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Summary 
 
Deep learning leverages multi-layer neural networks 
architecture and demonstrates superb power in many 
machine learning applications. The deep denoising 
autoencoder technique extracts better coherent features from 
the seismic data. The technique allows us to automatically 
extract low-dimensional features from high dimensional 
feature space in a non-linear, data-driven, and unsupervised 
way. A properly trained denoising autoencoder takes a 
partially corrupted input and recovers the original 
undistorted input. In this paper, a novel autoencoder built 
upon the deep residual network is proposed to perform noise 
attenuation on the seismic data. We evaluate the proposed 
method with synthetic datasets and the result confirms the 
effective denoising performance of the proposed approach. 
 
Introduction 
 
Noise attenuation is a very important step for obtaining high-
quality data for seismic data post-processing. The sparse 
representation of seismic data has gained its popularity in 
recent years. Since natural signals can be compactly 
expressed, efficient approximations, such as a linear 
combination of specific atom signals, have been proved to 
be very useful. Traditionally, most noise suppression 
methods are applied in a transform domain with fixed-basis 
functions (e.g. wavelets (Mallat, 2009), curvelets (Starck et 
al., 2002), and seislet (Fomel et al., 2010), etc. Learning 
based approaches, on the hand, infer an overcomplete 
dictionary from a set of examples. The dictionary is typically 
represented as an explicit matrix and a training procedure is 
required to adapt the matrix to the examples. It is assumed 
that the signal can be reconstructed with respect to the 
dictionary using some sparse linear coefficients.  
 
Dictionary learning can be computationally expensive 
depending on the learning algorithms. For example, the K-
SVD method for designing dictionaries of the sparse 
representation involves many SVD decompositions for a big 
dictionary and a large number of training samples. 
Dictionary learning based noise attenuations have been 
adopted by the seismic data processing in recent years. Chen 
et al. (2016) proposed a cascaded approach for learning the 
dictionary for the seismic noise attenuation. They applied 
data-driven tight frame construction (Cai et al., 2014) over 
the seislet transformed noisy data. By performing 
thresholding on the learned dictionary space, the denoised 
data could be recovered after the inverse seilet transform. 
Beckouche et al. evaluated the dictionary learning method in 
the time-space domain. The data were divided into smaller 

patches, and a dictionary of patch-size atoms was learned. 
The method offers a framework to adaptively construct 
sparse data representation without other transformations. 
The dictionary can be learned on noisy data or noiseless data. 
When learning on noisy data, the noise variance needs to be 
empirically estimated for balancing the data fidelity during 
denoising. Siahsar et al. (2017) also adopted the data-driven 
dictionary learning approach. Since meaningful geometric 
repetitive structures of the seismic data make it intrinsically 
low-rank in the time-space domain, the sparsity-promoting 
dictionary learning is reformulated into a non-negative 
matrix factorization problem. Low-rank property will reduce 
the noise and the extra L1 norm constraint will archive less 
correlated atoms in the dictionary matrix.  
 
All aforementioned sparse coding models share a common 
shallow linear structure. Latest research in deep learning 
network (LeCun et al., 2015) suggests that non-linear and 
deep models can achieve superior performance when solving 
problems in practice. Multi-layer neural networks, such as 
an autoencoder (Vincent et al., 2010), have been proposed to 
denoise images. The autoencoder consists of an encoder part 
and a decoder part. The objective function of the 
autoencoder can be defined as: 
 

 
 

where , , and . Given an input 
, each hidden layer in the neural network maps it to : 

, whrere  is a weight matrix,  is the bias 
vector, and  is called the activation function such as a 
sigmoid function or rectified linear unit. While being used as 
a denoising tool, the autoencoder is trained to recover the 
original clean data by taking corrupted noisy inputs.  
 
Deep neural network is capable of learning over-complete 
feature space by using hidden layers having higher 
dimensional than the input. Sparse representation can then 
be learned by imposing L1 regularization. In this work, we 
proposed a novel denoising approach that utilizes the deep 
residual learning framework. In the subsequent sections, we 
will first introduce the residual learning framework. Then we 
will overview the network structure. Following the 
implementation details, the performance of the proposed 
method will be evaluated on a set of syntheic datasets.  
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Figure 1. A building block of the DRN (He et al., 2016). 
 
Methodology  
 
The deeper the network is the harder to train it. Problems 
such as overfitting, vanishing/exploding gradient, and  
increasing training errors will affect the network to 
converge. He et al. (2016) addressed these degradation 
problems and introduced a deep residual network (DRN) 
structure. Unlike the traditional deep neural network, where 
a desired underlying mapping is fit by stacked layers, DRN 
explicitly make those layers fit a residual mapping. For 
example, as Fig. 1 shows, a new nonlinear mapping 

 is used during the fitting. DRN 
hypothesizes that it would be easier to make the residual to 
zero than fitting an identify mapping by a stack of nonlinear 
layers. As shown in Fig. 1, the original mapping  is 
recast into , which is realized by a feedforward 
shortcut connection that simply performs identity mapping. 
 
In this paper, we have propose two denoising networks, one 
with 13 layers and the other with 100 layers. Both of them 
are residual networks. Fig. 2 and Fig. 3 show the structure of 
the 13-layer and 100-layer networks. The input size of both 
networks can be adaptive. Fig. 4 shows the detailed structure 
for each residual block (rblock). The network is trained with 
image patches of the size (84x84). The batch size used 
during the training stage is 128. To train the DRN, we add 
different levels of noise to the synthetic data. Then the data 
is randomly cropped into patches and these patches were 
used as the training sample to learn the parameters of the 
network. Once the network is welled trained, we can perform 
denoising on the data regardless its size since the denoising 
operation is applied to each image patch. Adjacent image 
patches are overlapping to each other and we find that 
overlapping will improve denoising performance.  
 
However, recovering original image from overlapping 
image patches is not a trivial task and it requires extra storage 
space to index all overlapping areas. In this paper, we design 
a 2D Kaiser window based masking operator, which has 

 time complexity. The 2D Kaiser window is an 
extension of the 1D Kaiser-Bessel window, a one-parameter 

 
Figure 2. A 13-layer network for seismic data denoising. 

 

 
Figure 3. A 100-layer network for seismic data denoising. 
 
family of window functions (Fig. 5). We use this window as 
a filter to scan the original image along both axises and 
extract patches. In the meantime, we generate a single-value 
image the same size as the original image. Then the same 
filtering process is applied to the single-value image too and 
the filtered image is used as a “mask”. To recover the 
original image from image patches, we first place patches 
back to their locations, sum values in overlapped areas, and 
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then use the mask as the “divisor” and perform a pixel-wise 
division. The workflow is shown in Fig. 5. 
 

 
Figure 4. A residual building block (rblock) as in Fig. 2. 

 

 
 

Figure 5. Recover the image from patches by using the 
Kaiser window based mask. 

 
Experiments 
 
In this section, we use the DRN to attenuate the noise in 
seismic data. We conduct a comprehensive studies with 
regard to the selection of the network structure and 
parameters. We use synthetic examples to evaluate the 
denoising performance of the proposed deep residual 
framework. Gaussian white noise is added to simulate noisy 
data by assuming that the seismic noise is caused by a 
diversity of spatially distributed, uncorrelated, different but 
low-frequency sources.  
 
Compared to the 40,000 steps required for training the 100-
layer network, the 13-layer network will converge in 20,000 
steps. However, the 100-layer network has smaller squared 
loss among the two. Fig. 6 shows the comparison of training 
losses of these two networks. Since we perform patch-wise 
denoising, different stride sizes will affect the size of the 
overlapped areas among adjacent patches. If 

 equals to 1, then there would be no 
overlappig. The less the ratio is, the larger the overlapping 
area will be. In order to evaluate the denoising performance, 
we use signal-to-noise ratio (SNR) as a quantitative 

evaluation metric to justify the reconstruction result. The 
SNR is calculated as: 
 

. 
 
 

 
Figure 6. Training loss: 13-layer vs. 100-layer network 
 
Fig. 7 and Fig. 8 show the denoising performance by using 
different network depths, stride and batrch-size ratios, and 
Kaiser window shapes. The shape of the Kaiser window is 
controlled by the parameter . The main-lobe width of the 
Kaiser window becomes larger when  increases.  
 

 
Figure 6.  SNR value for the 100-layer network 
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Figure 7. SNR value for the 13-layer network 

 
It is obviously that large overlapping is preferred. The shape 
of the Kaiser window does play a role in tuning the denoising 
performance for the network. Our test also shows that the 
100-layer network delivers better denoising results than the 
13-layer network. As shown in Fig. 8, we add Gaussian 
white noise to the clean image. Then we apply both 13-layer 
and 100-layer deep residual network for denoising. Examine 
the denoised results in Fig. 8(b) and Fig. 8(c), we find that 
the deep residual network is an ideal denoising tool for 
removing random noises while keeping coherent details.  
 
Conclusions 

 
In this paper, we have presented a high performance 
denoising technology for seismic data sets based on the deep 
residual networks. One of the advantages of using this 
framework for denoising is that it does not require any 
manual parameter tuning once the model is sufficiently 
trained in prior. Our experiments indicate that the denoising 
results can be improved by selecting proper network 
structures. Learning via patches, the proposed Kaiser 
window filtering approach could significantly improve the 
denoising performance with regard to the SNR value and 
computational cost. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Denoising using 13-layer and 100-layer residual 
networks. (a) left panel: a clean image without noise, right 

panel: the image with added white noise; (b) left panel: 
denoised image by the 13-layer network, right panel: 
differences between the clean image and the denoised 

image on the left. (c) left panel: denoised image by the 100-
layer network, right panel: differences between the clean 

image and the denoised image on the left. 
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