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Canonical quantum mechanics postulates Hermitian Hamiltonians to ensure real eigenvalues. 

Counterintuitively, a non-Hermitian Hamiltonian, satisfying combined parity-time (PT) symmetry, could 

display entirely real spectra above some phase-transition threshold. This stems from the existence of a 

parameter in the Hamiltonian governing characteristics features of eigenvalues and eigenfunctions. Varying 

this parameter causes real eigenvalues to coalesce and become complex conjugate pairs, signaling the 

occurrence of a nontrivial phase transition and the breakdown of PT symmetry. Such an appealing discovery 

has aroused extensive theoretical interest in extending canonical quantum theory by including non-

Hermitian but PT-symmetric operators in the last two decades. Despite much fundamental theoretical 

success in the development of PT-symmetric quantum mechanics, an experimental observation of pseudo-

Hermiticity remains elusive as these systems with complex potential seem absent in Nature. But 

nevertheless, the notion of PT symmetry has survived in many other branches of physics including optics, 

photonics, AMO physics, acoustics, electronic circuits, and material science over the past ten years, where 

a judicious balance of gain and loss constitutes ingeniously a PT-symmetric system. Here, although we 

concentrate upon reviewing recent progress on PT symmetry in optical microcavity systems, we also wish 

to present some new results that may help to accelerate the research in the area. These compound photonic 

structures with gain and loss provide a powerful platform for testing various theoretical proposals on PT 

symmetry, and initiate new possibilities for shaping optical beams and pulses beyond conservative 

structures. Throughout this article there is an effort to clearly present the physical aspects of PT-symmetry 

in optical microcavity systems, but mathematical formulations are reduced to the indispensable ones. 

Readers who prefer strict mathematical treatments should resort to the extensive list of references. Despite 

the rapid progress on the subject, new ideas and applications of PT symmetry using optical microcavities 

are still expected in the future. 
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1. Introduction 

Optical microcavities (or microresonators) [1-3], confining light to small volumes by resonant recirculation, 

has become a distinct research area in photonics over the past two decades. Both physical implementations 

of these devices and their applications are highly differentiated, ranging from optical communications, 

cavity quantum electrodynamics (QED), nonlinear optics, novel laser sources, bio-sensing, quantum optics, 

quantum information processing, to integrated photonics. Although an ideal cavity would trap light 

indefinitely at resonant frequencies with exact values, in practice experiments with photonics are 

intrinsically non-Hermitian owing to gain and loss. As a result, the resonance nature of the interaction of 

light with cavities does not always bring about desired enhancement on optical properties of interest only. 

Recent experimental progress on microcavities with alternating gain and loss in a balanced manner [4-9], 

however, shines a new light to the problem. In these demonstrations [4-9], light wave is typically amplified 

in some regions of the system and is attenuated in others. Heuristically, physics seems only limited to the 

compensation of loss by equal amount of amplification. On the contrary, it turns out that subject to this 

condition, a nontrivial, sharp phase transition arises further from the evolution of characteristics of 

supermode profiles with only real frequency components to with complex spectra. Alternatively, on 

crossing a unique “exceptional point” (EP) [10-16] in parameter space, the eigen-spectra cease to be real 

and the underlying modes coalesce to a single mode, because of the nontrivial wave interference. In fact, 

such structures share a common feature, that is, they belong to open but parity-time (PT) symmetric systems 

[17-28]. The PT symmetry in optics [20-27] amounts to the necessary condition 𝑛(𝒓) = 𝑛∗(−𝒓) with 𝑛(𝒓) 
the complex refractive index of the medium, which demands the real part of the refractive index be an even 

function of position whereas the imaginary part be odd.  

Historically, interest in PT symmetry originated from the effort on the generalization of standard quantum 

mechanics by the inclusion of non-Hermitian Hamiltonians [17-19,29-32]. Although such extension of 

traditional quantum theory is highly controversial, Bender and Boettcher [33] theoretically showed that a 

class of non-Hermitian Hamiltonians, commuting with the joint parity and time-reversal operator, can 

possess entirely real spectra above a phase-transition point (or EP). Below that critical point, PT symmetry 

spontaneously breaks down and the Hamiltonians start to undergo a phase transition that admits complex 

eigenvalues instead. This counterintuitive discovery, on the one hand, radically challenges one of the basic 

axioms in canonical quantum mechanics formulated by Dirac and von Neumann that the Hermiticity of an 

operator guarantees real eigenvalues and the orthonormality between eigenstates with different eigenvalues 

for closed physical systems. On the other hand, it dramatically shapes our cognition on open systems, where 

it is commonly believed to have complex eigenvalues and non-orthogonal eigenfunctions. The significance 

of this pioneering work by Bender and Boettcher has immediately aroused considerable theoretical effort 

[17-19,29-32] in extending Hermitian quantum theory to non-Hermitian but PT-symmetric operators. In 

the past two decades, an intensive research has been dedicated to the exploration of a more general class of 

pseudo-Hermitian operators [11,20,25] with special symmetries and purely real eigenvalues. The 

developments on this forefront have helped to establish an active research field, PT-symmetric quantum 

mechanics, which has been covered in a series of reviews [19,29,34] and special issues [30-22]. Despite the 

impressive theoretical success in prospering PT-symmetric quantum mechanics, a viable experimental 

observation of such pseudo-Hermiticity remains yet elusive in real physical settings. 
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In addition to quantum mechanics, the scope of PT symmetry has been rapidly expanded to a variety of 

physics branches. The first attempt on constructing an optical analog was made by Ruschhaupt et al [35], 

who theoretically analyzed light propagation in a medium with an even refractive index and odd gain-loss 

landscape. However, it was the works by Christodoulides and his coworkers [36-38] that exceedingly 

stimulated the attention on PT symmetry in the realm of optics and photonics. By noticing the mathematical 

isomorphism between the quantum Schrödinger equation and the paraxial optical diffraction equation, they 

[36] suggested to realize complex PT-symmetric potentials through judiciously making use of refractive 

indices with balanced gain and loss in optical settings. In particular, with coupled waveguides they 

formulated PT-symmetric optics by providing a simple but nontrivial framework for the study of PT-

symmetric systems. It was shown that in waveguide structures, the parity operator leads to spatial reflection, 

while the time-reversal operator reverses the propagation direction. One of the most striking PT properties 

stems from the appearance of a sharp, symmetry-breaking transition, once a non-Hermitian parameter 

crosses a certain threshold. This transition signifies the occurrence of a spontaneous PT symmetry breaking 

from the exact- to the broken PT phase in a classical way. Such a peculiar behavior is not only of interest 

to fundamental research but also gives rise to a breadth of new opportunities for flexible light control and 

manipulation. Subsequent experiments [39,40] have indeed confirmed those theoretical predictions. 

Inspired by these optical realizations, the extension of PT symmetry to other branches of physics [4-9,42-

66] is then readily followed and has revealed numerous intriguing phenomena [67-130] that may be 

inaccessible with usual Hermitian arrangements. Moreover, by incorporating nonlinearity [22-26] one can 

largely enrich the overall dynamics with numerous exotic phenomena beyond the capability of conservative 

architectures. 

Indeed, work on PT symmetry is very diverse and has resulted in a long list of publications that run the 

gamut from reports of its experimental realizations, to discussions of its fundamental physics, to suggestions 

for implementation variations dictated by practical considerations. In this review, we aim at presenting a 

compact overview, but by no means a comprehensive discussion, of recent advances on PT-symmetric 

optical microcavities with emphasis on some intriguing optical phenomena and new emerging applications. 

We notice that PT symmetry has already been summarized in a series of reviews [18-28] from different 

perspectives. Different from these existing reviews, however, throughout this article there is an effort to 

clearly present the physical aspects of the PT-symmetry. Mathematical formulations are reduced to the 

indispensable ones. Readers who prefer rigorous mathematical treatments should resort to the extensive list 

of references. We in the meanwhile wish to present some new results and observations that have not yet 

been discussed elsewhere. It is hoped that these new additions may further accelerate and expand the 

research interest and scopes in PT-symmetric optical microcavities. 

Since PT symmetry originated from extending standard quantum mechanics into complex plane, in Section 

2 we being our review with a short survey on its historical development by summarizing only the major 

characteristics associated with. To make the argument more meaningful, a two-level toy model will be 

introduced in the end to provide an intuitive understanding of the abstract concepts. As it will become clear 

throughout the whole content, it is this toy model that essentially paves the way for classical emulations 

with a variety of physical settings. 

Section 3 is devoted to recent observations of PT symmetry in optics, especially optical microcavities. We 

first follow the historical development by establishing the quantum-classical analogy between the 

Schrödinger equation for a quantum particle and the paraxial propagation equation of light in a medium, 

which enables the first experimental implementations in coupled waveguides in the spatial domain. We 

then focus on recent advancement of achieving PT/anti-PT symmetry with use of optical microcavities in 

the temporal domain. Owing to their flexible optical properties through design, optical microcavities also 
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allow us to build connections with other research areas, which include optical nonreciprocity and cavity 

optomechanics. In this section, we further present a theoretical proposal for the realization of anti-PT 

symmetry using three microcavities. Of interest, this structure fulfills the accomplishment of both PT and 

anti-PT symmetry within the same architecture. 

In Section 4 the potential applications of PT-symmetric optical microcavities are concentrated on few recent 

experimental demonstrations. In comparison with traditional structures, PT symmetry brings novel 

functionalities, and opens new prospects for the development of novel photonic devices such as single-

mode lasers and supersensitive sensors.  

Finally, we conclude our review with a brief summary and outlook in Section 5. 

2. PT symmetry in quantum mechanics: Basic concepts and properties 

We begin, in this section, by briefly overviewing the essential concepts in the theory of PT-symmetric 

quantum mechanics. We do not intend to record all available materials of this extremely broad field, but 

rather to focus on the critical ideas that are relevant to the content in the subsequent sections. For 

comprehensive reviews on non-Hermitian operators in physics and mathematics, besides the works [10-

14,17-19,29-34] listed above, interested readers please refer to the reviews [131-135], as well as the 

monograph of Moiseyev [136]. 

2.1 Parity and time-reversal operators 

Standard quantum mechanics demands Hermitian Hamiltonians, to describe closed physical systems, to 

ensure real eigenspectra and the orthonormality between eigenstates with different eigenvalues. As one 

axiom in the mathematical framework of conventional quantum theory, the postulation on Hermiticity 

guarantees real observables and probability-preserving time evolution (or unitarity). In contrast, the 

dynamics of open systems is typically described by non-Hermitian Hamiltonians. Owing to the seemingly 

impossible conservation of energy, complex eigenvalues are commonly taken for granted in non-

conservative systems. Since the early days of quantum mechanics, considerable efforts have been dedicated 

to incorporating non-Hermitian Hamiltonians into the well-accepted Hermitian representations. Throughout 

the enterprise, early notable achievements include pioneering works by Gamow [137], Feshbach, Porter 

and Weisskopf [138], and Lindblad [139,140]. Indeed, these successful developments lead to a more formal 

basis for describing the dynamics of certain open quantum systems [141-143]. In spite of these 

achievements, yet the interpretation behind is not straightforward all the time. As such, Barton in his book 

Introduction to Advanced Field Theory [144] used to comment: “A non-Hermitian Hamiltonian is 

unacceptable partly because it may lead to complex energy eigenvalues, but chiefly because it implies a 

non-unitary S matrix, which fail to conserve probability and makes a hash of the physical interpretation.” 

Although the research on non-Hermitian generalization of quantum mechanics has a long history since the 

early days of quantum theory, for a non-Hermitian Hamiltonian to have real eigenspectra was due to the 

theoretical work by Wu in 1959 [145], who first used an anharmonic oscillator (with mass 𝑚) associated 

with a pure imaginary cubic potential 

𝐻̂ =
𝑝2

2𝑚
+ 𝑖𝛼𝑥3,                     (1) 

with the momentum operator 𝑝̂ = −𝑖ℏ
𝑑

𝑑𝑥
 and the position operator 𝑥, to analyze the ground state of a 

quantum system of hard spheres. In Eq. (1), the constant 𝛼 is used to make sure the correct dimension. 

Quite surprisingly, he found that all the eigenvalues were real, discrete, and no longer divergent. This 

counterintuitive finding made a quite stir in the community and stimulated many follow-up theoretical 
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studies. For example, it was later further examined in the Reggeon field theory [146,147], the Yang-Lee 

edge singularity [148-150], and the perturbation theory of odd anharmonic oscillators [151]. Another 

important contribution in the development of non-Hermitian quantum mechanics was the publication by 

Haydock and Kelly in 1975 [152], where they pointed out for the first time that while Hermiticity was 

sufficient to ensure real eigenvalues, it was not necessary and sufficient. The significance of their work is 

that they put forward a very interesting question about the identification of a necessary and sufficient 

condition for real eigenvalues. The next big step forward was a justification for the use of complex 

eigenvalues by Hatano and Nelson in 1997 [153], where they applied depinning field lines of a non-

Hermitian external magnetic field to a type II semiconductor. Nevertheless, in a long period no one could 

find a physical reason why such a non-Hermitian Hamiltonian allows all real eigenvalues. At the same time, 

undoubtedly, objections also existed in the community, as these people were more concerned about the 

consequences of the results. Among them include: Did the probabilistic interpretation of quantum 

mechanics still hold? Was the norm positive and conserved? All kinds of fundamental questions were raised 

in regards to introducing non-Hermitian Hamiltonians into Hermitian quantum theory. 

The truth had to wait until 1998. In that year, Bender and Boettcher [33] made a seminal discovery by 

showing that Hermiticity is a sufficient but not necessary condition for spectral reality and unitary time 

evolution. In particular, they found a broad class of non-Hermitian Hamiltonians which can have a set of 

eigenstates with real spectra, provided they commute with the combined parity operator 𝑃̂ and time-reversal 

operator 𝑇̂, 

𝑃̂𝑇̂𝐻̂ = 𝐻̂𝑃̂𝑇̂ ⟺ [𝑃̂𝑇̂, 𝐻̂] = 0,          (2) 

a necessary condition. As two fundamental discrete symmetries in physics, 𝑃̂  and 𝑇̂  are, respectively, 

defined by their actions on the dynamical variables 𝑥 and 𝑝̂. Specifically, the linear parity operator 𝑃̂ has 

the effect of flipping the sign of 𝑥 and 𝑝̂: 𝑥 → −𝑥 and 𝑝̂ → −𝑝̂; while the antilinear time-reversal operator 

𝑇̂ [154] applies the operations of 𝑥 → 𝑥, 𝑝̂ → −𝑝̂, and 𝑖 → −𝑖. Here, 𝑇̂ changes the sign of 𝑖 due to the 

requirement on preserving the fundamental commutation relation [𝑥, 𝑝̂] = 𝑖ℏ  in traditional quantum 

mechanics. In addition, 𝑃̂ and 𝑇̂ are unitary and have the following properties, 

𝑃̂2 = 𝑇̂2 = 𝛪 and [𝑃̂, 𝑇̂] = 0,         (3)  

where 𝛪 is the identity operator. Now multiplying by 𝑇̂𝑃̂ from the right-hand side in Eq. (2) gives 

𝑃̂𝑇̂𝐻̂𝑇̂𝑃̂ = 𝐻̂,           (4) 

with the help of Eq. (3). Equation (4) is PT invariant as (𝑇̂𝑃̂)
†
= 𝑃̂𝑇̂ (the symbol † here stands for the 

Hermitian conjugate). In the Schrödinger equation, for Hamiltonians of the form  

𝑖ℏ
𝜕

𝜕𝑡
Ψ = 𝐻̂Ψ, 𝐻̂ =

𝑝2

2𝑚
+ 𝑉(𝑥)         (5) 

with 𝑉(𝑥) the (complex) potential energy of the system, the necessary condition (2) immediately implies 

that the real part of 𝑉(𝑥) be an even function of the coordinate and the imaginary part be an odd function, 

i.e., 

𝑉(𝑥) = 𝑉∗(−𝑥)          (6) 

with ∗ denoting the complex conjugate. Note that as the necessary condition for PT symmetry, Eq. (6) 

appears naturally from the Schrödinger equation. The requisition on complex potential energy, however, 

becomes vague and extremely challenging, owing to the lack of complex potentials in the quantum domain. 
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2.2 PT symmetry versus pseudo-Hermiticity 

Unlike Hermiticity, PT symmetry is not a sufficient condition to guarantee the spectral reality. When 

combined with the requirement of the unbroken PT symmetry (see below), however, it becomes sufficient. 

To illustrate this, let 𝐸𝑗  be an eigenvalue of 𝐻̂  with respect to the eigenvector |Ψ𝑗⟩  (which also 

simultaneously becomes the eigenvector of 𝑃̂𝑇̂ with an eigenvalue λ). That is,  

𝐻̂|Ψ𝑗⟩ = 𝐸𝑗|Ψ𝑗⟩,          (7) 

Applying the PT transformation (4) to Eq. (7) leads to 

𝑃̂𝑇̂𝐻̂𝑇̂𝑃̂|Ψ𝑗⟩ = 𝑃̂𝑇̂𝐸𝑗𝑇̂𝑃̂|Ψ𝑗⟩. 

As 𝑇̂𝐸𝑗𝑇̂ = 𝐸𝑗
∗ and 𝑃̂2 = 𝛪 (3), the above equation yields 

𝑃̂𝑇̂𝐻̂𝑇̂𝑃̂|Ψ𝑗⟩ = 𝐻̂|Ψ𝑗⟩ = 𝐸𝑗|Ψ𝑗⟩ = 𝐸𝑗
∗|Ψ𝑗⟩, 

where Eqs. (4) and (7) have been used. Hence, 𝐸𝑗 = 𝐸𝑗
∗ and the eigenvalue 𝐸𝑗 is real. Because the procedure 

is applicable to every eigenvalue of 𝐻̂, this concludes the realness of its spectra. The above proof fully relies 

on the crucial assumption on |Ψ𝑗⟩ to be an eigenvector of both 𝐻̂ and 𝑃̂𝑇̂. A reader interested in the proof 

of the statement may also resort to a different version offered in Ref. [19]. In quantum mechanics, we learn 

that if a symmetry transformation is represented by a linear operator 𝐴̂ and if 𝐴̂ commutes with 𝐻̂, the 

eigenstates of 𝐻̂ are then also eigenstates of 𝐴̂. Unfortunately, because of the antilinearity of the joint 

operator 𝑃̂𝑇̂, one has to make one extra but nontrivial assumption that the PT symmetry of 𝐻̂ is unbroken. 

What happens if this assumption (spontaneously) breaks down? It turns out that there will be a striking 

phase transition associated with the presence of complex eigenvalues in the spectra of 𝐻̂. In other words, 

for an unbroken PT-symmetric 𝐻̂, its eigenvectors are also the eigenvectors of 𝑃̂𝑇̂, and the corresponding 

eigenvalues thus assume real values. However, for a broken PT-symmetric 𝐻̂, its eigenvectors are no longer 

the eigenvectors of 𝑃̂𝑇̂. In this latter case, the eigenvalues (or part of the eigenvalues) cease to be real and 

become complex conjugate pairs instead. Different from Hermitian quantum mechanics, PT symmetry does 

not promise the completeness and orthomornality of eigenvectors of the operator. It is worth to emphasize 

that acceptable complex Hamiltonians may be either Hermitian 𝐻̂ = 𝐻̂† in the Dirac sense or PT-symmetric, 

but not both; in contrast, real symmetric Hamiltonians can be both Hermitian and PT-symmetric. From this 

point of view, the central idea of PT-symmetric quantum mechanics [17-19,33,155-158] is to relax the 

strong condition of Hermiticity for a quantum Hamiltonian with the weaker condition that it have space-

time reflection symmetry. Alternatively, the proposal on PT-symmetric Hamiltonians does not give up 

Hermiticity. Rather, it offers the possibility of studying new quantum theories that might even describe 

measurable physical phenomena in the physical world. 

Using PT symmetry as an alternative condition to Hermiticity, one can devise infinitely new Hamiltonians 

that would have been rejected since the early days of quantum mechanics, simply because they are 

apparently non-Hermitian. The Hamiltonian (1) turns out to be one such example. Based upon this 

Hamiltonian, a more general class [33] of PT-symmetric ones can be readily deduced by utilizing the fact 

that any real function of 𝑖𝑥 is PT-symmetric: 

𝐻̂ =
𝑝2

2𝑚
+ 𝛼(𝜀)𝑥2(𝑖𝑥)𝜀,  𝜀 ∈ Real.        (8) 

Again, 𝛼(𝜀) here is a dimensional constant to ensure the correctness of the dimension. In Eq. (8), 𝜀 is the 

very parameter whose value essentially determines the characteristic behaviors of the attainable eigenvalues 
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and eigenfunctions before and after PT-symmetry breaking. We notice that when 𝜀 = 0, the Hamiltonian 

(8) reduces to that of the classic harmonic oscillator whose exact solutions are addressed in most of quantum 

mechanics textbooks. As illustrated in their numerical studies, Bender and Boettcher [33] observed that the 

spectra of 𝐻̂ (8) exhibit three distinct behaviors with an abrupt phase transition as a function of 𝜀 (see figure 

1). Specifically, for all 𝜀 ≥ 0  the corresponding Hamiltonians (8) are in the regime of unbroken PT 

symmetry, and their eigenspectra are infinite, discrete, entirely real and positive. Obviously, the 

Hamiltonian (1) is just one member of this huge class of complex Hamiltonians. This explains why the 

Hamiltonian (1) possesses all real, positive, and discretized energy levels. For −1 < 𝜀 < 0, there are only 

a finite number of positive real eigenvalues but an infinite number of complex conjugate pairs of 

eigenvalues. In this region, the PT symmetry spontaneously breaks down. As 𝜀 decreases from 0 to −1, 

adjacent energy levels merge into complex conjugate pairs at the high end of the spectra. Eventually, the 

only remaining real eigenvalue is the ground-state energy but diverges till 𝜀 → −1+. When 𝜀 ≤ −1 no real 

spectrum is available. As we can see from Fig. 1, at 𝜀 = 0 lies the conventional Hermitian Hamiltonian of 

the quantum-mechanical harmonic oscillator, which marks the phase-transition point (or EP) between the 

unbroken and broken PT regions. Rooted in the above features, the term “PT symmetry” is coined to 

describe these new non-Hermitian complex Hamiltonians but having real energy levels. 

 

Figure 1  Real, positive energy levels of the Hamiltonians (8) as a function of the real parameter 𝜀. For 𝜀 ≥ 2, the 

entire spectra are definitely real and positive. For −1 < 𝜀 < 0, the spectra have a finite number of real positive 

eigenvalues but have unlimited complex conjugate pairs of eigenvalues. In this regime, the number of real eigenvalues 

decreases until only the remaining ground-state energy, along with the reduction of 𝜀. As 𝜀 → −1+, the ground-state 

energy diverges. For 𝜀 ≤ −1 no real eigenenergy can be attainable. (Reproduced from Ref. [33]) 

Before proceeding, we notice that the above discussions on the eigenspectra of the Hamiltonians are 

referred to the differential operator itself but without specifying the boundary conditions. For a reader who 

is unfamiliar to the notion of PT symmetry, the following statement might be found helpful: a differential 

equation with a PT-symmetric Hamiltonian, i.e., the Hamiltonian is invariant under 𝑃̂𝑇̂, is formulated on 

the complex plane with the boundary conditions Ψ(𝑥) → 0 when |𝑥| → ∞. As a result, it becomes possible 

for the eigenvalues to be discrete and real. For different boundary conditions, they may lead to different 

spectral behaviors. To be specific, let us look at the (−𝑥4)-potential case by setting 𝜀 = 2 in Eq. (8). In 

classical motion, as the boundary value problem is formulated along the real axis, the motion does not have 

turning points and the system has only continuous spectrum. In contrast, quantum mechanically 𝑥 is a 

complex variable and the boundary value problem is correspondingly formulated along a trajectory in the 
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complex plane, where the eigenfunction tends to zero at the contour ends. As such, the boundary value 

problem in PT-symmetric quantum mechanics does not possess a classical analog, since it is unclear what 

the corresponding complex coordinate would be classically. 

For a non-Hermitian Hamiltonian to possess fully real eigenspectra, a sufficient and necessary condition, 

in fact, can be mathematically formulated in terms of a more general property called pseudo-Hermiticity 

[34,159]. In the framework of pseudo-Hermitian quantum mechanics [29,159-165], PT symmetry does not 

play a basic role and no further need introduces a C-operator [156,166] to make the theory well-defined, 

although they can be nevertheless defined in general. On the contrary, all that is needed is to determine the 

class of non-Hermitian Hamiltonians that are capable of generating a unitary evolution and a procedure that 

associates, to each member of this class, a positive-definite inner product that renders it Hermitian (or self-

adjoint). There are always an infinite class of positive-definite inner products meeting this condition. Any 

inner product may be defined by a certain linear metric operator, 𝜂̂, which determines the kinematics of 

pseudo-Hermitian quantum systems. The Hamiltonian operator 𝐻̂  is linked to 𝜂̂  via the 𝜂̂ -pseudo-

Hermiticity relation (sometimes also called the similarity transformation), 

𝐻̂† = 𝜂̂𝐻̂𝜂̂−1, and 𝜂̂ = 𝑈̂†𝜂̂𝑈̂,         (9) 

where 𝑈̂ is a unitary operator. Clearly, when 𝜂̂ = 𝐼, the pseudo-Hermitian Hamiltonian coincides with a 

Hermitian one. This simple observation indicates that Hermitian Hamiltonians define a subset of pseudo-

Hermitian Hamiltonians. Moreover, it is not difficult from Eq. (9) to see that pseudo-Hermiticity is unitary 

invariant. 

By defining the automorphism as an invertible operator that maps an inner-product space onto itself, 

Mostafazadeh [159] proved that if 𝐻̂ is a non-Hermitian Hamiltonian with a discrete spectrum and has a 

complete biorthonormal eigenbasis, then 𝐻̂  is pseudo-Hermitian if and only if one of the following 

conditions hold: (i) the spectrum of 𝐻̂ is real, or (ii) the complex eigenvalues come in complex conjugate 

pairs and the multiplicity of the eigenvalue pairs is the same. The characteristic transform of the spectra 

from real to complex entails a nontrivial phase transition. The PT phase transition is thus naturally 

incorporated into the framework of pseudo-Hermitian quantum mechanics. To ensure a real spectrum, 

pseudo-Hermiticity is required but is not a sufficient condition on its own. To formulate a necessary and 

sufficient condition, Mostafazadeh [160] then introduced another theorem: “Let 𝐻̂ be a Hamiltonian that 

acts in a Hilbert space, has a discreate spectrum, and allows a complete set of biorthonormal eigenvectors 

{|Ψ𝑗⟩, |Φ𝑗⟩}. Then the spectrum of 𝐻̂ is real if and only if there is an invertible linear operator Ο̂ so that 𝐻̂ 

is Ο̂Ο̂†-pseudo-Hermitian.” 

One interesting question is now whether (C)PT-symmetry is in fact a subclass of pseudo-Hermiticity. 

Mostafazadeh [161] claimed that it is. He went on to prove that all diagonalizable linear operators with a 

discrete spectrum will have an antilinear symmetry, leading him to the following two corollaries: (i) any 

diagonalizable linear operator that possesses a discrete spectrum (real eigenvalues) is anti-pseudo-

Hermitian; and (ii) any diagonalizable pseudo-Hermitian linear operator that possesses a discrete spectrum 

will have antilinear symmetry. Since PT symmetry is an antilinear symmetry, the PT-symmetric 

Hamiltonians imply that 𝜂̂-pseudo-Hermiticity is present, 𝜂̂ = 𝜏̂𝑃̂𝑇̂ with 𝜏̂ an antilinear operator obeying 

the relation ⟨Φ|𝜏̂|Ψ⟩ = ⟨Ψ|𝜏̂|Φ⟩. In addition, Mostafazadeh [164] demonstrated the unitary equivalence 

between PT-symmetric quantum mechanics and Hermitian quantum mechanics, and the recovery of 

Hermitian Hamiltonians from every PT-symmetric Hamiltonian.  

Though pseudo-Hermitian quantum mechanics shows abundant (mathematical) properties beyond PT-

symmetric one, from now on we will not discuss it as the focus of this article is PT symmetry. Two 
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comprehensive reviews on pseudo-Hermitian quantum mechanics have recently been given by 

Mostafazadeh [29,165], where an extensive list of references can be found. Another attention that should 

be paid is that the content of PT symmetry discussed in this subsection is more about a quantum particle 

subject to canonical continuous variables (𝑥, 𝑝̂). The behavior associated with such a Hamiltonian can be 

qualitatively different from that with a Hamiltonian confined in a finite-dimensional Hilbert space, as we 

shall see in the following subsection. 

2.3 Exceptional points and phase transition 

Non-Hermitian quantum mechanics has interesting applications to open quantum systems. In particular, 

non-Hermitian theories can be used as tools to model the evolution of open quantum systems. For simplicity, 

from now on we will use a symbol-without-hat to denote an operator for a matrix representation, unless 

otherwise specified. One of the benefits of doing this is that the notions are appropriate for both quantum 

and classical treatments without adding confusion. To make the arguments more illustrative, as a two-state 

toy model, let us look at a simple 2  2 matrix Hamiltonian [156] 

𝐻 = (𝑟𝑒
𝑖𝜃 𝑠
𝑠 𝑟𝑒−𝑖𝜃

) ≠ 𝐻†  ({𝑟, 𝑠} ∈ Real and 𝜃 ∈ [0,2𝜋)),     (10) 

which is generally not Hermitian except 𝜃 = 0. But it is PT symmetric, where the parity operator is 

(equivalent to the Pauli matrix 𝜎1) 

𝑃 = (
0 1
1 0

) = 𝑃−1 = 𝑃†,         (11) 

and the time-reversal operator 𝑇 corresponds to complex conjugation. Note that the parity operator (11) 

satisfies 𝑃 = 𝑃−1 = 𝑃†. 

After a little algebra, one can easily obtain its two eigenvalues  

𝜖± = 𝑟 cos𝜃 ± √𝑠
2 − 𝑟2sin2𝜃.         (12) 

Evidently from Eq. (12), there are two parametric regions to consider, one for which the square root is real 

and the other for which it is imaginary. That is, when 𝑠2 < 𝑟2sin2𝜃, the energy eigenvalues form a complex 

conjugate pair, which indicates the region of broken PT symmetry. While for 𝑠2 > 𝑟2sin2𝜃 , the 

eigenvalues are real, implying the region of unbroken PT symmetry. In this unbroken region, the 

simultaneous eigenstates of both 𝐻 and 𝑃𝑇 have the form 

|𝜓𝜖+⟩ =
1

√2cos𝛼
( 𝑒

𝑖𝛼/2

𝑒−𝑖𝛼/2
) and |𝜓𝜖−⟩ =

𝑖

√2 cos𝛼
(𝑒

−𝑖𝛼/2

−𝑒𝑖𝛼/2
),      (13) 

with 𝛼 = sin−1 (
𝑟 sin𝜃

𝑠
). Because the eigenvectors are generally biorthogonal for an open system [167], the 

eigenstates (13) here obey the orthonormalization condition ⟨𝜓𝜖±|𝜓𝜖±⟩ = 𝛿+−. If 𝑠2 < 𝑟2sin2𝜃, the states 

(13) are no longer eigenstates of 𝑃𝑇 because 𝛼 becomes imaginary. Moreover, the PT norm of the energy 

eigenstate vanishes. 𝑠2 = 𝑟2sin2𝜃 is the exact exceptional point where the phase transition occurs between 

broken and unbroken symmetry. At this branch point, the Hamiltonian (10) turns into a nondiagonal Jordan 

block. As a result, the two eigenvalues collide and the two eigenvectors are linearly dependent. In other 

words, the respective algebraic multiplicity of the eigenvalue is two, larger that the geometric multiplicity 

of one. In fact, this PT-symmetry breaking point reflects all the characteristics of an EP singularity. In 

general, exceptional points appear as singularities of non-Hermitian eigenvalue problems and can be 

compared with degeneracies in Hermitian operators. EPs are intrinsically different from Hermitian 
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degeneracies, conforming to the situation in which both the eigenvalues and eigenvectors coalesce. In the 

limit 𝜃 → 0 in this two-state system, the Hamiltonian (10) becomes Hermitian.  

Interestingly, for the toy model presented above, one can introduce the counterpart of PT symmetry, “anti-

PT symmetry”, which instead anti-commutes with the Hamiltonian, {𝑃𝑇,𝐻anti} = 0. Mathematically, the 

Hamiltonian (10) would become anti-PT symmetric on multiplying by 𝑖 [64], 

𝐻anti = (
𝑖𝑟𝑒𝑖𝜃 𝑖𝑠
𝑖𝑠 𝑖𝑟𝑒−𝑖𝜃

).         (14) 

Based on this observation, the concept of anti-PT symmetry was explicitly proposed and demonstrated in 

the work of Peng et al [64]. The mathematical transformation between 𝐻 and 𝐻anti, as a consequence, 

implies immediately that the behavior of an anti-PT system would be conjugate to that of a PT system. In 

addition, the action of 𝑃𝑇 on the Hamiltonian (10) returns 𝐻 itself while for the Hamiltonian (14), the same 

operation yields −𝐻anti as a contrast. One can quickly check that indeed, 𝐻anti anti-commutes with the 

joint 𝑃𝑇 operator defined in (11). Without difficulty, the two eigenvalues can be readily obtained with the 

form 

ℇ± = 𝑖𝑟 cos 𝜃 ± 𝑖√𝑠
2 − 𝑟2sin2𝜃.         (15)  

But the eigenstates remain unchanged and coincide with the states (13). By comparing Eq. (15) with Eq. 

(12), one may notice that ℇ± = 𝑖𝐸±, as expected from the relationship 𝐻anti = 𝑖𝐻. Opposite to the PT case, 

for 𝑠2 < 𝑟2sin2𝜃, the two eigenvalues are complex and the system is termed in the regime of unbroken 

anti-PT symmetry; for 𝑠2 > 𝑟2sin2𝜃, the pair of eigenvalues become purely imaginary, corresponding to 

the region of anti-PT symmetry breaking. The anti-PT phase transition point stays at 𝑠2 = 𝑟2sin2𝜃. Distinct 

from the PT case, the anti-PT Hamiltonian (14) always maintain non-Hermitian irrespective of the value of 

𝜃. At 𝜃 = {
𝜋

2
,
3𝜋

2
} emerges perfect anti-PT symmetry in the sense that ℇ± are either real or purely imaginary.   

This sort of toy models have been extensively studied in the literature, owing to their simplicity. The 

involved research has generated hundreds of theoretical publications in a variety of journals. These include 

the work by Bender and his colleagues [156] where they conceived a charge operator 𝐶 so that the inner 

product of PT symmetry can be properly defined through the co-application of 𝐶𝑃𝑇. Even though the theory 

looks attractive, in this article we will not go into further discussions here. Readers interested in this type 

of research may take advantage of the cited references for additional reading. A while ago, based on the toy 

model (10) Bender et al [168] investigated time cost in the evolution between two states (13) and predicted 

shortened time in comparison with the conventional Hermitian evolution. However, a new assessment [169] 

of this model suggests that it is fundamentally flawed. In particular, the authors considered two implicit 

assumptions in previous calculations [168], involving how PT symmetry is locally defined and how its 

predictions are computed. They then put these assumptions to test with a classic thought experiment, in 

which Alice and Bob share two entangled states. By choosing how Alice measures her state, they found 

that Alice could send information to Bob faster than the speed of light, implying the violation of the no-

signaling principle in special relativity. This observation led the authors to conclude that PT-symmetric 

quantum theory fails to be a fundamental theory of Nature. Undoubtedly, this work made an interesting 

attempt on questioning PT-symmetric quantum theory as a valid local theory. 

Before moving to the next section, we wish to make the following few remarks on PT-symmetric quantum 

mechanics. First of all, although the toy model undoubtedly serves as an intuitive way to illustrate the 

essence of PT and anti-PT symmetry, due to the lack of physical substance, so far its practical 

implementation remains highly elusive in terms of the demanding complex PT-potentials. Second, unlike 
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the case with dynamical variables (see Section 2.2), the toy model here pertains to a discrete version. As 

shall be evident in the following sections, it is this toy model that has significance in optics and other 

branches of physics where complex PT potentials can be easily realized by properly balancing gain and 

loss. Third, as will become clear in the rest content, each matrix element in the Hamiltonians (10) and (15) 

has the well-defined physical meaning for different topics. Consequently, this leads to a tight connection 

with other research areas.  

3. PT symmetry in optical microcavity systems 

Regardless of the impressive theoretical success in the development of non-Hermitian quantum domain, 

yet, the lack of any experimental support makes these theories highly skeptical as physical theories in reality. 

Notwithstanding that, in the past decade non-Hermitian systems with the notion of PT symmetry in 

particular, as an emerging platform of interdisciplinary research among optics [39,40], photonics [47-

49,53,54,59,65,66], AMO physics [63,64], acoustics [60-62], microwave mechanics [44,45], electronic 

circuits [41-43], and material science [46,50-52,55-58], have attracted extensive studies and initiated 

numerous intriguing prospects [67-130] beyond the capabilities of conservative structures. Rapid progress 

in its rich interplay with other physical phenomena has exceedingly reshaped the original intention to be 

the paradigm for extending Hermitian quantum mechanics. This section is committed to recent advances in 

experimenting PT symmetry using optical microcavities. In order to make the story self-contained, we start 

with the course on establishing PT-symmetric optics through the formal equivalence between the paraxial 

optical propagation equation in a medium and the Schrödinger equation for a quantum particle. We then 

continue to review recent experimental demonstrations of PT symmetry utilizing optical microcavities. As 

tunable photonic PT systems can add new exciting functionalities being potentially able to find even broader 

applications over the field of photonics, in the rest part of this section we will pay attention to few such 

efforts including on-chip optical nonreciprocity. Besides, we would like to present a new proposal on 

realizing both PT and anti-PT within the same microcavity setting. 

3.1 Paraxial optics versus quantum mechanics 

Quantum physics are fundamentally different from classical physics even from a conceptual point of view. 

A well-known example is that, in quantum theory the wavefunction is a complex probability amplitude, 

while in classical optics, its analog – the electromagnetic field – is a measurable real quantity. In fact, since 

the birth of quantum mechanics, its founders made many attempts to find at least a formal connection to 

classical physics. Among these efforts, a notable view came from Schrödinger [170], who believed classical 

dynamics of a point particle be the geometrical optics approximation of a linear-wave equation, in the same 

as ray optics be a limiting approximation of wave optics. In the subsequent years some rigorous 

mathematical analogies have been progressively identified between classical optics and quantum mechanics. 

Among them, one of the best known and widely exploited is based upon the similarity between the time-

independent Schrödinger equation and the time-independent Helmholtz equation. Historically, this analogy 

has successfully led to many fruitful discoveries and designs, such as i) designing multilayered optical 

structures, as their quantum counterparts with 0D, 1D, or 2D geometry [171], with the same transmission 

characteristics; ii) the transverse modes of aspherical laser resonators resembling the eigenstates of the 

stationary Schrödinger equation with a potential well determined by the mirror profile [172]; iii) the ladder 

operator description of the Hermit-Gauss or the Laguerre-Gauss modes of a laser beam equivalent to that 

of the quantum harmonic oscillator [173]; iiii) the mimic of a coherent state through the refraction of 

displaced light beams by lenses [174]; and v) the optical simulation [175] of the Franck-Condon principle 

as well as the Ramsauer-Townsend effect in the mismatch of a mode passing through two fibers with 

different refractive index distributions; to name just a few. An excellent account on the topic please refer 

to the textbook [176] written by Dragoman and Dragoman. In these analogies, the Helmholtz equation by 
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the paraxial approximation is typically reduced to the time-independent Schrödinger equation, where the 

propagation distance, wavelength, and refractive index correspond to the time, Planck’s constant, and 

potential in quantum mechanics. The momentum in the quantum world tallies with the ray direction in the 

optical case. As a result, ray optics is recovered in the limit as the wavelength approaches zero.  

In 2007 this analogy was rigorously employed by Christodoulides and his coworkers [36] to construct PT 

symmetry within the realm of optics. More specifically, let us consider a 1D dielectric planar 

inhomogeneous medium having a relative permittivity that only varies along the 𝑥 axis, 𝜀(𝑥) = 𝑛2(𝑥). 
Here, the complex refractive index 𝑛(𝑥) = 𝑛𝑅(𝑥) + 𝑖𝑛𝐼(𝑥) with 𝑛𝑅(𝑥) representing the real index profile 

of the structure, and 𝑛𝐼(𝑥) denoting the gain or loss component. Then the optical beam propagation within 

the medium can be theoretically described, in the paraxial diffraction approximation, as a Schrödinger-like 

equation with 1D by assuming the electric field 𝐸 = 𝜙(𝑥, 𝑧)𝑒𝑖(𝑘𝑧−𝜔𝑡), 

𝑖
𝜕𝜙

𝜕𝑧
= 𝐻𝑝𝜙, 𝐻𝑝 = −

1

2𝑘

𝜕2

𝜕𝑥2
− 𝑘𝜀(𝑥),        (16) 

with 𝑘 = 2𝜋 𝜆0⁄  and 𝜆0  being the vacuum wavelength of light. It shall be noted that Hermitian 

Hamiltonians are in line with the cases where the optical energy is conserved and 𝜀(𝑥) (or 𝑛(𝑥)) is real 

(see. Fig. 2(a)). In a continuous medium, the parity operator 𝑃 performs the spatial reflection but the time-

reversal operator 𝑇 reverses the propagation direction. Similar as in the quantum case (6), in order for the 

permittivity 𝜀(𝑥) to be PT-symmetric, the condition 𝜀(𝑥) = 𝜀∗(−𝑥) must be fulfilled. This condition arises 

from the necessity for the Hamiltonian (16) to commute with the parity-time operator 𝑃𝑇 in such a way that 

𝜙 is a common eigenstate of both 𝐻 and 𝑃𝑇. Practically, it demands that the optical complex potential 

𝑘𝜀(𝑥)  consist of a symmetric real refractive index guiding 𝑛𝑅(𝑥) = 𝑛𝑅(−𝑥)  and an antisymmetric 

gain/loss profile 𝑛𝐼(𝑥) = −𝑛𝐼(−𝑥). Or, 𝑛(𝑥) = 𝑛∗(−𝑥) in a compact way (see Fig. 2(a)). By expanding 

the scalar field amplitude 𝜙(𝑥, 𝑧) onto its eigenvalue and corresponding eigenmode as 𝜙(𝑥, 𝑧) = 𝑢(𝑥)𝑒𝑖𝛽𝑧, 
Eq. (16) reduces to the scalar Helmholtz equation 

[
1

2𝑘

𝜕2

𝜕𝑥2
+ 𝑘𝜀(𝑥)] 𝑢 = 𝛽𝑢.         (17) 

The mode propagation constant 𝜉 is thus given by 𝜉 = 𝑘 + 𝛽. Note that Eq. (17) agrees with the stationary 

Schrödinger equation for a quantum particle under the formal substitution 1 2𝑘⁄ → −ℏ2 2𝑚⁄ .  

In contrast to the quantum case discussed in Section 2, one fundamental aspect associate with optical PT 

components (as well as others) has to do with their coupled-mode interactions. Abiding by this rule, a 

simpler arrangement for Eq. (17) is to look at a PT coupler with one component being optically pumped to 

provide gain 𝛾 while the neighbor arm experiencing equal amount of loss. Under these conditions, one can 

plug the ansatz 𝜙(𝑥, 𝑧) = [𝑎1(𝑧)𝑢1(𝑥) + 𝑎2(𝑧)𝑢2(𝑥)]𝑒
𝑖𝛽𝑧  into the paraxial propagation equation (16) 

with the normalization of the eigenmode 𝑢𝑗(𝑥)  according to ∫𝑑𝑥 𝑢𝑚
∗ (−𝑥)𝑢𝑗(𝑥) = 𝛿𝑚𝑛 . After 

straightforward algebra, one can thence show that the evolution of the system is governed by a set of 

coupled-mode theory [177,178],  

𝑖
𝑑𝐴

𝑑𝑧
= 𝐻𝐴, 𝐴 = (𝑎1

𝑎2
) , 𝐻 = (

𝑖𝛾 −𝜅
−𝜅 −𝑖𝛾

),       (18) 

where 𝜅 = ∫ 𝜀(𝑥)𝑢1(𝑥)𝑢1
∗(−𝑥)𝑑𝑥

∞

−∞
/ ∫ 𝑢2(𝑥)𝑢1

∗(−𝑥)𝑑𝑥
∞

−∞
 is the mode coupling coefficient and is a real 

quantity, and 𝛾 = 𝑖 ∫ 𝜀(𝑥)𝑢1(𝑥)𝑢2
∗(−𝑥)𝑑𝑥

∞

−∞
/ ∫ 𝑢1(𝑥)𝑢2

∗(−𝑥)𝑑𝑥
∞

−∞
 represents propagation constant shift 

as a result of the coupling interaction. Recall the toy model sketched in Section 2.3. It is not difficult to find 

that the non-Hermitian Hamiltonian in Eq. (18) is genuinely PT symmetric, if setting 𝑟 = 𝛾, 𝜃 =
𝜋

2
, 𝑠 = −𝜅 
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in Eq. (10). As a result, real eigenvalues are expected as long as the PT symmetry is not broken. A direct 

diagonalization gives the two eigenvalues, 

𝛽± = ±√𝜅
2 − 𝛾2.          (19) 

If the gain/loss parameter is smaller than the coupling coefficient 𝛾 ≤ 𝜅, the propagation constants 𝜉± =

𝑘 + 𝛽± of the two eigenmodes take real values which correspond to exact or unbroken PT-symmetric phase. 

If 𝛾 > 𝜅, on the other hand, PT symmetry automatically fails and the two eigenvalues (19) become a 

complex conjugate pair. The transition point 𝛾 = 𝜅 is known as the spontaneous PT phase-transition point, 

or more generally the EP.  

The eigenstates involve a left and right biorthogonal set of eigenvectors that are defined as 𝐻|𝛽±𝑅⟩ =

𝛽±|𝛽±𝑅⟩ and ⟨𝛽±𝐿|𝐻 = 𝛽±⟨𝛽±𝐿|, with the orthonormalization condition ⟨𝛽±𝐿|𝛽±𝑅⟩ = 𝛿+− . The 

corresponding eigenstates can be either calculated directly or from Eq. (13) as 

|𝛽+𝑅⟩ =
1

√2cos𝛼
( 𝑒

𝑖𝛼/2

𝑒−𝑖𝛼/2
) ; |𝛽−𝑅⟩ =

1

√2cos𝛼
(𝑖𝑒

−𝑖𝛼/2

−𝑖𝑒𝑖𝛼/2
), with sin 𝛼 =

𝛾

𝜅
.    (20) 

In the unbroken PT phase, both the 𝐻 and 𝑃𝑇 operators share the same set of eigenstates and the mode 

intensity in this regime is symmetric with respect to the mirror axis of the two parts of the system, see Fig. 

2(b). In the broken region, however, the eigenstates of 𝐻 cease to be eigenstates of the 𝑃𝑇 operator, in spite 

of the fact that 𝐻 and 𝑃𝑇 still commute. This stems from the antilinear property of the 𝑃𝑇 operator. In 

addition, the spatial distribution of the modes is asymmetric, one of them living predominantly in the 

amplifying site and the other vanishing in the lossy one (see Fig. 2(b)). 

The beam dynamics associated with Eq. (18) is relatively straightforward and was investigated theoretically 

in [19,22]. To this end, the Hamiltonian in Eq. (18) is first written in the form 𝐻 = 𝛽±𝜎⃗ ∙ 𝑛̂ = 𝛽±𝜎𝑛 where 

𝜎𝑛 is the Pauli matrix projected along the 𝑛̂ =
1

𝛽±
(−𝜅, 0, 𝑖𝛾) direction. By applying the identity 𝑒𝑖𝑑𝜎𝑛 =

𝐼 cos 𝑑 + 𝑖𝜎𝑛 sin𝑑, the effective evolution operator 𝑈(𝑧) takes the form 

𝑈(𝑧) = 𝑒−𝑖𝑧𝐻 = 𝐼 cos(𝛽±𝑧) − 𝑖
𝐻

𝛽±
sin(𝛽±𝑧).       (21) 

Application of the above operator (21) to a generic initial preparation 𝜙(𝑧 = 0) = (
𝑐1
𝑐2
) permits to evaluate 

the beam 𝜓(𝑧) at a propagation distance 𝑧, 

𝜙(𝑧)  ≡ (
𝜙1(𝑧)

𝜙2(𝑧)
) =

1

cos𝛼
(
𝑐1 cos(𝛽+𝑧/2 − 𝛼) − 𝑖𝑐2 sin(𝛽+𝑧/2)

𝑐2 cos(𝛽+𝑧/2 + 𝛼) − 𝑖𝑐1 sin(𝛽+𝑧/2)
).    (22) 

The total light intensity 𝐼(𝑧) = |𝜙1(𝑧)|
2 + |𝜙2(𝑧)|

2 is not any more a constant of motion. Its dependence 

on the paraxial distance 𝑧 can be easily computed from Eq. (22), 

𝐼(𝑧) =
1

cos2𝛼
[𝑐1
2cos2 (

𝛽+𝑧

2
− 𝛼) + 𝑐2

2sin2 (
𝛽+𝑧

2
)] [𝑐2

2 cos2 (
𝛽+𝑧

2
+ 𝛼) + 𝑐1

2 sin2 (
𝛽+𝑧

2
)].  (23) 

Figures 2(c)-(e) illustrate the beam dynamics described by Eqs. (22) and (23) in a PT-symmetric coupler 

for some typical values of the gain/loss parameter 𝛾. The associated experimental measurements have been 

performed in [39,40] with use of coupled optical waveguides. In these experiments, the authors recognized 

that as 𝛾 reaches 𝜅, the total beam power starts to grow exponentially, while for 𝛾 < 𝜅 (coherent) power 

oscillations are observed. The former behavior is rooted in the complex nature of the propagating constants 

in the broken phase, while the latter is due to the biorthogonal nature of the two supermodes. At 𝛾 = 𝜅 the 
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intensity grows in a power law manner with respect to the propagation distance 𝑧, signaling the existence 

of a defective eigenvalues. All these cases can be easily derived from Eq. (22) analytically. On the other 

hand, in all cases the beam evolution is nonsymmetric. Specifically, the beam propagation pattern differs 

depending on whether the initial excitation is on the left or right waveguides. This has to be contrasted with 

the Hermitian case (𝛾 = 0), where the beam propagation is insensitive to the initial condition.  

 

Figure 2  PT-symmetric coupler. (a) Schematic of the optical PT potential for two waveguide coupler. (b) Evolution 

of typical spatial distribution of the two supermodes before (𝛾 < 𝛾𝑃𝑇) and after (𝛾 < 𝛾𝑃𝑇) the phase transition with 

𝛾𝑃𝑇 = 1 by setting 𝜅 = 1. (c)-(e) Beam dynamics for this PT-symmetric coupler. (c) In the unbroken phase region, 

the total light intensity shows Rabi-like oscillatory behavior and the dynamics is asymmetric for different initial 

conditions with respect to the z-axis of symmetry of the structure. (d) The beam dynamics at the exceptional point 

where the total intensity grows in a power law along with the propagation distance z. (e) In the phase breaking regime, 

the beam intensity grows exponentially in an asymmetric way. ((b)-(e) are adapted from Ref. [22]) 

Though the analogy enables the possibility of theoretically extending PT symmetry from quantum to wave 

optics, it is the recognition of coupled-mode dynamics that actually paves the way for experiment involved. 

In the language of coupled-mode theory, each matrix element in the Hamiltonian (18) has its well-defined 

physical meaning. This makes itself distinct from the quantum counterpart (10), which more or less suffers 

the perplex of metaphysics. Thanks to its wide range of applicability, coupled-mode theory has already 

been shown to exceedingly facilitate the studies of PT symmetry in a variety of branches of physics. To 

date, all research on PT symmetry in the classical world cannot escape the coupled-mode dynamics. Setting 

aside our theme, we notice that the terminology “PT symmetry” [179,180] was used to explain some optical 

experiments with high-temperature superconductors long before the invention of PT symmetric quantum 

mechanics [33].  

3.2 PT symmetry in coupled optical microcavities 

It turns out that the formulation of a PT-symmetric coupler in Section 3.1 utilizing the coupled-mode theory 

is fairly general for various physical systems in terms of scattering problems. In optical settings, light 

scattering delivers important information about their spectral properties and reveals the consequences of 

their symmetries. The adoption of PT potentials is expected to empower new regimes of linear scattering, 

and furthermore facilitate novel photonic devices that surmount to conservative architectures. In the last 

years silicon photonics has become one of the most promising photonic integration platforms. This can be 

mainly attributed to the combination of a very high-index contrast and the availability of mature CMOS 

fabrication technology, which allows the use of electronics fabrication facilities to make photonic circuitry. 

Thanks to the CMOS technique, silicon waveguide structures have shown unprecedented reduction in 



15 
 

footprint, and especially wavelength-selective devices. A prime example of this is optical microring 

resonators (a set of waveguides in which at least one is a closed loop coupled to some sort of light input 

and output). Optical microresonators [1-3] offer the potentials for developing new types of photonic devices 

such as light emitting diodes, low-threshold microlasers, ultra-small optical filters and switches for 

wavelength-division-multiplexed (WDM) networks, color displays, and so on. Moreover, novel designs of 

microresonators open up very challenging fundamental science applications beyond optoelectronic device 

technologies. The interaction of active or reactive material with the modal fields of optical microresonators 

provides key physical models for basic research including cavity QED experiments, spontaneous emission 

control, nonlinear optics, bio chemical sensing and even quantum information processing.  

In an optical waveguide light propagation is confined via total internal reflection (TIR) by two dielectric 

interfaces to a region of high refractive index. The guiding region of high refractive index is formally 

equivalent to a potential wall wherein the electric fields may be decomposed into eigenmodes that are 

solutions of the Schrödinger equation. Light propagating in curved waveguide (such as cylindrical or 

spherical surface) is still guided via TIR at the outer interface, but it no longer demands an inner interface 

to complete the confinement. Elimination of the inner boundary leaves a dielectric disk that supports 

whispering gallery modes (WGMs). These modes consist of azimuthally propagating fields guided by TIR 

at the dielectric interface and optical inertia that prevents the field from penetrating inward beyond a fixed 

radius termed the inner caustic. Mathematically, a WGM is a solution of the Helmholtz equation in a curved 

coordinate geometry. Attention is restricted to a cylindrical geometry appropriate for the analysis of planar 

disk and ring resonators.  

Inspired by waveguides experiments in the spatial domain [39,40], in 2014 two groups independently 

performed optical PT symmetry using two directly coupled WGM microtoroid resonators in the temporal 

domain [4,5]. As schematically depicted in Fig. 3, the dynamics of the input signal field in two coupled 

cavities is effectively described by the temporal coupled-mode approach [178], 

𝑖
𝑑

𝑑𝑡
𝐴 = 𝐻𝐴 with 𝐴 = (

𝑎𝑔
𝑎𝛾
) and 𝐻 = (

𝑖𝑔 𝜇
𝜇 −𝑖𝛾

).      (24) 

Here, 𝑎𝑔,𝛾(𝑡) represent the normalized supermode amplitudes in toroids 1 and 2, and 𝜇  stands for the 

coupling strength between two resonators due to mode overlapping. 𝑔 =
𝑔0

1+|𝑎𝑔 𝑎s⁄ |
2 − 𝛾𝑔 [4] is the net gain 

supplied by optically pumping doped Er+3 ions in the active toroid 1, where 𝑔0 is the pumping gain for 

𝑎𝑔 = 0 , 𝑎s  associates with the gain saturation threshold, and 𝛾𝑔  counts the total loss. Similarly, 𝛾 

characterizes the total loss for the passive cavity 2, which relies on the quality factor Q. In the derivation of 

Eq. (24), the two microcavities are assumed to share the same resonant frequency, which also coincides 

with the input signal frequency. The nonlinearity appearing in 𝑔 seemingly makes the problem difficult to 

analyze in general. In fact, depending on the circulated optical power |𝑎𝑔|
2
 with respect to the saturation 

threshold, it can be segmented into two different regions: linear and nonlinear. That is, if |𝑎𝑔 𝑎s⁄ | ≪ 1, the 

nonlinear saturation effect can be neglected safely. On the other hand, if |𝑎𝑔 𝑎s⁄ | ≫ 1 one has to take into 

account the nonlinearity, which contains rich physics (see Sections 3.5 and 3.6) despite its complexity.  
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Figure 3  On-chip two directly coupled WGM microtoroid resonators with gain and loss for PT symmetry as well as 

optical nonreciprocity. The system is composed of two toroids (1 and 2) which are coupled to two tapered optical 

fibers (1 and 2). Toroid 1 is an active resonator resonant at frequency 𝜔0 and is optically pumped to produce a net 

gain 𝑔. Toroid 2 is a passive resonator resonant also at 𝜔0 with a decay rate 𝛾. The coupling strengths between toroid 

1-toroid 2, toroid 1-fiber 1, and toroid 2-fiber 2 are, respectively, denoted by μ, 𝜅1 and 𝜅2. Optical reciprocity and 

nonreciprocity are studied by analyzing transmittance spectra in forward (a) and backward (b) propagation 

configurations. 𝑠𝑖𝑛 represents the amplitude of the input signal field. 

Let us first focus on the linear case of |𝑎𝑔 𝑎s⁄ | ≪ 1. In this region, one can quickly check that for perfect 

PT symmetry, it demands balanced gain and loss 𝑔 = 𝛾 in Eq. (24). As such, the PT Hamiltonian (24) 

concurs with that (18) for the waveguide directional coupler. Without any difficulty, the two eigenspectral 

branches are centered at 

𝜔± = ±√𝜇
2 − 𝛾2,          (25) 

pertaining to the cavity resonance frequency. By adopting the same method ascribed in Section 3.1, the 

light beam 𝜙(𝑡) at the propagation time 𝑡, for the initial preparation 𝐴(𝑡 = 0) = (
𝑐1
𝑐2
), takes the form 

𝐴(𝑡)  ≡ (
𝑎𝑔(𝑡)

𝑎𝛾(𝑡)
) =

1

cos𝛼
(
𝑐1 cos(𝜔+𝑡/2 − 𝛼) − 𝑖𝑐2 sin(𝜔+𝑡/2)

𝑐2 cos(𝜔+𝑡/2 + 𝛼) − 𝑖𝑐1 sin(𝜔+𝑡/2)
)    (26) 

with 𝛼 = arc sin (𝛾 𝜇)⁄ . 

From the eigenspectra (25), a PT-like spectral bifurcation occurs around the exceptional point 𝜇 = 𝛾. For 

𝜇 ≥ 𝛾, the two PT supermodes with a zero linewidth are spectrally distributed at ±√𝜇2 − 𝛾2 away from 

the cavity resonance and the optical power does a Rabi-like oscillation between two cavities (see Eq. (26)). 

By operating in such a region, an ideal single-mode lasing operation can be realized with the spectral width 

much less than the cavity linewidth, see Section 4.1. As 𝜇 < 𝛾, 𝜔± become complex and the PT-symmetry 

is spontaneously broken. As the PT-symmetric phase is broken, one supermode gradually vanishes because 

of the absorption while the other experiences amplification. One peculiar feature occurring in this latter 

case is that while the eigenspectra are complex, their linewidths are considerably shrunk as a result of the 

compensation from the mode coupling. At 𝜇 = 𝛾 the two modes start to coalesce into the cavity resonance 

frequency. Moreover, the presence of this EP leads to the substantial reduction of the lasing threshold 

[118,119]. Generally, the existence of this singularity point does not require the exact balance of gain and 

loss between two components, which gives rise to the opportunity to introduce the concept of passive PT 

symmetry [39]. Using two passively-coupled microtoroid resonators, in a recent experiment [181] Yang’s 

group realized loss-induced suppression and revival of lasing, a phenomenon that resembles a temporal 
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version of the loss-induced transparency observed in two passively-coupled waveguides [39]. Although an 

effective PT system can be mathematically constructed by pulling out a global loss offset in passive 

structures, in this review we retain our attention to active PT symmetry with balanced gain and loss. For 

passive-PT configurations, unless otherwise specified, we will reserve them as conventionally coupled 

systems as they have been researched for a very long time from a different perspective. 

Although Eq. (26) seems to give a good account of the light propagation within two microresonators, it 

does not take into account the light launching mechanism properly, which leads to additional features 

beyond the linear homogeneous systems of ordinary differential equations (24) with constant coefficients. 

This deviates from the waveguide case and essentially leads to different dynamics. To count the light 

injection consistently, light transport in such a coupled-cavity system can be studied by the input-output 

theory [178] which results in inhomogeneous linear systems of ordinary differential equations. To fulfill 

the PT operation, the output signal amplitudes at ports 4 and 1, corresponding to the forward and backward 

propagation configurations (Fig. 3) respectively, are of interest for the same input signal amplitude 𝑠𝑖𝑛. 

That is, 

{
 
 

 
 𝑖

𝑑𝑎𝑔

𝑑𝑡
= 𝑖𝛾𝑎𝑔 + 𝜇𝑎𝛾 + 𝑖√κ1𝑠𝑖𝑛,

𝑖
𝑑𝑎𝛾

𝑑𝑡
= −𝑖𝛾𝑎𝛾 + 𝜇𝑎𝑔,

𝑠4
𝐹 = √κ2𝑎𝛾 ,

   (forward)       (27) 

and 

{
 
 

 
 𝑖

𝑑𝑏𝑔

𝑑𝑡
= 𝑖𝛾𝑏𝑔 + 𝜇𝑏𝛾,

𝑖
𝑑𝑏𝛾

𝑑𝑡
= −𝑖𝛾𝑏𝛾 + 𝜇𝑏𝑔 + 𝑖√κ2𝑠𝑖𝑛,

𝑠1
𝐵 = √κ1𝑏𝑔.

   (backward)       (28) 

These two sets of equations (27) and (28), apparently different from Eq. (26), are then the starting points 

for analyzing the PT-symmetric optics (and nonreciprocal signal transmission). The input-output theory 

does not change the cavity resonance property, but it does modify the supermodes dynamics. Alternatively, 

the centers of two PT eigenspectra still follow Eq. (25). Yet, the signal transmission can be simply evaluated 

in the steady-state approximation. As such, from Eqs. (27) and (28), the transmission coefficients at ports 

4 and 1 are, respectively, 

𝑇4
𝐹(𝜔) = |

𝑠4
𝐹

𝑠𝑖𝑛
|
2

=
𝜇2𝜅1𝜅2

|(𝜔)|2
= 𝑇1

𝐵(𝜔) = |
𝑠1
𝐵

𝑠𝑖𝑛
|
2

       (29) 

with (𝜔) = 𝜇2 − 𝛾2 − (𝜔 −𝜔0)
2. Equation (29) immediately leads to the conclusion that the linear PT 

symmetry yields symmetric (or reciprocal) transmission spectra regardless of the unbroken or broken phase. 

Additionally, it shows that due to spectral singularities, these transmission coefficients tend to grow 

infinitely, a phenomenon that was previously noticed by Mostafazadeh [120] because of the linearity of the 

system. This feature of significant signal amplification offers a practical way to determine whether 𝑔 

balances 𝛾 in the experiment. 

These theoretical analysis have been confirmed in the experiments [4,5] where the experimental setup is 

schematically shown in Fig. 4(a). Figure 4(b) is the 2D top view of the system. The evolution of the two 

PT supermodes from the unbroken phase to the broken phase is illustrated in Fig. 4(c) as a function of the 

separation distance between two microcavities. If one focuses on the peak locations of the two PT 
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eigenspectra, Fig. 4(d) clearly reveals the quadratic splitting between two PT modes as well as the transition 

from the unbroken phase to the broken. It is worth noting that because of the imperfect cavity surface, 

backscattering originated from the Rayleigh scattering [180] is non-negligible in high-Q cavities. The 

observed double-peak structures in Fig. 4(c) are precisely the result of this reason. Owing to the potential 

application in integrated photonics, the research on PT symmetry using optical microcavities has attracted 

a considerable attention in the past few years. For example, Phang et al theoretically considered the effects 

in the presence of dispersion and frequency misalignment in two PT-symmetric coupled microresonators 

[183]. He et al further generalized the case to an infinite structure with the cyclic permutation symmetry 

[92]. 

Despite the mechanism of PT symmetry breaking is inherently linear, of fundamental interest will be to 

comprehend how this process unfolds in the presence of nonlinearity [22-26]. Given that lasers are by nature 

nonlinear devices, this trend becomes imperative. Likewise, adding nonlinearity was predicted to support 

ample novel phenomena including solitons in PT structures [38]. The appearance of gain saturation in the 

active optical microcavity [4,5] provides a new addition along this direction. In the presence of saturable 

gain and loss that is prevalent in such kind of systems, optical properties of PT-symmetrically coupled 

microcavities would be dramatically modified and may exhibit new features that cannot be achievable in 

the linear case. By counting the saturation effects in the dual optical micoresonator arrangement shown in 

Fig. 3, the light transport is now changed to   

{
 
 

 
 𝑖

𝑑𝑎𝑔

𝑑𝑡
= −𝑖𝛾𝑔𝑎𝑔 + 𝑖

𝑔0

1+|𝑎𝑔 𝑎s⁄ |
2 𝑎𝑔 + 𝜇𝑎𝛾 + 𝑖√κ1𝑠𝑖𝑛,

𝑖
𝑑𝑎𝛾

𝑑𝑡
= −𝑖𝛾𝑎𝛾 − 𝑖

𝛾0

1+|𝑎𝛾 𝑎s⁄ |
2 𝑎𝛾 + 𝜇𝑎𝑔,

𝑠4
𝐹 = √κ2𝑎𝛾 ,

   (forward)     (30) 

and 

{
 
 

 
 𝑖

𝑑𝑏𝑔

𝑑𝑡
= −𝑖𝛾𝑔𝑏𝑔 + 𝑖

𝑔0

1+|𝑏𝑔 𝑎s⁄ |
2 𝑏𝑔 + 𝜇𝑏𝛾 ,

𝑖
𝑑𝑏𝛾

𝑑𝑡
= −𝑖𝛾𝑏𝛾 − 𝑖

𝛾0

1+|𝑏𝛾 𝑎s⁄ |
2 𝑏𝛾 + 𝜇𝑏𝑔 + 𝑖√κ2𝑠𝑖𝑛,

𝑠1
𝐵 = √κ1𝑏𝑔.

   (backward)     (31) 

respectively, for the forward and backward configurations, where 𝛾0 represents the unsaturated loss for the 

passive cavity. Here it assumes the same threshold 𝑎s for both gain and loss microresonators and 𝛾𝑔 = 𝛾. 

The saturable loss term could be introduced through an externally controllable probe to induce in practice. 

When the modal field amplitudes are small in both injection cases, Eqs. (30) and (31) are reduced to the 

linear situations (27) and (28) by ignoring the saturation effects. Caution should be paid to the coupling 

strengths κ1  and κ2 . Depending on |√κ1𝑠𝑖𝑛| ≳ |𝑔0𝑎𝑠| and/or |√κ2𝑠𝑖𝑛| ≳ |𝛾0𝑎𝑠| as well as |𝑎𝑔,𝛾| ≳ |𝑎𝑠| 

and/or |𝑏𝑔,𝛾| ≳ |𝑎𝑠|, the modal field amplitudes in the system can experience very complicated evolutions 

and result in rich physics including the mixtures and transitions of linear and nonlinear propagations even 

for the same propagation configuration. Due to the nonlinearity, Eqs. (30) and (31) are difficult to be solved 

analytically in general. An interesting attempt was recently made by Hassan and his coworkers [184], which 

will not be further discussed in this article. 
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Figure 4  PT symmetry using two directly coupled WGM microtoroid resonators with balanced gain and loss. (a) 

Schematic 3D view of the system. (b) Top view optical microscope image of the system in (a). (c) Evolution of PT-

symmetric transmission spectra from the unbroken phase to the broken by varying the coupling strength (or separation 

distance) of the two toroids. (d) Spectral splitting between the two PT supermodes in (c). (Adapted from Ref. [4]) 

3.3 Proposal on anti-PT symmetry in optical microcavities 

Though PT symmetry in various physical settings has been studied extensively in the past decades, its 

counterpart, anti-PT symmetry, has only been known by people in very recent years. One major challenge 

stems from the unusual dissipative coupling appearing in the off-diagonal terms of the anti-PT-symmetric 

Hamiltonian (14). As it will become clear shortly, such a dissipative coupling mechanism is fundamentally 

different from the Hermitian couplings in any PT-symmetric Hamiltonian. By employing atomic coherence 

transport in a warm alkali atomic vapor cell, the first anti-PT experiment [64] was demonstrated in two 

coupled atomic spin waves, where the randomness and irreversibility associated with the atomic thermal 

motion set the foundation of non-Hermiticity of the system Hamiltonian. As mentioned in Section 2.3, the 

dynamics of an anti-PT system is governed by a non-Hermitian Hamiltonian anti-commuting with the joint 

anti-linear PT operator, or {𝑃𝑇,𝐻anti} = 0. Moreover, the mathematical transformation between the PT-

symmetric and anti-PT-symmetric Hamiltonians suggests that the properties of an anti-PT system are 

exactly conjugate to the corresponding PT system. For instance, in the symmetry-unbroken phase, lossless 

propagation in a PT system corresponds to refractionless (i.e. unit-refraction) propagation in an anti-PT 

system [64]. This rather intriguing effect gives rise to a complementary probe in the non-Hermitian optics, 

stretches the extent of novel techniques for light manipulation, and offers new paradigms of light control. 

In spite of these attractions, anti-PT symmetry is not easily attainable in experiment. In two earlier attempts, 

one proposal [185] requires a challenging balance of positive and negative refractive indices in coupled 

metamaterials, while the other [186] utilizes an optical lattice of spatially driven cold atoms, which is very 

difficult in practice and impossible to scale.  
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Motivated by real applications, an implementation of anti-PT symmetry in an integrable photonic system 

becomes thus highly desirable. It turns out that anti-PT symmetry is realizable in three passively-coupled 

optical microcavities [187,188] through the technique of adiabatic elimination [189]. As schematically 

depicted in Fig. 5(a), 𝜔𝑗, Δ𝑗, and 𝛾𝑗  (𝑗 = 1,2,3) denote, respectively, the cavity resonance frequency, laser 

frequency detuning, and the total loss rate in microcavity j. 𝜇1(2) and 𝜅1(2) stand for the coupling strengths 

between Cavity 2 and Cavity 1 (3), and in/out of Cavity 1 (3) through tapered fiber, respectively. Note that 

there is no direct coupling between Cavity 1 and Cavity 3. For the forward configuration, the signal laser 

is launched from Cavity 1 whereas for the backward configuration, the signal field is launched from Cavity 

3. The signal dynamics in the system can then be well described by the temporal coupled-mode formalism 

combined with the input-output theory. For simplicity, let us first look at the signal transport in the forward 

configuration, which obey the following set of ordinary differential equations [187], 

𝑎1̇ = (𝑖Δ1 − 𝛾1)𝑎1 − 𝑖𝜇1𝑎2 + √𝜅1𝑠𝑖𝑛,        (32) 

𝑎2̇ = (𝑖Δ2 − 𝛾2)𝑎2 − 𝑖𝜇1𝑎1 − 𝑖𝜇2𝑎3,        (33) 

𝑎3̇ = (𝑖Δ3 − 𝛾3)𝑎3 − 𝑖𝜇2𝑎2.         (34) 

The backward signal transmission can be similarly derived, except that the driving term shall be added to 

Cavity 3 instead of Cavity 1 [187], 

𝑏1̇ = (𝑖Δ1 − 𝛾1)𝑏1 − 𝑖𝜇1𝑏2, 

𝑏2̇ = (𝑖Δ2 − 𝛾2)𝑏2 − 𝑖𝜇1𝑏1 − 𝑖𝜇2𝑏3, 

𝑏3̇ = (𝑖Δ3 − 𝛾3)𝑏3 − 𝑖𝜇2𝑏2 + √𝜅2𝑠𝑖𝑛. 

To realize anti-PT symmetry, it essentially requires to have the dissipative coupling between optical modes 

in Cavity 1 and Cavity 3 by adiabatically eliminating optical modes in Cavity 2. As such, Cavity 2 is 

assumed to be highly lossy in comparison with its laser frequency detuning, i.e., Δ2 ≪ 𝛾2 . Under this 

condition, optical modes in Cavity 1 and Cavity 3 will then become anti-PT symmetrically coupled. That 

is, from Eq. (33) one has 𝑎2 ≈ −𝑖
𝜇1𝑎1+𝜇2𝑎3

𝛾2
. Substituting this result into the rest two equations (32) and 

(34) yields 

 

𝑖
𝑑

𝑑𝑡
(
𝑎1
𝑎3
) = 𝐻anti−PT (

𝑎1
𝑎3
) + (√𝜅1𝑠𝑖𝑛

0
)and  𝐻anti−PT = [

∆1 + 𝑖 (
𝜇1
2

𝛾2
+ 𝛾1) 𝑖

𝜇1𝜇2

𝛾2

𝑖
𝜇1𝜇2

𝛾2
∆3 + 𝑖 (

𝜇2
2

𝛾2
+ 𝛾3)

]. (35) 

The physics now becomes clear. In order to make the non-Hermitian Hamiltonian (35) satisfy 

{𝑃𝑇,𝐻anti−PT} = 0 , besides 𝜇1 = 𝜇2  and 𝛾1 = 𝛾3 , the detunings ∆1  and ∆3  should be equally but 

oppositely tuned in experiment, same as reported in Ref. [64]. As a result, the Hamiltonian in Eq. (35) 

coincides with the one given in (14). The two off-diagonal coupling coefficients are indeed purely 

imaginary as demanded in Eq. (14). In addition, these two non-Hermitian terms, in fact, violate the time-

reversal symmetry, thus implying nonreciprocal light transmission. It is anticipated that such a linear system 

may be beneficial to chip-based optical nonreciprocity beyond the conventional Faraday magneto-optical 

effect. Without any computational difficulty, the two eigenspectra have the form of 

𝜛± = 𝑖 (
𝜇1
2

𝛾2
+ 𝛾1) ± 𝑖√(

𝜇1
2

𝛾2
)
2

− ∆1
2.        (36) 

Depending on the signal detuning ∆1 greater or smaller than the dissipative coupling strength 
𝜇1
2

𝛾2
, the two 

eigenvalues (36) are either complex or purely imaginary. For complex eigenspectra, their real parts describe 

the signal transmission peak locations while the same imaginary parts indicate the same spectral linewidth. 
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The system is in the anti-PT phase breaking regime. On the contrary, in the anti-PT unbroken phase region, 

purely imaginary eigenspectra mean that the two signal transmission peaks coalesce but possess different 

linewidths. The anti-PT phase transition occurs at the exceptional point, ∆1=
𝜇1
2

𝛾2
. These spectral behaviors 

have been theoretically plotted in Fig. 5(b). In anti-PT symmetry, one interesting effect appearing in the 

phase unbroken case is to create flat-band structure [64]. The occurrence of the phenomenon relies on the 

destructive interference associated with different effective refractive indices created in two cavities 1 and 

3. It is this destructive interference that leads to the flat-band structure for the signal transmission, whose 

bandwidth is mainly determined by the anti-PT bandwidth in the unbroken phase region. The imperfections 

in real implementations may cause the shift of exceptional point and bring Hermitian components into the 

anti-Hermitian coupling strengths. 

 

Figure 5  (a) Schematic of the proposed tri-microcavity system for the realization of both PT and anti-PT symmetry. 

(b) The real (top) and imaginary (bottom) parts of the two supermodes (34) obtained from the transmission spectra. 

Interestingly, the proposed structure also allows the implementation of PT symmetry [4,5] in the opposite 

regime. In this case, it necessitates Cavity 2 to be of high quality in terms of its laser frequency detuning, 

i.e., Δ2 ≫ 𝛾2. Under this condition, Eq. (33) gives 𝑎2 ≈
𝜇1𝑎1+𝜇2𝑎3

∆2
. Plugging this result into Eqs. (32) and 

(34) then yields 

𝑖
𝑑

𝑑𝑡
(
𝑎1
𝑎3
) = 𝐻PT (

𝑎1
𝑎3
) + (√𝜅1𝑠𝑖𝑛

0
) , 𝐻PT = [

(∆1 −
𝜇1
2

∆2
) + 𝑖𝛾1 −

𝜇1𝜇2

∆2

−
𝜇1𝜇2

∆2
(∆3 −

𝜇2
2

∆2
) + 𝑖𝛾3

].   (37) 

By comparing the Hamiltonian in Eq. (37) with that in Eq. (27), for perfect PT symmetry it further needs 

𝛾1 = −𝛾3 in addition to ∆1= ∆3 and 𝜇1 = 𝜇2. We notice that the proposed tri-microcavity system is the 

first architecture capable of realizing both PT and anti-PT. 

Owing to their linearity, a different perspective about the relationship of perfect PT and anti-PT symmetry 

can be taken by recasting Eqs. (27) and (35) into the form of a damped harmonic oscillator driven by a 

constant force, 

𝑎̈𝑔 + (𝛾 − 𝑔)𝑎̇𝑔 + (𝜇
2 − 𝑔𝛾)𝑎𝑔 = 𝜉𝑠𝑖𝑛,        (38) 

and 

𝑎̈1 + 𝑖(Δ1 − Δ3)𝑎̇1 − (𝜂
2 + Δ1Δ3)𝑎1 = 𝜁𝑠𝑖𝑛.       (39) 
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Note that in the derivation of Eq. (39), the decays have been set to be zero for simplicity. From Eqs. (38) 

and (39), real eigenspectra for perfect PT and anti-PT symmetry correspond to have a simple harmonic 

oscillation by cancelling the damping term.  

3.4 On-chip optical nonreciprocity 

Achieving rapid progress in integrated photonic circuits demands all-optical elements for high-speed 

processing of light signals. The optical isolator is one such indispensable ingredient. Similar to electronic 

diodes, an optical isolator shall ensure the flow of light to be unidirectional and reduce problems caused by 

unwanted reflections or spurious interference effects. Owing to the time-reversal symmetry retained in 

light-matter interaction, unfortunately, light wave transport in a linear, time-invariant optical system 

complies with the Lorentz reciprocity [190]. As a result, the successful design of an optical isolator relies 

on the breach of time-reversal symmetry, as typically achievable by applying the Faraday effect in magneto-

optical media through the inclusion of anti-symmetric off-diagonal dielectric tensor elements. In spite of 

their commercial success, this well-established approach poses a severe challenge to implement in chip-

scale photonics due to fabrication complexity with the mature CMOS technique, difficulty in locally 

confining magnetic fields, and significant material losses. As such, a vibrant search for different physical 

principles to achieve on-chip optical nonreciprocity has garnered a vast impetus in recent years. Alternative 

methods, most, as yet, far from practical realizations, include indirect interband transitions, optomechanical 

interactions, Kerr nonlinearities, gain/absorption saturation, thermo-optic effect, opto-acoustic interaction, 

Raman amplification, nonlinear parametric amplification, stimulated Brillouin scattering, Bragg scattering, 

and nonlinear nonadiabatic quantum jumps. The progress with the two separate topics of chip-scale 

nonmagnetic optical isolators and PT-symmetric optics brings forward a legitimate question whether it 

would be possible to attain optical nonreciprocity with PT symmetry. This has motivated continued interest 

in the realization of chip-based optical nonreciprocity with PT symmetry.  

In the works [4,5], two groups also observed highly nonreciprocal transmission in two gain-loss-coupled 

microtoroids. As pointed out by Ref. [4], this nonreciprocal light transmission is due to the gain saturation 

nonlinearity, see Fig. 6(a). Thanks to the high Q factor, it turns out that the signal gain is very easily 

saturated when increasing the input signal and/or pump powers. With this compound system, they achieved 

switchable isolation by elevating the incident signal power from a few nanowatts to ~30 µW. Such a 

switchable isolation behavior can be also obtained, for example, by only modifying the coupling strength 

𝜅2 between fiber 2 and toroid 2 (Fig. 4(b)) but with fixed input signal/pump powers and other coupling 

strengths (𝜇, 𝜅1), as shown in Fig. 6(b). As one can see, when the coupling between fiber 2 and toroid 2 is 

weak, the isolation ratio takes a negative sign, which implies more backward transmission than forward. 

However, when the coupling is large enough, the isolation ratio becomes positive, indicating more output 

from the forward configuration. In the coupled-mode theory (27) and (28) presented in Section 3.2, the 

theoretical simulations can explain the observed phenomena well by including the gain-saturation 

nonlinearity. The use of gain-saturation nonlinearity to break the time-reversal symmetry has been further 

studied subsequently by utilizing only one active microcavity [191,192]. As these latter works have no 

relation with PT symmetry, we will not discuss them here. 

In order to create asymmetric transmission, in the work [81] by Nazari et al, they theoretically explored 

directional nonlinear Fano resonances, which emerge in a photonic circuit consisting of two nonlinear PT-

symmetric microcavities which are side-coupled to a waveguide (see the insets in Fig. 7(a)). Due to the 

interplay of Kerr-nonlinearity with the active elements, the generated nonlinear Fano resonances are 

triggered at different resonance frequencies depending on the direction of the incident light. Meantime, the 

PT-symmetric configuration provides a strong output signal and ensures the stability of the circuit against 

lasing action. By operating the system in the “weak” indirect coupling between two microcavities, the 
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authors numerically showed that the interplay of the stability (i.e. nonlasing) and PT amplification 

properties in the broken phase together with the presence of Kerr nonlinearity can lead to unidirectional 

amplified transport (Figs. 7(a) and (b)). 

 

Figure 6  (a) Measured gain 𝑔′ as a function of the dropped pump power, which clearly reveals the gain-saturation 

nonlinearity. (b) Observed switchable optical isolation in terms of the separation distance between toroid 2 and fiber 

2. The insets are typically output transmission spectra for the forward and back signal inputs. (Adapted from Ref. [4]) 

 

Figure 7  Theoretical proposal on optical isolation via PT-symmetric nonlinear Fano resonances. (a) The transmissions 

of the linear system for input waves from the gain (filled black circles) and the loss (black line) side are compared 

with the corresponding transmissions in the case of microcavities with Kerr nonlinearity. The resonance from the lossy 

side (green line) experiences a small red-shift with respect to the linear structure. In contrast, the transmittance curve 

(both line-shape and resonance position) of an incident wave entering the structure from the gain side (red dotted-

dashed line) is different. Insets: Schematic of the nonlinear PT-symmetric photonic circuit. The color coding indicates 

the intensity strength of the field inside the microcavity. (b) The transmission phases (in the interval [, ]) are 

plotted as a function of wavelength . The colors and the line-type indicate the same scattering process as the one used 
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in the upper panel. The blue arrows (and the blue dots) mark the wavelengths where the Fano resonances appear. 

(Adapted from Ref. [81]) 

Of these schemes [4,5,81], asymmetric optical transmission is mostly demonstrated with only injecting a 

light wave in either forward or backward direction but never both. This type of implementation drawbacks 

was questioned in a recent theoretical proposal by Fan group [193], where they in particular proved that 

Kerr or Kerr-type nonlinearities are incapable of providing complete isolation because of dynamic 

reciprocity. A close examination on these schemes [4,5,81] shows that the involved nonlinearities are Kerr 

or Kerr-type, rendering them subject to the inevitable dynamic reciprocity. As a result, complete isolation 

of backscattered signals looks out of reach with these schemes. Very lately, Ma et al has successfully 

managed to attain nonreciprocal PT symmetry by employing the stimulated Brillouin scattering (SBS) in 

two microtoroid resonators, where the SBS is exploited to produce direction-sensitive gain in the Brillouin 

cavity [194]. Thanks to the guided acoustic wave and accompanying momentum-conservation condition, 

SBS here enables the first nonreciprocal PT dimer where the forward and backward signal outputs with 

respect to the input pump direction exhibit distinct characteristic behaviors in spectra and powers. 

Unrestricted with the dynamic reciprocity [193], this linear system has exhibited a remarkable isolation 

performance over the existing demonstrations [195]. The breach of time-reversal symmetry further makes 

this design a versatile arena for developing formidable compact devices such as unidirectional single-mode 

Brillouin lasers and supersensitive bi-scale photonic sensors.  

The discussions on PT symmetry using optical microcavities so far are mainly limited to one EP case. 

Recently, Teimourpour et al [196] have introduced a recursive bosonic quantization technique for 

generating new classes of PT-symmetric networks that possess hidden symmetry and exhibit higher-order 

EPs. With these geometries, the authors have also investigated the nature of the eigensolutions as well as 

light transport. By following this recipe [196], a ternary PT-symmetric microring system [9] was 

experimentally implemented where supersensitive sensing enabled by higher-order EP has been 

demonstrated (see Section 4.3 below). 

4. Applications of PT-symmetric optical microcavities 

In so far, intriguing applications enabled by PT symmetry in optical microcavities have been experimentally 

demonstrated including microlaser cavities and supersensitive sensing, which will be briefly reviewed in 

this section. 

4.1 Single-mode microring lasers 

Since lasers are naturally engaged in gain and loss, they provide perhaps the most straightforward stages 

where PT symmetry finds its important applications to effectively achieve lasing operation with desired 

spectral and spatial properties. Laser cavities typically support a large number of closely spaced modes 

because of their large dimensions over one light wavelength. As a result, the outputs from such lasers are 

subject to random fluctuations and instabilities due to the mode competition for limited gain. Recently, it 

was experimentally demonstrated that by taking advantage of PT symmetry, new single-mode lasers can be 

elegantly realized with enhanced single-mode operations and greater tunability [6,7]. The essential idea is 

to operate the system with a partial PT symmetry, where almost all of the modes in the laser cavities remain 

in the PT-symmetric phase, except for a single lasing mode which experiences only amplification in the 

PT-broken phase. Utilizing this idea, two groups [6,7] simultaneously reported the realization of single-

mode microring lasers with different configurations. 

In the experiment by Hodaei et al [6], the single-mode laser was illustrated with two coupled microring 

resonators, one with gain and one with loss, see Fig. 8. In this setup (similar to Fig. 4), the threshold of PT 
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symmetry breaking depends solely on the relation between gain/loss and the coupling strength, i.e., 𝑔 = 𝜇. 

This stringent condition clearly indicates that the threshold for PT symmetry breaking signifies the 

boundary between amplifying/attenuation and bounded neutral oscillations. That is, any pair of modes, 

whose gain/loss stays below the coupling strength, will remain neutral. However, as soon as the gain/loss 

exceeds the coupling, PT symmetry will be broken and a conjugate pair of lasing/decaying modes emerges. 

The experimental results are summarized in Fig. 8. As a comparison, when there was only one active 

resonator, or both resonators were active, a similar multimode lasing spectrum ought to be observed in the 

experiment (see Figs. 8(a) and (b)). In contrast, when the two microrings were active-passive-coupled, a 

single sharp spectral peak was dominantly left, evidencing the single-mode lasing feature (see Fig. 8(c)). 

 

Figure 8  (a) Emission spectrum for one active microring resonator. (b) The corresponding intensity pattern within the 

ring as observed from scattered light. (c) Spectrum obtained from an evenly pumped pair of the same rings as (a). (d) 

The intensity pattern shows that both rings equally contribute. (e) Single-mode spectrum under PT-symmetric 

conditions with gain-loss-coupled rings. (f) Lasing exclusively occurs in the active resonator. (Adapted from Ref. [6]) 

In the other experiment by Feng et al [7], the single-mode lasing was demonstrated in a microring cavity 

modulated by a PT-symmetric grating. Different from the former experiment, in this latter one the lasing 

mode arises as a result of spatial selection instead of spectral selection. Here, the PT-synthetic microring 

resonator was designed with 500 nm thick InGaAsP multiple quantum wells on an InP substrate (Fig. 9(a)). 

The gain/loss modulation, satisfying the exact PT-symmetry operation, is periodically introduced using 

additional Cr/Ge structures on top of the InGaAsP multiple quantum wells along the azimuthal direction. 

The PT modulation is designed using bilayers on top of the gain material that introduces loss and exactly 

reverses the sign of the imaginary part of the local modal index, while remaining the same real part. Owing 

to the continuous rotational symmetry of the microring, PT symmetry breaking here is associated with a 

thresholdless feature, even if the strength of the gain-loss modulation is infinitesimal. Without the Cr/Ge 

modulation, the system typically gave a multimode lasing spectrum with different WGM azimuthal orders 

as shown in Fig. 9(b). However, with the PT index modulation, a pronounced single mode was obtained 

(Fig. 9(c)). The peak location of this single mode as well as its amplitude remains almost unchanged in 

comparison with the unmodulated case (Fig. 9(b)). 
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Figure 9  (a) Schematic of the PT microring laser consists of Cr/Ge bilayer structures arranged periodically in the 

azimuthal direction on top of the InGaAsP/InP microring resonator to mimic a gain-loss modulation. (b) Multimode 

lasing spectrum typically observed from the microring WGM laser where a number of lasing modes exhibit 

corresponding to different azimuthal orders. (c) Single-mode lasing spectra obtained from the PT microring shown in 

(a) by operating at the m = 53 and m = 55 azimuthal orders. (Adapted from Ref. [7]) 

By overcoming the limited nanocontrol over the phase of light inside the microring resonator, Miao et al 

[197] recently further realized single-mode orbital angular momentum microlaser on an InGaAsP/InP 

platform with on-top Ge and Cr/Ge modulations. Different sidewall scatters of the ring coherently radiate 

light of different phases that continuously vary from 0 to 2 over one circle along the azimuthal direction. 

These PT works provide intuitive examples for reassessing the role of optical losses presented in laser 

systems. Moreover, the peculiar behavior of complex eigenvalues around the exceptional point manifests 

itself in the threshold and spectral response of any lasing system. For instance, the exceptional points can 

lead to an effect of pump-induced suppression and revival of lasing, as experimentally demonstrated in 

coupled quantum cascaded lasers as well as in a pair of silica microcavities with Raman gain [198,199]. 

4.2 Coherent perfect laser-absorber 

Optical gain materials allow light amplification of stimulated electromagnetic radiation in cavities to 

conquer the undesirable absorption and thus give rise to the birth of lasers. The laser distinguishes itself 

from other light sources by its inherent coherence in both space and time. Interestingly, the time-reversed 

counterpart of laser emission, named coherent perfect absorber (CPA) [200], shows that incident coherent 

optical fields can be perfectly absorbed by a time-reversed optical cavity, where the gain is replaced with 

an equal amount of loss. Also, the incident fields and frequency should coincide with those of corresponding 

lasing modes with gain under time symmetry. CPA essentially exploits destructive interference to suppress 

scattering in a photonic system so that light is completely trapped in a pre-specified spatial region for perfect 

absorption (see Figs. 10(a) and (b)). The first CPA (or anti-laser) experiment was demonstrated by Wan et 

al [201], based on interferometric control of absorption to perfectly annihilate both the transmitted and 

reflected light waves.  

It seems that laser action and CPA might suppress each other as they are the respective time reversal bodies. 

Counterintuitively, the CPA-laser concept was first proposed theoretically in a PT system with 

homogeneous gain and loss embedded under a uniform index grating by Longhi in 2010 [118]. Because of 

the time-reversal property, the lasing and CPA modes are expected to share common resonant properties 

including identical frequency dependence, coherent in-phase response and fine spectral resolution. These 

predictions were confirmed experimentally by Wong et al [8] using a straight waveguide of 500 nm thick 

InGaAsP multiple quantum wells as a gain medium on an InP substrate. The alternating PT-symmetric 

gain-loss modulation was introduced by periodically placing thin absorbing Cr/Ge structures on top of the 

waveguide (see Fig. 10(c)), similar as the design for PT-symmetric single-mode microring laser. With such 

a configuration, the lasing and anti-lasing eigenmodes are degenerate at the boundary of the Brillouin zone 
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owing to the distributed Bragg feedback through the periodic gain-loss modulation. By carefully devising 

the optical transfer matrix of the two-port system using the coupled-mode theory, the CPA-laser can 

uniquely satisfy both the lasing and anti-lasing conditions, and approach the CPA-laser point. For example, 

when the incoming probe beams are –π/2 offset in phase, the Bragg resonant electric fields constructively 

interfere only in the gain regions, which leads to strongly amplified outgoing waves and a sharp peak in the 

output spectrum corresponding to the lasing mode as illustrated in Fig. 10(a). In contrast, when the incoming 

probe beams are π/2 offset in phase, the device falls in the anti-lasing mode, where the Bragg interference 

of electric fields is strongly confined only in the loss regions, causing strong absorption and a narrow dip 

in the output spectrum as shown in Fig. 10(b). Their main results are summarized in Fig. 10(d). Apparently, 

at 1,555.8 nm, with the –π/2 phase-offset probe beams, the maximum Θ  (red), manifests a distinct 

amplification peak of 15 dB, corresponding to the resonant lasing mode; while with the π/2 phase-offset 

probe beams, the minimum Θ (blue), is associated with the anti-lasing mode inducing an absorption dip 

down to –15 dB. This essentially confirms that coherent amplification and absorption is achieved in a single 

lasing cavity. The lasing and anti-lasing modes share similar resonant wavelengths, and have symmetric 

amplification and absorption magnitude, all due to the complex conjugate effective indices supported by 

the PT -broken phase. 

 

Figure 10  (a) and (b) Schematics showing the principle of the CPA–laser, where the pure gain (G)–loss (L) PT 

modulation is introduced by placing periodic loss structures on a semiconductor InGaAsP/InP gain waveguide. The 

PT modulation period is half of the effective wavelength of guided light, to meet the Bragg resonant condition. As 

such, by uniformly pumping the device, both lasing and anti-lasing eigenmodes can be attained within the same cavity 

and be selectively excited with the coherent interferometric phase control on the guided light incoming from both 

directions. (c) SEM image of the fabricated CPA–laser on the InGaAsP/InP platform. (d) The spectra output 

coefficient Θ of the CPA–laser at the lasing threshold. (Adapted from Ref. [8]) 

The demonstration provides another effective route of light manipulation and control through the interplay 

between material loss and gain by PT symmetry. The switchable lasing and anti-lasing modes offer 

alternative coherent control strategy with an appreciable amplification-to-absorption contrast. By 

considering nonlinearity effects (including saturation) associated with lasing, an investigation on 

incorporating optical nonlinearity may be worthwhile for further theoretical and experimental studies. 

4.3 Supersensitive sensing 

It is known that a degeneracy of resonant frequencies can serve as a basic element of a sensor since a small 

perturbation can lift the degeneracy and can thus result in a detectable splitting of these frequencies. This 

simple principle is usually adopted in designing modern sensor devices including microcavity sensors for 

single or few particle detection and optical gyroscopes. For Hermitian systems, a perturbation of strength 
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δ  acting on the twofold degeneracy (or the diabolic point (DP)) leads to energy shifts and splitting 

proportional to δ (Fig. 11(a)). On the contrary, for an open system, the behavior at a non-Hermitian 

degeneracy (or EP) is more drastic behaviors than at a DP as at this point in parameter space not only the 

eigenvalues but also the corresponding eigenvalues coalesce (see Section 2.3). If an EP for two coalescing 

levels is subject to the perturbation of same strength δ then the resulting energy splitting is typically 

proportional to √δ (Fig. 11(b)). Alternatively, for sufficiently small δ the splitting is enhanced if compared 

to a DP even though exactly the same perturbation is applied. In general, for an open system with an Nth-

order EP, at which N eigenvalues and the corresponding eigenvectors coalesce, the splitting induced by the 

perturbation can be proved to scale as √δ
𝑁

. Therefore, for a sufficiently small perturbation δ, the splitting 

at the EP turns out to be larger. It is precisely this basic characteristics of EPs that was first put forward by 

Wiersig for supersensitive sensor applications [202,203].  

 

Figure 11  Topology of the surface dictating the complex frequency of diabolic- (a) and exceptional-point (b) sensors, 

which intuitively shows an energy splitting of the sensors subject to a perturbation δ. For small δ, this energy splitting 

is proportional to √δ for EP sensors while δ for DP sensors. 

Very recently, this elegant idea has been experimentally tested by two groups using optical microcavities 

in different configurations: a microtorid cavity with clockwise- and anticlockwise-travelling modes [204], 

and a ternary PT-symmetric microring system with loss, gain and neutral resonators [9]. In the former, the 

square –root-perturbation sensitivity was demonstrated in a lossy microcavity by using two silica nano-tips 

as Rayleigh scatters within the mode volume to tune the coupling between clockwise- and anticlockwise-

travelling modes to steer the system to an EP. While in the latter experiment, the higher-order PT EPs were 

utilized to display the enhanced sensitivity, a cube-root dependence on induced perturbations in the 

refractive index. Since EPs are generally present in any open system, a system that is non-Hermitian but 

PT-symmetric is of our primary focus in this article. Hence, in the following we will concentrate on this 

specific application of PT-symmetrically coupled microrings. 

As schematically illustrated in Figs. 12(a1)-(a3), their experimental setup consists of two different PT 

configurations. Figure 12(a1) depicts such two PT photonic molecules. The first involves two identical 

cavities, one experiencing gain and the other an equal amount of loss. The second is composed of three 

resonators with equidistant separations: the two side ring resonators are subjected to equal amounts of gain 

and loss while the middle ring remains neutral (see Fig. 12(a2)). In addition, the rings evenly exchange 

energy with each other with a coupling strength 𝜅. Figure 12(a3) is the SEM image of the fabricated 

structure. It can be easily shown that the former supports a second-order EP, and the latter a third-order one. 

As a result, in the first case, the eigenvalues are expected to diverge according to √δ, whereas for the second 

case, the splitting would be more abrupt because it follows √δ
3

. These features have been indeed verified 

in their experiments as given in Figs. 12(b1)-(c2). Specifically, in the binary system, once a small frequency 

mismatch δ is thermally introduced to the optical oscillator around the second-order EP, the two lasing 

frequencies split according to ∆ωEP2 = √2𝛿𝜅. As theoretically expected, Fig. 12(b1) clearly exhibits a 

square-root wavelength splitting in response to changes in the power dissipated in the heater. The observed 

linear slope of ½ in the corresponding logarithmic plot affirms this behavior in the inset. Figure 12(b2) 
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gives the measured enhancement in sensitivity in terms of the induced perturbation (i.e. the shift in 

resonance frequency). As one can see, the enhancement factor increases for small δ. And in this case, the 

enhancement up to 13 times in the detuning range below 10 GHz is obtained. The sensitivity of the PT tri-

microring system was investigated by operating close to one third-order EP. To establish the PT symmetry, 

the pump light was completely withheld from one of the side rings using a knife edge. Moreover, the central 

ring is partially illuminated but the third ring is fully pumped. By adjusting the position of the knife edge 

and the pump power, the three lasing modes of the structure gradually merge into one sharp line, which 

signals the emergence of a third-order EP. Once this third-order EP was identified, the heater underneath 

the pumped cavity was activated to introduce the perturbation, which consequently causes the splitting of 

the single lasing mode into three distinct branches with approximated spectral separation ∆ωEP3 ≈

3√𝛿𝜅2
3

/2. Such a cube-root behavior of the frequency separation ∆ωEP3 was verified in Fig. 12(c1) as a 

function of δ. By plotting these experimental data on a logarithmic scale, one can directly infer a slope of 

1/3 from the inset. The sensitivity enhancement factor was plotted in Fig. 12(c2), where the sensitivity is 

magnified about 23 times when the detuning between the gain and neutral rings is below 5 GHz. 

 

Figure 12  (a1) Schematics of binary (left) and ternary (right) PT-symmetric photonic molecules formed with gain, 

loss and neutral resonators.  (a2) The PT-symmetric tri-microring system with equidistantly spaced cavities. (a3) The 

SEM image of the structure. Second-order EP improved sensitivity in the binary PT case by observed frequency 

splitting (b1) and measured enhancement factor (b2). Similarly, third-order EP boosted sensitivity in the ternary PT 

case by measuring the frequency splitting (c1) and enhancement factor (c2). (Adapted from Ref. [9]) 

In comparison with the passive system [204], the EP-sensitivity enhancement in PT systems is significant 

in the sense that due to the gain-loss balance, the supermodes in principle have much narrower linewidths 

near EP points, which thus yield a narrower spectral background. This narrow spectral background is in 
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favor of measurements in practice. By exploiting non-Hermiticity to enhance sensing capabilities, the PT-

microcavity systems pave the way towards a new class of chip-scale ultrasensitive sensors beyond the 

conventional ones. 

5. Conclusion and outlook 

As we indicated in the Introduction, this compact review is by no means a complete presentation of the 

many new results on PT-symmetric microcavity structures that have appeared and continues to appear in 

the literature. For example, in our presentation we did not discuss cavity optomechanical systems, where 

phonon lasing [82-84] and chaos [85] can be dramatically modified from conventional circumstances. 

Similarly, we did not review the effects of quantum noise in a PT system [124-127] where its presence 

could lead to significantly different physics as compared to that expected from semiclassical approaches. 

Finally, following the extension of PT symmetry to optics and photonics, there are some recent interesting 

studies in investigating whether topological interface states can exist at all in PT-symmetric photonic 

systems [66,100,130,205-207]. After two decades effort, it seems to us at this moment that PT symmetry 

in the classical settings is fairly well understood in theory. The extension of the subject to other research 

fields, such as AMO physics, condensed matter physics, and quantum optics will not only enrich the scope 

of theoretical analysis but also open doors for a variety of potential applications. Despite the rapid progress 

made in recent years, it is believed that many significant works are yet to appear. The interdisciplinary 

research will lead to discoveries within the broad class of PT symmetry. From this point of view, our paper 

is just a starting point for future research on the phenomenon. We will not be surprised as new observations 

on PT symmetry to appear.  

Acknowledgments 

We are indebted to our colleagues Xiao Y, Huang Y-P, Huang S-W, Xia F, He B, Li G-X, Zhai Y-H and 

Stokes K for fruitful collaboration and for enlightening discussions on several topics of the current review. 

The work of J W was supported by the NSF EFMA-1741693, NSF 1806519, and Kennesaw State 

University. X J and M X were supported by the National Basic Research Program of China 

(2012CB921804), the National Key Research and Development Program (2016YFA0302500), the National 

Natural Science Foundation of China (Nos. 61435007, 11574144 and 11321063), the Fundamental 

Research Funds for the Central Universities. L J acknowledges the funding support from the ARO MURI, 

ARL, AFOSR MURI, Alfred P Sloan Foundation and the David and Lucile Packard Foundation. 

References 

[1]  Vahala K J 2003 Nature 424 839-46 

[2]  Vahala K 2004 Optical Microcavities (Singapore: World Scientific Publishing) 

[3]  Heebner J, Grover R and Ibrahim T 2008 Optical Microresonators: Theory, Fabrication, and 

Applications (London: Springer-Verlag) 

[4]  Chang L, Jiang X, Hua S, Chao Y, Wen J, Jiang L, Li G, Wang G and Xiao M 2013 Nature Photon. 8 

524-9 

[5]  Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang 

L 2014 Nat. Phys. 10 394-8 

[6]  Hodaei,H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975-8 

[7]  Feng L, Wong Z J, Ma R, Wang Y and Zhang X 2014 Science 346 972-5 

[8]  Wong Z J, Xu Y-L, Kim J, O’Brien K, Wang Y, Feng L and Zhang X 2016 Nature Photon. 10 796-

801 

[9]  Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and 

Khajavikhan M 2017 Nature 548 187-91 



31 
 

[10]  Heiss W D 2012 J. Phys. A 45 444016 

[11]  Rotter I 2009 J. Phys. A 42 153001 

[12]  Rotter I and Bird J P 2015 Rep. Prog. Phys. 78 114001 

[13]  Heiss W D 2004 J. Phys. A 37, 2455-64 

[14]  Berry M V 2004 Czech. J. Phys. 54 1039-47 

[15]  Dembowski C, Dietz B, Gräf H-D, Harney H L, Heine A, Heiss W D and Richter A 2004 Phys. Rev. 

E 69 056216 

[16]  Kato T 1980 Perturbation Theory for Linear Operators (New York: Springer-Verlag) 

[17]  Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201-29 

[18]  Bender C M 2005 Contemporary Phys. 46 277-92 

[19]  Bender C M 2007 Rep. Prog. Phys. 70 947-1018 

[20]  Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2011 Int. J. Theor. Phys. 50 

1019-41 

[21]  Zyablovsky A A, Vinogradov A P, Pukkov A A, Dorofeenko A V and Lisyansky A A 2014 Physics 

– Uspekhi 57 1063-82 

[22]  Kottos T and Aceves A B 2016 Contemporary Optoelectronics Ed. Shulika O and Sukhoivanov I 

(Dordrecht: Springer) 

[23]  Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 

[24]  Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Laser Photon. 

Rev. 10 177-213 

[25]  Feng L, El-Ganainy R and Ge L 2017 Nature Photon. 11 752-62   

[26]  El-Ganainy, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 

Nat. Phys. 14 11-19 

[27]  Zhang Z, Ma D, Sheng J, Zhang Y, Zhang Y-P and Xiao M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 

072001 

[28]  Schindler J, Lin Z, Lee J M, Ramezani H, Ellis F M and Kottos T 2012 J. Phys. A 45 444029 

[29]  Mostafazadeh A 2010 Int. J. Geom. Methods Mod. Phys. 7 1191-306 

[30]  Geyer H, Heiss D and Znojil M 2006 Eds. J. Phys. A Special issue Vol. 39 No. 32  

[31]  Fring A, Jones H F and Znojil M 2008 Eds. J. Phys. A Special issue Vol. 41 No. 24 

[32]  Bender C M, Fring A, Günther U and Jones H F 2012 Eds. J. Phys. A Special issue Vol. 44 

[33]  Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243-6 

[34]  Lee T D and Wick G C 1969 Nucl. Phys. B 9 209-43 

[35]  Ruschhaupt A, Delgado F and Muga J G 2005 J. Phys. A 38 L171-6 

[36]  El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632-4 

[37]  Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 

103904 

[38]  Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 

030402 

[39]  Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and 

Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 

[40]  Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 

192-5 

[41]  Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101(R)  

[42]  Bender N, Factor S, Bodyfelt J D, Ramezani H, Christodoulides D N, Ellis F M and Kottos T 2013 

Phys. Rev. Lett. 110 234101  

[43]  Assawaworrarit S, Yu X and Fan S 2017 Nature 546 387-90  



32 
 

[44]  Bittner S, Dietz B, Günther U, Harney H L, Miski-Oglu M, Richter A and Schäfer F 2012 Phys. Rev. 

Lett. 108 024101 

[45]  Bender C M, Berntson B K, Parker D and Samuel E 2013 Am. J. Phys. 81 173-9  

[46]  Chtchelkatchev N M, Golubov A A, Baturina T I and Vinokur V M 2012 Phys. Rev. Lett. 109 150405 

[47]  Regensburger A, Bersch C, Miri M-A, Onishchukov G, Christodoulides D N and Peschel U 2012 

Nature 488 167-71 

[48]  Regensburger A, Miri M-A, Bersch C, Näger J, Onishchukov G, Christodoulides D N and Peschel U 

2013 Phys. Rev. Lett. 110 223902 

[49]  Wimmer M, Regensburger A, Miri M-A, Bersch C, Christodoulides D N and Peschel U 2015 Nat. 

Commun. 6 7782 

[50]  Feng L, Xu Y-L, Fegadolli W S, Lu M-H, Oliveira J E B, Almeida V R, Chen Y-F and Scherer A 

2013 Nat. Mater. 12 108-13  

[51]  Lawrence M, Xu N, Zhang X, Cong L, Han J, Zhang W and Zhang W 2014 Phys. Rev. Lett. 113 

093901 

[52]  Sun Y, Tan W, Li H-Q, Li J and Chen H 2014 Phys. Rev. Lett. 112 143903 

[53]  Gu Z, Zhang N, Lyu Q, Li M, Xiao S and Song Q 2016 Laser Photon. Rev. 10 588-94  

[54]  Wimmer M, Miri M-A, Christodoulides D N and Peschel U 2015 Sci. Rep. 5 17760 

[55]  Xu Y-L, Fegadolli W S, Gan L, Lu M-H, Liu X-P, Li Z-Y, Scherer A and Chen Y-F 2016 Nat. 

Commun. 7 11319 

[56]  Yan Y and Giebink N C 2014 Adv. Opt. Mater. 2 423-7 

[57]  Jia Y, Yan Y, Kesava S V, Gomez E D and Giebink N C 2015 ACS Photon. 2 319-25 

[58]  Hahn C, Choi Y, Yoon J W, Song S H, Oh C H and Berini P 2016 Nat. Commun. 7 12201 

[59]  Heinrich M, Miri M-A, Stützer S, El-Ganainy R, Nolte S, Szameit A and Christodoulides D N 2014 

Nat. Commun. 5 3698 

[60]  Fleury R, Sounas D and Alù A 2015 Nat. Commun. 6 5905 

[61]  Shi C, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y and Zhang X 2016 Nat. Commun. 7 11110  

[62]  Aurégan Y and Pagneux V 2017 Phys. Rev. Lett. 118 174301 

[63]  Zhang Z, Zhang Y, Sheng J, Yang L, Miri M-A, Christodoulides D N, He B, Zhang Y and Xiao M 

2016 Phys. Rev. Lett. 117 123601  

[64]  Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L and Xiao Y 2016 Nat. Phys. 12 1139-45 

[65]  Hodaei H, Miri M-A, Hassan A U, Hayenga W E, Heinrich M, Christodoulides D N and Khajavikhan 

M 2016 Laser Photon. Rev. 10 494-9 

[66]  Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C and 

Szameit A 2017 Nat. Mater. 16 433-8 

[67]  Benisty H et al 2011 Opt. Express 19 18004-19 

[68]  Lupu A T, Benisty H and Degiron A 2013 Opt. Express 21 21651-68 

[69]  Alaeian H and Dionne J A 2014 Phys. Rev. B 89 075136 

[70]  Huang C M, Ye F W, Kartashov Y V, Malomed B A and Chen X F 2014 Opt. Lett. 39 5443-6 

[71]  Lazarides N and Tsironis G 2013 Phys. Rev. Lett. 110 053901 

[72]  Castaldi G, Savoia S, Galdi V, Alú A and Engheta N 2013 Phys. Rev. Lett. 110 173901 

[73]  Fleury R, Sounas D L and Alú A 2014 Phys. Rev. Lett. 113 023903 

[74]  Lien J, Chen Y, Ishida N, Chen H, Hwang C and Nori F 2015 Phys. Rev. B 91 024511 

[75]  Chestnov I Yu, Demirchyan S S, Alodjants A P, Rubo Y G and Kavokin A V 2016 Sci. Rep. 6 19551 

[76]  Klaiman S, Günther U and Moiseyev N 2008 Phys. Rev. Lett. 101 080402 

[77]  Cartarius H and Wunner G 2012 Phys. Rev. A 86 013612 

[78]  Kartashov Y V, Konotop V V and Zezyulin D A 2014 Europhys. Lett. 107 50002 

[79]  Rubinstein J, Sternberg P and Ma Q 2007 Phys. Rev. Lett. 99 167003 



33 
 

[80]  Lee J M, Kottos T and Shapiro B 2015 Phys. Rev. B 91 094416 

[81]  Nazari F, Bender N, Ramezani H, Moravvej-Farshi M K, Christodoulides D N and Kottos T 2014 Opt. 

Express 22 9574-84 

[82]  Jing H, Ozdemir S K, Lü X-Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604 

[83]  Xu X-W, Liu Y, Sun C-P and Li Y 2015 Phys. Rev. A 92 013852 

[84]  He B, Yang L and Xiao M 2016 Phys. Rev. A 94 031802(R) 

[85]  Lü X-Y, Jing H, Ma J-Y and Wu Y 2015 Phys. Rev. Lett. 114 253601 

[86]  Kepesidis K V, Milburn T J, Huber J, Makris K G, Rotter S and Rabl P 2016 New J. Phys. 18 095003 

[87]  Zhu X, Ramezani H, Shi C, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042 

[88]  Nazari F, Nazari M and Morawej-Farshi M K 2011 Opt. Lett. 36 4368-70 

[89]  Li K and Kevrekidis P G 2011 Phys. Rev. E 83 066608 

[90]  Joglekar Y N, Scott D, Babbey M and Saxena A 2010 Phys. Rev. A 82 030103(R) 

[91]  Bendix O, Fleischmann R, Kottos T and Shapiro B 2009 Phys. Rev. Lett. 103 030402 

[92]  He B, Yang L, Zhang Z and Xiao M 2015 Phys. Rev. A 91 033830 

[93]  Suchkov S V, Dmitriev S V, Malomed B A and Kivshar Y S 2012 Phys. Rev. A 85 033825 

[94]  Suchkov S V, Malomed B A, Dmitriev S V and Kivshar Y S 2011 Phys. Rev. A 84 046609 

[95]  Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803 

[96]  Longhi S 2009 Phys. Rev. Lett. 103 123601 

[97]  Longhi S 2009 Phys. Rev. B 80 165125 

[98]  Longhi S 2010 Phys. Rev. A 81 022102 

[99]  Mostafazadeh A and Mehri-Dehnavi 2009 J. Phys. A 42 125303 

[100]  Schomerus H 2013 Opt. Lett. 38 1912-4 

[101]  Longhi S 2013 Phys. Rev. A 88 052102 

[102]  Horsley S A R, Artoni M and La Rocca G C 2015 Nat. Photon. 9 436-9 

[103]  Wasak T, Szańkowski P and Konotop V V 2015 Opt. Lett. 40 5291-4 

[104]  El-Ganainy R, Dadap J I and Osgood R M Jr 2015 Opt. Lett. 40 5086-9 

[105]  Zhong Q, Ahmed A, Dadap J I, Osgood R M Jr and El-Ganainy R 2016 New J. Phys. 18 125006 

[106]  Malzard S, Poli C and Schomerus H 2015 Phys. Rev. Lett. 115 200402 

[107]  Hang C, Huang G and Konotop V V 2013 Phys. Rev. Lett. 110 083604 

[108]  Sheng J, Miri M-A, Christodoulides D N and Xiao M 2013 Phys. Rev. A 88 041803(R) 

[109]  Cerjan A, Raman A and Fan S 2016 Phys. Rev. Lett. 116 203902 

[110]  Uzdin R, Mailybaev A and Moiseyev N 2011 J. Phys. A 44 435302 

[111]  Miri M-A, Regensburger A, Peschel U and Christodoulides D N 2012 Phys. Rev. A 86 023807 

[112]  Ramezni H, Kottos T, Kovanis V and Christodoulides D N 2012 Phys. Rev. A 85 013818 

[113]  Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides 2011 Phys. Rev. Lett. 106 

213901 

[114]  Longhi S 2011 J. Phys. A 44 485302 

[115]  Jones H F 2012 J. Phys. A 45 135306 

[116]  Mostafazadeh A 2013 Phys. Rev. A 87 012103 

[117]  Kulishov M, Jones H F and Kress B 2015 Opt. Express 23 18694-711 

[118]  Longhi S 2010 Phys. Rev. A 82 031801(R) 

[119]  Chong Y D, Ge L and Stone A D 2011 Phys. Rev. Lett. 106 093902 

[120]  Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402 

[121]  Longhi S 2010 Phys. Rev. Lett. 105 013903 

[122]  Ge L, Chong Y D and Stone A D 2012 Phys. Rev. A 85 023802 

[123]  Ambichl P, Makris K G, Ge L, Chong Y D, Stone A D and Rotter S 2013 Phys. Rev. X 3 041030 

[124]  Schomerus H 2010 Phys. Rev. Lett. 104 233601 



34 
 

[125]  Yoo G, Sim H-S and Schomerus H 2011 Phys. Rev. A 84 063833 

[126]  He B, Yan S-B, Wang J and Xiao M 2015 Phys. Rev. A 91 053832 

[127]  Zhang L, Agarwal G S, Schleich W P and Scully M O 2017 Phys. Rev. A 96 013827 

[128]  Szameit A, Rechtsman M C, Bahat-Treidel O and Segev M 2011 Phys. Rev. A 84 021806 

[129]  Jović D M, Denz C and Belić M R 2012 Opt. Lett. 37 4455-7 

[130]  Hu Y C and Hughes T L 2011 Phys. Rev. B 84 153101 

[131]  Muga J G, Palao J P, Navarro B and Egusquiza I L 2004 Phys. Rep. 395 357-428 

[132]  Cannata F, Dedonder J-P and Ventura A 2007 Ann. Phys. (Amsterdam) 322 397-433 

[133]  Daley A J 2014 Adv. Phys. 63 77-149 

[134]  Garcia S R, Prodan E and Putinar M 2014 J. Phys. A 47 353001 

[135]  Cao H and Wiersig J 2015 Rev. Mod. Phys. 87 61-111 

[136]  Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University Press) 

[137]  Gamow G 1928 Z. Fur. Phys. 51 204-12 

[138]  Feshbach H, Porter C E and Weisskopf V F 1954 Phys. Rev. 96 448-64 

[139]  Lindblad G 1976 Commun. Math. Phys. 48 119-30 

[140]  Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821-5 

[141]  Feshbach H 1958 Ann. Phys. 5 357-90 

[142]  Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer) 

[143]  Rivas Á and Huelga S F 2012 Open Quantum Systems: An Introduction (Berlin: Springer) 

[144]  Barton G 1963 Introduction to Advanced Field Theory (Interscience Publishers) 

[145]  Wu T T 1959 Phys. Rev. 115 1390-404 

[146]  Brower R C, Furman M A and Moshe M 1978 Phys. Lett. B 76 213-9 

[147]  Harms B, Jones S and Tan C-I 1980 Nucl. Phys. B 171 392-412 

[148]  Fisher M E 1978 Phys. Rev. Lett. 40 1610-3 

[149]  Cardy J L 1985 Phys. Rev. Lett. 54 1345-8 

[150]  Zamolodchikov A B 1991 Nucl. Phys. B 348 619-41 

[151]  Caliceti E, Graffi S and Maioli M 1980 Commun. Math. Phys. 75 51-66 

[152]  Haydock R and Kelly M J 1975 J. Phys. C: Solid State Physics 8 L290-3 

[153]  Hatano N and Nelson D R 1997 Phys. Rev. B 56 8651-73 

[154]  Wigner E 1959 Group Theory and Its Application to Quantum Mechanics of Atomic Spectra (New 

York: Academic) 

[155]  Bender C M, Berry M V and Mandilara A 2002 J. Phys. A 35 L467-71 

[156]  Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401 

[157]  Bender C M, DeKieiet M and Klevansky 2013 Philos. Trans. Royal Soc. A 371 20120523 

[158]  Bender C M 2016 J. Phys. A 49 401002 

[159]  Mostafazadeh A 2002 J. Math. Phys. 43 205-14 

[160]  Mostafazadeh A 2002 J. Math. Phys. 43 2814-6 

[161]  Mostafazadeh A 2002 J. Math. Phys. 43 3944-51 

[162]  Mostafazadeh A 2003 J. Phys. A 36 7081-92 

[163]  Mostafazadeh A 2003 J. Math. Phys. 44 974-89 

[164]  Mostafazadeh A 2004 Czech. J. Phys. 54 1125-32 

[165]  Mostafazadeh A 2015 Trends in Mathematics 145 (Switzerland: Springer International) 

[166]  Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 71 1095-1102 

[167]  Brody D C J. Phys. A 47 035305 

[168]  Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403 

[169]  Lee Y-C, Hsieh M-H, Flammia S T and Lee R-K 2014 Phys. Rev. Lett. 112 130404 

[170]  Schrödinger E 1926 Ann. Phys. (Leipzig) 79 489-527 



35 
 

[171]  Dragoman D and Dragoman M 1999 Prog. Quantum Electron. 23 131-88 

[172]  Páre C, Gagnon L and Bélanger P-A 1992 Phys. Rev A 46 4150-60 

[173]  Nienhuis G and Allen L 1993 Phys. Rev A 48 656-65 

[174]  Krivoshlykov S G ed. 1994 Quantum-Theoretical Formalism for Inhomogeneous Graded-Index 

Waveguides (Berlin: Akademie Verlag) 

[175]  Man’ko V L 1986 in: Lie Methods in Optics eds Mondragón J S and Wolf K B (Berlin: Springer) 

[176]  Dragoman D and Dragoman M 2004 Quantum-Classical Analogies (Berlin: Springer) 

[177]  Yariv A and Yeh P 2007 Photonics: Optical Electronics in Modern Communications (Oxford: 

Oxford University Press) 

[178]  Haus H A 1984 Waves and Fields in Optoelectronics (New Jersey: Prentice-Hall) 

[179]  Dzyaloshinskii I E 1991 Phys. Lett. A 155 62-4 

[180]  Canright G S and Rojo A G 1992 Phys. Rev. Lett. 68 1601-4  

[181]  Peng B, Özdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F and Yang L 

2014 Science 346 328-32 

[182]  Kippenberg T J, Spillane S M and Vahala K J 2002 Opt. Lett. 27 1669-71 

[183]  Phang S, Vukovic A, Creagh S C, Benson T M, Sewell P D and Gabriele G 2015 Opt. Express 23 

11493-507 

[184]  Hassan A U, Hodaei H, Miri M-A, Khajavikhan M and Christodoulides D N 2015 Phys. Rev. A 92 

063807 

[185]  Ge L and Tureci H E 2013 Phys. Rev. A 88 053810 

[186]  Wu J-H, Artoni M and La Rocca G C 2015 Phys. Rev. A 91 033811 

[187]  Wen J and Huang Y-P (unpublished) 

[188]  Yang F, Liu Y-C and You L 2017 Phys. Rev. A 96 053845 

[189]  Graham R and Haken H 1968 Z. Phys. 210 276-91 

[190]  Potton R J 2004 Rep. Prog. Phys. 67 717-54 

[191]  Wen J et al 2015 Photonics 2 498-508 

[192]  Jiang X et al 2016 Sci. Rep. 6 38972 

[193]  Shi Y, Yu Z and Fan S 2015 Nat. Photon. 9 388-92 

[194]  Ma J, Wen J, Hu Y, Jiang X, Jiang L and Xiao M 2018 arXiv: 1806.03169 

[195]  Hua S, Wen J, Jiang X, Hua Q, Jiang L and Xiao M 2016 Nat. Commun. 7 13657 

[196]  Teimourpour M H, El-Ganainy R, Eisfeld A, Szameit A and Christodoulides D N 2014 Phys. Rev. 

A 90 053817 

[197]  Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitsner N M and Feng L 2016 Science 353 

464-7 

[198]  Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K 

and Rotter S 2014 Nat. Commun. 5 4034 

[199]  Peng B et al 2016 Proc. Natl Acad. Sci. USA 113 6845-50 

[200]  Chong Y D, Ge L, Cao H and Stone A D 2010 Phys. Rev. Lett. 105 053901 

[201]  Wan W, Chong Y D, Ge L, Noh H, Stone A D and Cao H 2011 Science 331 889-92 

[202]  Wiersig J 2014 Phys. Rev. Lett. 112 203901 

[203]  Wiersig J 2016 Phys. Rev. A 93 033809 

[204]  Chen W, Özdemir S K, Zhao G, Wiersig J and Yang L 2017 Nature 548 192-6 

[205]  Yuce C 2015 Phys. Lett. A 379 1213-8 

[206]  Harter A K, Lee T E and Joglekar Y N 2016 Phys. Rev. A 93 062101 

[207]  Poli C, Bellec M, Kuhl U, Mortessagne F and Schomerus H 2015 Nat. Commun. 6 6710 


