First Measurements of the Double-Polarization Observables I, P, and H in
w Photoproduction off Transversely Polarized Protons in the N* Resonance Region
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First measurements of double-polarization observables in w photoproduction off the proton are
presented using transverse target polarization and data from the CEBAF Large Acceptance Spec-
trometer (CLAS) FROST experiment at Jefferson Lab. The beam-target asymmetry F has been
measured using circularly polarized, tagged photons in the energy range 1200-2700 MeV, and the
beam-target asymmetries H and P have been measured using linearly polarized, tagged photons
in the energy range 1200-2000 MeV. These measurements significantly increase the database on
polarization observables. The results are included in two partial-wave analyses and reveal signif-
icant contributions from several nucleon (N*) resonances. In particular, contributions from new
N7 resonances listed in the Review of Particle Properties are observed, which aid in reaching the
goal of mapping out the nucleon resonance spectrum.

PACS numbers: 13.60.Le, 13.60.-r, 14.20.Gk, 25.20.Lj

Photoproduction of the isoscalar vector mesons w and
¢ off the proton plays an important role in our under-
standing of many hadronic physics phenomena in the
non-perturbative regime. Photoproduction of an w me-
son at lower energies provides unique information on the
mechanism of nucleon resonance excitation and on the
strength of the wWNN™* coupling, which aids in shedding
light on the structure of baryon resonances.

The study of w-meson photoproduction is particularly
interesting in the search for new, hitherto unknown nu-
cleon resonances. The reaction threshold lies above the
thresholds for n and n photoproduction and therefore,
w photoproduction probes the higher-mass nucleon states
above W = 1700 MeV. At these center-of-mass energies,
the 7N and nN photoproduction cross sections are sig-
nificantly smaller. Moreover, the w meson is an isoscalar
particle and is sensitive only to I = 1/2 (nucleon) reso-
nances which reduces the complexity of the contributing
intermediate states. A discussion of recent progress to-
ward understanding the nucleon resonance spectrum can
be found in recent reviews, e.g. Refs. [1, 2].

In this letter, we report on the first measurements of
the polarization observables F', P, and H for the reaction

¥P—pw wherew — w7 7, (1)

using linearly as well as circularly polarized tagged pho-
tons and transversely polarized protons. Without mea-

suring any recoil polarization, the differential cross sec-
tion for this combination is given by [3—5]

do doy
E—E (1—(5[2COS2§)
+Acosa(—6; Hsin28 + 6o F) (2)
— Asina (=T + §; Pcos23) },

where §; (6c) denotes the degree of linear (circular)
beam polarization and A denotes the degree of target po-
larization. For transverse target polarization, the avail-
able polarization observables are the target asymme-
try 7', the beam-target asymmetry [ using a circularly
polarized beam, and the beam-target asymmetries H and
P using a linearly polarized beam. The angle 8 («)
describes the inclination of the linear-beam (transverse-
target) polarization with respect to the center-of-mass
plane spanned by the beam axis and the recoil proton.

The FROzen-Spin Target (FROST) experiment, con-
ducted at the Thomas Jefferson National Accelerator Fa-
cility, was designed to perform measurements with polar-
ized beams and targets. The details of the experiment
are discussed in Refs. [6-8].

The CEBAF accelerator facility at Jefferson Lab deliv-
ered longitudinally polarized electrons with energies up
to 2.4 GeV and a polarization of about 87 % [9]. Circu-
larly polarized photons were then obtained by transfer-



FIG. 1. (Color online) Typical examples of signal and back-
ground mass distributions from butanol data after applying
all kinematic cuts and corrections. The invariant

masses are shown for two energies at the same angle, 0.2 <
cosOcm. < 0.4. The black line shows the unweighted dis-
tribution from the butanol target, the blue-shaded area shows
the background mass distribution (weighted by 1 — Q), and
the red line shows the signal distribution (weighted by Q.)

ring the polarization from the electrons to the photons
in a bremsstrahlung process when the electrons scattered
off an amorphous gold radiator. The larger the fractional
energy carried by the photon with respect to the electron
energy, the greater the degree of polarization [6, 10].

Linearly polarized photons were created via coherent
bremsstrahlung by scattering unpolarized electrons off a
diamond crystal. These polarized photons typically cov-
ered a 200-MeV-wide energy range below the sharp co-
herent edge. Data were recorded with the position of the
coherent edge ranging from 700 MeV to 2100 MeV, in
steps of 200 MeV. The degree of linear polarization was
determined by fitting the energy distributions of the inci-
dent photons and was observed to vary between 40-60 %.
The polarized photons were energy and time tagged with
resolutions of 0.1 % and 100 ps, respectively, using a pho-
ton tagging system [11].

A state-of-the-art component of the experiment was
the polarized target, described in detail in Ref. [8], It
was placed at the center of the C-LAS spectrometer, and
provided an average degree of polarization of 81%. The
direction of the polarization was reversed every 5-7 days.
To study background originating from unpolarized pro-
tons of the carbon and oxygen atoms in the butanol tar-
get, carbon and polyethylene disks were placed at ap-
proximately 9 cm and 16 cm downstream of the butanol
target. The vertex distribution shows distinct peaks from
each target, allowing for a clean separation of events.

The C-LAS detector, with its six-fold symmetry about
the beamline, was capable of detecting charged particles
with a laboratory polar-angle coverage of [8, 142]° and al-
most 21 coverage in the azimuthal angle. The final-state
particles traversed several layers of sub-detectors, includ-
ing drift chambers (DC) and time-of-ffight (TOP) scin-
tillators. A start counter (SC) provided the initial time
information of the events. Full details of the C-LAS detec-
tor are provided in Ref. [12]. For an event to be recorded,

the trigger conditions required at least one charged par-
ticle in the final state.

In this analysis, the iv was reconstructed from its
decay, which has the highest branching ratio
(89%) among all iv decay modes. Events were selected to
have exactly one incident-photon candidate with a timing
(using the photon tagger) at the event vertex within 1 ns
of the event time provided by the SC. Only those events
that had exactly one proton, plus one positively charged
and one negatively charged pion track in the final state
were retained. To further improve the particle identifi-
cation, each final-state particle’s /3 value was calculated
separately from its measured momentum using the DC,
j3DC, and from its measured velocity using the TOP sys-
tem and the SC, /3TOF- Events were selected based on
good agreement of /JDC and /3TOF [7, 9], The momenta
ofthe final-state particles were corrected for energy losses
using standard C-LAS techniques. Additional corrections
of a few MeV were required for the momentum magni-
tudes, which are discussed in detail in Refs. [6, 7, 9],

A four-constraint (4C-) kinematic fit to the exclusive
7p — phr+ir~ reaction imposing energy and momentum
conservation aided in tuning the full covariance matrix.
The reaction yp — p Tr+ir~ (missing 110) was next kine-
matically fit, and events with a confidence level below
0.001 were rejected, removing most of the TT+IT- back-
ground. The remaining background consisted mostly of
pvj events originating from unpolarized bound protons
in the butanol (C-4H90OH) target and non-piv events re-
sulting in a p 7T+Hr~1° final state. These were accounted
for using the Q-factor technique, which determines the
probability for an event to be a signal event (as opposed
to background) on the basis of a sample of its nearest
kinematic neighbors in a very small region of the multi-
dimensional phase space around the candidate
event [7, 13]. The method assumes that the signal and
background distributions do not vary rapidly in the se-
lected region. The mass distribution of each
event and its nearest kinematic neighbors was fit using
a Voigtian for the signal probability function (pdf) and
a third-order C-hebychev polynomial for the background
pdf. The value of Q is then defined as the ratio of signal
amplitude to total amplitude at the mass of the candidate
event. Figure | shows examples of signal and background
distributions in the invariant mass obtained by
weighting each event with Q and | — O, respectively.

For each bin in incident-photon energy and me-
son center-of-mass angle (E7, cosO“m ), an event-based
maximum-likelihood technique was applied to fit the az-
imuthal angular distributions of the recoil proton in the
lab frame to extract the polarization observables [l4].
The likelihood function in each kinematic bin is

JVe 1 + A4
—InL—— ~ iwiln(®Pi), Pi , 3
i=1



and 4 = (N! - N2)/(N] + N2) denotes the asymmetry
in the azimuthal angular distributions of events with dif-
ferent orientations of the beam-target polarization. The
sign of A depends on the corresponding relative orien-
tation of the beam-target polarization in the ith event.
The weights, -tty, depend on the Q factors and additional
normalization factors. More details and a complete list
of definitions are given in Refs. [7, 9],

The asymmetry 4 depends on the differential cross sec-
tion (Eqn. 2) and hence, on the polarization observables.
Maximizing the likelihood C gives the most likely values
for the observables. Owing to statistical limitations, a
simultaneous fit to all polarization observables did not
converge. Different data sets, corresponding to the dif-
ferent orientations of the beam-target polarization, were
combined with appropriate normalization factors to re-
duce the number of unknown parameters in the likelihood
expression. The observable F’ was determined separately
using circular beam polarization, whereas the observables
F[ and P were determined from simultaneous fits using
linear beam polarization (see Eqn. 2).

A major contribution to the overall systematic un-
certainty came from the background subtraction. This
Q factor uncertainty was determined for all observables
in each (S7,cos O“m ) bin by modifying each Q factor
by its corresponding fit uncertainty C1Q, and re-extracting
the observable. The absolute difference was taken as
the systematic uncertainty and averaged about 8 % for
incident-photon energies > 1.3 GeV. Other sources of un-
certainty included the degree of linear- (circular-) beam
polarization (5% (4%)), the degree of transverse-target
polarization (2%), the direction of the target polariza-
tion (2 %) and the flux normalization. The latter was 5 %
for data with linear-beam polarization, and 2 % for data
with circular-beam polarization since the beam helicity
flipped rapidly leading to the same photon flux for oppo-
site beam helicities. Gray bands in the figures show only
absolute systematic uncertainties due to the background
subtraction; scale-type uncertainties are not included.

The iv polarization observables presented here are first-
time measurements, representing a substantial increase
in the world database for cc photoproduction. Figure 2
shows the beam-target asymmetry /' and Fig. 3 shows
the beam-target asymmetries F/ and P for the incident-
photon energy range 1200-2000 MeV in 100-MeV-wide
bins and 10 and 5 cosO““m bins in the center-of-mass
frame, respectively. The asymmetries are substantial and
vary significantly with energy, indicative of strong con-
tributions from nucleon resonances.

The role of N* resonances in c¢¢c photoproduction has
long been discussed in the literature, e.g., using effec-
tive Lagrangian [15-17] and coupled-channel K-matrix
approaches [18, 19]. Given the scarcity of data at the
time, most of these studies were based only on the dif-
ferential cross section data, and not surprisingly disagree
on the contribution of N* resonances.
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FIG. 2. First-time measurement of the beam-target asymme-
try F in yp — pLO. Shown are distributions in 100-MeV-wide
incident-photon energy bins (labeled as S7 [W]) as a func-
tion of cos O(f.m. in the center-of-mass frame. Each data point
has been assigned its statistical uncertainty, whereas the gray
band at the bottom of each panel represents the absolute sys-
tematic uncertainties due to the background subtraction. The
blue and red solid curves show the BnGa PWA solution and
fits by Wei et al. [23], respectively. The blue dashed curve
denotes an earlier BnGa solution [26].

The data presented here, and further ¢cc data from the
FROST experiment on the helicity asymmetry £ [6] and
on the single-polarization observables E [7, 20] and T [7]
(beam and target asymmetries, respectively) were in-
cluded in two independent analyses: A partial-wave anal-
ysis (PWA) within the Bonn-Gatchina (BnGa) coupled-
channel framework [21] based on a large database of pion-
and photon-induced reactions [22], and a tree-level-based
effective Lagrangian approach [23], shown in Figs. 2 and 3
as the solid and dashed lines, respectively. In contrast
to the coupled, multi-channel BnGa analysis, the effec-
tive Lagrangian approach of Ref. [23] considers only the
IUN channel. The reaction amplitude consists of s-, t-,
and u.-channel Feynman diagrams combined with a phe-
nomenological contact current which accounts for effects
not explicitly included and is required for local gauge in-
variance of the overall amplitude. More details are given
in Refs. [24, 25].
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FIG. 3. (Color online) First-time measurements of the beam-target asymmetries A (top) and P (bottom) in u photoproduction
off the proton. Shown are eight 100-MeV-wide energy bins (labeled as S7 [W]) as a function of cos©((m in the center-of-mass

frame.

Each data point has been assigned its statistical uncertainty, whereas the gray band at the bottom of each panel

represents the absolute systematic uncertainties due to the background subtraction. The blue and red solid curves show the
BnGa PWA solution and fits by Wei ef al. [23], respectively. The blue dashed curve denotes an earlier BnGa solution [26].

The BnGa description of these new data started with
a PWA solution of an earlier analysis that is discussed
in Ref. [26]. This initial analysis was based on results in
yp — puj (o — 7°7) obtained by the C-BELSA/TAPS
Collaboration on differential cross sections [27], the
double-polarization observables G, G7 [28], the beam
asymmetry E [29] and a variety of spin-density matrix
elements (SDMEs): pi0, p\x, p\ x, p\0, pw, p\ x (us-
ing linear-beam polarization) as well as pg0, p%, p°l |
(unpolarized beam) [27].

The earlier analysis revealed significant f-channel con-
tributions from the exchange of pomerons, which increase
with energy and account for about 50 % of the total
cross section at about W = 2 GeV. Moreover, the po-
larization observables and SDMEs revealed notable con-
tributions from as many as 12 nucleon resonances, and
several branching ratios were determined for the first
time [26]. Evidence was found for the poorly known
states #(1880)1/2+, #(2000)5/2+, #(1895)1/2", and
#(2120) 3/2". Small contributions were also revealed
from several weaker partial waves. However, this solu-
tion provided a poor description of the new C-LAS polar-
ization observables (see Figs. 2 and 3): F, H, P, and T.
Particularly, the predicted target asymmetry appeared
to have the wrong sign using the definitions for these
observables from Ref. [4],

The BnGa solution for the new C-LAS data presented
here confirms the five dominant partial wave amplitudes
that were reported in Ref. [26]. The Jp = 3/2+ par-
tial wave exhibits a significant peak close to W =
1800 MeV that is identified with the #(1720)3/2+ res-
onance. A notable contribution from the 3/2" par-

tial wave is observed above 2 GeV and identified with
the #(2120) 3/2". Compared with earlier findings, the
coupling of the #(1875) 3/2" to #A/ has decreased by
about 70 %. The intensity appears to have shifted to the
5/2+ partial wave above W = 1900 MeV, where the con-
tribution of the #(2000) 5/2+ state has been observed to
increase by about 50%. The 1/2" partial wave exhibits
a smoother behavior, but the analysis found that the
coupling to #(1895) 1/2" has not significantly changed.
This smoother behavior is a result of a sign change in the
contribution of the non-resonant amplitudes. The dom-
inant contributions, in particular of the #(2000)5/2+
state, are consistent with the results of a single-channel
PWA by the C-LAS Collaboration [30].

The effective Lagrangian approach by Wei et al. [23]
is based on all published data from the C-LAS Collab-
oration, including the new double-polarization observ-
ables discussed here. To achieve a good description of
the data, seven nucleon resonances have been added in
the analysis. A significant peak in the 3/2+ wave around
W = 1800 MeV is confirmed, which originates from the
#(1720)3/2+. The 3/2" partial wave shows important
contributions, which mainly stem from the #(1520) 3/2"
and #(1700) 3/2" resonances (W < 2 GeV), in agree-
ment with the BnGa analysis. The latter two resonances
prove to be important in the description of the new F
and H observables. This analysis also identifies signif-
icant contributions from the 5/2+ partial wave, again
consistent with the findings of the BnGa group.

In summary, the beam-target double-polarization ob-
servables F, P, and II in the reaction yp — pcc have
been measured for the first time across the N* resonance



region. Convergence among different groups on the lead-
ing N* resonance contributions appears imminent based
on these new measurements. Several poorly known states
have been identified in w photoproduction. Particularly
noteworthy are contributions from the new N* states
that have been listed in the Review of Particle Properties
since 2014 based on photoproduction experiments. In the
3/2~ partial wave for example, contributions from the
recently added N(1875)3/2~ and N(2120)3/2~ states
are observed. Also identified in w photoproduction is
the new N(1880)1/2T state which, together with the
N(1900)3/2T and N(1990)7/27 states, and the poorly
established N(2000)5/2T state, is considered to form a
quartet of nucleon states in the (70, 2;) supermultiplet
with quark spin § = 3/2 and positive parity. Some
open questions remain, including the relative strength
of t-channel contributions close to the reaction thresh-
old from the exchange of either pomerons or pions. A
full discussion of the contributing N* resonances, their
Nw couplings, and the impact of particular observables
will be available in forthcoming papers [23, 31].
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