
Fast Robot Motion Planning
with Collision Avoidance and Temporal Optimization

Hsien-Chung Lin∗, Changliu Liu∗, and Masayoshi Tomizuka

Abstract— Considering the growing demand of real-time
motion planning in robot applications, this paper proposes a
fast robot motion planner (FRMP) to plan collision-free and
time-optimal trajectories, which applies the convex feasible set
algorithm (CFS) to solve both the trajectory planning problem
and the temporal optimization problem. The performance of
CFS in trajectory planning is compared to the sequential
quadratic programming (SQP) in simulation, which shows
a significant decrease in iteration numbers and computation
time to converge a solution. The effectiveness of temporal
optimization is shown on the operational time reduction in the
experiment on FANUC LR Mate 200iD/7L.

I. INTRODUCTION

Robot motion planning has been a popular topic for several
decades. Most researches address the two key factors: safety
and efficiency. Safety indicates the protection for the robot
system from any risk of collision. Several sampling-based
methods such as [1], [2] and optimization-based approaches
such as [3], [4] have been developed to plan collision-free
trajectories for robots. Efficiency refers the minimization of
the cost such as control input and operation time. Some
algorithms [5], [6] are proposed to find the time-optimal
trajectory on a specified path.

However, this field is still open for research especially
from the viewpoint of computationally efficient motion
planning because of the increasing demand of mass cus-
tomization and the growing application of human-robot in-
teraction (HRI). mass customization is unlike conventional
mass production, where every product looks very similar but
slightly different. However, the whole trajectory is required
to be reprogrammed due to these subtle changes, which
is nontrivial and time-consuming. On the other hand, HRI
requires the robot to frequently re-plan its motion so that it
can safely interact with human in a dynamic environment.
Both applications show the need of a fast robot motion
planning, which helps the robot to efficiently generate new
motion trajectories to adapt to varying environment.

In this paper, the framework of fast robot motion planner
(FRMP) is proposed as shown in Fig.1. It has two layers:
the trajectory planning layer and the temporal optimization
layer, where each layer deals with safety and efficiency
respectively. Trajectory planning is to plan a collision-free

∗These authors equally contributed to this work.
The authors are with Department of Mechanical Engineering, Uni-

versity of California, Berkeley, CA 94720, USA. Email: {hclin,
changliuliu, tomizuka }@berkeley.edu

The current affiliation of H.-C. Lin is FANUC Advanced Research
Laboratory, Union City, CA, 94587, USA.

The current affiliation of C. Liu is Stanford University, Stanford, CA,
94305, USA.

Reference Path

(Collision)

Modified Path

(Collision Free)

Trajectory planning to avoid collision

Temporal optimization to reduce cycle time

Original

Horizon

Modified

Horizon

Trajectory

Planning

Temporal

Optimization

Robot Motion

Motion

Planner

Reference Path/Points

Collision-free

Trajectory

Time-optimal

trajectory

Fig. 1. The framework of fast robot motion planner (FRMP).

trajectory from a given reference trajectory or several way
points, whereas the temporal optimization is to minimize the
cycle time over the planned trajectory. This paper utilizes
optimization-based algorithms to deal with the problems
in both layers in FRMP. The optimization-based motion
planning methods, such as model-predictive control (MPC)
[7], often need to face highly nonlinear dynamics constraints
and highly non-convex constraints for obstacle avoidance,
which make it difficult to solve the problem efficiently.

Convexification is a common technique to transform a
non-convex problem into a convex one. One of the most
popular convexification method is the sequential quadratic
programming (SQP) [8], [9], which iteratively solves a
quadratic subproblem obtained by quadratic approximation
of the Lagrangian function and linearizion of all constraints.
The method has been successfully applied to robot motion
planning as discussed in [10] and [11]. However, SQP is
designed for general purposes, and it often takes multiple
iterations to find the solution.

Considering the specific geometric structure in motion
planning problems, the convex feasible set algorithm (CFS)
[12] and the slack convex feasible set algorithm (SCFS) [13]
are proposed for the real time motion planning, a successful
application to path planning for autonomous vehicles is given
in [14]. FRMP follows the similar algorithmic structure
to plan a collision-free trajectory for robot manipulators.
Moreover, in order to achieve the time optimality in a short
computational time, temporal optimization is formulated into
another CFS problem and solved in a fast manner.

The rest of this paper is organized as follow. Section II
reviews the convex feasible set algorithm for trajectory plan-
ning. Section III firstly formulates the temporal optimization
problem, then introduces how to apply CFS to this problem.
Section IV compares the performance between CFS and

2018 15th International Conference on
Control, Automation, Robotics and Vision (ICARCV)
Singapore, November 18-21, 2018

978-1-5386-9582-1/18/$31.00 ©2018 IEEE 29

(a) (b)

Fig. 2. Illustration of (a) The geometric structure of the trajectory planning
problem (b) The convex feasible set in the trajectory space.

SQP in trajectory planning and provides the experimental
results of FRMP conducted on FANUC LR Mate 200iD/7L.
Section V concludes the paper.

II. TRAJECTORY PLANNING

A. Problem Formulation

Denote the state of the robot as x ∈ X ⊂ Rn where
X is the feasible state in the n-dimensional state space;
u ∈ U ⊂ Rm is the control input of the robot, where
U is the constraints of u in the m-dimensional space1. In
general robot trajectory planning, the input constraint is often
formulated as a box constraint, e.g. −umax ≤ u ≤ umax,
where umax ∈ Rm+ is the maximum magnitude of the control
input.

Suppose the robot needs to move from the initial position
to the goal position, its discrete-time trajectory is denoted
as x =

[
xT0 , x

T
1 , · · · , xTN

]T ∈ XN+1 ⊂ Rn(N+1), where
xt ∈ X is the robot state at time step t and N is the
horizon. The sampling time is defined as dt. The reference
trajectory and the reference state at time step t are denoted
as xr ∈ XN+1 and xrt ∈ X , respectively. Similarly, u =[
uT0 , u

T
1 , · · · , uTN−1

]T ∈ UN = Ω ⊂ RmN is the control
input for the whole trajectory.

The Cartesian space occupied by the robot body at the
state xt is denoted as C(xt) ∈ R3, whereas the area
occupied by the obstacles in the environment at time t
is denoted as Ot ∈ R3. Suppose the Euclidean distance
between pA and pB in the Cartesian space is denoted as
dE(pA, pB) : R3 × R3 → R, then the minimum distance
between the robot and the obstacles is given by d(xt,Ot) :=
minpR∈C(xt),pO∈Ot

dE(pR, pO).
With the notation above, the robot trajectory planning

problem can be formulated as a general non-convex opti-
mization problem,

min
x,u

J(x,u) = ‖x− xr‖2Q + ‖u‖2R (1a)

s.t. xt ∈ X , ut ∈ U , (1b)
xt = f(xt−1, ut−1), (1c)
d(xt,Ot) ≥ dmin, ∀t = 1, · · · , N (1d)

1The control input u is not necessarily a physical input (such as the joint
torque for a robot). It can be any parameter that needs to be considered in
the trajectory optimization (such as the acceleration of a trajectory).

(a) (b)

Fig. 3. Illustration of (a) the nonlinear equality constraint and (b) the
nonlinear inequality constraints with slack variables.

Equation (1a) is designed to be a quadratic cost function
for the task performance, where ‖x − xr‖2Q := (x −
xr)TQ(x − xr) penalizes the deviation of the planned
trajectory from the reference trajectory, and ‖u‖2R = uTRu
penalizes the control effort over the trajectory. Note that
the matrices Q,R are designed to be positive definite.
Equation (1b) are the feasible constraints of the state and the
input, e.g. joint limits, singularity points, and saturation of
the control input. Equation (1c) is the dynamics constraints.
Equation (1d) describes the collision avoidance constraints,
where dmin ∈ R+ is the safety distance margin.

B. The Geometric Structure of Trajectory Planning

Combining the feasible state constraint in 1b and the safety
constraint 1d together, the feasible trajectory constraint in the
trajectory space is given by x ∈ Γ = XN+1 ∩ D, where Γ
denotes the constraint on the augmented state space XN+1

and D describes the safety set in the trajectory space. The
dynamics constraint in (1c) can be rewritten as G(x,u) = 0
in the trajectory space, where G : XN+1 × UN → Rm×N
represents the dynamic relationship between states and in-
puts. Hence, the robot trajectory planning problem can be
rewritten as

min
x,u

J(x,u) (2a)

s.t. x ∈ Γ, u ∈ Ω, (2b)
G(x,u) = 0 (2c)

The geometry of this problem in the trajectory space
is illustrated in Fig. 2a, where M is the manifold of the
robot dynamics, and the gray patch on the manifold is the
infeasible region. Notice that there are two important features
in this problem.
Feature 1 (Symmetry): The cost function given in (1a) is
designed to be J(x,u) = J1(x)+J2(u), where the minimum
of J2(u) is achieved at u = 0. Moreover, the box constraint
of Ω, −umax ≤ u ≤ umax, is also symmetric to u = 0.
Feature 2 (Affine Dynamics): Considering the robot dynam-
ics equation is written as M(x)ẍ + N(x, ẋ) = u, it can
be regarded as an affine dynamics equation, i.e. G(x,u) =
F (x) + H(x)u = 0. For the kinematic model, the affine
dynamics is also valid since it can be regarded as a linear
control system, i.e. xt = Axt−1 +But−1 = 0.

Due to these two features, the problem can be relaxed by

30

…

Fig. 4. The illustration of the convex feasible set algorithm, where the
yellow polygons are the convex feasible set obtained at each iteration and
the gray areas are the infeasible set in the space Γe.

Algorithm 1 The Convex Feasible Set Algorithm

z(0) = zr

while ‖z(k+1) − zk‖ > ε do
Find the convex feasible set: F(z(k)) ⊂ Γe

Solve QP: z(k+1) = arg minz∈F(k) J(z)
zr ← z(k+1), k = k + 1

end while

introducing the slack variable y,

min
x,y

J(x,y) (3a)

s.t. x ∈ Γ, y ≤ umax, (3b)
F (x) +H(x)y ≥ 0, F (x)−H(x)y ≥ 0 (3c)

It is proven in [13] that the optimizer of this relaxed
problem is equivalent to that of the original problem. The
intuition behind the relaxation is that: by introducing the
slackness, the feasible region is augmented from the original
nonlinear manifold M in Fig. 2a to the augmented feasible
volume Γe in Fig. 2b. Due to Feature 1, as J2 achieves
the minimum at u = 0, the algorithm will pull the optimal
solution down toM, which is on the “bottom” of Γe, so that
we may still get the same optimal solution as in the original
problem.

The difference between these two problems is illustrated
in Fig. 3, where the curve in Fig. 3a represents the nonlinear
equality constraint (2c) and the shaded area in Fig. 3b repre-
sents the nonlinear inequality constraints (3c).By introducing
the slack variable y, the nonlinear equality constraint is
successfully removed. Then, let z = [xT yT]T , and the
problem becomes minz∈Γe J(z), which will be solved by
the CFS algorithm.

C. The Convex Feasible Set Algorithm

The idea of the CFS algorithm proposed in [12] is to
transform the original non-convex problem into a sequence of

convex subproblems by obtaining convex feasible sets within
the non-convex inequality constraints and linear equality
constraints, then iteratively solve the quadratic program-
ming (QP) subproblems until convergence. Note that CFS
is applied to the problem under the following assumption:
1) The cost function J is assumed to be smooth, strictly
convex. 2) The constraint Γe is assumed as the intersection
of N supersets Γi which can be represented by continuous,
semi-convex and piecewise smooth functions φi, e.g. Γe =
∩i{z : φi(z) ≥ 0}. The semi-convexity of φi implies
that the Hessian of φi is lower-bounded. i.e. there exists a
positive semi-definite matrix Hi such that for any z and v,
φi(z + v)− 2φi(z) + φi(z− v) ≥ −vTHiv.

Fig. 4 shows how CFS computes the solution iteratively,
where the space Γe is filled contour plots of J(z), and the
infeasible sets are the gray polygons on the plot. At iteration
k, given a reference point z(k), a convex feasible set F (k) :=
F (z(k)) ⊂ Γe is computed around z(k), which are the yellow
polygons in Fig. 4. Then a new reference point z(k+1) will
be obtained by solving the following QP problem

z(k+1) = arg min
z∈F(k)

J(z) (4)

The iteration will be terminated until the solution converges,
i.e. ‖z(k+1) − zk‖ ≤ ε.

Given a reference point zr, the desired convex feasible set
F(zr) is obtained by F(zr) := ∩iFi(zr), where Fi(zr) ⊂
Γi. The different cases of Fi(zr) are illustrated in Fig. 5,
where the gray shaded areas represent the infeasible set. The
mathematical definition of Fi(zr) is stated below,
Case 1: Γi is convex.
Define Fi = Γi.
Case 2: The complementary of Γi is convex.
In this case, φi can be designed to be convex, then φi(z) ≥
φi(z

r) + ∇φi(zr)(z − zr). At the point where φi is not
differentiable, ∇φi is a sub-gradient which should be chosen
as such that the steepest descent of J in the set of Γe is
always included in the convex set F . the convex feasible set
Fi with respect to a reference point zr is defined as

Fi(zr) := {z : φi(z
r) +∇φi(zr)(z− zr) ≥ 0} (5)

Case 3: neither Γi nor its complementary is convex.
In this case, φi is neither convex nor concave, but we can
define a new convex function as φ̃i(z) := φi(z) + 1

2 (z −
zr)THi(z− zr). Then φ̃i(z) ≥ φ̃i(zr) +∇φ̃i(zr)(z− zr) +
∇φi(zr)(z − zr), where ∇φi is identified with the sub-
gradient of φ̃i at points that are not differentiable. The convex
feasible set with respect to zr is then defined as

Fi(zr) := {z :φi(z
r) +∇φi(zr)(z− zr)

≥ 1

2
(z− zr)THi(z− zr)} (6)

The CFS algorithm is summarized in Algorithm 1, and the
detail of its convergence and feasibility are proven in [12].

31

(a) (b) (c)

Fig. 5. The geometry illustration of the feasible set F at the reference
point zr . (a) Case 1:Γi is convex. (b) Case 2: The infeasible set is convex.
(c) Case 3: Neither Γi nor the infeasible set is convex.

III. THE TEMPORAL OPTIMIZATION

A. Concept

In the previous section, a collision-free trajectory with
fixed time step is optimized in the feasible set. However, the
operational time of this trajectory has not been optimized yet.
In order to achieve the time optimality, the time step should
be considered as a variable as well. For example, suppose
there is a N -step trajectory planning problem as the green
line shown in Fig. 6. Since the sampling time dt is fixed, the
operational time is given by

∑N
k=1 dt = N ·dt. On the other

hand, the same trajectory planning problem with variable
time step is shown as the orange line in Fig. 6. Its operational
time is determined by the summation of time steps, i.e.∑N
k=1 τk. In short, the idea of the temporal optimization is

to penalize the time variables over the horizon of the defined
path.

B. Problem Formulation

Denote that the time variable at time step t as τk ∈ R+,
and τ = [τ1, τ2, · · · , τN]

T ∈ RN+ is denoted as the time
profiles over the horizon. Considering the smoothness of
the trajectory in the defined path, the acceleration should
be limited, i.e. −amax ≤ at ≤ amax, where at, amax ∈
A ⊂ Rm are denoted as the acceleration and the acceleration
bound. Suppose the initial velocity and the final velocity are
given as v0, vN ∈ Rm respectively, then acceleration are
computed by

at =


1
τ1

(
x1−x0

τ1
− v0

)
t = 1

1
τt

(
xt+1−xt

τt
− xt−xt−1

τt−1

)
t = 2, · · · , N − 1

1
τN

(
vN − xN−xN−1

τN

)
t = N

(7)

Denote the acceleration profile in the horizon by a =[
aT1 , a

T
2 , · · · , aTN

]T ∈ AN = A. a and τ define a nonlinear
dynamics, i.e. GT (τ ,a) = 0. Then, the temporal optimiza-
tion problem can be formulated as

min
τ ,a

JT (τ ,a) = ‖τ‖1 + ‖a‖2S (8a)

s.t. τ > 0, a ∈ A (8b)
GT (τ ,a) = 0 (8c)

where JT is designed as the convex and smooth cost func-
tion of the temporal optimization, where ‖τ‖1 =

∑N
t=1 τt

penalizes the operational time, and ‖a‖2S = aTSa penalizes

Fig. 6. Illustration of the temporal optimization, where the green line
is represents original trajectory, whereas the orange line represents the
modified trajectory.

Kinect

Robot

Obstacles

Path

Fig. 7. The experimental setup, where the robot is a FANUC LR Mate
200iD/7L, the Microsoft Kinect is used to detect the pink and black
obstacles, and the red line represents the reference path.

the acceleration with a positive definite matrix S. Note that
the cost function can be decoupled as JT (τ ,a) = JT1(τ) +
JT2(a), and the minimum of the second term is achieved
at a = 0. Furthermore, GT is affine with respect to a. For
example, for t = 2, · · · , N − 1, (7) can be reformulated as,

τt (xt − xt−1)− τt−1 (xt+1 − xt)︸ ︷︷ ︸
F t

T (τt)

+ τ2
t τt−1︸ ︷︷ ︸
Ht

T (τt)

at = 0 (9)

where F tT (τ) ∈ R → Rm and Ht
T (τt) ∈ R → Rm×m.

Therefore, this problem has the same geometric features
as (2). Hence, (8) can be solved by CFS.

In the fast robot motion planning framework, both the
trajectory planning and the temporal optimization can be
translated to CFS-solvable problems, which are formulated
as several QP subproblems and solved iteratively. This results
in a significant reduction of the computation time, comparing
to the conventional motion planning methods.

IV. EXPERIMENT

The simulation and the experiment were performed on the
experimental setup shown in Fig. 7. The robot was a FANUC
LR Mate 200iD/7L, and the Microsoft Kinect was used to
detect the pink and black obstacles. The red line represented
the reference path that the robot followed. To validate the

32

Fig. 8. The reference path that robot plan to move, where the red dots are
the way points.

performance of FRMP, we compared the proposed algorithm
with the benchmark algorithms, SQP, where both algorithms
were implemented in MATLAB on a Windows desktop with
a Intel Core i5 CPU and 16GB RAM. The robot controller
was deployed on a Simulink RealTime target.

The robot reference path was shown in Fig. 8. The red
points were the way points that the robot needed to pass and
stop by. The cyan lines represented the desired path, and
path segments were sequentially numbered. Table I showed
the performance of both algorithms on the planning of a
trajectory with 95 steps. Paths 1,2, and 5 were collision-
free, while Paths 3 and 4 were occupied by obstacles. On
the collision-free paths, there were not significant difference
between two algorithms. On the blocked paths, the CFS al-
gorithm exhibited much less computation time and iterations
than SQP to converge to local optima. This was because
SQP was developed for general purposes, where it was more
conservative the step size selection. On the other hand, CFS
considered the specific geometric structure of the trajectory
planning problem, and the computational efficiency was sig-
nificantly improved. The results of the simulation was shown
in Fig. 9, where the red line and the yellow line represented
the SQP and CFS trajectory respectively. Although these
algorithms converged to different solution, both of them
achieved the collision avoidance motion.

We used the same path to evaluate the performance of
FRMP, which was the CFS trajectory planning with the
temporal optimization. The computation time of FRMP was
shown in Table II, where the average computation per
path of the temporal optimization was 31 ms. Hence, the
temporal optimization would not become a burden in FRMP;
moreover, it could significantly reduce the operational time,
where the improvement by FRMP could be found in Table III
and Fig. 10.

To better illustrate the advantage of CFS, we also im-
plemented CFS in C++ and compared it with SQP and
interior point (ITP) in a simplified 2D mobile robot motion
planning problem. As shown in Fig. 12, a mobile robot
started at (0, 0) and tried to follow the straight purple dash
reference trajectory. However, the green obstacle blocked

Fig. 9. The simulation result of the trajectory planning with SQP and CFS.

0 5 10 15

Time (sec)

-2

-1.5

-1

-0.5

0

0.5

1

P
os

 (
ra

d)

CFS Trajectory without Temporal Optimization

J
1

J
2

J
3

J
4

J
5

J
6

0 1 2 3 4 5 6 7

Time (sec)

-2

-1.5

-1

-0.5

0

0.5

1

P
os

 (
ra

d)

CFS Trajectory with Temporal Optimization

J
1

J
2

J
3

J
4

J
5

J
6

Fig. 10. The CFS trajectories before and after the temporal optimization.

the reference trajectory, which required a motion planner
to modify the path. In this scenario, CFS, ITP and SQP
were implemented in Knitro [15] in C++. In order to further
analyze the performance among various methods, the same
problem was solved with different planning horizons, where
the number of steps went from 10 to 100. Figure 13 and
Fig. 14 show the total computation time and the computation
time per iteration respectively, and Table IV provides the
detailed numerical result. The computation time of SQP
was untraceable when the planning horizon increased to 80;
hence, the corresponding results were not listed.

In terms of total computation time, CFS always outper-
formed ITP and SQP, since it required less time per iteration
and fewer iterations to converge. This was due to the fact that
CFS did not require additional line search after solving (4) as
was needed in ITP and SQP, hence saving time during each
iteration. CFS required fewer iterations to converge since it
could take unconstrained step length ||z(k+1) − z(k)|| in the
convex feasible set. Moreover, CFS scaled much better than

33

(a)

(b)

Fig. 11. The sequential of the figures shows the robot motion in the experiment, where the executive motion of the robot planned by FRMP is shown as
the orange line (a) The robot avoids the pink obstacle. (b) The robot avoids the black obstacle.

0 2 4 6 8 10
−2

−1

0

1

2

Fig. 12. A 2D mobile robot motion planning problem.
TABLE I

THE COMPARISON OF SQP AND CFS

SQP CFS
Total Horizon: 95

unit: sec Computation Iterations Computation Iterations
Path 1 0.0043 0 0.0033 0
Path 2 0.0031 0 0.0033 0
Path 3 46.8098 94 0.8938 2
Path 4 48.8767 96 0.8397 5
Path 5 0.0032 0 0.0031 0

Total 95.725 190 1.7434 7

ITP and SQP, as the computation time and time per iteration
in CFS went up almost linearly with respect to number of
steps (or the number of variables).

V. CONCLUSION

This paper proposed the fast robot motion planner (FRMP)
by formulating trajectory planning and temporal optimization
as two optimization problems and solving them by the

TABLE II
THE COMPUTATION TIME OF FRMP

Fast Robot Motion Planner (FRMP)
unit: sec Path Planning Temporal Optimization
Path 1 0.0033 0.0279
Path 2 0.0033 0.0272
Path 3 0.8938 0.0272
Path 4 0.8397 0.0485
Path 5 0.0031 0.0252

Total 1.7434 0.1561

TABLE III
THE COMPARISON OF BEFORE AND AFTER TEMPORAL OPTIMIZATION

unit: sec before after
Operational Time 15.00 6.63

Computation Time 1.74 1.90

convex feasible set (CFS) algorithm.
In the trajectory planning problem, the CFS algorithm was

efficient because we explicitly exploits the unique geometric
structure of the problem by relaxation and convexification.
One consequence was that the steps size of the algorithm was
unconstrained, hence the number of iterations was greatly
reduced. Another consequence was that we did not need
to do line search in CFS, hence the computation time
during each iteration also decreased. Most importantly, as
we directly searched in the feasible set, the solution was
good enough even before convergence. Good-enough meant

34

TABLE IV
COMPUTATION COMPARISON AMONG DIFFERENT ALGORITHMS IN C++

No. step No. Iteration Total Computation Time Computation Per Iteration
CFS ITP SQP CFS ITP SQP CFS ITP SQP

10 5 42 86 4.74 8.53 201.41 0.95 0.20 2.34
20 4 46 366 4.80 17.37 1108.02 1.20 0.38 3.03
30 7 61 734 8.45 32.84 3164.40 1.21 0.54 4.31
40 4 87 1534 6.57 61.16 6717.45 1.64 0.70 4.38
50 4 139 1907 7.37 199.96 9633.93 1.84 1.44 5.05
60 4 140 3130 8.58 329.75 17123.95 2.14 2.36 5.47
70 4 165 2131 8.78 309.09 12546.80 2.19 1.87 5.89
80 4 169 9.96 307.55 2.49 1.82
90 4 223 11.01 838.63 2.75 3.76

100 4 253 11.80 1500.96 2.95 5.93

20 40 60 80 100

0
5
0
0

1
,0

0
0

1
,5

0
0

Number of Sampled Points on the Path

Ti
m

e
[m

s]

CFS ITP SQP

Fig. 13. Total computational time in the 2D motion planning problem

20 40 60 80 100

0
2

4
6

Number of Sampled Points on the Path

Ti
m

e
[m

s]

CFS ITP SQP

Fig. 14. The computational time per iteration in the 2D motion planning
problem

feasible and safe. Hence we could safely stop the iteration
before convergence and execute the suboptimal trajectory.

In temporal optimization problem, time variables were
introduced to achieve the time optimality on a defined path.
The problem was also formulated to be a CFS-solvable
problem. It was shown by the experimental that the average
computation time of the temporal optimization only took 31
ms, and the operational time was reduced from 15 second
to 6.6 second. The experiment demonstrated that FRMP can
plan a time-optimal trajectory on a 95th-step horizon within
2 second.

There are several directions to further improve this work
in the future. In this work, we only consider the kinematic
level problems such as acceleration-bounded, collision-free;
however, the actual physical limits result from the system
dynamics. Hence, the torque limit and the jerk limit will
be deployed to the planning problem as well. Also, the
experimental validation only performed in a preliminary

scenario. In future, FRMP will be applied to more practical
scenarios.

ACKNOWLEDGMENT

The work is supported by National Science Foundation
under Grant No. 1734109.

REFERENCES

[1] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[3] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradi-
ent optimization techniques for efficient motion planning,” in Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 489–494.

[4] C. Park, J. Pan, and D. Manocha, “Itomp: Incremental trajectory
optimization for real-time replanning in dynamic environments.” in
ICAPS, 2012.

[5] D. Costantinescu and E. Croft, “Smooth and time-optimal trajectory
planning for industrial manipulators along specified paths,” Journal of
robotic systems, vol. 17, no. 5, pp. 233–249, 2000.

[6] P. Reynoso-Mora, W. Chen, and M. Tomizuka, “A convex relaxation
for the time-optimal trajectory planning of robotic manipulators along
predetermined geometric paths,” Optimal Control Applications and
Methods, 2016.

[7] E. F. Camacho and C. B. Alba, Model predictive control. Springer
Science & Business Media, 2013.

[8] P. Spellucci, “A new technique for inconsistent qp problems in the
sqp method,” Mathematical Methods of Operations Research, vol. 47,
no. 3, pp. 355–400, 1998.

[9] J. Nocedal and S. J. Wright, Sequential quadratic programming.
Springer, 2006.

[10] T. A. Johansen, T. I. Fossen, and S. P. Berge, “Constrained nonlinear
control allocation with singularity avoidance using sequential quadratic
programming,” IEEE Transactions on Control Systems Technology,
vol. 12, no. 1, pp. 211–216, 2004.

[11] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.” in Robotics: science and systems, vol. 9, no. 1.
Citeseer, 2013, pp. 1–10.

[12] C. Liu, C.-Y. Lin, and M. Tomizuka, “The convex feasible set algo-
rithm for real time optimization in motion planning,” SIAM Journal
on Control and Optimization, vol. 56, no. 4, pp. 2712–2733, 2018.

[13] C. Liu and M. Tomizuka, “Real time trajectory optimization for
nonlinear robotic systems: Relaxation and convexification,” Systems
& Control Letters, vol. 108, pp. 56–63, 2017.

[14] C. Liu, C.-Y. Lin, Y. Wang, and M. Tomizuka, “Convex feasible set
algorithm for constrained trajectory smoothing,” in American Control
Conference (ACC), 2017. IEEE, 2017, pp. 4177–4182.

[15] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Knitro: An integrated pack-
age for nonlinear optimization,” in Large-scale nonlinear optimization.
Springer, 2006, pp. 35–59.

35

