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Abstract

Many societal decision problems lie in high-dimensional continuous spaces not amenable

to the voting techniques common for their discrete or single-dimensional counterparts.

These problems are typically discretized before running an election or decided upon through

negotiation by representatives. We propose a algorithm called Iterative Local Voting for

collective decision-making in this setting. In this algorithm, voters are sequentially sampled

and asked to modify a candidate solution within some local neighborhood of its current

value, as de�ned by a ball in some chosen norm, with the size of the ball shrinking at a

speci�ed rate.

We �rst prove the convergence of this algorithm under appropriate choices of neigh-

borhoods to Pareto optimal solutions with desirable fairness properties in certain natural

settings: when the voters' utilities can be expressed in terms of some form of distance from

their ideal solution, and when these utilities are additively decomposable across dimensions.

In many of these cases, we obtain convergence to the societal welfare maximizing solution.

We then describe an experiment in which we test our algorithm for the decision of the

U.S. Federal Budget on Mechanical Turk with over 2,000 workers, employing neighbor-

hoods de�ned by various L-Norm balls. We make several observations that inform future

implementations of such a procedure.

c©2019 AI Access Foundation. All rights reserved.
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1. Introduction

Methods and experiments to increase large-scale, direct citizen participation in policy-
making have recently become commonplace as an attempt to revitalize democracy. Compu-
tational and crowdsourcing techniques involving human-algorithm interaction have been a
key driver of this trend (Cabannes, 2004; McDermott, 2010; Lee, Goel, Aitamurto, & Lan-
demore, 2014; Quarfoot, von Kohorn, Slavin, Sutherland, Goldstein, & Konar, 2017). Some
of the most important collective decisions, whether in government or in business, lie in high-
dimensional, continuous spaces � e.g. budgeting, taxation brackets and rates, collectively
bargained wages and bene�ts, urban planning etc. Direct voting methods originally designed
for categorical decisions are typically infeasible for collective decision-making in such spaces.
Although there has been some theoretical progress on designing mechanisms for continuous
decision-making (Procaccia & Tennenholtz, 2009; Cheng & Zhou, 2015; Moulin, 1980), in
practice these problems are usually resolved using traditional approaches � they are either
discretized before running an election, or are decided upon through negotiation by commit-
tee, such as in a standard representative democracy (Cabannes, 2004; Shah, 2007; Sintomer,
Herzberg, & Rocke, 2008; Gilman, 2012; Goel, Krishnaswamy, Sakshuwong, & Aitamurto,
2016).

One of the main reasons for the current gap between theory and practice in this domain is
the challenge of designing practically implementable mechanisms. We desire procedures that
are simple enough to explain and use in practice, and that result in justi�able solutions while
being robust to the inevitable deviations from ideal models of user behavior and preferences.
To address this challenge, a social planner must �rst make practically reasonable assumptions
on the nature and complexity of feedback that can be elicited from people and then design
simple algorithms that operate e�ectively under these conditions. Further, while robustness
to real-world model deviations may be di�cult to prove in theory, it can be checked in
practice through experiments.

We �rst tackle the question of what type of feedback voters can give. In general, for the
types of problems we wish to solve, a voter cannot fully articulate her utility function. Even
if voters in a voting booth had the patience to state their exact utility for a reasonably large
number of points (e.g. how much they liked each candidate solution on a scale from one to
�ve), there is no reason to believe that they could do so in any consistent manner. On the
other hand, we posit that it is relatively easy for people to choose their favorite amongst
a reasonably small set of options, or articulate how they would like to locally modify a
candidate solution to better match their preferences. Such an assumption is common and
is a central motivation in social choice, especially implicit utilitarian voting (Procaccia &
Rosenschein, 2006).

In this paper, we study and experimentally test a type of algorithm for large-scale prefer-
ence aggregation that e�ectively leverages the possibility of asking voters such easy questions.
In this algorithm that we call Iterative Local Voting (ILV), voters are sequentially sam-
pled and are asked to modify a candidate solution to their favorite point within some local
neighborhood, until a stable solution is obtained (if at all). With a continuum of voters,
no one votes more than once. The algorithm designer has �exibility in deciding how these
local neighborhoods are de�ned � in this paper we focus on neighborhoods that are balls in
the Lq norm, and in particular on the cases where q = 1, 2 or ∞. (For M < ∞ dimensional
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vectors, the Lq norm ‖x‖q , q
√
∑

m |xm|q. q = 1, 2 and ∞ neighborhoods correspond to
bounds on the sum of absolute values of the changes, the sum of the square of the changes,
and the maximum change, respectively.)

More formally, consider a M -dimensional societal decision problem in X ⊂ R
M and a

population of voters V , where each voter v ∈ V has bounded utility fv(x) ∈ R, ∀x ∈ X .
Then we consider the class of algorithms described in Algorithm 1. We study the algorithm
class under two plausible models of how voters respond to query (1), which asks for the
voter's favorite point in a local region.

• Model A: One possibility is that voters exactly perform the maximization asked of
them, responding with their favorite point in the given Lq norm constraint set. In other
words, they return a point argmaxx∈{s:‖s−xt−1‖q≤rt}fvt(x). Note that by de�nition of this
movement, the algorithm is myopically incentive compatible: if a voter is the last voter
and no projections are used, then truthfully performing this movement is the dominant
strategy. In general, the mechanism is not globally incentive compatible, nor incentive
compatible with projections onto the feasible region. Simple examples of manipulations
in both instances exist.

• Model B: On the other hand, voters may not actually search within the constraint set
to �nd their favorite point inside of it. Rather, a voter v may have an idea about how
to best improve the current point and then move in that direction to the boundary of
the given constraint set. This model leads to a voter moving the current solution in the
direction of the gradient of her utility function, returning a point xt−1 + rt

gt
‖gt‖q

, for some

gt ∈ ∂fvt(xt−1). Note that ∂f(x) denotes the set of subgradients of a function f at x, i.e.
g ∈ ∂f(x) if ∀y, f(y)− f(x) ≥ gT (y − x).

ILV is directly inspired by the stochastic approximation approach to solve optimization
problems (Robbins & Monro, 1951), especially stochastic gradient descent (SGD) and the
stochastic subgradient method (SSGM). The idea is that if (a) voter preferences are drawn
from some probability distribution and (b) the response of a voter to the query (1) moves the
solution approximately in the direction of her utility gradient, then this procedure almost

implements stochastic gradient descent for minimizing negative expected utility.

The caveat is that although the procedure can potentially obtain the direction of the
gradient of the voter utilities, it cannot in general obtain any information about its magni-
tude since the movement norm is chosen by the procedure itself. However, we show that for
certain plausible utility and voter response models, the algorithm does indeed converge to a
unique point with desirable properties, including cases in which it converges to the societal
optimum.

Note that with such feedback and without any additional assumptions on voter prefer-
ences (e.g. that voter utilities are normalized to the same scale), no algorithm has any hope
of �nding a desirable solution that depends on the cardinal values of voters' utilities, e.g., the
social welfare maximizing solution (the solution that maximizes the sum of agent utilities).
This is because an algorithm that uses only ordinal information about voter preferences is
insensitive to any scaling or even monotonic transformations of those preferences.
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Algorithm 1: Iterative Local Voting (ILV)

Inputs: Initial solution x0 ∈ X , tolerance ε > 0, an integer N , initial radius r0 > 0,
termination time T , norm q for local neighborhood.

Output: Solution x.

• For t ≥ 1, sample a voter vt ∈ V at random from the population; set rt = r0/t
and elicit

x′t = argmaxx∈{s:‖s−xt−1‖q≤rt}fvt(x), (1)

and then compute xt = [x′t]X , where [·]X is a projection onto space X ; i.e. ask
the voter to move to her favorite point within constraints, and then project the
reported point onto X .

• Stop when either t = T , in which case return xT , or when
maxl,m∈{t−N,...,t} |xl − xm| ≤ ε, in which case return x = xt.

1.1 Contributions

This work is a step in extending the vast literature in social choice to continuous spaces,
taking into account the feedback that voters can actually give. Our main theoretical contri-
butions are as follows:

• Convergence for Lp normed utilities: We show that if the agents cost functions
can be expressed as the Lp distance from their ideal solution, and if agents correctly
respond to query (1), then an interesting duality emerges: for p = 1, 2 or ∞, using Lq

neighborhoods, where q = ∞, 2 and 1 respectively, results in the algorithm converging
to the unique social welfare optimizing solution. Whether such a result holds for general
(p, q), where q is the dual norm to p (i.e. 1/p+ 1/q = 1), is an open question. However,
we show that such a general result holds if, in response to query (1), the voter instead
moves the current solution in the direction of the gradient of her utility function to the
neighborhood boundary.

• Convergence for other utilities: Next, we show convergence to a unique solution in
two cases: (a) when the voter cost can be expressed as a weighted sum of L2 distances
over sub-spaces of the solution space, under L2 neighborhoods � in which case the solu-
tion is also Pareto e�cient, and (b) when the voter utility can be additively decomposed
across dimensions, under L∞ neighborhoods � in which case the algorithm converges to
the median of the ideal solutions of the voters on each dimension.

We then build a platform and run the �rst large-scale experiment in voting in multi-
dimensional continuous spaces, in a budget allocation setting. We test three variants of ILV:
with L1, L2 and L∞ neighborhoods. Our main �ndings are as follows:
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• We observe that the algorithm with L∞ neighborhoods is the only alternative that satis�es
the �rst-order concern for real-world deployability: consistent convergence to a unique
stable solution. Both L1 and L2 neighborhoods result in convergence to multiple solutions.

• The consistent convergence under L∞ neighborhoods in experiments strongly suggests the
decomposability of voter utilities for the budgeting problem. Motivated by this observa-
tion, we propose a general class of decomposable utility functions to model user behavior
for the budget allocation setting.

• We make several qualitative observations about user behavior and preferences. For in-
stance, voters have large indi�erence regions in their utilities, with potentially larger
regions in dimensions about which they care about less. Further, we show that asking
voters for their ideal budget allocations and how much they care about a given item is
fraught with UI biases and should be carefully designed.

We remark that an additional attractive feature of such a constrained local update
algorithm in a large population setting is that strategic behavior from the voters is less of a
concern: even if a single voter is strategic, her e�ect on the outcome is negligible. Further,
it may be di�cult for a voter, or even a coalition of voters, to strategically vote; one must
reason over the possible future trajectories of the algorithm over the randomness of future
voters. One coalition strategy for L2 and L∞ neighborhoods, voters trade votes on di�erent
dimensions with one another; we leave robustness to such strategies to future work.

The structure of the paper is as follows. After discussing related work in Section 2,
we present convergence results for our algorithm under di�erent settings in Section 3. In
Section 4, we introduce the budget allocation problem and describe our experimental plat-
form. In Section 5, we analyze the experiment results, and then we conclude the paper in
Section 6. The proofs of our results are in the appendix.

2. Related Work

Our work relates to various strands of literature. We note that a conference version of this
work appeared previously (Garg, Kamble, Goel, Marn, & Munagala, 2017). Furthermore,
the term �iterative voting� is also used in other works to denote unrelated methods (Meir,
Polukarov, Rosenschein, & Jennings, 2010; Airiau & Endriss, 2009).

2.1 Stochastic Subgradient Method

As discussed in the introduction, we draw motivation from the stochastic subgradient method
(SSGM), and our main proof technique is mapping our algorithm to SSGM. Beginning
with the original stochastic approximation algorithm by Robbins and Monro (Robbins &
Monro, 1951), a rich literature surrounds SSGM, for instance see (Boyd & Mutapcic, 2006;
Nemirovski, Juditsky, Lan, & Shapiro, 2009; Jiang & Walrand, 2010; Shor, 1998).

2.2 Iterative Local Voting

A version of our algorithm, with L2 norm neighborhoods, has been proposed independently
several times (Hylland & Zeckhauser, 1980; Chung & Duggan, 2018; Benjamin, He�etz, Kim-
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ball, & Szembrot, 2013) and is referred to as Normalized Gradient Ascent (NGA). Instead of

directly asking voters to perform query (1), the movement ∇fv(xt−1)
‖∇fv(xt−1)‖2

would be estimated

through population surveys to try to compute the �xed point where Ev

[

∇fv(x)
‖∇fv(x)‖2

]

= 0.

(Note that we work with distributions of voters and for strictly concave utility functions,
the movement for each voter is well-de�ned for all but a measure 0 set. Then, given a
bounded density function of voters, the expectation is well-de�ned).

This �xed point has been called Directional Equilibrium (DE) in the recent literature
(Chung & Duggan, 2018). The movement is equivalent to the movement in this work in
the case voters respond according to Model B and with L2 neighborhoods, and we show in
Section 3.3 that, in such cases, the algorithm converges to a Directional Equilibrium when it
converges. We further conjecture that even under voter Model A, if Algorithm 2 converges,
the �xed point is a Directional Equilibrium.

Several properties of the �xed point have been studied, starting from the work of Hyl-
land and Zeckhauser (1980) to more recently, the work of Chung and Duggan (2018) and
Benjamin et al. (2013): it exists under light assumptions, is Pareto e�cient, and has im-
portant connections to the Majority Core literature in economics. Showing that an iterative
algorithm akin to ours converges to such a point has been challenging; indeed, except for
special cases such as quadratic utilities fv(x) = −(x − xv)TΩ(x − xv), with society-wide
Ω that encodes the relative importance and relationships between issues (Benjamin et al.,
2013), convergence is an open question.

Our algorithm di�ers from NGA in a few crucial directions, even in the case that the
movement is equivalent: by relating our algorithm to SSGM, we are able to characterize the
step-size behavior necessary for convergence and show convergence even when each step is
made by a single voter, rather than after an estimate of the societal normalized gradient.
One can also characterize the convergence rate of the algorithm (Nemirovski et al., 2009).
Furthermore, the literature has referred to the L2 norm (or �quadratic budget�) constraint as
�central to their strategic properties� (Benjamin, He�etz, Kimball, & Lougee, 2017). In this
work, this limitation is relaxed � the same strategic property, myopic incentive compatibility,
holds for the other norm constraints for their respective cases.

Finally, because we are primarily interested in designing implementable voting mecha-
nisms, we focus on somewhat di�erent concerns than the directional equilibria literature.
However, we believe that the ideas in this work, especially the connections to the opti-
mization literature, may prove useful to work on NGA. To the best of our knowledge, no
work studies such an algorithm with other neighborhoods and under ordinal feedback, or
implements such an algorithm.

2.3 Optimization without Gradients

Because we are concerned with optimization without access to voters' utility functions or its
gradients, this work seems to be in the same vein as recent literature on convex optimization
without gradients � such as with comparisons or with pairs of function evaluations (Flaxman,
Kalai, & McMahan, 2005; Jamieson, Nowak, & Recht, 2012; Duchi, Agarwal, & Wainwright,
2012; Duchi, Jordan, Wainwright, & Wibisono, 2015). However, in the social choice or
human optimization setting, we cannot estimate each voter's utility functions or gradients
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exactly rather than up to a scaling term, and yet we would like to �nd some point with good
societal properties. This limitation prevents the use of strategies from such works.

Jamieson et al. (2012), for example, present an optimal coordinate-descent based algo-
rithm to �nd the optimum of a function for the case in which noisy comparisons are available
on that function; in our setting, such an algorithm could be used to �nd the optimal value
for each voter, but not the societal optimum because each voter can independently scale
her utility function. Duchi et al. (2012) present a distributed optimization algorithm where
each node (voter) has access to its own subgradients and a few of its neighbors, but in our
case each voter can arbitrarily scale her utility function and thus her subgradients. Similar
problems emerge in applying results from the work of Duchi et al. (2015). In our work, such
scaling does not a�ect the point to which the algorithm converges.

2.4 Participatory Budgeting

The experimental setting for this work, and a driving motivation, is Participatory Budgeting,
in which voters are asked to help create a government budget. Participatory budgeting has
been among the most successful programs of Crowdsourced Democracy, with deployments
throughout the world allocating hundreds of millions of dollars annually, and studies have
shown its civic engagement bene�ts (Cabannes, 2004; Shah, 2007; Sintomer et al., 2008;
Gilman, 2012; Goel et al., 2016; McDermott, 2010; Lee et al., 2014).

In a typical election, community members propose projects, which are then re�ned and
voted on by either their representatives or the entire community, through some discrete
aggregation scheme. In no such real-world election, to our knowledge, can the amount of
money to allocate to a project be determined in a continuous space within the voting process,
except through negotiation by representatives.

Goel et al. (2016) propose a �Knapsack Voting� mechanism in which each voter is asked
to create a valid budget under the budget constraint; the votes are then aggregated using K-
approval aggregation on each dollar in the budget, allowing for fully continuous allocation in
the space. This mechanism is strategy-proof under some voter utility models. In comparison,
our mechanism works in more general spaces and is potentially easier for voters to do.

2.5 Implicit Utilitarian Voting

With a �nite number of candidates, the problem of optimizing some societal utility function
(based on the cardinality of voter utilities) given only ordinal feedback is well-studied, with
the same motivation as in this work: ordinal feedback such as rankings and subset selections
are relatively easy for voters to provide. The focus in such work, referred to as implicit

utilitarian voting, is to minimize the distortion of the output selected by a given voting rule,
over all possible utility functions consistent with the votes, i.e. minimize the worst case error
achieved by the algorithm due to an under-determination of utility functions when only using
the provided inputs (Procaccia & Rosenschein, 2006; Caragiannis & Procaccia, 2011; Goel,
Krishnaswamy, & Munagala, 2017; Caragiannis, Nath, Procaccia, & Shah, 2017). In this
work, we show convergence of our algorithm under certain implicit utility function forms.
However, we do not characterize the maximum distortion of the resulting �xed point (or
even the convergence to any �xed point) under any utility functions consistent with the
given feedback, leaving such analysis for future work.
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Model A Model B

Spatial, (p, q) = (2, 2), (1,∞), or (∞, 1) Social Opt. (Thm 1)
Spatial, (p, q) s.t. 1/p+ 1/q = 1 ? Social Opt. (Thm 2)
Weighted Euclidean Social Opt. (Thm 1)
Decomposable Medians (Thm 2)

Table 1: Summary of convergence results

3. Convergence Analysis

In this section, we discuss the convergence properties of ILV under various utility and
behavior models. For the rest of the technical analysis, we make the following assumptions
on our model.

C1 The solution space X ⊆ R
M is non-empty, bounded, closed, and convex.

C2 Each voter v has a unique ideal solution xv ∈ X .

C3 The ideal point xv of each voter is drawn independently from a probability distribution
with a bounded and measurable density function hX .

Under this model, for a solution x ∈ X , the societal utility is given by Ev[fv(x)]. and the
social optimal (SO) solution is any x∗ ∈ argmaxx∈X Ev[fv(x)].

�Convergence� of ILV refers to the convergence of the sequence of random variables
{xt}t≥1 to some x ∈ X with probability 1, assuming that the algorithm is allowed to run
inde�nitely (this notion of convergence also implies the termination of the algorithm with
probability 1).

In the following subsections, we present several classes of utility functions for which
the algorithm converges, summarized in Table 1. We further formalize the relationship to
directional equilibria in Section 3.3.

3.1 Spatial Utilities

Here we consider spatial utility functions, where the utilities of each voters can be expressed
in the form of some kind of spatial distance from their ideal solutions. First, we consider
the following kind of utilities.

De�nition 1. Lp normed utilities. The voter utility function is Lp normed if fv(x) =
−‖x− xv‖p, ∀x ∈ X .

Under such utilities, for p = 1, 2 and ∞, restricting voters to a ball in the dual norm
leads to convergence to the societal optimum.

Theorem 1. Suppose that conditions C1, C2, and C3 are satis�ed, the voter utilities are Lp

normed, and voters respond to query (1) according to either Model A or Model B. Then,

ILV with Lq neighborhoods converges to the societal optimal point w.p. 1 when (p, q) = (2, 2),
(1,∞), or (∞, 1).
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The proof is contained in the appendix. A sketch of the proof is as follows. For the
given pairs (p, q), we show that, except in certain `bad' regions, the update rule xt+1 =
argminx[‖x − xvt‖p : ‖x − xt‖q ≤ rt] is equivalent to the stochastic subgradient method
(SSGM) update rule xt+1 = xt−rtgt, for some gt ∈ ∂Ev[‖x−xvt‖p], and that the probability
of being in a `bad' region decreases fast enough as a function of rt. We then leverage a
standard SSGM convergence result to �nish the proof. One natural question is whether the
result extends to general dual norms p, q, where 1/p + 1/q = 1. Unfortunately, the update
rule is not equivalent to SSGM in general, and we leave the convergence to the societal
optimum for general (p, q) as an open question.

Further, note that even if each voter could scale their utility function arbitrarily, the
algorithm would converge to the same point.

However, the general result does hold for general dual norms (p, q) if one assumes the
alternative behavior model.

Theorem 2. Suppose that conditions C1, C2, and C3 are satis�ed, the voter utilities are

Lp normed, and voters respond to query (1) according to Model B. Then, ILV with Lq

neighborhoods converges to the societal optimal point w.p. 1 for any p > 0 and q > 0 such

that 1/p+ 1/q = 1.

The proof is contained in the appendix. It uses the following property of Lp normed
utilities: the Lq norm of the gradient of these utilities at any point other than the ideal
point is constant. This fact, along with the voter behavior model, allows the algorithm to
implicitly capture the magnitude of the gradient of the utilities, and thus a direct mapping
to SSGM is obtained.

Note that the above result holds even if we assume that a voter moves to her ideal point
xv in case it falls within the neighborhood (since, as explained earlier, the probability of
sampling such a voter decreases fast enough).

Next, we introduce another general class of utility functions, which we call Weighted

Euclidean utilities, for which one can obtain convergence to a unique solution.

De�nition 2. Weighted Euclidean utilities. Let the solution space X be decomposable

into K di�erent sub-spaces, so that x = (x1, . . . , xK) for each x ∈ X (where
∑K

k=1 dim(xk) =
M). Suppose that the utility function of the voter v is

fv(x) = −
K
∑

k=1

wk
v

‖wv‖2
‖xk − xkv‖2.

where wv is a voter-speci�c weight vector, then the function is a Weighted Euclidean utility

function. We further assume that wv ∈ W ⊂ R
K
+ and xv are independently drawn for each

voter v from a joint probability distribution with a bounded and measurable density function,

with W nonempty, bounded, closed, and convex.

This utility function can be interpreted as follows: the decision-making problem is de-
composable into K sub-problems, and each voter v has an ideal point xkv and a weight wk

v

for each sub-problem k, so that the voter's disutility for a solution is the weighted sum of
the Euclidean distances to the ideal points in each sub-problems. Such utility functions
may emerge in facility location problems, for example, where voters have preferences on
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the locations of multiple facilities on a map. This utility form is also the one most closely
related to the existing literature on Directional Equilibria and Quadratic Voting, in which
preferences are linear. To recover the weighted linear preferences case, set K = M , with
each sub-space of dimension 1. In this case, the following holds:

Proposition 1. Suppose that conditions C1, C2, and C3 are satis�ed, the voter utilities are

Weighted Euclidean, and voters correctly respond to query (1) according to either Model A

or Model B. Then, ILV with L2 neighborhoods converges with probability 1 to the societal

optimal point.

The intuition for the result is as follows: as long as the neighborhood does not contain
the ideal point of the sampled voter, the correct response to query (1) under weighted
Euclidean preferences is to move the solution in the direction of the ideal point to the
neighborhood boundary, which, as it turns out, is the same as the direction of the gradient.
Thus with radius rt, the e�ective movement is ∇fv(xt)

||∇fv(xt)||2
. With (normalized) weighted

Euclidean utilities, ‖∇fv(xt)‖2 = 1 everywhere. As before, even if the utilities were not
normalized (i.e. not divided by ‖w‖2), the algorithm would converge to the same point, as
if utility functions were normalized.

3.2 Decomposable Utilities

Next consider the general class of decomposable utilities, motivated by the fact that the
algorithm with L∞ neighborhoods is of special interest since they are easy for humans to
understand: one can change each dimension up to a certain amount, independent of the
others.

De�nition 3. Decomposable utilities. A voter utility function is decomposable if there

exists concave functions fm
v for m ∈ {1 . . .M} such that fv(x) =

∑M
m=1 f

m
v (xm).

If the utility functions for the voters are decomposable, then we can show that our
algorithm under L∞ neighborhoods converges to the vector of medians of voters' ideal points
on each dimension. Suppose that hmX is the marginal density function of the random variable
xmv , and let x̄m be the set of medians of xmv . (By set of medians, we mean the set of points
such that, on each dimension, the mass of voters with ideal points above and below.)

Proposition 2. Suppose that conditions C1, C2, and C3 are satis�ed, the voter utilities

are decomposable, and voters respond to query (1) according to either Model A or Model

B. Then, ILV with L∞ neighborhoods converges with probability 1 to a point in the set of

medians x̄.

Although simply eliciting each agent's optimal solution and computing the vector of
median allocations on each dimension is a viable approach in the case of decomposable
utilities, deciding an optimal allocation across multiple dimensions is a more challenging
cognitive task than deciding whether one wants to increase or decrease each dimension
relative to the current solution (see Section 5.2.3 for experimental evidence). In fact, in this
case, the algorithm can be run separately for each dimension, so that each voter expresses
her preferences on only one dimension, drastically reducing the cognitive burden of decision-
making on the voter, especially in high dimensional settings like budgeting.
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3.3 Equivalence to Directional Equilibrium

As discussed in Section 2, our algorithm, with L2-norm neighborhoods, is related to an algo-
rithm, NGA, to �nd what are called Directional Equilibria in literature. Prior work mostly
focuses on the properties of the �xed point, with discussion of the proposed algorithm lim-
ited to simulations. We show that with the radius decreasing as O(1t ), the algorithm indeed
�nds directional equilibria in the following sense: if under a few conditions a trajectory of
the algorithm converges to a point, then that point is a directional equilibrium.

Theorem 3. Suppose that C1, C2, and C3 are satis�ed, and let G(x) , Ev

[

∇fv(x)
‖∇fv(x)‖2

]

.

Suppose, G(x) is uniformly continuous, L2 movement norm constraints are used, and voters

move according to Model B. If a trajectory {x}∞t=1 of the algorithm converges to x∗, i.e.

xt → x∗, then x∗ is a directional equilibrium, i.e. G(x∗) = 0.

The proof is in the appendix. It relies heavily on the continuity assumption: if a point x
is not a directional equilibrium, then the algorithm with step sizes O(1t ) will with probability
1 leave any small region surrounding x: the net drift of the voter movements is away from
the region. We note that the necessary assumptions hold for all utility functions for which
convergence holds, using the L2 norm algorithm (e.g. weighted Euclidean utilities). It is
further possible to characterize other utility functions for which the equivalence holds: with
appropriate conditions on the distribution of voters and how f di�ers among voters, the
conditions on G can be met.

We further conjecture that even under voter Model A, if Algorithm 2 converges, the �xed
point is a Directional Equilibrium. Note that as rt → 0, fv(y) can be linearly approximated
by the �rst term of the Taylor series expansion around x, for y ∈ {s : ||s−x||2 ≤ rt}. Then,
to maximize fv(y) in the region, if the region does not contain xv voter v chooses y∗ s.t.

y∗ − x ≈ rt
∇f(x)

||∇f(x)||2
, i.e., the voter moves the solution approximately in the direction of her

gradient to the neighborhood boundary.

A single step of our algorithm with L2 neighborhoods is similar to Quadratic Voting (Lal-
ley & Weyl, 2015; Tideman & Plassmann, 2016) for the same reason. Independently of our
work, Benjamin et al. (2017) formalize the relationship between the Normalized Gradient
Ascent mechanism and Quadratic Voting.

4. Experiments with Budgets

We built a voting platform and ran a large scale experiment, along with several exten-
sive pilots, on Amazon Mechanical Turk (https://www.mturk.com). Over 4,000 workers
participating in total counting pilots and the �nal experiment, with over 2,000 workers par-
ticipating in the �nal experiment. The design challenges we faced and voter feedback we
received provide important lessons for deploying such systems in a real-world setting.

First we present a theoretical model for our setting. We consider a budget allocation
problem on M items, where the items may include both expenditures and incomes. One
possibility is to de�ne X as the space of feasible allocations, such as those below a spending
limit, and to run the algorithm as de�ned, with projections. However, in such cases, it may
be di�cult to theorize about how voters behave; e.g. if voters knew their answers would be
projected onto a budget balanced set, they may respond di�erently.
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Rather, we consider an unconstrained budget allocation problem, one in which a voter's
utility includes a term for the budget de�cit. Let E ⊆ {1 . . .M}, I = {1 . . .M} \ E be
the expenditure and income items, respectively. Then the general budget utility function is
fv(x) = gv(x)− d(

∑

e∈E x
e −

∑

i∈I x
i), where d is an increasing function on the de�cit.

For example, suppose a voter's disutility was proportional to the square of the budget
de�cit (she especially dislikes large budget de�cits); then, this term adds complex depen-
dencies between the budget items. In general, nothing is known about convergence of Algo-
rithm 1 with such utilities, as the de�cit term may add complex dependencies between the
dimensions. However, if the voter utility functions are decomposable across the dimensions
and L∞ neighborhoods used, then the results of Section 3.2 can be applied. We propose
the following class of decomposable utility functions for the budgeting problem, achieved
by assuming that the cost for the de�cit is linear, and call the class �decomposable with a
linear cost for de�cit," or DLCD.

De�nition 4. Let fv(x) be DLCD if

fv(x) =
M
∑

m=1

fm
v (xm)− wv

(

∑

e∈E

xe −
∑

i∈I

xi

)

,

where fm
v is a concave function for each m and wv ∈ R+.

In the experiments discussed below in the budget setting, ILV consistently and robustly
converges with L∞ norm neighborhoods. Further, it approximately converges to the medians
of the optimal solutions (which are elicited independently), as theorized in Section 3.2. Such
a convergence pattern suggests the validity of the DLCD model, though we do not formally
analyze this claim.

4.1 Experimental Setup

We asked voters to vote on the U.S. Federal Budget across several of its major categories:
National Defense; Healthcare; Transportation, Science, & Education; and Individual Income
Tax (Note that the US Federal Government cannot just decide to set tax receipts to some
value. We asked workers to assume tax rates would be increased or decreased at proportional
rates in hopes of a�ecting receipts.)

This setting was deemed the most likely to be meaningful to the largest cross-section
of workers and to yield a diversity of opinion, and we consider budgets a prime application
area in general. The speci�c categories were chosen because they make up a substantial
portion of the budget and are among the most-discussed items in American politics. We
make no normative claims about running a vote in this setting in reality, and Participatory
Budgeting has historically been more successful at a local level.

One major concern was that with no way to validate that a worker actually performed
the task (since no or little movement is a valid response if the solution presented to the
worker was near her ideal budget), we may not receive high-quality responses. This issue is
especially important in our setting because a worker's actions in�uence the initial solution
future workers see. We thus restricted the experiment to workers with a high approval rate
and who have completed over 500 tasks on Mechanical Turk (MTurk). Further, we o�ered
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a bonus to workers for justifying their movements well, and more than 80% of workers
quali�ed, suggesting that we also received high-quality movements. The experiment was
restricted to Americans to best ensure familiarity with the setting. Turkprime (https:
//www.turkprime.com) was used to manage postings and payment.

4.2 Experimental Parameters

Our large scale experiment included 2,000 workers and ran over a week in real-time. Partic-
ipants of any of the pilots were excluded. We tested the L1,L2, and L∞ mechanisms, along
with a �full elicitation� mechanism in which workers reported their ideal values for each item,
and a �weight� in [0, 10] indicating how much they cared about the actual spending in that
item being close to their stated value.

To test repeatability of convergence, each of the constrained mechanisms had three
copies, given to three separate groups of people. Each group consisted of two sets with
di�erent starting points, with each worker being asked to vote in each set in her assigned
group. Each worker only participates as part of one group, and cannot vote multiple times.

We used a total of three di�erent sets of starting points across the three groups, such
that each group shared one set of starting points with each of the other two groups. This
setup allowed testing for repeatability across di�erent starting points and observing each
worker's behavior at two points. Workers in one group in each constrained mechanism
type were also asked to do the full elicitation after submitting their movements for the
constrained mechanism, and such workers were paid extra. These copies, along with the full
elicitation, resulted in 10 di�erent mechanism instances to which workers could be allocated,
each completed by about 200 workers.

To update the current point, we waited for 10 submissions and then updated the point
to their average. This averaging explains the step-like structure in the convergence plots in
the next section. The radius was decreased approximately every 60 submissions, rt u

r0
dt/60e .

The averaging and slow radius decay rate were implemented in response to observing in the
pilots that the initial few voters with a large radius had a disproportionately high impact, as
there were not enough subsequent voters to recover from large initial movements away from
an eventual �xed point (though in theory this would not be a problem given enough voters).
We note that the convergence results for stochastic subgradient methods trivially extend to
cover these modi�cations: the average movement over a batch of submissions starting at the
same point is still in expectation a subgradient, and the stepped radius decrease still meets
the conditions for valid step-sizes.

4.3 User Experience

As workers arrived, they were randomly assigned to a mechanism instance. They had a
roughly equal probability of being assigned to each instance, with slight deviations in case
an instance was �busy� (another user was currently doing the potential 10th submission
before an update of the instance's current point) and to keep the number of workers in each
instance balanced. Upon starting, workers were shown mechanism instructions. We showed
the instructions on a separate page so as to be able to separately measure the time it takes
to read & understand a given mechanism, and the time it takes to do it, but we repeated
the instructions on the actual mechanism page as well for reference.
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We can test whether the �nal points for each trajectory are stable by checking the net
movement in a window, normalized by each voter's radius, i.e. 1

N

∑t
s=t−N

xs−xs−1

rs
, for some

N . If voters in a window are canceling each other's movements, then this value would go
to 0, and the algorithm would be stable even if the radius does not decrease. The notion
is thus robust to apparent convergence just due to decreasing radii. The net movement
normalized in a sliding window of 30 voters, for each dimension and mechanism, is shown in
Figure 3. It seems to almost die down for almost all mechanisms and budget items, except
for a few cases which do not change the result. We conclude it likely that the mechanisms
have settled into equilibria which are unlikely to change given more voters.

5.2 Understanding Voter Behavior

A mechanism's practical impact depends on more than whether it consistently converges,
however. We now turn our attention to understanding how voters behave under each mech-
anism and whether we can learn anything about their utility functions from that behavior.
We �nd that voters understood the mechanisms but that their behaviors suggest large in-
di�erence regions, and that the full elicitation scheme is susceptible to biases that can skew
the results.

5.2.1 Voter understanding of mechanisms

One important question is whether, given very little instruction on how to behave, voters
understand the mechanisms and act approximately optimally under their (unknown to us)
utility function. This section shows that the voters behavior follows what one would expect
in one important respect: how much of one's movement budget the voter used on each
dimension, given the constraint type.

Regardless of the exact form of the utility function, one would expect that, in the L1

constrained mechanism, a voter would use most of her movement credits in the dimension
about which she cares most. In fact, in either the Weighted Euclidean preferences case
(and with `sub-space' being a single dimension) or with a small radius with L1 constraints,
a voter would move only on one dimension. With L2 constraints, one would expect a
voter to apportion her movement more equally because she pays an increasing marginal
cost to move more in one dimension (people were explicitly informed of this consequence in
the instructions). Under the Weighted Euclidean preferences model with L2 constraints, a
voter would move in each dimension proportional to her weight in that dimension. Finally,
with L∞ constraints, a voter would move, in all dimensions in which she is not indi�erent,
to her favorite point in the neighborhood for that dimension (most likely an endpoint),
independently of other dimensions. One would thus expect a more equal distribution of
movements.

Figure 4 shows the average movement (as a fraction of the voter's total movement)
by each voter for the dimension she moved most, second, third, and fourth, respectively,
for each constrained mechanism. We reserve discussion of the full elicitation weights for
Section 5.2.4. The movement patterns indicate that voters understood the constraints and
moved accordingly � with more equal movements across dimensions in L2 than in L1, and
more equal movements still in L∞. We dig deeper into user utility functions next, but can
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5.2.4 UI biases

We now turn our attention to the question of how workers behaved under the full elicitation
mechanism and highlight some potential problems that may a�ect results in real deploy-
ments. Figures 7 and 8 show the histogram of values and weights, respectively, elicited from
all workers who did the full elicitation mechanism. Note that in the histogram of values, in
every dimension, the largest peak is at the slider's default value (at the 2016 estimated bud-
get), and the histograms seem to undergo a phase shift at that peak, suggesting that voters
are strongly anchored at the slider's starting value. This anchoring could systematically bias
the medians of the elicited values.

A similar e�ect occurs in eliciting voter weights on each dimension. Observe that in
Figure 4 the full elicitation weights appear far more balanced than the weights implied by
any of the mechanisms (for the full elicitation mechanism, the plot shows the average weight
over the sum of the weights for each voter). From the histogram of full elicitation weights,
however, we see that this result is a consequence of voters rarely moving a dimension's weight
down from the default of 5, but rather moving others up.

One potential cause of this behavior is that voters might think that putting high weights
on each dimension would mean their opinions would count more, whereas in any aggregation
one would either ignore the weights (calculate the unweighted median) or normalize the
weights before aggregating. In future work, one potential �x could be to add a �normalize�
button for the weights, which would re-normalize the weights, or to automatically normalize
the weights as voters move the sliders.

These patterns demonstrate the di�culty in eliciting utilities from voters directly; even
asking voters how much they care about a particular budget item is extremely susceptible
to the user interface design. Though such anchoring to the slider default undoubtedly
also occurs in the L∞ constrained mechanism, it would only slow the rate of convergence,
assuming the anchoring a�ects di�erent voters similarly. These biases can potentially be
overcome by changing the UI design, such as by providing no default value through sliders.
Such design choices must be carefully thought through before deploying real systems, as
they can have serious consequences.

6. Conclusion

We evaluate a natural class of iterative algorithms for collective decision-making in continu-
ous spaces that makes practically reasonable assumptions on the nature of human feedback.
We �rst introduce several cases in which the algorithm converges to the societal optimum
point, and others in which the algorithm converges to other interesting solutions. We then
experimentally test such algorithms in the �rst work to deploy such a scheme. Our �nd-
ings are signi�cant: even with theoretical backing, two variants fail the basic test of being
able to give a consistent decision across multiple trials with the same set of voters. On the
other hand, a variant that uses L∞ neighborhoods consistently leads to convergence to the
same solution, which has attractive properties under a likely model for voter preferences
suggested by this convergence. We also make certain observations about other properties
of user preferences � most saliently, that they have large indi�erences on dimensions about
which they care less.

337





Iterative Local Voting for Collective Decision-making in Continuous Spaces

Acknowledgments

Supported by NSF grant nos. CCF-1408784, CCF-1637397, CCF-1637418, and IIS-1447554,
ONR grant no. N00014-15-1-2786, ARO grant no. W911NF-14-1-0526, and the NSF Grad-
uate Research Fellowship under grant no. DGE-114747. This work bene�ted from many
helpful discussions with Oliver Hinder.

Appendix A. Mechanical Turk Experiment Additional Information

In this section, we provide additional information regarding our Amazon Mechanical Turk
experiment, including a walk-through of the user experience. Furthermore, we have a live
demo accessible at: http://gargnikhil.com/projectdetails/IterativeLocalVoting/.
This demo will remain online for the foreseeable future.

Figures 9 through 13 show screenshots of the experiment. We now walkthrough the experi-
ment:

• Figure 9 � Welcome page. Arriving from Amazon Mechanical Turk, the workers read
an introduction and the consent agreement.

• Figure 10 � Instructions (shown are L2 instructions). The workers read the instruc-
tions, which are also provided on the mechanism page. There is a 5 minute limit for
this page.

• Figures 11, 13 � Mechanism page for L2 and Full Elicitation, respectively. For the
former, workers are asked to move to their favorite point within a constraint set, for 2
di�erent budget points. The �Current Credit Allocation� encodes the constraint set �
as workers move the budget bars, it shows how much of their movement budget they
have spent, and on which items. The other constrained movement mechanisms are
similar. For the Full Elicitation mechanism, voters are simply asked to indicate their
favorite budget point and weights. The instructions are repeated on the mechanism
page as well at the top. There is a 10 minute limit for this page.

• Second mechanism, 30% of workers. Some workers were asked to do both one of
the L1,L2, or L∞, and the Full Elicitation mechanism. For these workers, the Full
Elicitation mechanism shows up after the constrained mechanism.

• Figure 12 � Feedback page. Finally, workers are asked to provide feedback, after which
they are shown a code and return to the Mechanical Turk website.

Appendix B. Indi�erence Regions Additional Information

We now present some additional data for the claim in Section 5.2.2, that voters have large
indi�erence regions on the space. In particular, Figures 14 and 15 reproduce Figure 5
but with workers who provided explanations longer (and shorter) than the median response,
respectively. This split can (roughly) correspond to workers who may have answered more or
less sincerely to the budgeting question. We �nd that the response distribution, as measured

339











Garg, Kamble, Goel, Marn, & Munagala

Theorem 5. (Jiang & Walrand, 2010) Consider the above update rule. If

f(·) has a unique minimizer x∗ ∈ X
rt > 0,

∑

t

rt = ∞,
∑

t

r2t < ∞

∃C1 ∈ R < ∞ s.t. ‖∂f(x)‖2 ≤ C1, ∀x ∈ X
∃C2 ∈ R < ∞ s.t. Et[‖zt‖2] ≤ C2, ∀ t
∃C3 ∈ R < ∞ s.t. ‖bt‖2 ≤ C3, ∀ t
∑

t

rt‖bt‖ < ∞ w.p. 1

Then xt → x∗ w.p. 1 as t → ∞.

Note: Jiang and Walrand (2010) prove the result for gradients, though the same proof
follows for subgradients. Only the inequality [x∗ − xt]

T gt ≤ f(x∗) − f(xt) for gradient gt
at iteration t is used, which holds for subgradients. Boyd and Mutapcic (2006) provide
a general discussion of subgradient methods, along with similar results. Shor (1998), in
Theorem 46, provide a convergence proof for the stochastic subgradient method without
projections and the extra noise terms.

C.2 Mapping ILV to SSGM

As described in Section 3, suppose that hX is the induced probability distribution on the
ideal values of the voters. In the following discussion, we will refer to voters and their ideal
solutions interchangeably.

Next, we restate ILV without the stopping condition so that it looks like the stochastic
subgradient method. Consider Algorithm 2.

Algorithm 2: ILV

Start at some x0 ∈ X . For t ≥ 1,

• Sample voter vt ∈ V from hV .

• Compute xt = [xt−1 − rtg̃vt(xt)]X , where rt =
r0
t and rtg̃vt(xt) is

movement given by voter vt.

We want to minimize the societal cost, f̄(x) = E[fv(x)]. From Theorem 4, it imme-
diately follows that if each voter v articulates a subgradient of her utility function for all
x, i.e. g̃v(x) ∈ ∂fv(x), then from Theorem 5, we can conclude that the algorithm con-
verges. However, users may not be able to articulate such a subgradient. Instead, when
the voters respond correctly to query (1) (i.e. move to their favorite point in the given Lq

neighborhood), we have

g̃vt(xt) =
xt − argminx[fvt(x) : ‖x− xt‖q ≤ rt]

rt
(2)

Furthermore, for all the proofs, we assume the following.
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A. The solution space X ⊂ R
M is non-empty, bounded, closed, and convex.

B. Each voter v has a unique ideal solution xv ∈ X .

C. The ideal point xv of each voter is drawn independently from a probability distribution
with a bounded and measurable density function hX on M dimensions:
there exists C s.t. ∀x we have hX (x) ≤ C. This assumption allows us to bound the
probability of errors that occur in small regions of the space.

C.3 Proof of Theorem 1

Let the disutility, or cost to voter v ∈ V be fv(x) = ‖x − xv‖p for all x ∈ X . We use the
following technical lemma:

Lemma 1. For q ∈ {1, 2,∞}, there exists K2 ∈ R
+ s.t. ‖g̃v(x)− gt‖2 ≤ K2, ∀ gt ∈ ∂fv(x)

for any v and x.

The lemma bounds the error in the movement direction from the gradient direction, by
noting that both the movement direction and the gradient direction have bounded norms.

We also need the following lemma, which is proved separately for each case in the following
sections.

Lemma 2. Suppose that fv(x) , ‖xv − x‖p and de�ne the function

At , I{g̃vt(xt) /∈ ∂fvt(xt)},

where g̃vt(xt) is as de�ned in (2). Then there exists C ∈ R s.t. ∀ n, P(At = 1|Ft) ≤ Crt,
when (p = 2, q = 2), (p = 1, q = ∞), or (p = ∞, q = 1).

The lemma can be interpreted as follows: At indicates a `bad' event, when a voter may not
be providing a true subgradient of her utility function. However, the probability of the event
occurring vanishes with rt, which, as we will see below, is the right rate for the algorithm
to converge.

Theorem 1. Suppose that conditions C1, C2, and C3 are satis�ed, the voter utilities are Lp

normed, and voters respond to query (1) according to either Model A or Model B. Then,

ILV with Lq neighborhoods converges to the societal optimal point w.p. 1 when (p, q) = (2, 2),
(1,∞), or (∞, 1).

Proof. We will show that Algorithm 2 meets the conditions in Theorem 5. Let bt ,

Et[g̃vt(xt)] − ḡt and zt , g̃vt(xt) − Et[g̃t], for some ḡt ∈ ∂f̄(xt). Then, g̃vt(xt) can be
written as g̃vt(xt) = ḡt + zt + bt. We show that bt, zt meet the conditions in the theorem,
and so the algorithm converges.
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Let At be the indicator function described in Lemma 2. Then, for some ḡt ∈ ∂f̄(xt),

bt = Et[g̃vt(xt)]− ḡt

= Et[g̃vt(xt)]− Et[gt] Theorem 4, i.i.d sampling of v

= P(At = 1|Ft)(Et[g̃vt(xt)|At = 1]− Et[gt|At = 1])

+ P(At = 0|Ft)(Et[g̃vt(xt)|At = 0]− Et[gt|At = 0])

= P(At = 1|Ft)(Et[g̃vt(xt)|At = 1]− Et[gt|At = 1])

≤ Crt(Et[g̃vt(xt)|At = 1]− Et[gt|At = 1]). Lemma 2

Combining with Lemma 1, and the fact that rt = r0/t, we have

∑

rt‖bt‖ ≤ ∞ and there exists C1 ∈ R < ∞ s.t. ‖bt‖2 ≤ C1, ∀ t.

Finally, note that ‖zt‖ , ‖g̃vt(xt)− Et[g̃vt(xt)]‖ is bounded for each t because the ‖g̃vt(xt)‖
is bounded as de�ned. Thus, all the conditions in Theorem 5 are met for both bt and zt,
and the algorithm converges.

C.4 Proof of Theorem 2

Instead of moving to their favorite point on the ball, voters now instead move in the direction
of the gradient of their utility function to the boundary of the given neighborhood. In this
case, we have:

g̃vt(xt) =
gvt

‖gvt‖q
; for gvt ∈ ∂fvt(xt). (1)

The key to the proof is the following observation, that the q norm of the gradient of
the p norm, except at the ideal points on each dimension, is constant. This observation is
formalized in the following lemma:

Lemma 3. ∀ (p, q) s.t. p > 0, q > 0, and 1/p + 1/q = 1, ‖∇‖x − xv‖p‖q = 1, ∀x s.t.

xm 6= xmv for any m.

Theorem 2. Suppose that conditions C1, C2, and C3 are satis�ed, the voter utilities are

Lp normed, and voters respond to query (1) according to Model B. Then, ILV with Lq

neighborhoods converges to the societal optimal point w.p. 1 for any p > 0 and q > 0 such

that 1/p+ 1/q = 1.

Proof. Since the probability of picking a voter v such that xmt = xmv for some dimension m
is 0, we have g̃vt(xt) = gvt for gvt = ∇fvt(xt). Thus we obtain the gradient exactly, and
hence Theorem 5 applies with bt = 0 for all t.

C.5 Proof of Propositions

We now turn our attention to the case of Weighted Euclidean utilities and show that Al-
gorithm 2 converges to the societal optimum. The analogue to Lemma 2 for this case is
(proved in the following subsection):
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Lemma 4. Suppose that fv(x) ,
∑K

k=1
wk

v

‖wv‖2
‖xk − xkv‖2, and de�ne the function

At , I{g̃vt(xt) /∈ ∂fvt(xt)},

where g̃vt(xt) is as de�ned in (2) for q = 2. Then there exists C ∈ R s.t. ∀n, P(At =
1|Ft) ≤ Crt.

Proposition 1. Suppose that conditions C1, C2, and C3 are satis�ed, the voter utilities are

Weighted Euclidean, and voters correctly respond to query (1) according to either Model A

or Model B. Then, ILV with L2 neighborhoods converges with probability 1 to the societal

optimal point.

Proof. The proof is then similar to that of Theorem 1, and the algorithm converges to

x∗ = argminE
[∑K

k=1
wk

v‖x
k−xk

v‖2
‖wv‖2

]

.

Now, we sketch the proof for fully decomposable utility functions and L∞ neighborhoods.

Proposition 2. Suppose that conditions C1, C2, and C3 are satis�ed, the voter utilities

are decomposable, and voters respond to query (1) according to either Model A or Model

B. Then, ILV with L∞ neighborhoods converges with probability 1 to a point in the set of

medians x̄.

Proof. Consider each dimension separately. If xmt−1 < xmv , then the sampled voter increases
xmt−1 by rt as long as xmt−1 + rt ≤ xmv . On the other hand if xmt−1 > xmv , then the sampled
voter decreases xmt−1 by rt as long as xmt−1 − rt ≥ xmv . Thus except for when a voter's ideal
solution is too close to the current point, the algorithm can be seen as performing SSGM
on each dimension separately as if the utility function was L1 (the absolute value) on each
dimension. Thus a proof akin to that of Theorem 1 with p = 1, q = ∞ holds.

C.6 Proof of Theorem 3

We now show that the algorithm �nds directional equilibria in the following sense: if under
a few conditions a trajectory of the algorithm converges to a point, then that point is a
directional equilibrium.

Theorem 3. Suppose that C1, C2, and C3 are satis�ed, and let G(x) , Ev

[

∇fv(x)
‖∇fv(x)‖2

]

.

Suppose, G(x) is uniformly continuous, L2 movement norm constraints are used, and voters

move according to Model B. If a trajectory {x}∞t=1 of the algorithm converges to x∗, i.e.

xt → x∗, then x∗ is a directional equilibrium, i.e. G(x∗) = 0.

Proof. Suppose x∗ is not a directional equilibrium, i.e. ∃ε > 0 s.t. ‖G(x∗)‖2 = ε. Consider a
δ-ball around x∗, Bδ , {x : ‖x∗ − x‖2 < δ}, with δ, ε2 > 0 chosen such that ∃m ∈ {1 . . .M}
s.t. ∀x ∈ Bδ, sign(Gm(x)) = sign(Gm(x∗)) and |Gm(x)| > ε2, i.e. the gradient in the mth
dimension does not change sign and has magnitude bounded below. Such a δ, ε2 exists by
the continuity assumption (if x∗ is not a directional equilibrium, at least 1 dimension of
G(x∗) is non-zero and thus one can construct a ball around x∗ such that G(x), x ∈ Bδ in
that dimension satis�es the conditions).
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Now, one can show that the probability of leaving neighborhoods around x∗ goes to 1:
∀t > 0, 0 < δ2 < δ, w.p. 1 ∃τ ≥ t s.t. ‖xτ − x∗‖2 > δ2.
Suppose xt ∈ Bδ2 (otherwise τ = t satis�es), rk = 1

k .

xτ = xt +

τ
∑

k=t

∆xk ∆xk , −rk
∇fvk(xk)

‖∇fvk(xk)‖2

‖xτ − x∗‖2 = ‖xt − x∗ +

τ
∑

k=t

∆xk‖2

≥ ‖
τ
∑

k=t

∆xk‖2 − ‖xt − x∗‖2

≥ ‖
τ
∑

k=t

∆xk‖2 − δ2

‖
τ
∑

k=t

∆xk‖2 ≥ |
τ
∑

k=t

∆xk,m| defn of ‖ · ‖2

= |Ev

[

τ
∑

k=t

∆xk,m

]

+

τ
∑

k=t

∆xk,m − Ev

[

τ
∑

k=t

∆xk,m

]

|

≥ |Ev

[

τ
∑

k=t

∆xk,m

]

| − |
τ
∑

k=t

∆xk,m − Ev

[

τ
∑

k=t

∆xk,m

]

|

By Hoe�ding's inequality,

Pr

(

τ
∑

k=t

∆xk,m − Ev

[

τ
∑

k=t

∆xk,m

]

≥ ε3

)

≤ exp

[

−2(τ − t)2ε23
2
∑τ

k=t
1
k

]

→ 0 as τ → ∞

Furthermore, by the continuity assumption,

|Ev

[

τ
∑

k=t

∆xk,m

]

| , |
τ
∑

k=t

rkGm(xk)|

→ ∞ as τ → ∞ while xk ∈ Bδ2

Thus, Pr(‖xτ − x∗‖2 > δ2) → 1 as τ → ∞. Thus, if an in�nite trajectory converges to x∗,
then w.p. 1, then x∗ is a directional equilibrium.

C.7 Proofs of Lemmas

Lemma 1 For q ∈ {1, 2,∞}, ∃K2 ∈ R
+ < ∞ s.t. ‖g̃vt − gt‖2 ≤ K2, ∀ gt ∈ ∂fvt(xt), vt, xt.
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Proof.

‖g̃vt(xt)− gt‖2 ≤ ‖g̃vt(xt)‖2 + ‖gt‖2

=
‖xt − argminx[‖x− xvt‖p : ‖x− xt‖q ≤ rt]‖2

rt
+ ‖gt‖2

≤ K1 + ‖gt‖2
≤ K2

for some K1,K2 ∈ R
+. The second inequality follows from the fact that for �nite M-

dimensional vector spaces, ‖y‖2 ≤ ‖y‖1 and ‖y‖2 ≤
√
M‖y‖∞. The third follows from the

norm of the subgradients of the p norm being bounded.

Lemma 2, case (p = 2, q = 2).

Proof. Remember that At , I{g̃vt(xt) /∈ ∂fvt(xt)}. Let Bt = I{‖xvt − xt‖2 ≤ rt}. We show
that A) Bt = 0 =⇒ At = 0, and B) ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt. Then, ∃C ∈ R s.t.
P(At = 1|Ft) ≤ Crt.

Part A, Bt = 0 =⇒ g̃vt(xt) = gt, for some gt ∈ ∂fvt(xt):
First, note that

∂fvt(x) = ∂‖x− xvt‖2

=

{

{ x−xvt

‖xvt−x‖2
} x 6= xvt

{g : ‖g‖2 ≤ 1} x = xvt

If ‖xvt − xt‖2 > rt , then

argmin
x

[‖x− xvt‖2 : ‖x− xt‖2 ≤ rt] = xt + rt
xvt − xt

‖xvt − xt‖2

Then,

g̃vt(xt) =
xt − argminx[‖x− xvt‖2 : ‖x− xt‖2 ≤ rt]

rt
De�nition

=
xt −

(

xt + rt
xvt−xt

‖xvt−xt‖2

)

rt

=
xt − xvt

‖xvt − xt‖2
∈ ∂fvt(xt)
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Part B, ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt:

P(Bt = 1|Ft) = P(‖xvt − xt‖2 ≤ rt|Ft)

=

∫

x∈{x:‖x−xt‖2≤rt}
hX|Ft

(x)dx

=

∫

x∈{x:‖x−xt‖2≤rt}
hX (x)dx v drawn independent of history

≤ Cr2t bounded hX

≤ Crt rt ≤ 1 eventually

for some C ∈ R < ∞. Note that C depends on the volume of a sphere in M dimensions.

Lemma 2, case (p = 1, q = ∞).

Proof. Let hvt(xt) ,
[

sign(x1vt − x1t ), . . . , sign(xmvt − xmt ), . . . , sign(xMvt − xMt )
]T

Let Bt = I{∃m, |xmvt − xmt | ≤ rt}. We show the the same two parts as in the above proof.

Part A, Bt = 0 =⇒ g̃vt(xt) = gt, for some gt ∈ ∂fvt(xt):
First, note that the subgradients are

∂fvt(x) = ∂‖x− xvt‖1
= {g : ‖g‖∞ ≤ 1, gT (x− xvt) = ‖x− xvt‖1}

If ∀m, |xmvt − xmt | > rt, then

argmin
x

[‖x− xvt‖1 : ‖x− xt‖∞ ≤ rt] = xt + rthvt(xt)

Then,

g̃vt(xt) =
xt − argminx[‖x− xvt‖1 : ‖x− xt‖∞ ≤ rt]

rt
De�nition

=
xt − (xt + rthvt(xt))

rt
= −hvt(xt)

∈ ∂fvt(xt)
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Part B, ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt:

P(Bt = 1|Ft) = P(∃m : |xmvt − xmt | ≤ rt|Ft)

=

∫

x∈{x:∃m,|xm−xm
t |≤rt}

hX|Ft
(x)dx

=

∫

x∈{x:∃m,|xm−xm
t |≤rt}

hX (x)dx v drawn independent of history

≤ Crt bounded hX , �xed M, bounded X

for some C ∈ R < ∞. In the last line, C u 2M(diameter(X )), based on the volume of the
slices around the ideal points on each dimension.

Lemma 2, case (p = 1, q = ∞).

Proof. Let m̄t ∈ argmaxm |xmvt − xmt |,
Let hvt(xt) ,

[

0, 0, . . . , 0, sign(xm̄t

t − xm̄t
vt ), 0, . . . , 0, 0

]T
,

Let Bt , I{∃m 6= m̄t : |xm̄t
vt − xm̄t

t | < |xmvt − xmt |+ rt}. We show the the same two parts as
in the above proofs.

Part A, Bt = 0 =⇒ g̃vt(xt) = gt, for some gt ∈ ∂fvt(xt):

First, note that when Bt = 0, the set of subgradients is

∂fvt(x) = ∂‖x− xvt‖∞
= {hvt(xt)}

Also when Bt = 0,

argmin
x

[‖x− xvt‖∞ : ‖x− xt‖1 ≤ rt] = xt − rthvt(xt)

Then,

g̃vt(xt) =
xt − argminx[‖x− xvt‖1 : ‖x− xt‖∞ ≤ rt]

rt
De�nition

=
xt − (xt − rthvt(xt))

rt
= hvt(xt)

∈ ∂fvt(xt)
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Part B, ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt:

P(Bt = 1|Ft)

= P(I{∃m 6= m̄t : |xm̄t
vt − xm̄t

t | < |xmvt − xmt |+ rt}|Ft)

=

∫

x∈{x:∃m 6=m̄t s.t. |x
m̄t
vt

−x
m̄t
t |<|xm

vt
−xm

t |+rt}
hX|Ft

(x)dx

=

∫

x∈{x:∃m 6=m̄t s.t. |x
m̄t
vt

−x
m̄t
t |<|xm

vt
−xm

t |+rt}
hX (x)dx v ind. of history

≤ Crt bounded hX ,X , �xed M

for some C ∈ R < ∞. Note that C u 2M2(diameter(X )), based on the volume of the slices
around each dimension.

Lemma 3 ∀ (p, q) s.t. p > 0, q > 0, 1/p+1/q = 1, ‖∇‖x−xv‖p‖q = 1, ∀x s.t. ∀m,xm 6= xmv .

Proof. If xm 6= xmv , ∀m :

∇m‖x− xv‖p = ∇m

(

∑

m

|xm − xmv |p
)1/p

=
1

p

∇m|xm − xmv |p

(
∑

m |xm − xmv |p)1−1/p

=
|xm − xmv |p−1 (∇m|xm − xmv |)

‖x− xv‖p−1
p

Then

‖∇‖x− xv‖p‖q = ‖|x
m − xmv |p−1 (∇m|xm − xmv |)

‖x− xv‖p−1
p

‖q

=
1

‖x− xv‖p−1
p

(

∑

m

∣

∣|xm − xmv |p−1 (∇m|xm − xmv |)
∣

∣

q

)1/q

=
1

‖x− xv‖p−1
p

(

∑

m

|xm − xmv |(p−1)q

)1/q

=
1

‖x− xv‖p−1
p

‖x− xv‖p/qp (p− 1)q = p

= 1

Lemma 4 Suppose that fv(x) ,
∑K

k=1
wk

v

‖wv‖2
‖xk − xkv‖2, and de�ne the function

At , I{g̃vt(xt) /∈ ∂fvt(xt)},

where g̃vt(xt) is as de�ned in (2) for q = 2. Then there exists C ∈ R s.t. ∀n, P(At =
1|Ft) ≤ Crt.
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Proof. Let Bt = I{∃k s.t. ‖xkvt − xkt ‖2 ≤ rt}. We show the same two parts for Bt as for the
proofs for Lemma 2.
Part A, Bt = 0 =⇒ g̃vt(xt) = gt, for some gt ∈ ∂fvt(xt):
First, note that, when Bt = 0,

∂mfvt(xt) = ∂m

K
∑

k=1

wk
v

‖wv‖2
‖xk − xkv‖2

=
wkm

‖wv‖2
xm − xmvt

‖xkmvt − xkmt ‖2
km is subspace containing the mth dimension

Also if Bt = 0, then

argmin
x

[

K
∑

k=1

wk

‖wv‖2
‖xk − xkv‖2 : ‖x− xt‖2 ≤ rt

]

= xt + rt

[

. . . ,
wkm

‖wv‖2
xmvt − xm

‖xkmvt − xkmt ‖2
, . . .

]

Then,

g̃vt(xt) =
xt − argminx[‖x− xvt‖2 : ‖x− xt‖2 ≤ rt]

rt
De�nition

∈ ∂fvt(xt)

Part B, ∃C ∈ R s.t. P(Bt = 1|Ft) ≤ Crt:

P(Bt = 1|Ft) = P(‖xvt − xt‖2 ≤ rt|Ft)

=

∫

x∈{x:∃k s.t. ‖xk
vt
−xk

t ‖2≤rt}
hX|Ft

(x)dx

=

∫

x∈{x:∃k s.t. ‖xk
vt
−xk

t ‖2≤rt}
hX (x)dx v drawn independent of history

≤ Cr2t bounded hX

≤ Crt rt ≤ 1 eventually

for some C ∈ R < ∞. Note that C depends on K and M .
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