Downloaded 07/04/19 to 129.7.105.55. Redistribution subject to SEG license or copyright; see Terms of Use at http:/library.seg.org/

Learn Low Wavenumber Information in FWI via Deep Inception Based Convolutional Networks
Yuchen Jin*, University of Houston, Wenyi Hu, Advanced Geophysical Technology Inc., Xuging Wu, and Jiefu Chen,

University of Houston

SUMMARY

In this paper, we will explore the possibility of synthesizing the
low-frequency data from the high-frequency data. The synthe-
sized low-frequency data are used to improve the full-waveform
inversion (FWI). Unlike all previously methods, to the best of
our knowledge, this is the first attempt to utilize a data driven
approach to solve the problem. We propose to learn the low
wavenumber information in FWI via the Deep Inception based
Convolutional Networks. Once the deep learning network is
sufficiently trained, the network can be used to predicted the
low-frequency data with high accuracy on a completely differ-
ent unknown velocity model. In the end, we validate the quality
of the predicted low-frequency data and the robustness of this
deep learning approach.

INTRODUCTION

In current seismic data acquisition environments, reliable low-
frequency components below 5 Hz do not practically exist in
typical seismic data sets. This will affect the performance of
FWI, which takes into account the full waveform information
of seismic data to reconstruct an earth model and is expected
to generate the maps of geophysical properties continuously
covering a broadband wavenumber spectrum. Without low-
wavenumber components of the velocity model, FWI may con-
verge to a local minimum when the inversion starts at high
frequencies or the starting velocity model is not sufficiently
close to the true model. Computationally synthesizing the low
frequencies from the high-frequency data has attracted much
attention recently. However, it is a very challenging signal-
processing problem and is a highly nonlinear and nondetermin-
istic operation. This paper will be kept brief with regard to the
treatment of related research works. Readers who are interested
in more technical aspects of this topic can refer to articles such
as Ma and Hale (2013), Baek et al. (2014), Warner and Guasch
(2016), Van Leeuwen and Herrmann (2013), Tang et al. (2013),
Alkhalifah (2014), and Li and Demanet (2016). The review ar-
ticle published by Hu et al. (2018) provides a comprehensive
overview of latest research advances.

Following a phase modulation/demodulation concept commonly
used by musicians for instrument tuning, Hu (2014) proposed
beat tone FWI to suppress the cycle-skipping phenomenon. This
method utilizes two seismic data sets at two slightly different
high frequencies to retrieve the buried low wavenumber in-
formation. However, although the beat tone strategy success-
fully amplifies the low wavenumber information, it fails to com-
pletely exclude the information of the high wavenumber. Fig-
ure 1 show the comparison between ground-truth 3 [Hz] data
and the beat tone data extracted from the 8 [Hz] and 11 [Hz]
data.
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Figure 1: Anexample of comparing the beat tone data to
the true low frequency data. The blue line represents the
true 3 [Hz] data. The orangle line indicates beat tone data
extracted from the 8 [Hz] and 11 [Hz] data.

By observing the behavior of the beat tone data, we found that
the naive regression algorithm is unable to find a reliable method
that could synthesize the data of low frequencies from the high-
frequency data. However, first, a nonlinear and nondetermin-
istic mapping function exists between the phase information of
the beat tone data extracted from high frequency components
and that of the true low frequency data. Second, we could find a
robust mapping function independent of subsurface structures
by mining the relationship via a pure data-driven approach. In
this paper, we propose a novel data driven framework and ver-
ity its feasibility in synthesizing the low-frequency data from
the high-frequency data. Our method is built upon a Deep In-
ception Based Convolutional Network (Szegedy et al. (2015))
and its structural detail will be explained in the following sec-
tions.

A DATA DRIVEN FRAMEWORK FOR LEARNING LOW-
FREQUENCY DATA FROM HIGH-FREQUENCY DATA

Figure 2 shows that our framework is divided into two phases.
In the first phase, we preprocess the high-frequency data in the
complex domain. In the second phase, the processed data will
be fed into the deep nural network to predict the corresponding
low-frequency data.
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Figure 2: The structure of the data driven frame for learn-
ing the low-frequency data.
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Data Preprocessing

The model will be trained with two kinds of data:

(1) Normalized raw data: The amplitude of the raw data is
normalized in the complex domain, this operator can be
desribed as F(z) = |—§T;

(2) Beat tone data: The beat tone data is generated according
to Hu (2014). Denote two high frequency-data z; and z
with frequencies respectively at f; and f> (f> > fi), the
beat tone data is generated as B(z1,22) = z—fejgﬂ.

The real part and the imaginary part of the data at different
frequencies will be fed into different channels of the convolu-
tional network. For data collected at consecutive frequencies
{fi. fi+Af, fi+2Af, .... fi}. the number of channels re-
quired for the normalized raw data is:

_wm (=T
Co=3 ( AF +l). (1)

To generate the beat tone data for a specified low-frequency at
fo, we need two data sets of high-frequencies at (f, f + f5)-
The network can be trained to synthesize data at multiple low-
frequencies. Using N as the number of total low-frequency data
sets the network can produce, the number of input channels
required by the beat tone data is:

Then the number of channels of the network output is:

Co=2N. (3)

In the experiments, we use 8 < f < 18 [Hz] data to predict
{1.5, 3, 5} [Hz] data and 10 < f < 18 [Hz| data to predict
{1.5, 3, 5, 7} [Hz] data. The channel numbers in our experi-
ment are summarized in Table 1 and Af = 0.5 [Hz].

InputBand | G | Cp | G,
> 8 [Hz] 42 | 88 | 6
> 10 [Hz] 34170 | 8

Table 1: Channel numbers in experiments

Deep Inception based Convolutional Networks

As shown in Figure 2, any arbitrary neural network could be
used in the framework. We have designed and tested with dif-
ferent network structures. The framework learns to synthe-
size the low-frequency data by using both the normalized high-
frequency data and the beat tone data. Therefore, the network
is set to learn a model that will amplify the low wavenumber in-
formation and exclude the high wavenumber information at the
same time. The branch A and B share the same structure. Their
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outputs would be merged together by the channel concatena-
tion. The merged layer would be fed into a stem network with
mixed features from both branches and the output is mapped to
the low-frequency data.

Among all networks we have tested so far, the inception based
convolutional network (Szegedy et al. (2017)) is most effective
in solving the problem. Figure 3a and Figure 3b shows the two
basic units of the inception model. Figure 3a shows the con-
volutional block which is composes of D+ 2 parallel branches.
Denote the depth as d, then:

(1) If d = —1, this branch has a pooling layer and a x1 con-
volutional layer (which is also called projection).

(2) If d = 0, this branch only has a projection layer, which
means it is just a combination of the original features.

(3) If d > 0, there would be d convolutional layers after the
projection. The projection will produce an output with the
length of 2 x (d — 1) x L%J +N.

The cup sign (| J) in Figure 3a represents concatenating all chan-
nels fromeach branches. Since there are D+ 2 branches, if each
branch has C, output channels, the number of output channels
of the whole block will be (D + 2)C,. The other basic unit is
the deconvolutinal block which is illustrated in Figure 3b. It
is designed by adding a deconvolutional layer before the con-
volutional inception block. The deconvlutional layer will up-
sample the input layers by the stride of 5. In the regression
model we may need to reduce the length of the sample during
the convolution and use this operation to recover the original
length so that the features would be easier to be mapped to the
target space.

Figure 3¢ shows the structure of the regressor. We crop several
samples with a length of 20 from the original 96-length sam-
ples randomly. Then the samples could be pre-processed for
the raw data and beat tone data respectively. In each branch
network we use 10 inception block and concatenate the output
channels from 2 branch networks. In Figure 3c, all depths (de-
noted as D) of every individual inception block is set to be 2.
The depth of the whole network is 41. We use tanh function
to map the output to the range of (—1, 1). The objective of
the learning process is to minimize the MSE loss against the
ground truth. The network can be represented as a function
Z (x, ©), where x represents the input, ® are all parameters of
the network. Given the ground truth y, the optimization can be
described as:

min) _[|# (x, 8) -yl @
Xy

FEASIBILITY STUDY

In order to verify the robustness of the model for adapting to
different subsurface structures, the Deep Inception based Con-
volutional Networks are trained with SEG Model 1997 2.5D
and tested against the Marmousi Model. Figure 4 shows the
training and validation accuracy when using different sets of
high-frequency data. It indicates that as the frequency gets
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Figure 3: The structures of basic units of D-depth incep-
tion model.
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Figure 4: The validation accuracy when predicting low-
frequency data by using high-frequency data of (> 8 [Hz])
and (> 10 [Hz]).

higher, the accuracy for predicting low-frequency data is get-
ting lower, possibly due to the increased level of nonlinearity
of the underlying mapping operator between beat tone data and
true low frequency data. Introducing more training data with
more varieties may improve the prediction accuracy and further
enhance the robustness of this approach.
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Figure 5: Source in the middle. (a) 3 [Hz] data (orange)
predicted by the beat tone method. (b) 3 [Hz] data (orange)
predicted by the deep learning model.

Figure 5a show the true 3 [Hz] Marmousi data (blue) and the
beat tone 3 [Hz] data (orange) extracted from 13 [Hz] and 10 [Hz]
data. As a comparison, Figure 5b show the 3 [Hz] data (orange)
predicted by the deep learning network with both normalized
raw data and beat tone data of high-frequency (> 10 [Hz]). The
proposed deep learning network successfully suppresses much
of the high wavenumber information. Figure 6 compares the
beat tone result and the deep learning prediction for 3 [Hz] on
the same data set. However, since the source is moved away
from the center, signals received far away from the source are
difficult to tune. Leveraged by the data driven approach, the
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Figure 6: Source close to one side. (a) 3 [Hz] data (orange)
predicted by the beat tone method. (b) 3 [Hz] data (orange)
predicted by the deep learning model.

deep learning model demonstrates far more superior prediction
performance in adapting to different scenarios.

FWI Inversion

In this section, we compare the velocity model reconstructed
by the FWI engine by using the 3 [Hz| data predicted by the
beat tone and our proposed deep learning network. The 3 [Hz]
predicted by the deep learning network is input into the con-
ventional FW1 engine for the inversion instead of the beat tone
FWlengine used in Hu (2014). The starting model is a simple
1D linear model.

The FWI results of various scenarios are shown in Figure 7.
Figure 7a shows the conventional FWTI inversion result by us-
ing the true 3 [Hz| data. The conventional FWI inversion result
of beat tone 3 [Hz] (from 10 [Hz] and 13 [Hz]) is displayed in
Figure 7b. Strong artifacts can be observed in both shallow
and deep parts. Figure 7c demonstrates the conventional FWI
inversion result of 3 [Hz] predicted from the high frequency
data (> 10 [Hz]) by the deep learning network. Compared to
Figure 7a, there is high level of similarity at the same spatial
resolution, which validates the quality of the predicated low-
frequency data and the robustness of this deep learning net-
work.

CONCLUSION

Starting the frequency continuation using the low-frequency
data will help FWI to avoid convergence to local minima. How-
ever, it is a very challenging task to computationally synthe-
sizing the low-frequency data from the high-frequency data.
As the analytical solutions to the bandwidth extension prob-
lem often fail to adapt to different scenarios, we proposed a
data driven approach leveraged by the deep learning network.
The numerical example proves that the predicted low frequency
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data are very similar to the true low frequency data. By intro-
ducing more training models and training datasets with differ-
ent varieties, the quality of the low frequency data prediction
is expected to be significantly improved.
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Figure 7: (a) True 3 [Hz] conventional FWI inversion;
(b) conventional FWI inversion with 3 [Hz] beat tone data
(from 10 [Hz] and 13 [Hz]); (c) conventional FWT inver-
sion with 3 [Hz] data predicted by the deep learning net-
work (> 10 [Hz]).
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