICON PHOTONIC CRYSTAL CAVITY

We now describe the design of the partially open cav-
ity and the resulting coupling strength to an Yh atom. We
consider a photonic crystal geometry based on a nanobeam
with an external corrugation [65]. The sinusoidal mod-
ulation along the outer edges induces a photonic band
gap, which in turn enables the creation of a cavity via
the introduction of a defect cell in the lattice to break
the translational symmetry of the crystal. This enables the
formation of modes localized in space around the defect
region. For our chosen photonic crystal geometry, this is
achieved by using a lattice constant @wimee = 454 nm. This
is then subsequently tapered down to @, = 433 nm such
that the relevant band edge of the mirror region is tuned
into the band gap and hence establishes a cavity region.

Details of the photonic crystal geometry are shown in
Figs. 4{a) and 4(b). The different colors show the ditferent
sections of the cavity. From left to right, purple is the input
section of the cavity that transitions from a single mode
waveguide to the photonic crystal geometry, enabling the
coupling of light in and out; the left blue section is the
left cavity mirror with higher transmission; the left dark
green section is the cavity taper region from the mirror cell
lattice constant @pimer to the center cavity cell lattice con-
stant degyiy: the light green section is the central cavity unit
cell: the right dark green section is the taper to the backside
mirror; and right blue section is the backside mirror with
very high reflectivity. The tapering is done in such a way
as to produce an effective quadratic potential for localized
cavity photons, providing the optimal balance between
localization in the plane of the device and radiation out of
plane [66—68]. The device thickness is chosen to be 100 nm
to extend the evanescent field due to weaker confinement
inside the dielectric, hence allowing for a greater distance
between the photonic crystal and the atom.

Our design has a radiation limited quality factor of
3.5 % 10® in simulations. However, we anticipate that
the quality factor will be limited by infrinsic fabrica-
tion imperfections to @y < 7 x 10°, whose corresponding
intrinsic cavity linewidth is &y = 2w = 300 MHz [6Y9].

034044-4



TELECOM-BAND QUANTUM OPTICS WITH YTTERBIUM...

PHYS. REV. APPLIED 11, 034044 (2019)

(a)

W Input taper
B Mirrar

[ Cavity taper
[ Cavity

mlﬂ 200 400 600 BOO
Distance from surface (nm)

150
06 07 0B 09 10
ki lmfa)

FIG. 4. Design and characterization of the 5i cavity. (a)
Schematic of the photonic crystal cavity. The different colors
show the different sections of the cavity. (b) An enlargement of
the first mirror section of the photonic cavity. (c) The TE mode
band structure of the air (green) and dielectric (blue) mode. The
red dashed line is the atomic resonance and the shaded gray
region is outside the light cone. (d) The coherent coupling rate

& shown on a color map as a function of distance in the y
and z directions from the center antinode of the photonic cavity
{x = 0) in the bottom image, and the profile along the x direc-
tion across the center tooth in the top image. The red ellipse
and circle show the size of the atomic motional wave function
(see Sec. V. (e) The blue left vertical scale shows the line cut
of the coherent coupling rate for x = z = () versus the distance
from the surface. The dashed line represents the value of gy for
which Cy = 1. The green right vertical scale shows the surface
force from the photonic crystal on the atom. The curve is meant
to show the qualitative scaling only. The dashed line shows the
maximum restoring force from an optical tweezer of depth 1 mk
and waist of approximately 330 nm. The vertical red line shows
the proposed position of the atom at digz = 350 nm.

We design the cavity to be partially open on one side
[as in Fig. 4{a)] to efficiently extract the cavity photons
[48,70,71]. Specifically, we consider 5 mirror cells on the
front mirror and 10 on the back mirror. The collection
efficiency ne of extracting the photon into the waveg-
uide mode is given by 1 — ./, where the subscript
“e" denotes external coupling. In our design, we choose
a modest Q. = 8 x 10%, for which nen = 0.89 and &, =
2m = 2.7 GHaz.

We now consider the photonic mode profile. The trans-
verse electric (TE) photonic band structure containing a
band gap centered on the atomic transition at A = [388.8

nm (215.9 THz) is shown in Fig. 4{c). The evanescent field
profile of the dielectric mode is shown in Fig. 4(d), where
the simulated electric field per photon E_,.;, is converted
to the vacuum Rabi frequency (i.e., coherent coupling rate)
by go = pEcaviry/fi. it is the dipole matrix element (DME)
described in Appendix A. The red ellipse and circle show
the 1/¢* size of the atomic motional wave function, to be
discussed in the next section. A line cut of the coherent
coupling rate is shown in Fig. 4(e) for x =z = 0 versus
the distance from the surface, and we find an exponen-
tial length scale of As; = 170 nm, determined by fitling
gold) = go(0)e /i, where d is the distance between the
surface and the atom. The smoothness of the curve is
limited by numerical resolution, but the data provide an
accurate quantitative estimate over approximately 100-nm
length scales. This is consistent with estimates for the
mode dispersion based on the band structure [Fig. 4(c)].
The position of the atom is represented by the vertical red
line.

The maximal evanescent coupling occurs at the surface
of the photonic crystal, where the electric field per pho-
ton is Eeyiy = 2.6 % 10° V/m. The coherent coupling rate
can then be calculated to be gy(0) = 2m »x 3.8 GHz at
this location, and go(due:) = 2m = 100 MHz at the cho-
sen location of the atom dyz = 350 nm, as explained
in Sec. V. The single-atom cooperativity defined here as
Gy = 4g§fk]" between a Yb atom and the silicon pho-
tonic crystal cavity can be estimated using the cavity
linewidth ¥ = k; + &, and the atomic inewidth T = 27 =
0.32 MHz. This corresponds to a cooperativity for an atom
located at d,., of Cy =47, The Purcell-enhanced emis-
sion rate "y is given by the Purcell factor P = ) and the
atomic decay rate " as I'jp = PI', which for this system
gives I'jp/2x = 15 MHz

The probability of spontaneously emitting a photon into
the cavity mode Peayiy is given by Co/(Co + 1), which
is 0.98. Thus, the total efficiency of extracting the pho-
ton from the atom into the waveguide mode is given by
Hext = PraviyMeoll, Which is 0.87. We design the photonic
cavity to taper to a nanobeam waveguide, which can then
be coupled to an optical fiber using a microlens or adiabatic
coupler. Efficiencies for the latter are nac &= 0.95 [72].
These parameters result in a total system efficiency of
approximately 0,80,

V. TRAPPING A SINGLE YB ATOM NEAR A
PHOTONIC CRYSTAL

We now show that an Yb atom can be trapped close to
the photonic crystal using only a tightly focused optical
tweezer.

A. Analysis of the optical tweezer trap

Single-atom  detection and addressing of alkaline-
earth(-like) atoms is a growing area of research interest.

034044-5



JACOB P. COVEY ef al.

PHYS. REV. APPLIED 11, 034044 (2019)

Quantum gas microscopy of Yb has been demonstrated
[73]. and large two-dimensional tweezer arrays of Yb [74]
and strontium (Sr) [75,76] have recently been reported.
Further, cooling of single alkaline-earth{-like) atoms close
to the motional ground state of an optical tweezer has
recently been demonstrated for Sr [75,76], and cool-
ing of alkali atoms optically trapped approximately 300
nm from a room-temperature surface has recently been
observed [T7].

For a tweezer wavelength of A = 473 nm (depend-
ing on the tweezer polarization [75]), there is a “magic”
wavelength for which the polarizability of ' 5y and *P, are
identical [78,79]. This is particularly useful for cooling the
atom in the tweezer [75,76]. Coincidentally, the polariz-
ability of *Py is also similar [8(]. Moreover, the polariz-
ability at this wavelength is large, which allows deep traps
to further mitigate surface forces. As such, we propose
to use the approximately 473-nm wavelength for gen-
erating tightly focused optical tweezers, although easily
accessable wavelengths such as 532 nm are an alternative
as they have been used in a similar magic configuration
[73.74].

In order to further understand the design constraints and
tweezer trap properties, we describe here the polarizability
at the trapping wavelength Ly and the tweezer waist that
can be generated with numerical aperture NA = (1.7 objec-
tive [73]. The polarizability of 1Sh and 3Py at Ay is @ =
—18 Hz/{W/cm?) [80]. For an objective of NA == (.70,
the 1/¢? waist radius of a tweezer that can be generated
with this wavelength is Wy & 330 nm and the corre-
sponding Rayleigh range is Ry = 730 nm. An optical
power of 1.0 mW is required for a trap depth of Lz == 0.5
mk., and the trapping frequencies are wg 2= 2w x 150 kHz
and @, 22 2 x 48 kHz. The polarizability of the *D, state
is not well known, but it is only populated during a
pulse for photon-spin entanglement and during readout
{see Appendix B). To mitigate deleterious effects from a
polarizability mismatch on the 3Py «+? Dy transition, we
propose to switch the trap off during excitation [ 19]. Atom
survival probability in the absence of a trap is known to
be high for times of several microseconds [#1], which is
much longer than the Purcell-enhanced emission timescale
Fp=11ns.

The temperature of a typical Yb magneto-optical trap
(MOT) operating on the 'S, < 3P; transition is <
10 pk [73,50]). This temperature would correspond to
ng =0 — 1 motional quanta in the radial direction and
n: =2 — 3 motional quanta in the axial direction, and
further cooling in a tweezer has been demonstrated with
Sr [75,76]. Such conditions lead to thermal 1/e® atomic
wave-function radii of op 72 30 nm in the radial direc-
tion and e, &= 80 nm in the axial direction. The circles in
Fig. 4(d) are meant to roughly represent the size of the
atomic wave function and illustrate how small it 1 com-
pared to the mode profile of the cavity field. Note that

the nodal spacing of the cavity is larger here compared to
previous work [18] because of the longer wavelength and,
thus, the evanescent field coupling is expected to be more
homogeneous over the tweezer trap volume.

B. Atom trapping and imaging near the photonie
crystal

We consider a tweezer focused at a distance dyy =
350 nm from the photonic crystal, as shown in Figs. 5(a)
and 5(b). This distance was chosen to be slightly larger
than the waist of the tweezer Wi &= 330 nm to min-
imize the impact of scattered fields from the photonic
crystal. Further, we propose to use the chip geometry
shown in Fig. 5(c) and discussed in the next subsection,
which allows the tweezer to be translated with respect
to the cavities on the chip and the MOT [18] using an
acousto-optic deflector or spatial light modulator. This is
advantageous since atomic flux on the device is known to
have detrimental effects on photonic structures [82,83].

A significant difference between alkali and alkaline-
earth(-like) atoms is the size and temperature of their
MOTs. For alkalis, typically only one atomic transition is

O]
“Graen"MOT

L= 1-100 L

FIG. 5. Coupling an Yb atom to a silicon photonic crystal cav-
ity via an optical tweezer trap. {a) An enlargement illustrating
the atom in a tweezer near the device at a distance dyyg. (b) The
electic field magnitude of the tweezer trap in arbitrary units at
a distance of dipzr = 350 nm from the edge of the device. (c)
Schematic of the silicon chip. The silicon top layer is brown
and the insulator layer below is orange. The blue microstrips on
the chip are used for Ohmic temperature control and applying
f magnetic fields. The lensed fiber on the right can be coupled
to any cavity using a three-dimensional (3D) translation stage.
Wavy white lines indicate cuts to show the entire chip. The green
circle on the left is the Yb MOT. Atoms can be shuffled between
it and the device using optical tweezers. This architecture allows
simultaneous operation of multiple Yh-cavity nodes on a single
device.
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used for laser cooling and optical molasses. Conversely,
alkaline-earth(-like) atoms are typically laser cooled in
two stages: the broad 'Sy <»! P, transition for initial load-
ing and the narrow 'Sy < Py transition for cooling to
< 10 pk [73,50] as mentioned above. Further, the nar-
row linewidth of the cooling transition in the second stage
allows for flexibility in the MOT size and position by
adjusting the magnetic field gradient and offset. Hence, a
small and cold second-stage “green” MOT could be moved
to within approximately 100 gm of the silicon chip using
magnetic fields, which is within the field of view of typ-
ical microscope objectives. This approach enables easy
tweezer transport with acousto-optic deflectors [45] (see
Fig. 5) and does not require translation of the objective.
The large first-stage “blue™ MOT could be millimeters
from the chip at all times. This technique reduces atomic
flux onto the device compared to previous work [17,18]
and also mitigates the detrimental effect of the photonic
structure on the MOT.

Surface effects on the atom are substantially mitigated in
our approach compared to previous work [18]. Operating
at 350 nm from the surface instead of 200 nm decreases the
surface potential to approximately 13% and surface force
to approximately 7% of that of the previous work [1¥]
(see the Supplementary Material in Refl [18] and Ref. [84]
for electric dipole polarizabilities at imaginary frequencies
used in this caleulation). In addition, the external correga-
tion used in our photonic crystal design further reduces the
effective surface area interacting with the atom where only
the surface areas at the antinodes [see Figs. | and 5(b)]
contribute significantly to the surface force. We show the
qualitative scaling of the surface force with distance in
Fig. 4(e), but we leave a quantitative assessment for further
study. We can compare the surface force with the dipole
force in the tweezer potential. We expect the surface force
al dywy to be approximately 100 kHz/ g or less, while the
maximum dipole force for a tweezer as described above
with 1-mK depth is approximately 50 MHz/pum, and the
use of deeper traps is possible.

Mow, we consider absorption of the tweezer light by the
silicon nanocavity. Absorption can have two deleterious
effects; it can cause heating of the structure that will alter
the cavity properties, and it can generate free carriers that
increase the optical absorption in the telecom band [85,86].
The absorption coefficient of silicon at a wavelength of
approximately 470 nm is ag; &= 2 x 10* em~' [87], which
means that approximately 18% of incident tweezer light
will be absorbed by our cavity of 100-nm thickness. For a
1-mW tweezer of waist Wiy = 330 nm at a distance from
the surface of due = 350 nm. we estimate that = 3 u'W
is incident on the device and, thus, < 530 nW is absorbed.
Given the thermal conductivity of silicon and the dimen-
sions of the proposed nanocavity, we expect an approxi-
mately 0.3-K temperature difference in the vicinity of the
tweezer relative to the chip, which serves as a thermal

reservoir. The temperature dependence of the index of
refraction causes a shift in the cavity resonance frequency
at the 1077 /K level [85]. Hence, we expect an approxi-
mately 3 x 107% fractional shift in the cavity resonance,
which is much less than 1/0, = 10~ for the cavity.

To mitigate the effect of free-carrier generation in the
silicon nanocavity, we propose to switch the tweezer off
during the telecom-photon emission phases, such as spin-
photon entanglement and readout. The weak tweezer illu-
mination onto the device causes free electron-hole pairs
that decay within tens of nanoseconds [B5.86]. This is
fast compared to the allowed free expansion time of the
atom with high-probability retrapping (several microsec-
onds), so waiting for hundreds of nanoseconds to ensure
electron-hole pair decay is feasible. Since the recoil energy
of a telecom photon is low, we expect heating of the atom
during these pulses to be sufficiently small.

Coherent scattering from the nanocavity must also be
considered because it could alter the trapping potential.
We calculate the trapping potential in the presence of
scattering from the silicon device using a finite-difference
time-domain simulation. We simulate a Gaussian beam
with a waist of 330 nm focused at a distance of dyer = 350
nm from the edge of the photonic crystal cavity. The results
are shown in Fig. 5(b), where the magnitude of the electric
field is shown on a relative scale. The trap perturbations
are below |Eyr| & 0.2 (fyee = 0.1) and they occur only at
distances of = 4, from the center of the tweezer. This
effect is negligible, particularly for a cold atom.

The ability to have many photonic cavities per chip
facilitates overcoming fabrication error and device degra-
dation, but also opens up the possibility to couple an array
of atoms in optical tweezers [45] to an array of cavities.
This would enable multiqubit repeater nodes as discussed
in Secs. Il and 1] and Appendix B. An array of cavities
can be fabricated such that their separation is as small as
approximately 10 pm [as in Fig. 5(c)]. The cavities are
coupled to a microlens coupler or adiabatic coupler and the
fiber can be aligned and coupled to any individual cavity
on the chip using a three-axis stage, as shown in Fig. 5(c).
Each cavity is independently temperature controlled with
its own tungsten heating strip [light blue lines in Fig. 5(c)]
and, thus, each cavity in the array can be individually tuned
into resonance with the atomic transition [88]. The tung-
sten strip is also used for applying «f pulses to control the
nuclear spin (Appendix B).

V1. CONCLUSION AND OUTLOOK

We have illustrated that silicon-based photonics com-
bined with tweezer-trapped '"'Yb atoms are a candidate
system for quantum optics in the telecom band. The
strong 1.4-pm transition from the Py “clock™ state of Yb
enables 15-MHz-bandwidth emission when coupled to a
silicon photonic cavity and the nuclear spin allows for a
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coherent quantum memory. Further, we propose a sim-
ple and robust trapping protocol that enables atoms to be
coupled to silicon nanophotonics and even facilitates an
array of atoms coupled to an array of cavities. Furthermore,
we illustrate the potential of our platform for quantum
repeaters,

Moreover, there are several other applications of this
system that include quantum photonic circuits, novel
platforms for long-range interactions, and many-body
physics [46]. Our system may enable the direct integra-
tion of neutral-atom quantum computers into a quantum
network, in which quantum gates can be performed using
local exchange [50,51] or Rydberg [52] interactions. Fur-
ther, this system opens up the possibility to implement an
optical clock network [89] by using the 'Sy <% Py optical
clock qubit [53].

Alternative cavity designs based on free-space optics
could offer different possibilities. We consider a fiber
Fabry-Perot cavity in Appendix C. Finally, we note that
a similar telecom-wavelength atomic system could be cre-
ated with Yb* ions, where a group of transitions from a
metastable state has convenient wavelengths of 1450 and
1650 nm. We analyze a Yb™ ion coupled with a fiber
Fabry-Perot cavity in Appendix [, but we note that ion
trapping near dielectric materials poses other technical
challenges.
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APPENDIX A: DIPOLE MATRIX ELEMENTS AND
POLARIZATION CONSIDERATIONS

In order to quantify the coupling to a cavity, we must cal-
culate the dipole matrix element of the desired atomic tran-
sition: 2Py |F = 1/2.mp = 1/2) <* Dy |[F=3/2mp =
3/2) (see Appendix B for a detailed quantum repeater
scheme). The 3P, «+ Dy transition has been carefully
measured because of its relevance to Yb clock precision

[78]. Given that I'sp, Lipy = 2% 1085 wearriveat u =
{.F = ]f?., mr = lf2|E;‘g|FI: 3,-"2.]'}1;.*.' = 3;’2] = |38 =
107* C m, or 1.63 ag e, in which the polarization is
taken to be ¢ = +1 (o) [90]. However, purely circular
polarization cannot be supported by the modes of the pho-
tonic structure (see Sec. V), and so the effective dipole
matrix element is reduced by V2 upon decomposing ot
into a combination of linear polarizations. The “quantiza-
tion axis” is assumed to be determined by the electric field
of the optical tweezer Eyyr (see Sec. IV) and the exter-
nal magnetic field B,y (see Appendix B) is assumed to be
parallel. To drive the ot transition, we require the electric
field of the mode in the cavity Egyiy to be perpendicular to
the quantization field axis E .., L Eiyrr. Bogi

Finally, we study the emission branching ratio from *D,
to 2Py, for J =0, 1, 2 as shown in Fig. 2. On the basis
of fine structure alone, the branching ratio from Dy to
3Py, 2Py, and 3 P5 is 60:3:1, respectively. Therefore, in the
absence of Purcell enhancement, the probability of emit-
ting the desired photon from *Dy is 93.3%. The Purcell
enhancement for the decay to *Py based on our analy-
sis is 47 and the corresponding branching ratio becomes
2820:3:1. Hence, the probability of emitting the desired
photon with Purcell enhancement is 99.9%. However,
when the hyperfine structure is included in this analysis
and decay from the specific state of interest *Dy |F =
3/2.mp = 3/2) is considered, a more detailed calculation
is required [90], upon which we find the following val-
ues. In the absence of Purcell enhancement, the branching
ratio is 20.9:1.9:1, for which the probability of emitting
the desired photon is 88%. With Purcell enhancement, the
branching ratio is 982:1.9:1, for which the probability of
emitting the desired photon is 99.7%.

APPENDIX B: QUANTUM REPEATER
IMPLEMENTATION

In this section, we describe a quantum repeater based
on a network of '"'Yb atoms coupled to photonic crystal
cavities. The repeater involves dividing a long channel of
length L into 2" elementary links of length Ly that are con-
nected by nodes that feature a pair of trapped atoms. The
integer n is often referred to as the number of nesting lev-
els [(62]. Atom-atom entanglement that spans L is achieved
by entangling atoms that are separated by Ly and by per-
forming entanglement swapping between atoms that are
located at each node. Figure 3(b) depicts two elementary
links and entanglement swapping at one node. We consider
the scheme of Barrett and Kok [54,55] for the generation of
remote spin-spin entanglement and then calculate the rate
of distribution of a Bell state,

1. Level scheme and protocol

We consider the three levels of "' Yb shown in Fig. 3(a)
using solid colors. These consist of an excited mp = 3/2
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Zeeman level of the *D; manifold and a pair of mp =
+1/2 nuclear spin levels of the 3Py manifold that form
the ground level. The * Py state can be populated from the
18 ground state by using the “clock™ transition [53] or by
multiphoton processes [91]. The mp = 3/2 and mp = 1/2
Zeeman levels of the *Dy level are separated by 0.47
MHz/G, which is much larger than the 752 Hz/G splitting
of the mg = +1/2 levels of *Py.

The first step of the repeater is to generate spin-photon
entanglement and then, using two-photon detection, spin-
spin entanglement between atoms that are separated by
one elementary link, We begin by preparing each atom in
an equal superposition of the mg = £1/2 nuclear states
of the Py ground level: ];’ﬁﬂﬂ + |1}). This is accom-
plished by a of field despite the relatively small gyromag-
netic ratio of the spin py/2r = 752 Hz/G. Nonetheless,
this favorably results in a weak coupling of the spin to
the environment [92,93]. We propose to split these states
with a magnetic field of By = 200 G. With the fabri-
cated microstripline resonator [94] described in Sec. V, we

expect Rabi frequencies of tens of kilohertz using tens of

walls of f power. This allows 7 pulses to be performed
on timescales that are much less than the time to establish
entanglement over an elementary link (see Appendix 2).

Mext, each atom is excited by a short laser pulse that
is resonant with the |t} — |e} transition, as indicated by
Acavity 101 Fig. 3(a). As described in Sec. V, this transition
is strongly coupled to the cavity and, thus, the resul-
tant spontaneous emission locally entangles the spin and
photon number in the Bell state 1/+v/2(|1,1) + [}, 0)), in
which 1{0}) represents the presence (absence) of an emitted
photon.

The photons that are emitted by each atom are directed
to a beam splitter which is located halfway between nodes;
see Fig. 3(b). If the photons that are emitted by each atom
are indistinguishable, detection of one photon after the

beam splitter heralds spin-spin entanglement or, because of

potential loss and imperfections, a spin-spin product state
between each atom [54,55]. To avoid the latter, a w pulse
inverts the mp = £1,/2 spins and the transition is opti-
cally excited a second time. The detection of a photon in
both rounds heralds the creation of a spin-spin Bell state
between each atom 1/v/2(]1, }}ae £ |4, T)az). in which
the relative phase is defined according to whether both
photons are detected on the same or different output ports
of the beam splitter.

Entanglement swapping is accomplished by perform-
ing a similar procedure as to generate heralded entan-
glement—optical excitation, single-photon detection, spin
flip, and detection of a second photon. This procedure
limits the swapping efficiency to at most 50% [95]. A
deterministic swapping process, which allows improved
scaling, could be achieved by trapping two atoms using
two tweezers within a single cavity and exploiting photon-
mediated deterministic intracavity gates [46].

A limitation of our entanglement generation process is
the isolation of the |t} — |e} transition relative to the
other transitions in the *D; state [see Fig. 3(a)]. The split-
ting between the mp = 3/2 and mp = 1/2 states is 470
kHz/G and this must be compared to the Purcell-enhanced
linewidth I'jp. We choose a field of B, =200 G for
which A = 2mr = 93 MHz. For I'ijp = 27 = 15 MHz and
Rabi frequency £ = I'p, the off-resonant scattering rate
is I'ge = 2 = 600 kHz. The readout fidelity is assumed
to be Fpo =1 —I'sg/ 'ip, which is = 0,99, Note that
this value is even slightly improved when considering the
Clebsch-Gordan coefficients for the different pathways.

2. Entanglement distribution rate

We quantify the distribution rate of a Bell state using our
repeater scheme, showing that it outperforms an approach
based on the direct transmission of photons. We denote
the success probability for an atom to emit a photon into
a single mode fiber (e.g., system efficiency) to be pr, which
includes the probability to prepare the initial state, the
spontaneous emission of a photon into the cavity mode,
and the coupling into a fiber. The probability of the two-
photon measurement at the center of the elementary link is
given by Py = }l-pzmzrgf in which n; = e~Lo/(2an) g the
fiber transmission with attenuation length Lzz = 12 km.
This corresponds to losses of .35 dB/kmoat 1.4 pm using a
hydrogen-aged single mode fiber, which has been recently
deployed for modern infrastructure (see, e.g., SMF-28e
for ITU-T G.562D standards, manufactured by Corning,
Inc. [96]).

The spin-spin entanglement creation step is repeated at
time intervals of the communication time Ly /c, in which
c=2x10° ms is the speed of light in fiber. Thus,
the average time to produce entanglement that spans an
elementary link is Tz, = (Lg/c)(1/Fq). Using the beam-
splitter approach depicted in Fig. 3(b), the efficiency
of the entanglement swapping operation is P, = zlplrmz.
while a deterministic gate allows Py, = 1, assuming the
gate fidelity is unity. Therefore, the total time for the
distribution of an entangled pair over distance 2Lg is
given by Ty, = %{Lﬂfc}{IIPgP,} and the average time
to distribute an entangled pair over distance L is Ty &

-1
(%)” (Lo/e)(1/Po)(P,)". The factor of 3/2 arises because

entanglement has to be created over two links before the
swapping is performed [62,97].

For the discussion in Sec. I11, we assume p = 0.8, which
is given by the NexMapefac estimated in Sec. 1V, a detec-
tion efficiency of 0.9, and that the lifetime of the Py
level is much longer than the distribution time. This detec-
tion efficiency is straightforwardly achieved using super-
conducting nanowires, which have been demonstrated at
1.5 pem [98]. Note that the spontaneous Purcell-enhanced
emission time from > is 1 S ip 7= 11 ns, which is neg-
ligible compared to the time to distribute entanglement
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over an elementary link. Figures 3(c) and 3(d) show the
repeater performance based on the above analysis, plotted
versus total distance for 2* nodes [Fig. 3(c)] and versus the
number of nodes for a total distance of 600 km [Fig. 3(d)].

In our analysis, we assume that the emission bandwidths
of each Yb atom-cavity system are identical. However,
variations in the cavity properties and tweezer-cavity dis-
tance result in a variation in the Purcell-enhanced decay
rate. For our proposed remote entanglement generation
scheme, this variation causes a reduction in the entan-
glement generation efficiency, but does not impact the
entanglement fidelity. Compensation for this variation
could be achieved by applying a standard frequency, e.g.,
fiber-Bragg grating, or temporal filter to the two-photon
coincidence signal [99,100].

APPENDIX C: COUPLING YB TO A FIBER GAP
FABRY-PEROT CAVITY

In this section, we discuss an alternative approach
to efficiently interface a single atom with a single
telecom photon in a fiber using a fiber-based Fabry-
Perot (FP) resonator [101-103]. While fiber-based Fabry-
Perot resonators have significantly larger mode volumes
(approximately 10002%) that result in reduced vacuum
Rabi frequencies, we show that they can achieve high
enough cooperativities necessary to extract single pho-
tons directly into a telecom fiber with sufficiently high
efficiency.

We begin by considering the geometry of fiber FP cavi-
ties, as shown in Fig. 6(a). Typical heights H of the cavity
claddings are 125 pm, so in order to focus a tweezer and
image an atom inside with high NA, we assume a cav-
ity length L = 150 um. We choose radii of curvature R
of the cavity mirrors to be £ = 100 pm, which is a typ-
ical value for such CO;-laser etching techniques [103].

4 6 ]
Finesse (109

FIG. 6. Tweezer trapping in a fiber Fabry-Perot cavity. (a) The
geometry of the fiber FP cavity and the tweezer trap at the center.
{b) An enlargement of the center £2 pm of the cavity mode. The
black ellipse shows a liberal estimate of the atomic wave fune-
tion in a tweezer trap as described in Sec. V. (c) The efficiencies
associated with the fiber cavity vs F, (see text). Peyviy (orange
long-dashed line), nep (green short-dashed), and their product
Ne (Blue).

This geometry at a wavelength of A = 13888 nm gives
a mode waist of wy =44 pm and a mode volume of
¥, =23 %1075 m?, or 8422%

We also analyze the mode profile in this cavity in a sim-
ilar way to the photonic cavity and an enlargement of the
central £2 pm is shown in Fig. 6(b). The black ellipse
shows a liberal estimate of the atomic wave function in a
tweezer as described in Sec. V. The only requirement in
this system is that the atom is centered on the antinode as
shown in Fig. 6{b). Noting that the v axis into the page has
the same profile as the z direction, this system requires an
overall less precise alignment than the photonic cavity.

The coherent coupling rate g between the cavity and
the atom is given by [103]

e
B0 =N\ Do’

where u is the dipole matrix element, o is the angular fre-
quency of the cavity and the atomic transition, and &y is the
permittivity of free space. For this geometry and the value
of ju discussed above, we obtain a coherent coupling rate of
go = 2 = 39 MHz Note that here the cavity supports two
degenerate polarizations, so the cavity field can have per-
fect polarization overlap with the transition dipole. As with
the photonic crystal cavity, we design the fiber cavity such
that one mirror has lower reflection and allows for coupling
photons into and out of the cavity [48,70,71]. Now, we
choose a finesse of F, = 2000, which is well below max-
imum finesse values of = 107 [103]. The cavity linewidth
ik, =m ¢f(LF) for these values is ¥ = 2w x 500 MHz,
and the free spectral range FSR = 27 ¢/ (2L) = 2 = L0
THz.

We can now estimate the single-atom cooperativ-
ity [103], defined here for consistency with the photonic
crystal as Cp = 4g§j'x I". For our values, we arrive at Cp =
39, for which the probability of emission of a spontaneous
photon into the cavity mode is Py = Co/(Co+ 1) =
0.97. We assume an intrinsic finesse of F; = 5 x 10* [70,
103], for which we can again define a collection efficiency
feon OF extracting the photon into the waveguide mode,
which is given by neon = | — F:/F;. For F, = 2000, this
corresponds to f. = 0.96. The efficiency of extracting a

(C1)

TABLE 1. The values relevant for a quantum repeater with a
fiber FP cavity and the sections of the text in which they are
described,

Parameter Section WValue
Bandwidth Appendix C 27 = 13 MH=z
Wavelength I 1.39 pm (0.35 dB/km)
System efficiency Appendix C (.80

Memory II, Appendix B =26s
Readout fidelity Appendix C = 0.99
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FIG. 7. Yb™ level structure, and excitation scheme for Y™,
{a) The relavent levels of Yb', showing their wavelengths and
linewidths. The thick red line shows the proposed telecom tran-
sition. (b} Three-level scheme by which quantum information in

the ground state can be entangled with a telecom photon via the
proposed telecom transition resonant with the cavity mode.

photon from the atom into the waveguide mode is given by
the product of these Hew = Peavig Mol Which is 0,94, ney is
maximized for F, = 2000, as shown in Fig. 6(c).

However, another factor emerges because we require the
waveguide mode of the optical fiber to be single mode
{5M). This is necessary since indistinguishable photons are
required for Bell state measurements. Representative effi-
ciencies for coupling a photon in a cavity similar to our
design into a SM fiber are gy = 0.85 [103]. The photon
acquisition efficiency is thus fpa = Haasm = 0.80.

As with the photonic crystal in the main text, we show
a table for the fiber FP cavity of the quantities relevant
for a quantum repeater in Table II. The Purcell-enhanced
linewidth is given by I'jp = (1 + P)I", where P = Cy. For
the fiber FP cavity, I'jp = 2r = 13 MHz. For the same
B = 200 G and for £ = IMp, we get ['sc = 27 = 390
kHz and Fgpo = 0.99.

APPENDIX D: TELECOM NETWORKS WITH YB*
IONS

We now discuss the possibility of using Yb™ ions in
fiber FP cavities. Yb* has strong telecom transitions that
remain largely unused in experiments. Yet, they have been
studied carefully by theorists because Yb is a platform
for parity violation measurements [104-108]. Similar to
the scheme in neutral Yh, the telecom transitions in Yb™
are from metastable states zﬂgﬂ and zﬂm, which are
strongly coupled to a higher-lving state EP;:,I.-; via wave-
lengths of 1346 and 1650 nm, respectively. The relevent
level structure is shown in Fig. 7{a). The metastable
2Ds2 and 2Dsp; states are very weakly connected to the
ground state via clocklike transitions, similar to the case of
neutral Yb.

The scheme described in Fig. 7(b) is designed to include
the ground-state hyperfine qubit, which has become

the workhorse of quantum information processing with
trapfﬂd ions. One of these qubit states can be mapped to
the Ly ; manifold by driving the electric quadrupole (E2)
clock transition [109]. An excitation from this state to the
2P3|,rz allows one of the ground hyperfine qubit states to be
entangled with a telecom photon that is strongly coupled
to the cavity. The mapping back to the ground state is done
by performing a 7 pulse with the clock laser.

We choose the 2Dy 2 state rather than zﬂm because it
is easier to eliminate other decay pathways from the 2P; 2
excited state. The hyperfine splitting is 430 MHz for 2Dy
but only 64 MHz for I‘Dm [108]). This latter value is com-
parable to the Purcell-enhanced linewidth for the decay
into the cavity mode. Note that the dipole matrix 15 4.2 ag-e
for the transition from 2P; 2 to Iﬂm and 1.3 ag-e for the
transition to zﬂgﬁ [107]. The Purcell-enhanced linewidth
for the 2Dys2 state in a fiber FP cavity is well below the
hyperfine splitting of 430 MHz.

Using the analysis outlined in Appendix A and Ref. [90],
we can arrive at the exact DME for the specific scheme
described in Fig. 7(b). This gives DME; 1y~ 2.3 = 0.4]1 ap-
e. This is smaller than the case for neutral Yb by a factor of
= 3 even though the linewidth I" is similar. This is because
J = 0 and, thus, there is hyperfine splitting and more states
that contribute to the total linewidth.

We believe that the fiber FP cavity considered above and
in Fig. 6 is also suitable for Yb". Indeed, a Yb" ion has
already been trapped inside a fiber cavity, where the fiber
length is approximately 200 pm [110]. In that work, the
same metastable state 2D /2 was used, but it was coupled to
an even higher excited state *D[3/2], ;2 (not shown), with
a transition wavelength of 935 nm. The atomic wave func-
tion in an ion trap is of similar size to that in an optical
tweezer, so the entire discussion above and in Fig. 3 applies
here as well.

As for the neutral Yb scheme described above, this
scheme for an Yb™ ion could be used for creating a clock
network. This transition is already used for atomic ion
frequency standards [10Y] and so the development of a
commercial technology based on this system may be more
straightforward. Further, such a scheme could allow direct
telecommunications between trapped-ion quantum com-
puters to facilitate the realization of a quantum computing
network [1] and it could also be used with multiple qubits
at each node of the network, for which gate operations
between qubits can be employed for error correction or
decoherence-free subspaces [111].
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