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Summary

Deep learning leverages multi-layer neural networks
architecture and demonstrates superb power in many
machine learning applications. The deep denoising
autoencoder technique extracts better coherent features from
the seismic data. The technique allows us to automatically
extract low-dimensional features from high dimensional
feature space in a non-linear, data-driven, and unsupervised
way. A properly trained denoising autoencoder takes a
partially corrupted input and recovers the original
undistorted input. In this paper, a novel autoencoder built
upon the deep residual network is proposed to perform noise
attenuation on the seismic data. We evaluate the proposed
method with synthetic datasets and the result confirms the
effective denoising performance of the proposed approach.

Introduction

Noise attenuation is a very important step for obtaining high-
quality data for seismic data post-processing. The sparse
representation of seismic data has gained its popularity in
recent years. Since natural signals can be compactly
expressed, efficient approximations, such as a linear
combination of specific atom signals, have been proved to
be very useful. Traditionally, most noise suppression
methods are applied in a transform domain with fixed-basis
functions (e.g. wavelets (Mallat, 2009), curvelets (Starck et
al., 2002), and seislet (Fomel et al., 2010), etc. Learning
based approaches, on the hand, infer an overcomplete
dictionary from a set of examples. The dictionary is typically
represented as an explicit matrix and a training procedure is
required to adapt the matrix to the examples. It is assumed
that the signal can be reconstructed with respect to the
dictionary using some sparse linear coefficients.

Dictionary learning can be computationally expensive
depending on the learning algorithms. For example, the K-
SVD method for designing dictionaries of the sparse
representation involves many SVD decompositions for a big
dictionary and a large number of training samples.
Dictionary learning based noise attenuations have been
adopted by the seismic data processing in recent years. Chen
et al. (2016) proposed a cascaded approach for learning the
dictionary for the seismic noise attenuation. They applied
data-driven tight frame construction (Cai et al., 2014) over
the seislet transformed noisy data. By performing
thresholding on the learned dictionary space, the denoised
data could be recovered after the inverse seilet transform.
Beckouche et al. evaluated the dictionary learning method in
the time-space domain. The data were divided into smaller
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patches, and a dictionary of patch-size atoms was learned.
The method offers a framework to adaptively construct
sparse data representation without other transformations.
The dictionary can be learned on noisy data or noiseless data.
When learning on noisy data, the noise variance needs to be
empirically estimated for balancing the data fidelity during
denoising. Siahsar et al. (2017) also adopted the data-driven
dictionary learning approach. Since meaningful geometric
repetitive structures of the seismic data make it intrinsically
low-rank in the time-space domain, the sparsity-promoting
dictionary learning is reformulated into a non-negative
matrix factorization problem. Low-rank property will reduce
the noise and the extra L1 norm constraint will archive less
correlated atoms in the dictionary matrix.

All aforementioned sparse coding models share a common
shallow linear structure. Latest research in deep learning
network (LeCun et al., 2015) suggests that non-linear and
deep models can achieve superior performance when solving
problems in practice. Multi-layer neural networks, such as
an autoencoder (Vincent et al., 2010), have been proposed to
denoise images. The autoencoder consists of an encoder part
and a decoder part. The objective function of the
autoencoder can be defined as:

arg min X — (@ o $)X]|,

i

where X €R?, ¢p: X — Y, and ¥ : ¥ — X. Given an input
X, each hidden layer in the neural network maps it to z € R*:
z = o(Wx + b), whrere W is a weight matrix, & is the bias
vector, and ¢ is called the activation function such as a
sigmoid function or rectified linear unit. While being used as
a denoising tool, the autoencoder is trained to recover the
original clean data by taking corrupted noisy inputs.

Deep neural network is capable of learning over-complete
feature space by using hidden layers having higher
dimensional than the input. Sparse representation can then
be learned by imposing L1 regularization. In this work, we
proposed a novel denoising approach that utilizes the deep
residual learning framework. In the subsequent sections, we
will first introduce the residual learning framework. Then we
will overview the network structure. Following the
implementation details, the performance of the proposed
method will be evaluated on a set of syntheic datasets.
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Figure 1. A building block of the DRN (He et al., 2016).
Methodology

The deeper the network is the harder to train it. Problems
such as overfitting, vanishing/exploding gradient, and

increasing training errors will affect the network to
converge. He et al. (2016) addressed these degradation
problems and introduced a deep residual network (DRN)
structure. Unlike the traditional deep neural network, where
a desired underlying mapping is fit by stacked layers, DRN
explicitly make those layers fit a residual mapping. For
example, as Fig. 1 shows, a new nonlinear mapping
F(x)=H(x)—x is used during the fitting. DRN
hypothesizes that it would be easier to make the residual to
zero than fitting an identify mapping by a stack of nonlinear
layers. As shown in Fig. 1, the original mapping H(x) is
recast into F(x) + x, which is realized by a feedforward
shortcut connection that simply performs identity mapping.

In this paper, we have propose two denoising networks, one
with 13 layers and the other with 100 layers. Both of them
are residual networks. Fig. 2 and Fig. 3 show the structure of
the 13-layer and 100-layer networks. The input size of both
networks can be adaptive. Fig. 4 shows the detailed structure
for each residual block (rblock). The network is trained with
image patches of the size (84x84). The batch size used
during the training stage is 128. To train the DRN, we add
different levels of noise to the synthetic data. Then the data
is randomly cropped into patches and these patches were
used as the training sample to learn the parameters of the
network. Once the network is welled trained, we can perform
denoising on the data regardless its size since the denoising
operation is applied to each image patch. Adjacent image
patches are overlapping to each other and we find that
overlapping will improve denoising performance.

However, recovering original image from overlapping
image patches is not a trivial task and it requires extra storage
space to index all overlapping areas. In this paper, we design
a 2D Kaiser window based masking operator, which has
O(1) time complexity. The 2D Kaiser window is an
extension of the 1D Kaiser-Bessel window, a one-parameter
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Figure 2. A 13-layer network for seismic data denoising.
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Figure 3. A 100-layer network for seismic data denoising.

family of window functions (Fig. 5). We use this window as
a filter to scan the original image along both axises and
extract patches. In the meantime, we generate a single-value
image the same size as the original image. Then the same
filtering process is applied to the single-value image too and
the filtered image is used as a “mask”. To recover the
original image from image patches, we first place patches
back to their locations, sum values in overlapped areas, and
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then use the mask as the “divisor” and perform a pixel-wise
division. The workflow is shown in Fig. 5.
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Figure 4. A residual building block (rblock) as in Fig. 2.
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Figure 5. Recover the image from patches by using the
Kaiser window based mask.

Experiments

In this section, we use the DRN to attenuate the noise in
seismic data. We conduct a comprehensive studies with
regard to the selection of the network structure and
parameters. We use synthetic examples to evaluate the
denoising performance of the proposed deep residual
framework. Gaussian white noise is added to simulate noisy
data by assuming that the seismic noise is caused by a
diversity of spatially distributed, uncorrelated, different but
low-frequency sources.

Compared to the 40,000 steps required for training the 100-
layer network, the 13-layer network will converge in 20,000
steps. However, the 100-layer network has smaller squared
loss among the two. Fig. 6 shows the comparison of training
losses of these two networks. Since we perform patch-wise
denoising, different stride sizes will affect the size of the
overlapped areas among adjacent patches. If
stride — size/batch — size equals to 1, then there would be no
overlappig. The less the ratio is, the larger the overlapping
area will be. In order to evaluate the denoising performance,
we use signal-to-noise ratio (SNR) as a quantitative

© 2018 SEG
SEG International Exposition and 88th Annual Meeting

evaluation metric to justify the reconstruction result. The
SNR is calculated as:
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Figure 6. Training loss: 13-layer vs. 100-layer network

Fig. 7 and Fig. 8 show the denoising performance by using
different network depths, stride and batrch-size ratios, and
Kaiser window shapes. The shape of the Kaiser window is
controlled by the parameter @. The main-lobe width of the
Kaiser window becomes larger when « increases.
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Figure 6. SNR value for the 100-layer network
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Figure 7. SNR value for the 13-layer network

It is obviously that large overlapping is preferred. The shape
of the Kaiser window does play a role in tuning the denoising
performance for the network. Our test also shows that the
100-layer network delivers better denoising results than the
13-layer network. As shown in Fig. 8, we add Gaussian
white noise to the clean image. Then we apply both 13-layer
and 100-layer deep residual network for denoising. Examine
the denoised results in Fig. 8(b) and Fig. 8(c), we find that
the deep residual network is an ideal denoising tool for
removing random noises while keeping coherent details.

Conclusions

In this paper, we have presented a high performance
denoising technology for seismic data sets based on the deep
residual networks. One of the advantages of using this
framework for denoising is that it does not require any
manual parameter tuning once the model is sufficiently
trained in prior. Our experiments indicate that the denoising
results can be improved by selecting proper network
structures. Learning via patches, the proposed Kaiser
window filtering approach could significantly improve the
denoising performance with regard to the SNR value and
computational cost.
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Figure 8. Denoising using 13-layer and 100-layer residual
networks. (a) left panel: a clean image without noise, right
panel: the image with added white noise; (b) left panel:
denoised image by the 13-layer network, right panel:
differences between the clean image and the denoised
image on the left. (c) left panel: denoised image by the 100-
layer network, right panel: differences between the clean
image and the denoised image on the left.
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