10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Plant Physiology Preview. Published on June 27, 2019, as DOI:10.1104/pp.19.00541

Short title: Tomato translatome revealed by ribosome profiling

*To whom correspondence should be addressed: pollyhsu@msu.edu

The tomato translational landscape revealed by transcriptome assembly

and ribosome profiling

Hsin-Yen Larry Wu', Gaoyuan Song?, Justin W Walley?, and Polly Yingshan Hsu" *
' Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Ml
48824 USA

2 Department of Plant Pathology & Microbiology, lowa State University, Ames, IA 50011 USA

One-sentence summary:
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and unique translational features, and identifies regulatory mechanisms hidden in the tomato

genome.
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ABSTRACT

Recent applications of translational control in Arabidopsis thaliana (Arabidopsis) highlight the
potential power of manipulating mRNA translation for crop improvement. However, to what
extent translational regulation is conserved between Arabidopsis and other species is largely
unknown and the translatome of most crops remains poorly studied. Here, we combined de
novo transcriptome assembly and ribosome profiling to study global mRNA translation in tomato
(Solanum lycopersicum) roots. Exploiting features corresponding to active translation, we
discovered widespread unannotated translation events, including 1329 upstream ORFs (UORFs)
within the 5" UTRs of annotated coding genes and 354 small ORFs (sORFs) among
unannotated transcripts. uUORFs may repress translation of their downstream main ORFs,
whereas sORFs may encode signaling peptides. Besides evolutionarily conserved sORFs, we
uncovered 96 Solanaceae-specific SORFs, revealing the importance of studying translatomes
directly in crops. Proteomic analysis confirmed that some of the unannotated ORFs generate
stable proteins in planta. In addition to defining the translatome, our results reveal the global
regulation by uORFs and microRNAs. Despite diverging over 100 million years ago, many
translational features are well conserved between Arabidopsis and tomato. Thus, our approach

provides a high-throughput method to discover unannotated ORFs, elucidates evolutionarily
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conserved and unique translational features, and identifies regulatory mechanisms hidden in a

Crop genome.

INTRODUCTION

Besides being an essential step in gene expression, mRNA translation directly shapes
the proteome, which contributes to cellular structure, function, and activity in all organisms. The
characterization of translational regulation in Arabidopsis has enabled crop improvement,
including increasing tomato (Solanum lycopersicum) sweetness, rice (Oryza sativa) immunity
and lettuce (Lactuca sativa) resistance to oxidative stress (Sagor et al., 2016; Xu et al., 2017b;
Zhang et al., 2018). However, not everything in Arabidopsis is applicable to other plants and
how the Arabidopsis translatome compares to other species is largely unknown. Moreover, due
to limited genomic resources and methods, translational landscapes and their underlying
regulations in crops remain understudied.

Ribosome profiling, or Ribo-seq, has emerged as a high-throughput technique to study
global translation (Ingolia et al., 2009; Brar and Weissman, 2015; Andreev et al., 2017). In a
Ribo-seq experiment, ribosomes in the sample of interest are immobilized, and the lysate is
treated with nucleases to obtain ribosome-protected mRNA fragments (i.e. ribosome footprints).
Finally, sequencing of the ribosome footprints reveals the quantity and positions of ribosomes
on a given transcript. Because ribosomes decipher mRNA every 3 nucleotide (nt), the periodic
feature of ribosome footprints can be used to uncover previously unannotated translation events
(Bazzini et al., 2014; Fields et al., 2015; Ji et al., 2015; Calviello et al., 2016; Hsu et al., 2016).
For example, upstream open reading frames (UORFSs) in the 5' leader sequence or 5’
untranslated region (UTR) have been shown to be widespread in many protein-coding genes in
humans, mouse, zebrafish, yeast, and plants (Brar et al., 2012; Liu et al., 2013; Ji et al., 2015;
Lei et al., 2015; Chew et al., 2016; Hsu et al., 2016; Johnstone et al., 2016). Several well-

characterized examples and global analyses indicate that uUORFs can modulate the translation
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of their downstream main ORFs (von Arnim et al., 2013; Liu et al., 2013; Lei et al., 2015; Chew
et al., 2016; Johnstone et al., 2016; Hsu and Benfey, 2018). Moreover, numerous presumed
non-coding RNAs have been found to possess translated small ORFs (sORFs), usually below
100 codons (Bazzini et al., 2014; Hsu et al., 2016; Bazin et al., 2017; Ruiz-Orera and Alba,
2019). The small size of the protein products of sSORFs suggest that they may serve as
signaling peptides (Hsu and Benfey, 2018; Ruiz-Orera and Alba, 2019). Despite their
importance, uUORFs and sORFs are often missing in annotations because computational
predictions often assume that 1) protein-coding sequences encode proteins greater than 100
amino acids, and 2) only the longest ORF in a transcript is translated (Basrai et al., 1997;
Claverie, 1997). Thus, ribosome profiling provides an unparalleled opportunity to experimentally
identify translated ORFs genome-wide in an unbiased manner.

In plant research, ribosome profiling has been used to study translational regulation in
diverse aspects of plant development and response to stress including photomorphogenesis,
chloroplast differentiation, cotyledon development, hypoxia, hormone responses, nutrient
deprivation, drought, pathogen responses, and biogenesis of small interfering RNAs (Liu et al.,
2013; Zoschke et al., 2013; Juntawong et al., 2014; Lei et al., 2015; Merchante et al., 2015;
Chotewutmontri and Barkan, 2016; Li et al., 2016; Bazin et al., 2017; Xu et al., 20173;
Shamimuzzaman and Vodkin, 2018). We previously optimized the resolution of this technique to
resolve 3-nt periodicity, which enabled us to precisely define translated regions within individual
transcripts, in Arabidopsis. As a result, we were able to identify previously unannotated
translation events, including usage of non-AUG start site, uORFs in 5’ UTRs, and sORFs in
annotated non-coding RNAs (Hsu et al., 2016). To date, systematically identifying translated
ORFs in plants has only been attempted in Arabidopsis (Hsu et al., 2016; Bazin et al., 2017).

Tomato is the most widely cultivated vegetable worldwide (Schwarz et al., 2014). It
belongs to the Solanaceae, whose members produce important foods, spices, and medicines.

Like other crops, tomato has limited genomic resources or optimized methods. For instance, the
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latest annotation, ITAG3.2 for the ‘Heinz 1706’ cultivar, only contains predicted protein-coding
genes whereas non-coding RNAs and uORFs are not included (Fernandez-Pozo et al., 2015).
We chose seedling roots to establish the protocol for translatomic analysis for several reasons:
1) the root plays an essential role in water/nutrient uptake as well as interaction between plants
and other organisms or the environment; 2) the root is composed of diverse cell types, which is
beneficial for surveying translation events, as we observed in our previous work in Arabidopsis
seedlings (Hsu et al., 2016). Here, we performed ribosome profiling in combination with de novo
transcriptome assembly to discover non-coding RNAs, uORFs and sORFs, and chart the
translational landscape in tomato roots. The mapping and quantification of ribosome footprints
in tomato not only uncovered numerous unannotated translation events but also revealed global

features involved in translational regulation.

RESULTS
Establishment of an experimental and data analysis pipeline to map the tomato
translatome

To map actively translated ORFs, we isolated the roots of tomato seedlings (S.
lycopersicum, ‘Heinz 1706’ cultivar) and performed strand-specific RNA-seq and Ribo-seq in
parallel (Figure 1A and 1B). RNA-seq reveals transcript identity and abundance, whereas Ribo-
seq maps and quantifies ribosome occupancy on a given transcript (Brar and Weissman, 2015).
We adapted our protocol and pipeline for Arabidopsis (Hsu et al., 2016) with two major
modifications: 1) we increased the amount of RNase | used in tomato ribosome footprinting to
achieve comparable resolution (see Methods for details); 2) we performed paired-end 100-bp
RNA-seq followed by reference-guided de novo transcriptome assembly to capture transcripts
missing from the ITAG3.2 reference annotation (Figure 1C, see Methods for details). This
strategy allowed us to map the translated regions in both annotated and previously unannotated

transcripts in an unbiased manner using the ORF-finding tool, RiboTaper (Calviello et al., 2016).
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As the quality of ribosome footprints is critical for finding ORFs (Hsu et al., 2016), we first
systematically evaluated the Ribo-seq results by mapping the reads to the ITAG3.2 annotation.
Consistent with observations in other non-plant organisms and Arabidopsis (Ingolia et al., 2009;
Bazzini et al., 2014; Hsu et al., 2016), the dominant ribosome footprints in tomato were 28 nt
long (Figure 2A). Moreover, in contrast to RNA-seq, the Ribo-seq reads predominantly mapped
to the annotated coding sequences (CDSs) and were sparse in the 5’ UTRs and 3' UTRs
(Figure 2B and 2C). The three biological replicates were highly correlated, as indicated by the
Pearson correlation, in both Ribo-seq (r = 0.998~1) and RNA-seq (r = 0.998~0.999)
(Supplemental Figure S1A and B). Overall, the RNA-seq and Ribo-seq datasets also showed a
strong positive correlation (Pearson correlation after removing two extreme outliers, r = 0.878—
0.880; Spearman correlation with all data points, p = 0.912—-0.915) (Supplemental Figure S1C-
F). Most importantly, the distribution of ribosome footprints within the CDS displayed clear 3-nt
periodicity, a signature of translating ribosomes, which decipher 3 nt at a time (Figure 2C, and
Supplemental Figure S2). Analyzing the distribution of footprints relative to the annotated
translation start/stop sites allowed us to infer that the codon at the P-site within the ribosome is
located between the 13" and 15™ nts for 28-nt footprints, and so on for specific footprint lengths
(Supplemental Figure S2 and Supplemental Figure S3). To visualize the position of the codon
being translated, hereafter, we use the first nucleotides of the P-sites (denoted as P-site signals)
to indicate the positions of the footprints on the transcripts (Figure 2C). The robustness of the 3-
nt periodicity can be quantified based on the percentage of reads in the expected reading frame
(shown in red in Figure 2C and hereafter). At a global level, our 28-nt footprints resulted in
85.5% in-frame reads. Together, these results demonstrate that our tomato Ribo-seq dataset is
of high quality compared to datasets from plants and other organisms (Bazzini et al., 2014;
Guydosh and Green, 2014; Chung et al., 2015; Schafer et al., 2015; Hsu et al., 2016).

Next, we performed reference-guided de novo transcriptome assembly for the RNA-seq
data using stringtie, a transcript assembler (Pertea et al., 2015). Then, the newly assembled
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transcriptomes from the replicates were merged and compared to the ITAG3.2 annotations
using gffcompare software (Pertea et al., 2016) (Figure 1C). In total, we uncovered 2263
unannotated transcripts that could potentially encode for novel proteins. These transcripts could
be classified into six groups based on their strands and genomic positions relative to existing
gene features, such as intergenic (class-u), cis-natural antisense transcripts (cis-NAT, class-x),
intronic (class-i) and others (class-y and class-o) (Figure 3A and 3C, the nomenclature and
descriptions of these discovered transcripts are adapted based on the gffcompare software;
Pertea et al., 2016). Class-s is expected to result from mapping errors (Pertea et al., 2016) and
was included in our downstream analysis as a negative control. The most abundant classes of
uncharacterized transcript in our data were intergenic transcripts (class-u; 1260) and cis-NATs
(class-x; 568). All six classes of uncharacterized transcripts, along with the annotated genes in

ITAG3.2, were used to find translated ORFs.

Translational landscape of tomato roots as defined by ribosome profiling

After collecting the transcript information, we used RiboTaper (Calviello et al., 2016) to
interrogate both the annotated transcripts in ITAG3.2 and the newly assembled transcripts to
search for all possible ORFs in the transcriptome. RiboTaper examines the P-site signals within
each possible ORF and tests whether the signals display a statistically significant 3-nt
periodicity (Calviello et al., 2016). As a quality control, we first examined translated ORFs
detected at annotated coding regions. In total, 20659 annotated ORFs were identified as
translated in our dataset (Figure 3B and Supplemental Dataset S1A). Among 20285 annotated
protein-coding transcripts that have reasonable transcript levels (transcript per million (TPM) >
0.5 in RNA-seq), 18626 (92%) have translated ORFs identified. This indicates our approach to
identifying translated ORFs is efficient and robust. In addition to annotated ORFs, there were
1329 unannotated uORFs translated from the 5" UTR of annotated genes (Figure 3B,

Supplemental Dataset S1B, Supplemental Dataset S2). Notably, since only approximately half
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of the transcripts in ITAG3.2 (17684 out of 35768) have an annotated 5' UTR and because
RiboTaper can only identify ORFs in defined transcript ranges, the total number of uUORFs in
tomato root is clearly an underestimate.

Excitingly, we identified 354 unannotated translated ORFs from the newly assembled
transcripts (Figure 3B, Supplemental Dataset S1C and Supplemental Dataset S3). These
unannotated ORFs were found in different classes of transcripts, but none were detected in the
negative control, class-s (Figure 3C). As expected, most of the newly discovered ORFs were
relatively small; ~71% of them (250) encode proteins of less than 100 amino acids (Figure 3D).
Due to their relatively small size, hereafter, we call them small ORFs (sORFs). The average
lengths of the uUORFs, sORFs, and annotated ORFs are 31, 95 and 422 amino acids,
respectively. Among the 354 sORFs, 87 have a predicted signal peptide and are expected to be
secreted proteins/peptides (Figure 3E and Supplemental Dataset S1D). To test if the sORFs
and annotated ORFs have similar translational properties, we compared their translation
efficiency (see the definition in the Methods) and found that they were statistically
indistinguishable (Figure 3F). This result supports the newly identified sORFs are genuine
protein-coding genes in the tomato genome.

The majority of the identified ORFs have high fractions of P-site signals mapped to the
expected reading frame (Supplemental Figure S4). Visualizing the profiles of individual
transcripts confirmed that both the sORFs and numerous annotated ORFs display strong 3-nt
periodicity within the identified coding regions (Figure 3G-H). Therefore, by combining the high-
quality Ribo-seq data with RiboTaper analysis, we not only validated many of the annotated
gene models but also discovered new ORFs. These previously unannotated translated regions
have been compiled and ready to be incorporated into the official tomato annotation

(Supplemental Dataset S1A-C, Supplemental Datasets S2 and S3).

Evolutionarily conserved and Solanaceae-specific sORFs
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Previously, we identified 27 sORFs in Arabidopsis by applying RiboTaper on Ribo-seq
data (Hsu et al., 2016). Eight of the Arabidopsis sORFs have known tomato homologs. Our
tomato root data showed that seven of the conserved sORFs were both transcribed and
translated (Supplemental Figure S5A-D). Since Arabidopsis and tomato diverged approximately
100 million years ago (Ku et al., 2000), our data support that some sORFs are conserved
across evolution.

If the newly-identified tomato sORFs encode proteins for conserved biological processes,
we would expect them to be preserved during evolution. We performed tblastn using 157 single-
exon sORFs that were 16—100 amino acids long on 10 diverse plant genomes, including a wild
tomato (S. pennellii), potato (Solanum tuberosum, which belongs to the same family as tomato,
the Solanaceae), four dicots in other families, two monocots, a lycophyte and a moss
(Supplemental Figure S6). In total, we found 96 Solanaceae-specific SORFs, including 18
sORFs unique to tomato and 78 sORFs shared by tomato and either wild tomato or potato. Out
of 157 sORFs analyzed, 139 of them have homologs in at least one other plant genome. Some
of the sORFs are highly conserved across these 10 genomes (Supplemental Figure S6),
suggesting the functional significance of these sORFs throughout evolution. Importantly, the
conserved patterns among the homologs correlate well with their phylogenic relationships,
indicating that these sORF homologs are unlikely to be false positives that randomly occurred in
the blast search. While some sORFs are widely conserved, 96 sORFs are unique to
Solanaceae, highlighting our approach to study translatomes directly in tomato revealed
translational events that was impossible to learn by studying Arabidopsis alone. Taken together,

our results reveal both evolutionarily conserved and Solanaceae-specific sSORFs.

Some sORFs and uORFs generate stable proteins in planta
To evaluate whether the previously unknown ORFs, including sORFs and uORFs,

accumulate stable proteins in planta and to validate our Ribo-seq results, we performed a
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proteogenomic analysis (Walley and Briggs, 2015) to identify “novel” peptides arising from these
unannotated ORFs. Because the sORFs and uORFs are quite small, their protein products do
not always generate peptides with ideal size and/or mass-to-charge ratios that are suitable for
detection by mass spectrometry (MS). To increase the diversity of peptides for MS analysis, we
extracted proteins from the roots and shoots of tomato seedlings and digested the proteins into
peptides using trypsin or GIuC, independently, prior to two-dimensional liquid chromatography-
tandem mass spectrometry (2D-LC-MS/MS). As the sORFs and uORFs are currently missing
from the tomato annotation, we created a custom protein database (Supplemental Dataset S4)
derived from our Ribo-seq data to assist in identifying these unannotated proteins. In addition,
we used our custom protein database to search publicly available proteomic data from the
tomato fruit (ProteomeXchange PXD004887) and pericarp (ProteomeXchange PXD004947)
(Mata et al., 2017; Szymanski et al., 2017). In total, we identified 12172 proteins, including 29
sORFs and 30 uORFs, with at least one unique peptide from these six proteomic datasets
(Figure 3B, Supplemental Dataset S1E-F, Supplemental Dataset S5A-C). The MS detection
rates (at least one unique peptide) for sORFs below 100 amino acids, 100-200 amino acids,
and higher than 200 amino acids in our data are 4.8%, 16.3% and 35.3%, respectively,
suggesting proteins with a larger size have better chances to be detected by MS. Despite the
limitations of MS in small protein identification, our results support that some uORFs and sORFs

accumulate stable proteins in planta.

Ribo-seq fine-tunes and improves genome annotation

Comparing the RiboTaper output and the annotated gene models, we found cases in
which the translated ORFs were dramatically different from the predicted gene models. For
example, translation may occur in a different reading frame or at a distinct region on the
transcript (Figure 31, Supplemental Figure S7A-F). Thus, Ribo-seq provides a high-throughput

experimental approach to validate and improve genome annotation. Furthermore, in several
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cases, using visual inspection, we found regions that appear to contain a short ORF that
overlaps with the long annotated ORF but uses a different reading frame (e.g., Figure 3J).
These overlapping ORFs are similar to non-upstream coding ORFs identified in human genome
(Michel et al., 2012), and their functional importance is still unknown.

The translation start sites in the genome annotation are typically defined computationally,
and often the most upstream AUG is predicted to be the start codon. Unexpectedly, in 64 genes,
the RiboTaper-defined translation start sites were actually upstream of the annotated start sites
(e.g., Figure 4A and Supplemental Dataset S1G). In contrast, some ORFs appeared to use start
sites downstream of the annotated start sites (e.g., Figure 4B, Supplemental Figure S5B).
Currently, ITAG3.2 contains only one isoform per gene, and hence only one transcription start
site is predicted per gene. It is possible that in some cases, translation starts downstream of the
annotated site because transcription initiates downstream of the annotated transcription start
site. Nonetheless, it appears that the most upstream AUG is not always used as the translation
start site.

Non-AUG translation initiation has been discovered in animals and plants (Simpson et
al., 2010; Laing et al., 2015; Kearse and Wilusz, 2017; Spealman et al., 2018). Twelve
evolutionarily conserved noncanonical translation starts upstream of the most likely AUG have
been predicted in Arabidopsis (Simpson et al., 2010), and we previously showed that at least
one of them, in AT3G 70985, has high Ribo-seq coverage using a CUG codon (Hsu et al., 2016).
The profile of the tomato homolog of AT3G 710985 confirmed the possible usage of the CUG start
site (Figure 4C). Next, we identified tomato homologs of all twelve predicted noncanonical-start
genes and systematically checked their Ribo-seq coverage upstream of the annotated AUG
start sites. We selected genes that met the following criteria: 1) the Ribo-seq reads cover at
least 7 in-frame P-site positions within the first 20 codons upstream of the AUG; 2) there is no
stop codon within the first 20 codons upstream of the AUG. We found eight tomato genes that

met the above criteria contain abundant reads upstream of the annotated AUG, suggesting that
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285 they use non-AUG start sites (Figure 4D). Thus, despite the evolutionary distance between

286  Arabidopsis and tomato, the usage of noncanonical translation initiation remains conserved in
287  these homologs.

288

289 uOREFs regulate translation efficiency

290 Using RiboTaper, we identified 1329 translated uORFs based on their significant 3-nt
291  periodicity (Figure 3B, Supplemental Dataset S1B, Supplemental Dataset S2). These uORFs
292  included previously predicted conserved uORFs in the tomato SAC57 homolog (Figure 5A)

293  (Imai et al., 2006), as well as previously unknown uORFs in numerous coding genes (e.g.

294  Figure 5B). Manual inspection of these transcripts suggested that the high stringency of

295 RiboTaper might miss uORFs with lower periodicity, overlapping uORFs and non-AUG-start
296  uORFs. For example, the second of the three uUORFs in the tomato SAC57 transcript (Figure 5A)
297  was not identified as coding by RiboTaper, presumably due to the imperfect periodicity in this
298 area. Nevertheless, those identified are high-confidence translated uORFs.

299 Global analyses have reported that translated uORFs repress the translation of their
300 downstream main ORFs (Liu et al., 2013; Lei et al., 2015; Chew et al., 2016; Johnstone et al.,
301 2016). Consistent with these reports, we found that globally, transcripts containing uORFs have
302 lower translation efficiency than those without uORFs (Figure 5C). In addition, more uORFs in a
303 transcript correlate with stronger translational repression (Figure 5C). To investigate which

304 physiological pathways might be regulated by uORFs, we checked the gene ontology (GO)

305 terms of the uORF-containing genes. Intriguingly, uUORF-containing genes were enriched for
306 protein kinases and phosphatases, as well as signal transduction (Figure 5D). This is similar to
307 previous prediction in Arabidopsis (Kim et al., 2007), except transcription factors are not

308 enriched in our data. Our results imply that a substantial portion of the protein

309 phosphorylation/dephosphorylation and signal transduction pathways in tomato are likely

310 translationally regulated through uORFs.
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Translation start sites have a well-defined Kozak consensus sequence in different
organisms (Kozak, 1987; Lutcke et al., 1987). For example, the conserved nucleotides at
positions -3 and +4 of the Kozak sequence in plants are purines (A/G) and G, respectively
(LUtcke et al., 1987). As expected, we observed this conserved pattern among the annotated
OREFs (Figure 5E). Next, we examined the Kozak consensus sequences of the translated
uORFs and their downstream main ORFs. Whereas the downstream main ORFs also favor the
conserved nucleotides at -3 and +4 of the Kozak sequence, this pattern is missing in the uORFs
(Figure 5E and 5F). Similar results were observed in the Kozak sequences of the uORFs and
downstream main ORFs in Arabidopsis (Liu et al., 2013). The poorly conserved Kozak
sequences might allow for more leaky scanning, a phenomenon that a weak initiation context is
sometimes skipped by ribosome during translation initiation, so the downstream main ORFs

could still have some chances to be translated.

Regulation of gene expression by microRNAs

MicroRNAs regulate gene expression through mRNA cleavage and translational
repression (Yu et al., 2017; Li et al., 2018). The roles of microRNAs in tomato are less well
understood than in Arabidopsis. We first predicted 6312 microRNA target genes in tomato
(Supplemental Dataset S1H-I) using psRNATarget (Dai et al., 2018). Next, we compared their
RNA-seq and Ribo-seq levels and the translation efficiency of the microRNA targets and other
coding genes globally. The transcript levels of the miRNA targets were slightly but significantly
reduced, consistent with the possibility that microRNAs regulate gene expression through
mRNA cleavage (Figure 6A). In addition, both the Ribo-seq levels and translation efficiency of
the microRNA target genes were reduced (Figure 6B and 6C), consistent with prior observations
of translational repression mediated by microRNAs (Faghihi and Wahlestedt, 2009). Thus, our
results suggest that globally, microRNAs regulate gene expression at both the transcript and

translational levels in tomato.
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DISCUSSION

Most of the plant research on mRNA translation was performed in Arabidopsis, and the
knowledge has been transferred into several crops to improve crop performance. However, on a
genome-wide level, it is unclear how well the Arabidopsis translatome compares to other
species. In this study, we combined de novo transcriptome assembly and ribosome profiling to
study the tomato translatome. We found that despite Arabidopsis and tomato diverging over 100
million years ago, many translational features are well conserved. Overall, we observed shared
features between our Arabidopsis and tomato Ribo-seq data, including the most abundant
ribosome footprint size and the inferred P-site within ribosome footprints. We found that
previously unannotated translation events, such as uUORFs and sORFs, are also widespread in
tomato. In addition, we observed that usage of non-AUG translation start sites is shared
between Arabidopsis and tomato. Finally, translational regulatory mechanisms, including uORFs
on their downstream main ORFs and miRNAs on their target genes, are also well-conserved in
these two species.

Interestingly, we discovered 96 previously unknown sORFs only present in Solanaceae,
including 78 shared by tomato and either wild tomato or potato, and 18 sORFs uniquely found in
tomato. These family-specific SORFs may provide functions unique to Solanaceae. The idea of
family-specific regulatory molecules was proposed based on systemin, the first peptide hormone
identified in plants. Systemin is only present in Solaneae, a subtribe of the Solanaceae (Pearce
et al., 1991; Constabel et al., 1998). Such family- or sub-family-specific regulatory molecules
may evolve during evolution for a specific lineage of plants. Even species-specific sORFs have
been proposed to be important (Andrews and Rothnagel, 2014). The functions of the widely
conserved and Solanaceae-specific SORFs require further studies.

Peptide signaling is crucial for cell-cell communication in numerous aspects of plant

development and stress responses (Tavormina et al., 2015; Hsu and Benfey, 2018). We found
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87 sORFs that encode potential secreted peptides. However, as about 50% of secreted proteins
in plants lack a well-defined signal peptide (Agrawal et al., 2010), some sORFs without a
predicted signal peptide may still be secreted. In addition, sORF products without a signal
peptide have been found to play an important role in a wide range of physiological processes in
plants, such as vegetative and reproductive development, siRNA biogenesis, and stress
tolerance (Casson, 2002; Blanvillain et al., 2011; Ikeuchi et al., 2011; Valdivia et al., 2012; De
Coninck et al., 2013). Therefore, the identification of SORFs using ribosome profiling facilitates
potential applications of these peptides in improving crop performance.

Several studies have illustrated the power of altering mRNA translation via uORFs to
improve agriculture (Sagor et al., 2016; Xu et al., 2017b; Zhang et al., 2018). For example,
engineering rice that specifically induces defense proteins when a uORF is repressed by
pathogen attack enables immediate plant resistance without compromising plant growth in the
absence of pathogens (Xu et al., 2017b). The identification of translated ORFs provides new
possibilities to fine-tune the synthesis of proteins involved in diverse physiological pathways.
Notably, the number of uORFs in tomato is still an underestimate. Approximately half of the
tomato genes still lack annotated 5" UTRs, and RiboTaper only searches for potential translated
ORFs in defined transcript regions. Thus, uUORFs could be an even more widespread
mechanism to control translation in tomato. Future studies using a combination of CAGE-seq or
PEAT-seq with the long-read sequencing could facilitate defining the 5" UTRs associated with
specific isoforms (Ozsolak and Milos, 2011) and enable identification of missing uORFs.

Ribo-seq has been integrated into proteomic research to achieve deeper proteome
coverage (Menschaert et al., 2013; Crappe et al., 2014; Van Damme et al., 2014; Calviello et al.,
2016). Unlike DNA or RNA molecules, which can be sequenced using genomic technologies,
proteins are typically identified by matching MS spectra to theoretical spectra from candidate
peptides in a reference protein database. Before ribosome profiling became available, to include

potential protein sequences, the conventional proteogenomics approach exploited either three-
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frame-translation using transcriptome data or six-frame-translation using genomic sequences
(Walley and Briggs, 2015; Ruggles et al., 2017). Integrating Ribo-seq data into the construction
of protein databases for proteogenomic studies has several advantages: 1) Ribo-seq discovers
unannotated translation events and thus enables the identification of unknown proteins that
were previously missed in the annotation; 2) compared with three-frame or six-frame translation,
Ribo-seq reduces the search space and false positives. Therefore, our custom protein database,

built based on the Ribo-seq data, may aid in proteomic research in tomato.

CONCLUSIONS

In summary, our approach combining transcriptome assembly and ribosome profiling
enabled identification of translated ORFs genome-wide in tomato and revealed conserved and
unique translational features across evolution. Our results not only provide valuable information
to the plant community but also present a practical strategy to study translatomes in other less-

well annotated organisms.

MATERIALS AND METHODS
Plant materials and preparation of lysates for RNA-seq and Ribo-seq

Tomato seeds (Solanum lycopersicum, ‘Heinz 1706’ cultivar) were obtained from the
C.M. Rick Tomato Genetics Resource Center (Accession: LA4345) and bulked. For each
replicate, ~300 tomato seeds were surface-sterilized in 70% (v/v) ethanol 5 min followed by
bleach solution (2.4% (v/v) NaHCIO, 0.3% (v/v) Tween-20) for 30 min with shaking. The seeds
were then washed with sterile water 5 times. Next, the seeds were stratified on 1x Murashige
and Skoog media (4.3 g/L Murashige and Skoog salt, 1% (w/v) sucrose, 0.5 g/L MES, pH 5.7,
1% (w/v) agar), and kept at 22°C in the dark for 3 days before being grown under 16-h light/8-h
dark conditions at 22°C for 4 days. Seedlings that germinated at approximately the same time

and of similar size were selected for the experiments. Roots (~3 cm from the tip) from ~180
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plants were harvested at ZT 3 (3 h after lights on) in batches and immediately frozen in liquid
nitrogen. The frozen tissues were pooled and pulverized in liquid nitrogen using a mortar and
pestle. Approximately 0.4 g of tissue powder was resuspended in 1.2 mL lysis buffer (100 mM
Tris-HCI (pH 8), 40 mM KCI, 20 mM MgCl,, 2% (v/v) polyoxyethylene (10) tridecyl ether (Sigma
P2393), 1% (w/v) sodium deoxycholate (Sigma D6750), 1 mM DTT, 100 ug/mL cycloheximide,
and 10 unit/mL DNase | (Epicenter D9905K)) as described in Hsu et al. (2016). After incubation
on ice with gentle shaking for 10 min, the lysate was spun at 4°C at 20,000 g for 10 min. The
supernatant was transferred to a new tube and divided into 100-uL aliquots. The aliquoted

lysates were flash frozen in liquid nitrogen and stored at -80°C until processing.

RNA purification and RNA-seq library construction

For RNA-seq samples, 10 pL 10% (w/v) SDS was added to the 100-pL lysate aliquots
described above. RNA greater than 200 nt was extracted using a Zymo RNA Clean &
Concentrator kit (Zymo Research R1017). The obtained RNA was checked with a Bioanalyzer
(Agilent) RNA pico chip to access the RNA integrity, and a RIN value ranging from 9.2 to 9.4
was obtained for each replicate. Ribosomal RNAs (rRNAs) were depleted using a RiboZero
Plant Leaf kit (lllumina MRZPL1224). Next, 100 ng of the rRNA-depleted RNA was used as the
starting material, fragmented to ~200 nt based on the RIN reported by the Bioanalyzer, and
processed using an NEBNext Ultra Directional RNA Library Prep Kit (NEB E7420S) to create
strand-specific libraries. The libraries were barcoded and enriched using 11 cycles of PCR
amplification. The libraries were brought to equal molarity, pooled and sequenced on one lane

of a Hi-Seq 4000 using PE-100 sequencing.

Ribosome footprinting and Ribo-seq library construction
The Ribo-seq samples were prepared based on Hsu et al. 2016 (Hsu et al., 2016) with

modifications described as follows, which optimize the method for tomato. Briefly, the RNA
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concentration of each lysate was first determined using a Qubit RNA HS assay (Invitrogen
Q32852) using a 10-fold dilution. Next, 100 uL of the lysate described above was treated with
100 units of nuclease (provided in the TruSeq Mammalian Ribo Profile Kit, lllumina
RPHMR12126) per 40 ug of RNA with gentle shaking at room temperature for 1 h. The
nuclease reaction was stopped by immediately transferring to ice and adding 15 L of
SUPERase-IN (Invitrogen AM2696). The ribosomes were isolated using illustra MicroSpin S-
400 HR columns (GE Healthcare 27514001). RNA greater than 17 nt was purified first (Zymo
Research R1017), and then RNA smaller than 200 nt was enriched (Zymo Research R1015).
Next, the rRNAs were depleted using a RiboZero Plant Leaf kit (lllumina MRZPL1224). The
rRNA-depleted RNA was then separated via 15% (w/v) TBE-urea PAGE (Invitrogen
EC68852B0OX), and gel slices ranging from 28 to 30 nt were excised. Ribosome footprints were
recovered from the excised gel slices using the overnight elution method, and the sequencing
libraries were constructed according to the TruSeq Mammalian Ribo Profile Kit manual. The
final libraries were amplified via 9 cycles of PCR. The libraries were brought to equal molarity,

pooled and sequenced on two lanes of a Hi-Seq 4000 using SE-50 sequencing.

RNA-seq and Ribo-seq data analysis
The raw RNA-seq and Ribo-seq data and detailed mapping parameters have been

deposited in the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo) under

accession no. GSE124962. The tomato reference genome sequence and annotation files used
in this study were downloaded from the Sol Genomics Network (Fernandez-Pozo et al., 2015).
The adaptor sequence AGATCGGAAGAGCACACGTCT was first removed from the Ribo-seq
data using FASTX_ clipper v0.0.14 (http://hannonlab.cshl.edu/fastx-toolkit). For both RNA-seq
and Ribo-seq, the rRNA, tRNA, snRNA, snoRNA and repeat sequences were removed using
Bowtie2 v2.3.4.1 (Langmead and Salzberg, 2012). The rRNA, tRNA, snRNA, and snoRNA

sequences were extracted from the SL2.5 genome assembly with the ITAG2.4 annotation
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(Fernandez-Pozo et al., 2015), and the repeat sequences were extracted from SL3.0 genome
assembly with the ITAG3.2 annotation. After these contaminating sequences were removed
using Bowtie2, the pre-processed RNA-seq and Ribo-seq files were used to calculate the read
distribution in different gene features (Figure 2B) using the featureCounts function of the
Subread package v1.5.3 (Liao et al., 2014).

Next, the pre-processed RNA-seq and Ribo-seq reads were mapped to the tomato
reference genome sequence SL3.0 with the ITAG3.2 annotation using the STAR v2.6.0.c
(Dobin et al., 2013). The reference-guided de novo assembly of the mapped RNA-seq reads
was performed with stringtie v1.3.3b (Pertea et al., 2015), and the newly assembled gtf files
were compared to ITAG3.2 using gffcompare v0.10.1 (Pertea et al., 2016). The i, X, y, 0, u, s
classes of new transcripts (see Figure 3A for details) and their descriptions were extracted from
the gffcompare output gtf and concatenated with ITAG3.2. This combined gtf (referred as
“Tomato_Root_ixyous+ITAG3.2.gtf"; submitted to GEO as a processed file within GSE124962)
was used to map the RNA-seq and Ribo-seq reads again with STAR. Notably, all six classes of
uncharacterized transcripts in Tomato_Root_ixyous+ITAG3.2.gtf were assigned as ncRNAs,
and this gtf was used for downstream RiboTaper analysis. The three biological replicates of the
mapped bam files for RNA-seq were merged into one large bam file with SAMtools v1.8 (Li et al.,
2009). The three mapped Ribo-seq bam files were also merged. The two merged bam files
above were then used for ORF discovery with RiboTaper v1.3 (Calviello et al., 2016).

For RiboTaper analysis, the RiboTaper annotation files and the offset parameters (i.e.,
the inferred P-site position for each footprint length) were first obtained. The RiboTaper
annotation files were generated using the create_annotations_files.bash function in the
RiboTaper package using SL3.0 assembly and the Tomato_Root_ixyous+ITAG3.2.gtf. To
obtain the offset parameters, the create_metaplots.bash and metag.R functions in the
RiboTaper package were used to generate meta-gene plots. The offset parameters were

identified through the meta-gene plots. For 24-, 25-, 26-, 27-, 28-nt footprints, the offset values
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were 8, 9, 10, 11, and 12, respectively (Supplemental Figure S3). Next, we performed
RiboTaper analysis using the RiboTaper annotation, offset parameters, and RNA-seq and Ribo-
seq bam files. The coding sequences identified by RiboTaper from the newly assembled
transcripts were extracted from the translated_ORFs_filtered_sorted.bed file and integrated with
Tomato_Root_ixyous+ITAG3.2.gtf to generate Supplemental Dataset S2_uORF.gtf and
Supplemental Dataset S3_sORF.gtf.

We then mapped the Ribo-seq and RNA-seq data again to the CDS ranges with STAR,
and the transcripts per million (TPM) for the CDS of each transcript was quantified via RSEM
v1.3.0 (Li and Dewey, 2011). The formula to calculate translation efficiency is “TE = (the
TPMcps of Ribo-seq)/(the TPMcps of RNA-seq)”. To avoid inflation due to a small denominator,
only genes with an RNA-seq TPM greater than 0.5 were used in the statistical analysis of
translation efficiency. The plotting of 3-nt periodicity of the Ribo-seq and coverage of RNA-seq
was generated by incorporating the plot function in R v3.4.3 (R Core Team (2013), 2017) with
functions from GenomicRanges v1.30.3, GenomicFeatures v1.30.3, and GenomicAlignments
v1.14.2 libraries (Lawrence et al., 2013) to read in the gtf file and RNA-seq bam file. The
merged RNA-seq bam file from STAR and the processed "P_sites_all" file from RiboTaper were
used to plot the RNA-seq coverage and P-sites of Ribo-seq, respectively. The Linux command
line code to preprocess the “P_sites_all” file before used for plotting was “cut -f 1,3,6 P_sites_all
| sort | uniq -c | sed -r 's/*( *[* ]+) +\\t/' > name_output_file”. For plotting the CUG/non-AUG

start gene, the CDS range of the gene in the gtf file was manually modified before plotting.

Statistical analysis

The statistical analysis in the paper was performed in R (R Core Team (2013), 2017).
The chisq.test and ks.test functions of the "stats" package in R were used for the Chi-squared
analysis and the Kolmogorov-Smirnov test, respectively. The Pearson and Spearman

correlation coefficients were calculated using the "cor" function. Pairwise comparisons were
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performed using the "corrplot" function in the corrplot v0.84 package (Wei, 2013). The empirical
cumulative probabilities of translation efficiency were calculated using the "ecdf" function (in the

“stats” package) and plotted with the base R plot function.

Protein extraction and digestion

Roots (~3 cm near the tip) and shoots (shoot tip including ~1 cm hypocotyl) of four-day-
old tomato seedlings were harvested at ZT3 (3 h after light on). The proteomics experiments
were carried out based established methods as follows (Castellana et al., 2014; Song et al.,
2018b; Song et al., 2018a). Five volumes (v:w) of Tris buffered phenol pH 8 was added to 150
mg of ground tissue, vortexed 1 min, then mixed with 5 volumes (buffer:tissue, v:w) of extraction
buffer (50 mM Tris pH 7.5, 1 mM EDTA pH 8, 0.9 M sucrose), and then centrifuge at 13,000 g,
for 10 min at 4°C. The phenol phase was transferred to a new tube and a second phenol
extraction was performed on the aqueous phase. The two phenol phase extractions were
combined and 5 volume of prechilled methanol with 0.1 M ammonium acetate was added. This
was mixed well and keep at -80°C for 1 h prior to centrifugation at 4,500 g, for 10 min at 4°C.
Precipitation with 0.1 M ammonium acetate in methanol was performed twice with incubation at
-20°C for 30 min. The sample was resuspended in 70% (v/v) methanol at kept at -20°C for 30
min prior to centrifuging at 4,500 g, for 10 min at 4°C. The supernatant was discarded and the
pellet was placed in a vacuum concentrator till near dry. Two volumes (buffer:pellet, v:v) of
protein digestion buffer (8 M urea, 50 mM Tris pH 7, 5 mM Tris(2-carboxyethyl)phosphine
hydrochloride (TCEP)) was added to the pellet. The samples were then probe sonicated to aid
in resuspension of the pellet. The protein concentration was then determined using the Bradford
assay (Thermo Scientific).

The solubilized protein (~ 1 mg) was added to an Amicon Ultracel — 30K centrifugal filter
(Cat# UFC803008) and centrifuged at 4,000 g for 20—40 min. This step was repeated once.

Then 4 mL of urea solution with 2 mM TCEP was added to the filter unit and centrifuged at
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4,000 g for 20—40 min. Next, 2 mL iodoacetamide (IAM) solution (50 mM IAM in 8 M urea) was
added and incubated without mixing at room temperature for 30 min in the dark prior to
centrifuging at 4,000 g for 20—40 min. Two mL of urea solution was added to the filter unit,
which was then centrifuged at 4,000 g for 20—40 min. This step was repeated once. Two mL of
0.05 M NH4HCO3; was added to the filter unit and centrifuged at 4,000 g for 20—40 min. This step
was repeated once. Then 2 mL 0.05M NH,HCO; with trypsin (enzyme to protein ratio 1:100) or
GluC (enzyme to protein ratio 1:20) was added. Samples were incubated at 37°C overnight.
Undigested protein was estimated using Bradford assays then trypsin (1 ug/uL) was added to a
ratio of 1:100 and an equal volume of Lys-C (0.1 ug/uL) were added to the trypsin/Lys-C
digested sample and GluC was added at a ratio of 1:20 to the sample digested with GIuC. The
digests were incubated for an additional 4 h at 37°C. The filter unit was added to a new
collection tube and centrifuged at 4,000 g for 2040 min. One mL 0.05M NH,HCO3; was added
and centrifuged at 4,000 g for 20—40 min. The samples were acidified to pH 2-3 with 99% (v/v)
formic acid and centrifuged at 21,000 g for 20 min. Finally, samples were desalted using 50 mg
Sep-Pak C18 cartridges (Waters). Eluted peptides were dried using a vacuum centrifuge
(Thermo) and resuspended in 0.1% (v/v) formic acid. Peptide amount was quantified using the

Pierce BCA Protein assay kit.

LC/MS-MS

An Agilent 1260 quaternary HPLC was used to deliver a flow rate of ~600 nL min-1 via a
splitter. All columns were packed in house using a Next Advance pressure cell and the
nanospray tips were fabricated using fused silica capillary that was pulled to a sharp tip using a
laser puller (Sutter P-2000). 25 ug of peptides were loaded unto 20 cm capillary columns
packed with 5 yM Zorbax SB-C18 (Agilent), which was connected using a zero dead volume 1
pm filter (Upchurch, M548) to a 5 cm long strong cation exchange (SCX) column packed with 5
pum PolySulfoethyl (PolyLC). The SCX column was then connected to a 20 cm nanospray tip
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packed with 2.5 yM C18 (Waters). The 3 sections were joined and mounted on a custom
electrospray source for on-line nested peptide elution. A new set of columns was used for every
sample. Peptides were eluted from the loading column unto the SCX column using a 0 to 80%
acetonitrile (ACN) gradient over 60 min. Peptides were then fractionated from the SCX column
using a series of ammonium acetate salt steps as following:10, 30, 32.5, 35, 37.5, 40, 42.5, 45,
50, 55, 65, 75, 85, 90, 95, 100, 150, and 1000 mM. For these analyses, buffers A (99.9% H.0,
0.1% formic acid), B (99.9% ACN, 0.1% formic acid), C (100 mM ammonium acetate, 2% formic
acid), and D (1 M ammonium acetate, 2% formic acid) were utilized. For each salt step, a 150-
minute gradient program comprised of a 0—5 minute increase to the specified ammonium
acetate concentration (using buffers C or D), 5-10 min hold, 10—14 min at 100% buffer A, 15—
120 min 5-35% buffer B, 120—140 min 35-80% buffer B, 140—-145 min 80% buffer B, and 145-
150 min buffer A was employed.

Eluted peptides were analyzed using a Thermo Scientific Q-Exactive Plus high-
resolution quadrupole Orbitrap mass spectrometer, which was directly coupled to the HPLC.
Data dependent acquisition was obtained using Xcalibur 4.0 software in positive ion mode with
a spray voltage of 2.00 kV and a capillary temperature of 275 °C and an RF of 60. MS1 spectra
were measured at a resolution of 70,000, an automatic gain control (AGC) of 3e6 with a
maximum ion time of 100 ms and a mass range of 400-2000 m/z. Up to 15 MS2 were triggered
at a resolution of 17,500. An AGC of 1e5 with a maximum ion time of 50 ms, an isolation
window of 1.5 m/z, and a normalized collision energy of 28. Charge exclusion was set to

unassigned, 1, 5-8, and >8. MS1 that triggered MS2 scans were dynamically excluded for 25s.

Database search and FDR filtering
The raw data were analyzed using MaxQuant version 1.6.3.3 (Tyanova et al., 2016). A
customized protein database containing 22513 proteins (Supplemental Dataset S4) was

generated from the RiboTaper output file “ORFs_max_filt.” Spectra were searched against the

23
Downloaded from on July 2, 2019 - Published by www.plantphysiol.org
Copyright © 2019 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

customized protein database which was complemented with reverse decoy sequences and
common contaminants by MaxQuant. Carbamidomethyl cysteine was set as a fixed modification
while methionine oxidation and protein N-terminal acetylation were set as variable modifications.
Digestion parameters were set to “specific’ and “Trypsin/P;LysC” or “GluC”. Up to two missed
cleavages were allowed. A false discovery rate less than 0.01 and protein identification level
was required. The “second peptide” option was used to identify co-fragmented peptides. The
“match between runs” feature of MaxQuant was not utilized. Raw data files and MaxQuant
Search results have been deposited in the Mass Spectrometry Interactive Virtual Environment
(MassIVE) repository:

https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp with dataset identifier: MSV000083363.

Prediction of the subcellular localization of sORFs
A fasta file containing the sORF amino acid sequences was uploaded to the TargetP
website (Emanuelsson et al., 2000). We selected "Plant" as the organism group and ">0.90" as

the specificity cutoff and then submitted for analysis.

Evolutionary analysis

The "tblastn" function for BLAST v2.7.1 (OS Linux_x86_64)(Camacho et al., 2009) was
used for the homology search. Because several plant genomes still lack exon-intron junction
information in their annotations, we only selected single-exon tomato sORFs that encoded 16—
100 amino acid residues for this analysis, and the reference genomes (Athaliana_167_TAIR9.fa,
Atrichopoda 291 v1.0.fa, Csinensis_154 v1.fa, Mtruncatula_ 285 Mt4.0.fa,
Osativa_323 v7.0.fa, Ppatens 318 v3.fa, S_lycopersicum_chromosomes.3.00.fa,
Sitalica_312_v2.fa, Smoellendorffii_91_v1.fa, Stuberosum_448 v4.03.fa) were downloaded
from Phytozome v12 (Goodstein et al., 2012).The fa (fasta) files for each genome were used to

generate blast databases with the following code: “makeblastdb -in genome.fa -parse_seqids -
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dbtype nucl”’, where genome.fa was replaced with the fasta file for each genome. Next, the code
"tblastn -query input.fa -db species_database -out species_blast_result.txt -evalue 0.001 -
outfmt '6 gseqid sseqid length glen gstart gend sstart send pident gapopen mismatch evalue
bitscore' -num_threads 10" was used to search for sequence homologs in the target genomes.
The names of “species_database” and “species_blast_result.txt” were changed correspondingly.
The final heatmap for amino acid identity was plotted in R using the pheatmap v1.0.10 (Kolde,

2015) and RColorBrewer v1.1.2 libraries (Neuwirth, 2014).

miRNA target identification

The tomato miRNA sequences were extracted from Kaur et al. (2017) and Liu et al.
(2017). Next, we used psRNATarget (Dai et al., 2018) against ITAG3.2 mRNA sequences to
identify potential miRNA targets. We used “Schema V2 (2017 release)” (Dai et al., 2018) and

selected “calculate target accessibility” as the analysis parameters.

GO term analysis

agriGO v2.0 (Tian et al., 2017) was used for the GO analysis of uORF-containing genes.

ACCESSION NUMBERS

o The raw RNA-seq and Ribo-seq data have been deposited in the Gene Expression
Omnibus (GEO) database under accession no. GSE124962.

e Proteomics raw data files and MaxQuant Search results have been deposited at the

MassIVE repository with dataset identifier: MSV000083363.
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Supplemental Figure S1. Correlation between RNA-seq and Ribo-seq data.

25
Downloaded from on July 2, 2019 - Published by www.plantphysiol.org
Copyright © 2019 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org

648 Supplemental Figure S2. Meta-gene analysis and inference of the P-site for ribosome

649  footprints of different lengths.

650 Supplemental Figure S3. Summary of the inferred P-site position for each footprint length.
651 Supplemental Figure S4. Fractions of in-frame P-sites for different groups of translated ORFs.
652  Supplemental Figure S5. Translation of tomato homologs of Arabidopsis sORFs.

653  Supplemental Figure S6. Evolutionary conservation of sORFs.

654  Supplemental Figure S7. Examples of conflicts between annotated gene models and

655 translational profiles.

656  Supplemental Dataset S1_lists of ORFs_proteomics_miRNAs. xIsx, spreadsheets (A) to
657 ().

658 (A): ORF_ccds (annotated ORFs) from RiboTaper output “ORF_max_filt”

659 (B): uORFs from RiboTaper output “ORF_max_filt”

660 (C): sORFs from RiboTaper output “ORF_max_filt”

661 (D): TargetP results for sORFs

662 (E): sORF MassSpec spectra

663 (F): uORF MassSpec spectra

664 (G): 64 ORFs using an upstream start rather than annotated start identified by RiboTaper
665 (H): miRNAs used for psRNATarget prediction

666  (I): predicted miRNA-targets by psRNATarget

667

668 Supplemental Dataset S2. uORF.gtf (gtf for uORFs)

669  Supplemental Dataset S3. sORF.gtf (gtf for sSORFs)

670 Supplemental Dataset S4_amino_acid_sequences_for_translated_ORFs. fa (amino acid
671 sequences for all translated ORFs identified by RiboTaper in this study)

672  Supplemental Dataset S5_Proteogenomics. xlsx: Proteogenomics, spreadsheets (A) to

673  (C).
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FIGURE LEGENDS

Figure 1: Experimental and data analysis procedures for ribosome profiling in tomato
roots. A, Four-day-old tomato seedling roots (approximately 3 cm from the tip) were used in this
study. B, Experimental workflow for RNA-seq and Ribo-seq and the schematics of their
expected read distributions in the three reading frames. This figure was adapted from Hsu et al.
(2016). C, Data analysis workflow for reference-guided de novo transcriptome assembly and

OREF discovery using RiboTaper.

Figure 2: Ribosome footprints are enriched in coding sequences and display strong 3-nt
periodicity.

A, The distribution of read length of the ribosome footprints. B, The distribution of the Ribo-seq
and RNA-seq reads in different genomic features annotated in ITAG3.2. C, Meta-gene analysis
of the 28-nt ribosome footprints near the annotated translation start and stop sites defined by
ITAG3.2. The red, blue and green bars represent reads mapped to the first (expected), second
and third reading frames, respectively. The majority of footprints were mapped to the CDS in the
expected reading frame (85.5% in frame). For each read, only the first nucleotide in the P-site

was plotted (for details, see Supplemental Figure S2 and Supplemental Figure S3). The A-site
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(aminoacyl-tRNA entry site), P-site (peptidyl-tRNA formation site) and E-site (uncharged tRNA
exit site) within the ribosomes at translation initiation and termination, and the inferred P-site
(13"-15" nts) and A-site (16""-18" nts) are illustrated. The original meta-plots generated by

RiboTaper for all footprint lengths are shown in Supplemental Figure 2.

Figure 3: The translational landscape of the tomato root.

A, Classes of newly assembled transcripts identified by stringtie and gffcompare and used in
downstream OREF identification. This figure was adapted from the gffcompare website (Pertea et
al., 2016). B, Summary of translated ORFs identified by RiboTaper in our dataset and peptide
support from mass spectrometry data. The uORFs and annotated ORFs were identified from the
5" UTRs and expected CDSs of annotated protein-coding genes in ITAG3.2, respectively. The
previously unknown ORFs were identified from the newly assembled transcripts. The bottom
row indicates the number of proteins in each category supported by mass spectrometry
datasets, either from our own proteomic analysis or searches against publicly available data. C,
Summary of newly assembled transcripts and ORFs identified in each class of newly assembled
transcripts. The total number of transcripts, number of transcripts identified as translated and
the total number of translated ORFs are listed. D, Size distribution of each class of sORFs,
uORFs and annotated ORFs (aORFs). E, Predicted subcellular localization of proteins encoded
by the sORFs. The prediction was performed using TargetP (Emanuelsson et al., 2000) with
specificity 0.9 as a cutoff. F, Translation efficiency of sORFs compared with annotated ORFs.
Only the coding regions were used to compute the TPM and translation efficiency of each
transcript. For the x-axis, only the range from 0 to 3 (arbitrary unit) is shown. A two-sample
Kolmogorov-Smirnov test was used to determine statistical significance. G to J, RNA-seq
coverage and Ribo-seq periodicity in different genes: an intergenic sORF on chromosome 4 (G);
an annotated coding gene that has good support from the Ribo-seq data for the predicted gene

model (H); a mis-annotated ORF (I), note the Ribo-seq reads do not match the CDS in the gene
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model and a different reading frame is used; a transcript with a potentially overlapping ORF
within the annotated ORF (J). In G to J, the x-axis indicates the genomic coordinate of the gene.
The y-axis shows the normalized read count (counts per hundred million reads). Ribo-seq reads
are shown by plotting the first nucleotide of their P-sites (denoted as the P-site signals). The
black and gray dashed vertical lines mark the predicted translation start and stop sites,
respectively. The red, blue and green lines in the Ribo-seq plot indicate the P-site signals
mapped to the first (expected) reading frame and the second and third reading frames,
respectively; the grey lines indicate the P-site signals mapped to outside of the annotated or
identified coding regions. Hence, a higher ratio of red means better 3-nt periodicity. For the
gene model beneath the Ribo-seq data, the gray, black and white areas indicate the 5’ UTR,
CDS and 3' UTR, respectively. In J, the yellow box above the gene model indicates the region

with a potential ORF overlapping with the annotated ORF.

Figure 4: Upstream/downstream start sites and non-AUG start sites.

A and B, Examples of the usage of an upstream start site (A) or a downstream start site (B).
The gene model and data presentation are the same as those described in the legend of Figure
3. The blue triangle marks the location of the annotated translation start site. The orange
triangle marks the location of the RiboTaper-identified translation start site. C, A tomato
homolog of an Arabidopsis gene that was predicted to use an upstream CUG start site (orange
triangle). Note the abundant in-frame P-site signals upstream of the annotated AUG start (blue
triangle) in the 5' UTR. D, Conservation of potential CUG/non-AUG start sites. The Arabidopsis
gene ID, tomato gene ID, percent amino acid identity, and number of in-frame P-site positions
with Ribo-seq reads within the first 20 codons upstream of the AUG in our tomato root data are

shown.

Figure 5: uORFs repress translation efficiency of their downstream main ORFs and
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contain less-pronounced Kozak sequences.

A and B, Profiles of genes containing conserved uORFs (A) or a previously uncharacterized
uORF (B). The gene model and data presentation are the same as those described in the
legend of Figure 3. The uORFs are labeled with yellow and orange boxes in the gene models.
For the uORFs, the orange and green dashed vertical lines mark the translation start and stop
sites, respectively. C, The translation efficiency (TE) of the main ORFs for transcripts containing
a different number of translated uORFs. Only the coding regions were used to compute the
TPM and translation efficiency of each transcript. The colored bars before the p-values indicate
the pairs of data used to determine statistical significance. The p-values were determined with
two-sample Kolmogorov-Smirnov tests. D, Selected non-redundant GO categories for genes
containing one or more uORFs. E and F, Kozak sequences of annotated ORFs, uORFs, and
uORF-associated main ORFs. The statistical significance in F was determined using Chi-

squared tests.

Figure 6: Regulation of gene expression by microRNAs (miRNAs). A to C, Cumulative
distributions of RNA-seq (A), Ribo-seq (B) and translation efficiency (TE; C) of miRNA targets
and non-miRNA target genes. For the x-axis in A and B, only the range from 0 and 50 (TPM) is
shown. Only the coding regions were used to compute the TPM and translation efficiency of

each transcript. The p-values were determined with two-sample Kolmogorov-Smirnov tests.
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Figure 1: Experimental and data analysis procedures for ribosome profiling in tomato roots.

(A) Four-day-old tomato roots (approximately 3 cm from the tip) were used in this study.

(B) Experimental workflow for RNA-seq and Ribo-seq and the schematics of their expected read distributions in
the three reading frames. This figure was adapted from Hsu et al. 2016.

(C) Data analysis workflow for referepggnguidadsie SN® anseripiams
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Figure 2: Ribosome footprints are enriched in coding sequences and display strong 3-nt periodicity.

(A) The distribution of read length of the ribosome footprints.

(B) The distribution of the Ribo-seq and RNA-seq reads in different genomic features annotated in ITAG3.2.

(C) Meta-gene analysis of the 28-nt ribosome footprints near the annotated translation start and stop sites defined by
ITAG3.2. The red, blue and green bars represent reads mapped to the first (expected), second and third reading frames,
respectively. The majority of footprints were mapped to the CDS in the expected reading frame (85.5% in frame). For

each read, only the first nucleotide in the P-site was plotted (for details, see Supplemental Figures 2 and 3). The A-site
(aminoacyl-tRNA entry site), P-site (pe@ididRNAiorsatian Site) anslBirsita tynahasasgiRNAgXit site) within the ribosomes
at translation initiation and terminatiorf;aidoth® #ofErAseFeasitSoCiatiel thiht Rigpgiste Alsigbts 161eve8th nts) are illustrated.

The original meta-plots generated by RiboTaper for all footprint lengths are shown in Supplemental Figure 2.
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Figure 3: The translational landscape of the tomato root.

(A) Classes of newly assembled transcripts identified by stringtie and gffcompare and used in
downstream ORF identification. This figure was adapted from the gffcompare website (Pertea et
al., 2016).

(B) Summary of translated ORFs identified by RiboTaper in our dataset and peptide support
from mass spectrometry data. The uORFs and annotated ORFs were identified from the 5'
UTRs and expected CDSs of annotated protein-coding genes in ITAG3.2, respectively. The
novel ORFs were identified from the newly assembled transcripts. The bottom row indicates the
number of proteins in each category supported by mass spectrometry datasets, either from our
own proteomic analysis or searches against publicly available data.

(C) Summary of newly assembled transcripts and ORFs identified in each class of newly
assembled transcripts. The total number of transcripts, number of transcripts identified as
translated and the total number of translated ORFs are listed.

(D) Size distribution of each class of sORFs, uORFs and annotated ORFs (aORFs).

(E) Predicted subcellular localization of proteins encoded by the sORFs. The prediction was
performed using TargetP (Emanuelsson et al., 2000) with specificity 0.9 as a cutoff.

(F) Translation efficiency of SORFs compared with annotated ORFs. Only the coding regions
were used to compute the TPM and translation efficiency of each transcript. For the x-axis, only
the range from 0 to 3 (arbitrary unit) is shown. A two-sample Kolmogorov-Smirnov test was
used to determine statistical significance.

(G-J) RNA-seq coverage and Ribo-seq periodicity in different genes: (G) an intergenic sORF on
chromosome 4; (H) an annotated coding gene that has good support from the Ribo-seq data for
the predicted gene model; (I) a mis-annotated ORF; note the Ribo-seq reads do not match the
CDS in the gene model and a different reading frame is used; (J) a transcript with a potentially
overlapping ORF within the annotated ORF. In (G-J), the x-axis indicates the genomic
coordinate of the gene. The y-axis shows the normalized read count (counts per hundred million
reads). Ribo-seq reads are shown by plotting the first nucleotide of their P-sites (denoted as the
P-site signals). The black and gray dashed vertical lines mark the predicted translation start and
stop sites, respectively. The red, blue and green lines in the Ribo-seq plot indicate the P-site
signals mapped to the first (expected) reading frame and the second and third reading frames,
respectively. Hence, a higher ratio of red means better 3-nt periodicity. For the gene model
beneath the Ribo-seq data, the gray, black and white areas indicate the 5' UTR, CDS and 3'
UTR, respectively. In (J), the yellow box above the gene model indicates the region with a
potential ORF overlapping with the annotated ORF.

Downloaded from on July 2, 2019 - Published by www.plantphysiol.org
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Figure 4: Upstream/downstream start sites and non-AUG start sites.

(A-B) Examples of the usage of an upstream start site (A) or a downstream start site (B). The gene model and data
presentation are the same as those described in the legend of Figure 3. The blue triangle marks the location of the
annotated translation start site. The orange triangle marks the location of the RiboTaper-identified translation start site.
(C) A tomato homolog of an Arabidopsis gene that was predicted to use an upstream CUG start site (orange triangle).
Note the abundant in-frame P-site signals upstream of the annotated AUG start (blue triangle) in the 5’ UTR.

(D) Conservation of potential CUG/non-AUG start sites. The Arab|d0p3|s ene ID, tomato gene ID, percent amino acid

identity, and number of in-frame P- s|@%ﬁﬁg§d&gﬁrﬁﬁﬁéé§cﬂ%ﬁpwmﬂ)m§ﬂﬁﬂ.?I'gp@éﬂ@é%ggpstream of the AUG in

our tomato root data are shown.


http://www.plantphysiol.org

Figure 5

A Solyc049076030.2 (Tomato SAC571 homolog)
RNA-seq

1000

Read count (ct/hm)
0

o1 Ribo-seq :
21 b |
: L
o [T TR IR U OpT R 1 M .
<N L I NN | I r— Q™
61059000 61060000 61061000 61062000
B Solyc019098340.3 (Hsp40)
Q
_g
Eg
3 ]
€ o+
>
8 @ + '
g o
o :
T i | il
[V
o i b b kit e sl
CCOI——— O ——
88763000 88764000 88765000 88766000 88767000
C D
1 GO category Description FDR
5 0004672 | protein kinase activity 6.5e-20
'(‘Eé 08 0006793 | phosphorus metabolic process 1.1e-17
+ 0.6 — o uORF 0043412 | macromolecule modification 2.8e-16
> -
£ 0.4 T o iORE 0005524 | ATP binding 14e-11
g 0.2- — — p-value < 2.20e-16 0004871 | signal transducer activity 2.2e-05
0 — = p-value < 1.159¢e-05 0038023 | signaling receptor activity 4.1e-05
0:0 0:5 1:0 1_'5 2i0 2i5 3'_0 0019888 | protein phosphatase regulator ac.tl\.nty 9.0e-05
Translation efficiency (A.U.) 0004721 | phosphoprotein phosphatase activity 0.033
E F p'VaIUe =5.893e-15 | p-VaIUe =1.095e-14 |
I 1
Annotated ORF ] uORF ! mORF
1
0. ?o.
1o OC fo 111 T
o o
0. TTC T 0.2 C T TCT T
o = — 0 c <C <
3 2 11 2 3 4 351 23 4 32 11 23 2
Position Position Position

Figure 5: uORFs repress translation efficiency of their downstream main ORFs and contain
less-pronounced Kozak sequences.

(A, B) Profiles of genes containing conserved uORFs (A) or a novel uORF (B). The gene model and data
presentation are the same as those described in the legend of Figure 3. The uORFs are labeled with yellow and
orange boxes in the gene models. For the uORFs, the orange and green dashed vertical lines mark the translation
start and stop sites, respectively.

(C) The translation efficiency (TE) of the main ORFs for transcripts containing a different number of translated
UOREFs. Only the coding regions were used to compute the TPM and translation efficiency of each transcript.
The colored bars before the p-values indicate the pairs of data used to determine statistical significance. The
p-values were determined with two-sample Kolmogorov-Smirnov tests.

(D) Selected non-redundant GO cate mmtﬁmnﬁm ocontginingionewlisnareyuRcsntphysiol.org

(E, F) Kozak sequences of annotated%ﬁl?i'l‘-'%ht P EREIOREN L @B AT ORISR TRE Yestistical

significance in (F) was determined using Chi-squared tests.
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Figure 6: Regulation of gene expression by microRNAs (miRNAs).
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