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The exclusive reaction yp -1 pK+K~ was studied in tire photon energy range 3.0-3.8 GeV and
momentum transfer range 0.6 < —¢ < 1.3 GeV2. Data were collected with the CLAS detector at tire
Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was
approximately 20 pb-1. The reaction was isolated by detecting the K+ and the proton in CLAS, and
reconstructing the K~ via tire missing-mass technique. Moments of the dikaon decay angular distributions
were extracted from the experimental data. Besides the dominant contribution of the 7 meson in tire P
wave, evidence for S — P interference was found. The differential production cross sections da/dt for
individual waves in the mass range of the <y resonance were extracted and compared to predictions of a
Regge-inspired model. This is tire first time the /-dependent cross section of tire 5-wave contribution to tire
elastic K+K~ photoproduction has been measured.
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I. INTRODUCTION

Data on light quark mesons comes mainly from hadron
induced reactions, e.g., by using K, n, p or p beams, from
decays of heavy mesons and more recently from experi-
ments making use of electromagnetic probes. Thanks
to the recent advances in producing high-intensity and
high-quality tagged, polarized photon beams, meson photo-
production is becoming a valuable tool to study conven-
tional and exotic mesons. At lower energies, e.g., near
single or double meson production thresholds, high quality
data have been accumulated by the CB-ELSA [1-3],
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CB-MAMI [4-6] and LEPS [7-9] experiments, while at
higher energies, photoproduction data have come from the
CLAS [10-12] experiment at Jefferson Lab. Moreover, two
new programs, GLUEX [13] and MesonEx [14] have just
been launched in the same laboratory. A typical meson
photoproduction data set from past experiments in the
energy range below 20 GeV, typical for meson spectros-
copy, has tens of thousands of events, and only a few
topologies have been studied [15]. For comparison, the data
samples from the gl | run at CLAS used here exceed the
existing sets in many channels by at least an order of
magnitude, and several reconstructed topologies are
available for a comprehensive study [16]. Specifically,
two-pseudoscalar meson photoproduction (two-pion and
two-kaon) offers the possibility of investigating various
aspects ofthe light meson resonance spectrum. Two-pion is
the main decay mode of the lowest isoscalar tensor, the
fo(1270) resonance, and it is the only known hadronic
decay mode of the lowest isovector-vector resonance, the
p(770). The two-kaon channel is the main decay mode of
the isoscalar-vector </>(1020) and a possible subthreshold
decay of the isoscalar-scalar /0(980) and the isovector-
scalar a0(980). Both the two-pion and two-kaon decay
modes couple to the isoscalar-scalar channel, which con-
tains the /0(500) and /0(980) resonances [17] and a few
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more resonances with masses above | GeV that are not yet
well understood; for example, the 77(500) meson, which is
now well established [18-20], but does not fit the naive
quark model classification. The /0(980) is similarly diffi-
cult to classify and its composition is affected by proximity
to the KK threshold. These states have been the subject of
extensive investigations [21,22] since their observation in
photon-induced reactions can provide insights into their
internal structure.

In this paper we present results of the analysis of K+K~
photoproduction in the photon energy range 3.0-3.8 GeV
and momentum transfer squared — between 0.6 GeV2 and
1.3 GeV2, where the dikaon effective mass AMK+K- varies
from 0.990 to 1.075 GeV. Two-kaon photoproduction data
are very scarce [23,24]; only recently CLAS published an
extensive study on # photoproduction in the same energy
range [25]. We have focused on this mass region because it
is dominated by the production of the </>(1020) resonance
that decays to the two kaons in the P wave, and thus a
partial wave analysis based on the lower (S and P) waves
efficiently describes it. To describe the higher mass region
would require a higher number of partial waves, and this is
not included in this study. Angular distributions of photo-
produced mesons and related observables, such as the
spherical harmonic moments and the spin density matrix
elements, are the most effective tools for studying indi-
vidual partial waves. For example, interference between the
S wave and the dominant P wave was first discovered in the
moment analysis of K+K~ photoproduction on hydrogen in
the experiments performed at DESY [26] and Daresbury
[27]. More recently LHCb studied the dikaon system via
Bs -» JAVKK decay reporting an 5-wave fraction of
~1% - 2% for MK K around the () meson mass [28].
In this work we applied the same methodology used in the
analysis of two-pion photoproduction to the same data set
[29,30], and we refer the reader to those works for a
detailed description of the analysis procedure.

This paper is organized as follows. In the next section we
give a summary of the experimental setup and data
analysis. Extraction of the angular moments of the two-
kaon system is described in Sec. III. The fit of a phenom-
enological model to the extracted moments is described
in Sec. IV, where we also present results of the partial wave
analysis, including the extracted differential cross sections
for each partial wave, and a physics interpretation. A
summary of the results is given in Sec. V.

II. EXPERIMENTAL PROCEDURES
AND DATA ANALYSIS

A. The photon beam and the target

The measurement was performed with the CLAS detec-
tor [31] in Hall B at Jefferson Lab with a bremsstrahlung
photon beam produced by a continuous 60 nA electron
beam ofenergy E0 = 4.02 GeV impinging on a gold foil of
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thickness 8 x 10-5 radiation lengths. A bremsstrahlung
tagging system [32] with a photon energy resolution of
0.1%, E0 was used to tag photons in the energy range from
1.6 GeV to a maximum energy of 3.8 GeV. In this analysis
only the high-energy part of the photon spectrum, ranging
from 3.0 to 3.8 GeV, was used. The e+ e~ pairs produced
by interactions of the photon beam on an additional thin
gold foil were used to continuously monitor the photon flux
during the experiment. Absolute normalization was obta-
ined by comparing the e+ e~ pair rate with the photon flux
measured by a total absorption lead-glass counter in
dedicated low-intensity runs. The energy calibration of
the Hall-B tagger system was performed both by a direct
measurement of the e+e~ pairs produced by the incoming
photons and by applying an over-constrained kinematic fit
to thereaction yp = prnl , where all particles in the final
state were detected in CLAS [33]. The quality of the
calibrations was checked by looking at the mass of known
particles, as well as their dependence on other kinematic
variables (photon energy, detected particle momenta and
angles).

The target cell, a Mylar cylinder 4 cm in diameter and
40-cm long, was filled by liquid hydrogen at 20.4 K. The
luminosity was obtained as the product of the target density,
target length and the incoming photon flux corrected for
data-acquisition dead time. The overall systematic uncer-
tainty on the run luminosity was estimated to be approx-
imately 10%, dominated by the uncertainty of the photon
flux normalization [34].

B. The CLAS detector

Outgoing hadrons were detected in the CLAS spectrom-
eter. Momentum information for charged particles was
obtained via tracking through three regions of multiwire
drift chambers [35] within a toroidal magnetic field
(~1.25 T) generated by six superconducting coils. The
polarity of the field was set to bend the positive particles
away from the beam line into the acceptance ofthe detector.
Time-of-flight scintillators (TOF) were used for charged
hadron identification [36]. The interaction time between the
incoming photon and the target was measured by the start
counter (ST) [37]. This was made of 24 strips of 2.2 mm
thick plastic scintillator surrounding the hydrogen cell with
a single-ended PMT-based readout. The average time
resolution of the ST strips was ~300 ps.

The CLAS momentum resolution, ap/p, ranged from
0.5 to 1.0%, depending on the kinematics. The detector
geometrical acceptance for each positive particle in the
relevant kinematic region was about 40%. It was somewhat
less for low-energy negative hadrons, which could be lost at
forward angles because their paths were bent toward the
beam line and out of the acceptance by the toroidal field.
Coincidences between the photon tagger and the CLAS
detector triggered the recording ofthe events. The trigger in
CLAS required a coincidence between the TOF and the ST
in at least two sectors, in order to select reactions with at
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least two charged particles in the final state. A total
integrated luminosity of 70 pb-1 (~20 pb-1 in the range
3.0 <Ey < 3.8 GeV) was accumulated in 50 days of data
taking in 2004.

C. Data analysis and reaction identification

The raw data were passed through the standard CLAS
reconstruction software to determine the four-momenta of
the detected particles. In this phase of the analysis,
corrections were applied to account for the energy loss
ofcharged particles in the target and surrounding materials,
misalignments of the drift chamber positions, and uncer-
tainties in the value of the toroidal magnetic field.

Thereactionyp  pK+K~ was isolated by detecting the
proton and the K+ in the CLAS spectrometer, while the K~
was reconstructed from the four-momenta of the detected
particles by using the missing-mass technique. A combi-
nation of drift chambers and TOE information allowed for
the identification of the kaon band in the /? vs p plane for
positive charged particles. More details, as well as the
resulting K+ missing mass spectrum for the reaction
yp  K+X can be found in Ref. [34]. The exclusivity
of the reaction was ensured by retaining events within 3<r
around the missing K~ peak (492 MeV =+ 30 MeV). This
cut kept the contamination from pion misidentihcation
and multikaon background to a minimum (~7%) for events
in the dikaon mass range of interest for this analysis
(0.990 GeV < MK+K- < 1.075 GeV). Figure | shows
the K~ missing mass. The background below the kaon
peak appears as a smooth contribution to the K+K~
invariant mass that can be accounted for by fitting and
subtracting a polynomial function. Since the focus of the
paper is about the interference of the narrow P wave (the #p
meson) with the S wave, the experimental background, as
well as the projection ofhigh mass hyperons populating the
pK+ mass spectrum, enters in the K+K~ mass as a smooth
incoherent contribution that does not affect the results.

6000

5000 —

4000

o 3000
2000 —

1000 —

MM(pK+) (GeV/c2)

FIG. 1. Missing mass of the reconstructed K~ for the reaction
yp  pK+K~ Only events in the shaded area were used in the
analysis.
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FIG. 2. Invariant mass of the pK+ system vs. invariant mass of

the K+K~ system. The <p meson shows up as a narrow vertical
band peaked around | GeV, while the A(1520) is visible as a
horizontal band around 1.5 GeV.

To cut out edge regions in the detector acceptance, only
events within afiducial phase space volume were retained
in this analysis. In the laboratory reference system, cuts
were defined for the minimum hadron momentum
(pp > 032 GeV/c and pK+ > 0.125 GeV/c) and the
minimum angles (9 > 10° and OK > 5°). The fiducial
cuts were defined comparing in detail the experimental data
distributions with the results of the detector simulation. The
minimum momentum cuts were tuned for different hadrons
to take into account the energy loss as the particles pass
through the target and the detector.

After all cuts, 0.2M events were identified as produced in
the exclusive reaction yp  pK+(K~). The other event
topologies that required the K~ to be detected were not
used since, in the kinematics of interest for this analysis
(—t <1.3 GeV?2), the collected data were about one order
of magnitude less due to the reduced detector acceptance
for the inbending K~. Figure 2 shows the invariant mass
spectra of pK~ and K+K~ using the reconstructed K~
four-momentum.

The (p(1020) dominates the K+K~ spectrum and the
A(1520) peak is visible in the mass spectrum of the pK~
invariant mass. No overlap between the A(1520) peak and
the K+K~ spectrum occurs for MK K < 1.25 GeV.
Nevertheless, a sharp cut for MpK- <1.6 GeV was applied
to avoid any contamination in the meson spectrum from
the A(1520). A hint of excited A states is visible in the
bidimensional distribution but their contribution to the
K+K~ spectrum is very small and tends to be smooth
when all hyperon states are integrated over.

III. MOMENTS OF THE DIKAON
ANGULAR DISTRIBUTIONS

In this section we consider the analysis of spherical
harmonic moments, (YLM) = (YLM)(Ey,t, MK+K-), of the
dikaon angular distribution defined as
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where do is the four-fold differential cross section at fixed
photon energy E,. Here ¢ is the momentum transfer squared
between the target and the recoil proton, MK+K- is the
dikaon invariant mass and YLM are spherical harmonics.
The spherical angle QK = (0K K) corresponds to the
direction of flight of the K+ in the K+K~ helicity rest
frame. This is the rest frame of the K+K~ pair, with the
v axis perpendicular to the production plane and the z axis
pointing in the opposite direction of the recoil nucleon
momentum. In Eq. (1) the normalization has been chosen
such that the (Too) moment is equal to the dikaon
production differential cross section do/dtdMK+K-.

There are several advantages in using moments of the
angular distribution compared to a direct partial wave
analysis. Moments can be expressed as bilinear in terms
of the partial waves and, depending on the particular
combination of L and M, show specific sensitivity to a
particular subset of them. In addition, they can be directly
and unambiguously derived from the data, allowing for a
quantitative comparison to the same observables calculated
in specific theoretical models. Since partial wave analysis
has either intrinsic mathematical ambiguities or is model
dependent, it is important to extract physical observables
like moments before proceeding with a model-dependent
analysis [38].

The moments were extracted using two separate methods,
both expanding in a model-independent set of basis func-
tions, which were compared to the data by maximizing a
likelihood function. The first of these two methods (M1)
parametrized the angular distributions in terms of moments
directly, while the second method (M2) used spherical
harmonic partial wave amplitudes. The approximations in
these two methods are dependent on the basis and on their
truncation. As a check of systematics we also applied two
further methods: we first binned the data and Monte Carlo
simulations in all kinematical variables and divided the data
by acceptance to obtain the expected angular distributions;
the second used linear algebra techniques to set up an
overdetermined system of equations for the moments.
They provided consistent results but were not as stable or
reliable as the maximum likelihood methods M1 and M2 and
were not included in the final determination of the experi-
mental moments. Detailed systematic studies using both
Monte Carlo and data were performed to test the stability of
the results for the different methods. A summary of these
studies is reported in Appendix A. Full details regarding the
procedure adopted for the moment extractions are reported
in [30,39],

A. Detector efficiency

The CLAS detection efficiency for the reaction yp
pK+K~ was obtained by means of detailed Monte Carlo

PHYS. REV. D 98, 052009 (2018)

simulations, which included knowledge of'the full detector
geometry and a realistic response to traversing particles.
Events were generated according to three-particle phase
space with a bremsstrahlung photon energy spectrum. A
total of 96 M events were generated in the energy range
3.0 GeV < Ey < 3.8 GeV and covered the allowed kin-
ematic range in — and MKK . About 19 M events were
reconstructed in the MK+K- and —t ranges of interest
(0.990GeV <Mg< 1.365GeV, 0.6GeV-<-1f<1.3GeV-).
This corresponds to more than 400 times the statistics
collected in the experiment, thereby introducing a negli-
gible statistical uncertainty with respect to the statistical
fluctuations of the data.

B. Extraction of the moments via likelihood
fit of experimental data

The extraction of the moments, (YLM), was performed
using the extended maximum likelihood method. As stated
above, the expected theoretical yield was parametrized in
terms of appropriate functions, amplitudes in one case and
moments in the other. The theoretical expectation, after
correction for acceptance, was compared to the experimen-
tal yield. The likelihood is then given by

I"Le-nYLMl[n=i 2

Here a represents a data event, n is the number of data
events in a given (Ey, t, MK K ) bin (i.e., the fit is done
independently in each bin), 7a¢ represents the set of
kinematical variables of the ath event (here the two-kaon
decay angles), i/(ra) is the corresponding acceptance
derived by Monte Carlo simulations and /(7a) is the
theoretical function representing the expected event dis-
tribution. The measure dr includes the phase space factor
and the likelihood function is normalized to the expected
number of events in the bin,

"=y (3)

This normalization integral was performed by Monte Carlo
integration over the reconstructed simulated events. The
parameters were extracted by minimizing a function of the
form

"2Inf ex =27/ (xa, (YLM)) + 2HYIm. 4)

a—1

The advantage of this approach lies in avoiding binning the
data and the large uncertainties related to the corrections in
regions of CLAS with vanishing efficiencies.

Comparison of the results of the two different extraction
methods allows one to estimate the systematic uncertainty
related to the procedure. A detailed description of the two
approaches is reported in Ref. [30].
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C. Method comparisons and final results

Moments derived by the different procedures agreed
qualitatively. The two methods were consistent in the range
of interest from 0.990 GeV < MK+K- < 1.075 GeV (and
0.6 < —¢ < 1.3 GeV2). We do not use the region MK+K- >
1.075 GeV to extract amplitude information because the
choice of amplitude parametrization (see Sec. IV A) is only
valid in proximity to the 1> 1020) meson mass. The
difference between the fit results of M1 and M2 was used
to evaluate tire systematic uncertainty associated with the
moment extractions. The final results are given as the
average of Ml (parametrization with moments) and M2
(parametrization with amplitudes),

yfinal = 2 53 Ved (5)

i=1,2 Methods

where Y stands for (YLM)(Ey t, MKK ). Tire total uncer-
tainty 8Yfinal in the final moments was evaluated by adding
in quadrature the statistical uncertainty, STMINUIT as given
by MINUTE and two systematic uncertainty contributions:
<Sysyst fit related to the moment extraction procedure, and
~Tsyst norm, the systematic uncertainty associated with the
photon flux normalization (see Sec. II).

Syfinal — y "MINUIT + “syst fit + ~systnorm  (6)
with

=J 53 7)
V i=3.4 Methods

~Msystnorm = 10% " Yfinal- (€))

Therefore, for most of the data points, the systematic
uncertainties dominate over the statistical uncertainty.
Samples of the final experimental moments are shown in
Figs. 3-5. The error bars include the systematic uncertain-
ties related to the moment extraction and the photon flux
normalization as discussed in Sec. 111 C. The whole set of
moments resulting from this analysis is available in the
Jefferson Lab [40] and the Durham [41] databases.

As a check of the analysis procedure, the differential
cross section da/dt for the yp -» p(>{1020) meson was
extracted by integrating the (Too) moment in each ¢ bin in
the range 1.005 GeV < MK+K- < 1.035 GeV after sub-
tracting a first-order polynomial background fitted to the
data (excluding the region 1.005 GeV < MK+K- <
1.035 GeV as (T00) is not linear due to the < peak).
The results are shown in Fig. 6. Despite the different energy
binning of the various studies, the reasonable agreement
within the quoted uncertainties with previous measure-
ments [25,27] gives us confidence in the accuracy of the
analysis method.
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FIG. 4. Moments of the dikaon angular distributions for

3.0 <E7»< 3.8 GeV and —¢ = 0.45 &= 0.05 GeV2 (black), -z =
0.65 &= 0.05 GeV2 (red) and -z = 0.95 = 0.05 GeV2 (blue). The
error bars include both statistical and systematic uncertainties as
explained in the text.

PHYS. REV. D 98, 052009 (2018)

0.8
0.6
0.4
0.2

-0.2 E-
0.4 —
-0.6

&

-0.8

&

frevebeerebvveebreonbeene o ln
1.01 102 103 104 105 106 1.07
Mass(KX) (GeV/c2)

0.8
0.6
0.4
02 —

moEoe

-0.2 E-
0.4 —
-0.6

&

-0.8

&

[reeclbveorboevebvveebveoebeene e bn
101 102 1.03 104 105 1.06 1.07

Mass(K+K) (GeV/c2)

0.8
0.6
0.4

02 —
-0.4 —
0.6
fiiiiliiitl piliiiiliiiilii
1.01 1.02 1.03 1.04 1.05 1.06 1.07
Mass(KX) (GeV/c2)

0.8
0.6
0.4

_02 E
-0.4 —
_0.6 E
—0.8

—1 I~ 1 1 1 1 1 [ R N N A O

1.0l 1.02 1.03 1.04 1.05 1.06 1.07
Mass(KX) (GeV/c2)
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(blue). The error bars include both statistical and systematic
uncertainties as explained in the text.
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FIG. 6. Differential cross section for 3.0 < Ey < 3.8 GeV de-

rived from the (T00) moment analysis compared with other results.
Die differential cross section was calculated from the P wave
extracted using the partial waves analysis described in Sec. IV D. Die
uncertainties include fit parameter uncertainties added in quadrature
with a 10% systematic uncertainty from the photon flux normali-
zation. Results ofthis work are compared to CLAS published results
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IV. PARTIAL WAVE ANALYSIS

In the previous section we discussed how moments of the
angular distributions of the K+K~ system, (YLM), were
extracted from the data in each bin in photon energy,
momentum transfer and dikaon mass. In this section we
describe how partial waves were parametrized and
extracted by fitting the experimental moments.

The production amplitudes can be written as

J ~ fArw (S t' MRK-'0) — /{1}(Jd, MR+KT'£2)  (9)

where Xy, X, X' are the helicities of the photon, target and
recoil nucleons, respectively, and AZK+K- is the invariant
mass of the K+K~ system. In terms of the helicity
amplitudes the cross section is given by

do fib
dtdMt+fe-d£l 0.1 GeV22.5 GeV

with the phase space factor <> given by

from [25] in the energy range Ey = 3.300 GeV =+ 0.015 GeV and 1 15577 \JMK+K-/4 ~ mK
Daresbury data [27] in the range 2.8 <Ey < 3.8 GeV.
4 6AnmBE~ 2(2/1)3
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Experimental moments (YLM) (red) for 0.6 < f] < 0.7 GeV2 for L < 2 and M <2 together with the moments derived from

the fitted amplitudes (black), including the L = 0 and L = | amplitudes in the fit. The shaded band indicates the associated systematic
uncertainty. Under our assumptions (see text), (}%) = 0 in the full mass range. The solid line represents the best fit.
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where the factor of 1/4 comes from averaging over the
initial photon and target polarizations and all dimensional
quantities enter in units of GeV. The helicity amplitudes are
decomposed into partial waves in the KK channel,

J{A)(s-t-MK+K-,0,) =y N (s T, MK+K-) YLM(Q,), (12)
LM
so that the moments, defined in (1), are given by
LM E CL],M],LZAMZ-,LMde{‘)\(f'm ’;?%MZ‘\ (13)

<&
L\, M\, L2, M2\(X]

with the c’s proportional to a product of Clebsch-Gordan
coefficients. Note that we are using the spherical basis for
the spin projection M and not the so-called reflectivity
basis. Equation (13) is a bilinear relation between the
moments derived from the data and the partial wave
amplitudes. The fit minimized the difference of the right
and the left sides of Eq. (13) with respect to free parameters
in the amplitude parametrization. In this way, a set of
moments was used to determine the amplitudes.
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A. Parametrization of the partial waves

For a given L and M, there are eight independent
amplitudes, /744, (MK+K-), in each energy and momentum

transfer bin corresponding to each combination of photon
and initial and final nucleon helicity. We have only one
energy bin in this analysis, so the fitted amplitudes do not
depend on Ey. Since the L > 2 amplitudes (D and F waves)
are expected to be small in the K+K~ invariant mass range,
we only include S and P partial waves. The reaction yp

pK+K~ was then characterized by 32 amplitudes. There
were 8 amplitudes required to describe the S wave depending
on the two-spin projections of the photon (4y = +1), the
target proton (4 = +1/2), and therecoil proton (4' = £1/2).
In addition, there were 24 P-wave amplitudes depending also
on three-spin projections of the (p. However, the photon
helicity was restricted to Ar = +1 since the other amplitudes
are related by parity conservation, resulting in 16 uncon-
strained amplitudes. In addition, some approximations in the
parametrization of the partial waves were adopted to reduce
the number of free parameters in the fit as discussed below.

3 -

1.07 101 1.02 1.03 1.04 105 1.06

Mass(K+K ) (GeV/c2)

1.07

litilitiiliiiil
1.02 1.03 1.04 1.05 1.06 1.07
Mass(K+K ) (GeV/c2)

1.07 1.01

Experimental moments (YLM) (red) for 0.7 < f] < 0.8 GeV2 for L <2 and M <2 together with the moments derived from

the fitted amplitudes (black), including the L = 0 and L = | amplitudes in the fit. The shaded band indicates the associated systematic
uncertainty. Under our assumptions (see text), {Yr4j = 0 in the full mass range. The solid line represents the best fit.
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In general, itis expected that the dominant amplitudes require
minimal photon helicity flip, i.e.

Ifl> Kf (14)

corresponding to photon helicity flip by zero and one,
respectively. In the .s-channel helicity frame, we assume
the P-wave production (L = 1) is dominated by helicity
nonflip amplitudes, i.e. the nonvanishing independent ampli-
tudes are

pt+ -l e pe=/+1- - ((B))
where = refer to helicities of the photon and the protons, e.g.,
+,+, +corresponds to>= +1,2 = +1/2 and+ = +1/2.
We introduced two additional amplitudes per each orbital
angular momentum, to describe unit photon helicity flip,

PHYS. REV. D 98, 052009 (2018)

(17

In the approximations described above, the dependence of
moments on the S and P amplitudes is given by

(F00) = 2[|S+]2 + [S_[2+ [P+2 + [P_|2 + [PO+]2 + \Po-12]
(FM =2[f +g*%_+f+P5-5-]
(Yn)=P*+S+ +P* § +§+P++5* P_

(W ="[2|Po+|2+2|Po-|2 - Tf2 - T

(W = (18)

with (Y20) vanishing under our assumptions. Here we seethe
(F10) and (F,,) moments contain information about the

= ° - . . . .
pot = [T Po (16) presence of the 5-wave interference with the dominant
P wave. Thus, a nonzero (F10) or (Fn) moment is an
and indication of a nonvanishing 5-wave amplitude. In order for
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FIG. 9. Experimental moments (YLM) (red) for 0.8 < f] < 0.9 GeV2 for L <2 and M <2 together witli tire moments derived from

the fitted amplitudes (black), including the L = 0 and L = | amplitudes in the fit. The shaded band indicates the associated systematic
uncertainty. Under our assumptions (see text), (1+) = 0 in the full mass range. The solid line represents the best fit.
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the (Yoo) moment to be nonzero, there must be two-unit
photon helicity flip amplitudes. Given that there is no
significant structure in any (Y20) moments of this analysis,
it is justified to neglect two-unit photon helicity flip ampli-
tudes. So far we have introduced only the nucleon helicity
nonflip amplitudes. Indeed ,P-wave nucleon helicity flip
amplitudes are expected to be small (cf. Appendix B
and Ref. [42]).

Without polarization information, it is difficult to sep-
arate out amplitudes differing only by the helicity of the
nucleon. We did attempt to fit the data using various
configurations of nucleon helicity amplitudes and found, in
particular, that the .S-/ interference signal in the (X,,)
moment cannot be described solely by interference
between nucleon flip amplitudes. We comment on this
further in Sec. IV C. We find, however, that the moments
can be well described by interference between the domi-
nant, nucleon helicity nonflip P- and .S-wave amplitudes.
Details of the amplitude parametrization are given in

PHYS. REV. D 98, 052009 (2018)

B. Fit of the moments

To account for detector resolution, the moments calcu-
lated from the amplitudes were smeared by a Gaussian
function. The <¢ width apparent in the (X00) moment
determined the smearing needed in order for the P-wave
parametrization (with fixed <y width) to match the data. This
lead to a width in the Gaussian smearing of4 MeV, which is
compatible with the CLAS detector resolution measured in
other reactions [34]. We fit the moments (YLM) with L <2
and M <2 usingupto L = |(P) waves as described above.
In Figs. 7-13, we present the fit results of this analysis from
0.6 < —¢ < 1.3 GeV2. To properly take into account the
uncertainty contributions (statistical and systematic) to the
experimental moments described in Sec. I11 C, the two sets
of moments from methods Ml and M2 were individually
fit, and the fit results were averaged, obtaining the central
value shown by the black line in the figures. The error
band, shown as a grey area, was calculated following the
same procedure adopted for the experimental moments
(Sec. 111 C). The two lowest momentum transfer bins 0.4 <

Appendix B. t < 0.6 GeV2 were excluded from the analysis because the
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FIG. 10. Experimental moments (YLM) (red) for 0.9 < |f] < 1.0 GeV2 for L <2 and M <2 together with the moments derived from

the fitted amplitudes (black), including the L = 0 and L = | amplitudes in the fit. The shaded band indicates the associated systematic
uncertainty. Under our assumptions (see text), {¥Y22) = 0 in the full mass range. The solid line represents the best fit.
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moment reconstruction procedure was found not to be
reliable in this region. In addition, the (Y10) moment was
not used to extract the 5-wave magnitude because the
procedure could not always reproduce an accurate (Y10)
moment based on tests performed on pseudodata.

C. Partial wave amplitudes

As an example, the square ofthe magnitude ofthe S and P
partial waves derived by fit for the momentum transfer bin
0.7 < —t < 0.8 GeV2 are shown in Fig. 14. The 5-wave
threshold enhancement provides a hint ofthe scalar 77(980)
or a0(980) states, which have been parametrized by the
exchange ofthe co and p vector mesons in the # channel. The
top and the middle plots show the partial waves summed over
all helicities. The two bottom plots show the amplitudes for
two possible values of M = 1,0, the helicity of the dikaon
system. Note that we use the wave with photon helicity
X! = +1 as areference. Thus, M = | corresponds to the no-
helicity flip (s channel helicity conserving) amplitude,
which, as expected, is the dominant one, and M =0
corresponds to unit photon helicity flip. The nonvanishing

101 1.02 1.03 1.04 105 1.06 1.07 1.01
Mass(K+K ) (GeV/c2)

g2 "

4 -

lifiliiiiliiil

Mass(K+K ) (GeV/c2)
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(Y02) moments show the presence ofa small two-unit helicity
flip amplitude. By neglecting the M = -1 amplitudes, we
have focused on describing the dominant structure in the
(Yu) and (Y20) moments and reducing the number of fit
parameters.

To check sensitivity to various helicity components we
performed the fit in three configurations. In the first
configuration we included S- and P-wave amplitudes with
vanishing photon helicity flip and unit photon helicity
flip. Nucleon helicity flip amplitudes were excluded.
In the second configuration, we used Regge factoriza-
tion to reduce the number of independent amplitudes.
Specifically, the parity relation applied to the nucleon
vertex [43] reduces the number of unconstrained ampli-
tudes by a factor of two, since S+ is related to S , P+ to
P, and P| to P0 . Finally, in the third configuration we
used the above Regge-constrained P-wave amplitudes and
added to them the nucleon helicity flip amplitudes. In this
configuration we tested if the interference signal in the
moments could be described by interfering nucleon flip
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FIG. 11.

Mass(K+K ) (GeV/c2)

Mass(K+K ) (GeV/c2)

Experimental moments (YLM) (red) for 1.0 < f] < 1.1 GeV2 for L <2 and M <2 together with the moments derived from

the fitted amplitudes (black), including the L = 0 and L = | amplitudes in the fit. The shaded band indicates the associated systematic
uncertainty. Under our assumptions (see text), (Y22} = 0 in the full mass range. The solid line represents the best fit.
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Experimental moments {YLM) (red) for 1.1 < f] < 1.2 GeV2 for L <2 and M <2 together witli the moments derived from

the fitted amplitudes (black), including the L = 0 and L = | amplitudes in the fit. The shaded band indicates the associated systematic
uncertainty. Under our assumptions (see text), {¥7¥j = 0 in the full mass range. The solid line represents the best fit.

amplitudes by attempting to extract the nucleon helicity
flip amplitudes from the (T10) and (Yz¢) moments.
Specifically, we added two nucleon helicity flip
P-wave amplitudes A\ A\

5-wave amplitude /++ . It is only necessary to consider

and one nucleon flip

one-half of all the nucleon flip amplitudes because the
others are not independent after using the Regge factori-
zation condition. We found that the first two configura-
tions gave similar results, and specifically, in Figs. 7-13,
we show the results obtained with the second configu-
ration described above. In the third configuration a fit was
first performed using the (Too) and (T20) moments to
extract the dominant nucleon nonflip P wave, while
setting the nucleon flip amplitudes to zero. After fixing
the strength of the nonflip P wave in this way, we
introduced nucleon flip P and S waves and added the
(710) and (Tn) moments to the fit. As shown in Fig. 15,
we found that the nucleon flip amplitudes cannot be large
enough to significantly affect the (Tn) moment. We thus

conclude that the nonflip amplitudes dominate the mea-
sured moments.

D. Differential cross sections

Differential cross section (do/dt), for individual waves
can be obtained by integrating the corresponding amplitude
obtained from fits to the moments. The results are shown in
Figs. 16 and 17. All cross sections are found by integrating
the mass region 1.0195 #+ 0.0225 GeV. It is worth noting
that the magnitudes of the S and P( waves found in this
analysis (see Table I) are consistent with predictions
(summarized in Table II) of a model constrained on a
somewhat higher photon energy data [24,26,27], The
discrepancy can be explained by the different —¢ integration
range.

E. Uncertainty evaluation

The final uncertainty was computed as the sum in
quadrature of the statistical uncertainty of the fit, and
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FIG. 13. Experimental moments (YLM) (red) for 1.2 < f] < 1.3 GeV2 for L <2 and M <2 together with the moments derived from
the fitted amplitudes (black), including the L = 0 and L = | amplitudes in the fit. The shaded band indicates the associated systematic
uncertainty. Under our assumptions (see text), {¥Y21) = 0 in the full mass range. The solid line represents the best fit.

S-wave

two systematic uncertainty contributions: the first
related to the moment extraction procedure, evaluated
as the variance of the two fit results, and the second
associated with the photon flux normalization estimated

a =

Mass(K'K') (GeV/r

Mass(K'K") (GeV/er
P-wave X = P-wave X=0

Mass(K*K~) (GeV/c: Mass(K*K~) (GeV/c: Mass( ) (GCV/Cz)

FIG. 14. Magnitudes ofthe S and P partial waves along with two- FIG. 15. Fit of (Fn) moment With the nucleon ﬂip amp.litude
spin projections of the P wave (lra = 1, 0) in the 0.7 < ¢ < alone. The bad agreement indicates the nonflip amplitudes
0.8 GeV2 bin determined by fitting to the experimental moments. dominate the measured moments.
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Differential cross section obtained from integrating
magnitude in the AMK+K- range 1.0195+

to be 10%. The central values and uncertainties for
all of the observables of interest discussed in the next
sections were derived from the fit results with the same
procedure.

TABLE I.  Cross sections in nb obtained from this analysis by
integrating the 5- and P-wave magnitudes in the MK+K- range
1.0195 £ 0.0225 GeV in the single momentum transfer bin
0.6 <-7<< 0.7 GeV2.

Photon energy 3.0-3.8 GeV
Total cross section 27.2
Sum of P waves 229+24
PO wave 1.9 +£0.6

5 wave 4.3 +0.45

PHYS. REV. D 98, 052009 (2018)

TABLE II.  Cross sections in nb obtained from integrating the 5
and P waves from the Regge model of [44]. The results shown are
integrated over —¢ up to 1.5 GeV2 and the MKj> range of
(0.997- 1.042) GeV for Ey =4 GeV and up to -z of
0.2 GeV2 an MK”™ in the range (1.01 - 1.03) GeV at
Ey = 5.65 GeV, respectively.

Photon energy 4.00 GeV 5.65 GeV

Sum of P waves 218.4 =+ 39.5 120.5 £9.4

Background 300.0"g» 4-77.0

P0 wave 4'7-45 i4.0:%

5 wave 4-3"76 6-873
V. SUMMARY

In summary, we performed a partial wave analysis
of the reaction yp  pK+K~ in the photon energy
range 3.0-3.8 GeV and momentum transfer range
—t = 0.6-1.3 GeV2. Peripheral photoproduction of meson
resonances is an important reaction to study their structure.
On one side, photons have a pointlike coupling to quarks,
which enhances production of compact states. On the
other, pion exchange amplitudes in photoproduction on
the nucleon can be used to determine rate of resonance
production through final state interactions. Theoretical
analysis of these processes are currently underway [45].
Moments of the dikaon angular distributions, defined as
bilinear functions of the partial wave amplitudes, were
fitted to the experimental data by means of an unbinned
likelihood procedure. Different parametrization bases were
used and detailed systematic checks were performed to
ensure the reliability of the analysis procedure. We
extracted moments (YLM) with L < 4 and M < 2 by using
amplitudes with L <2 (up to P waves). The production
amplitudes have been parametrized using a Regge-theory
inspired model. The P wave, dominated by the <p(1020)
meson, was parametrized by Pomeron exchange, while the
/0(980) meson in the S wave was described by the
exchange of the co and p vector mesons in the ¢ channel.
This model also accounts for the final state interaction (ESI)
of the emitted kaons. The moment (Too) is dominated by
the (p(1020) meson contribution in the P wave, while the
moments (T10) and (Tn) show contributions ofthe S wave
through interference with the P wave. The cross sections of
S and P waves in the mass range of the </>(1020) were
computed. This is the first time the f-dependent cross
section of the 5-wave contribution to the elastic K+K~
photoproduction has been measured.
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APPENDIX A: SYSTEMATIC STUDIES OF THE
MOMENT EXTRACTION

To check the results stability against the analysis
procedure many systematic checks have been performed.
The photon energy bin size has been split in two and the
analysis repeated in the two bins independently finding no
dependence in moment extractions. The A(1520) peak in
the K~p mass distribution cannot be reproduced with
Anax < 4 (see Fig. 18), but since this kinematical region
is not a main focus of this study, the cut MK-p <1.6 GeV
was applied throughout the analysis. Additional systematic
checks showed that this cut did not affect the number of
events in the MK+K- region near the ¢ mass. The sensitivity
to /tmax and effect of truncation to /max = 4 have also been
studied comparing the K+ helicity angle distributions and
K+p, K~p invariant mass distributions obtained by the fit
to the raw data. Accepted Monte Carlo events, with primary
events generated from a flat phase-space distribution, took

—- Data
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5 300 —
ug 250 —
v 200
150 —
100 —
50 —
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FIG. 18. Measured number of events as a function of the pK~

invariant mass compared to the predicted distribution computed
with fitted results from method 3 weighted by the experimental
acceptance before cutting out the A(1520).
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the same form as the data in this region due to the detector
acceptance showing a good agreement between the two
distributions.

APPENDIX B: PARAMETRIZATION OF
INDIVIDUAL K+K~ AMPLITUDES

We restricted our analysis to waves with M < | and
partial waves up to L = | waves.

1. P wave

The P waves were constructed based on the model of
elastic K+K~ photoproduction developed in [42]. The
model assumes that the </>(1020) resonance is produced
by a soft Pomeron exchange, which leads to an almost
purely imaginary amplitude at small momentum transfers.
The K+K~ effective mass distribution is described by the
relativistic Breit-Wigner formula

BW (Mk+k-) (BD

with and T" being the < meson mass and width.
Expanding the P-wave amplitudes into partial waves,

(B2)
M

and taking the high-energy limit, s > ¢ and s >» MK K |
the amplitudes derived in [42] result in the following
helicity partial waves:

[+% =

o s VMA-4, " BW(MA~-). (B3)

(B4)

Before comparing with data we multiplied each of these
amplitudes by a slowly varying function of MK+K-,

J(MK+K-) — a + bw(MK+K~) + cw~(Mk+k-) (BS)
with w(z) conformally mapping the complex MK K plane
cut at M\k =0 and MRK = 4m)\ onto a unit circle.

Coefficients a, b and c are allowed to vary independently
for each helicity amplitude.

2. 5 wave

The 5-wave component of the K+K~ amplitude is
parametrized by the double f-channel exchange of the p
and co vector mesons as described in [44]. In the upper
meson vertex, a simple meson exchange is used, allowing
for an interaction of two produced mesons in the final state.
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The normal propagator (¢ — m1)~l, where me is the mass of
the exchanged vector meson, was used at the nucleon
vertex. Both the and K+K~ channels were included
in the final state interactions. The S wave in the mass region
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