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This paper combines data-driven and model-driven methods for real-time misinformation detection. Our
algorithm, namedQuickStop, is an optimal stopping algorithm based on a probabilistic information spreading
model obtained from labeled data. The algorithm consists of an offline machine learning algorithm for
learning the probabilistic information spreading model and an online optimal stopping algorithm to detect
misinformation. The online detection algorithm has both low computational and memory complexities. Our
numerical evaluations with a real-world dataset show that QuickStop outperforms existing misinformation
detection algorithms in terms of both accuracy and detection time (number of observations needed for
detection). Our evaluations with synthetic data further show thatQuickStop is robust to (offline) learning
errors.
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1 INTRODUCTION

The proliferation of misinformation [20] (colloquially known as “fake news”) on online social
networks has become one of the greatest threats to our national security, has eroded the public
trust in news media, and is an imminent threat to the ecosystem of online social platforms like
Facebook, Twitter and Sina Weibo. For example, in 2013, a fake tweet claiming that the then US
President Barack Obama was injured by explosives from a hacked Twitter account of the Associated
Press caused a 150-point drop of the Dow Jones in just two minutes;1 and fake news in the 2016 US
Presidential Election has led to increased political and social polarization and posed a great threat
to democracy. Social media companies, such as Facebook and Twitter, are now taking multiple
1https://www.washingtonpost.com/news/worldviews/wp/2013/04/23/syrian-hackers-claim-ap-hack-that-tipped-stock-
market-by-136-billion-is-it-terrorism/
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countermeasures to combat misinformation as the proliferation of misinformation is driving users
away from these platforms.
Despite the enormous attention it receives and the tremendous efforts from both public and

private institutions to counter it, misinformation detection remains a daunting task as of today.
Online platforms and news organizations have experimented different methods. Facebook launched
its fact-checking project in Spring 2018 to work with third-party publishers to validate facts and
accuracy of news articles.2 The New York Times has recently published a tip form so that its readers
can report misinformation and fake news.3 The third-party fact-checking method is often very
effective for detecting whether a specific news article is fake or not, but clearly is not a scalable
solution and cannot cover even a tiny fraction of news articles and tweets (there are about 500
million tweets per day on Twitter). The crowdsourcing approach used by New York Times is more
scalable, but the reports are not always trustworthy because anyone can send a tip. In light of these
challenges, machine-learning and data-mining approaches have emerged to tackle misinformation
detection in a systematic way (see [36] for a comprehensive review). It has been shown in [4] that
the features extracted from the content of a news article, the features of the users who spread the
news, and the connections of these users can be effectively utilized for misinformation detection.
These are exciting discoveries and progresses because “machine-based” methods are much more
scalable than “human-based” methods, and can handle a vast number of news articles in a short
period of time.
While machine-learning approaches address the scalability issue, another important aspect

of misinformation detection, speed or sample complexity (the amount of time or the number of
observations needed to detect misinformation), has yet to be tackled. Speed is important because
of the disruptive nature of misinformation, which often causes significant damages in a very short
period of time. For example, it only took less than two minutes to tip the Dow Jones by 150 points
with one single fake tweet. Therefore, it is imperative to detect misinformation at the earliest time
so that proper countermeasures can be taken to suppress it. A fact-checking approach may take a
few hours because fact-checkers need to gather facts and evidence to validate or invalidate a news
article. Therefore, the speed aspect of misinformation detection is equally important as accuracy
and scalability in the design of misinformation detection algorithms.

Motivated by the discussions above, this paper focuses on quickest detection of misinformation.
The goal is to develop an algorithm that addresses the three important considerations in misin-
formation detection: scalability, accuracy and speed. Note that existing machine-learning-based
approaches have demonstrated a strong correlation between user features and the spreading models
under different information types (real or fake). We will demonstrate this strong correlation in
Section 2 using a Sina Weibo dataset. The signal of a single retweet is often very weak and usually
not sufficient for classifying a news article with a reasonable accuracy. But this accuracy can be
improved with more and more weak signals. This paper views the problem of misinformation
detection as a sequential hypothesis testing problem. As the platform receives a sequence of weak
signals in real time, it determines whether it has collected enough information to declare the type
of the news (real or fake). The more signals collected, the more accurate the detection result will be,
but then we are at risk of letting the misinformation spread. Enlightened by these observations, we
proposeQuickStop, a scalable algorithm that performs accurate, quick detection of misinformation.
QuickStop combines a data-driven approach with a model-driven approach in the following way.
• Data-based probabilistic modeling: Since each retweet is a weak signal for the hypothesis
testing (whether the news article is real or fake), extracting the statistics of these weak

2https://www.facebook.com/help/1952307158131536?helpref=faq_content
3https://www.nytimes.com/2018/09/17/technology/disinformation-tipsheet.html
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signals is important for establishing an effective probabilistic model for hypothesis testing.
QuickStop first uses an SVM (Support Vector Machine) algorithm to extract an edge-based
probabilistic information spreading model. Section 2 explains the rationale behind the edge-
based model (compared with a node-based model) and shows the effectiveness using the Sina
Weibo dataset.
• Model-based quickest detection: After establishing the probabilistic model, we formulate
the quickest misinformation detection problem as an optimal stopping problem. Specifically,
we propose a cost model that includes both the cost due to detection error and the cost due
to the propagation of misinformation. Note that the propagation cost occurs only in the
case of misinformation. With this formulation, the goal is to discover a stopping policy, i.e., a
policy that determines when to stop collecting observations and what type to declare after
stopping, that minimizes the overall cost. As more observations are collected, the error cost
decreases but the propagation cost could increase in the case of misinformation. Therefore,
the optimal stopping policy needs to balance the detection accuracy and detection time so
that misinformation can be detected confidently at the earliest possible time.

The main contributions of this paper are summarized below.

• Problem Formulation: We formulate the quickest misinformation detection problem as
a Markov optimal stopping problem based on a probabilistic information spreading model.
This probabilistic model can be extracted from training datasets by given classifiers. An
interesting feature of our formulation is the asymmetric cost functions between real news
and misinformation — spreading misinformation causes far more damage than spreading real
news so we need to act quickly only in the case of misinformation. The analytical solution of
a Markov optimal stopping problem in general requires computing a function of the state
(see, e.g., Chapter 3.4.4 on Page 59 of [30]). Since the state in our formulation includes the
current time index (i.e., how many users the article has reached), this function would be
time-dependent. Effectively, this means that we potentially need a different function of the
collected information for each time step. However, utilizing structures in our probabilistic
model, we show that the optimal stopping policy has a simple threshold form described by
several time-independent thresholds. We comment that this structure is similar to that in the
solution of the sequential testing problem, but the techniques there do not directly apply to
our problem since our cost function has a nonlinear term due to the asymmetry.
• Algorithm and Analysis: We propose an algorithm named QuickStop that detects misin-
formation based on edge types, where an edge is a connection between two individuals along
which a piece of information spreads from one individual to the other.QuickStop consists of
two parts: (i)QuickStop-Training, an offline algorithm that classifies edges into four types
and then calculates transition probabilities between different edge types, where the transition
probabilities in the case of real news may be different from those for misinformation; and (ii)
QuickStop-Detection, an online detection algorithm with low computational and memory
complexities. We emphasize that the main computation load is in the offline part. Once
the offline training is completed, the online part for detection is very efficient as described
below. QuickStop-Detection maintains a scalar variable that describes the current state,
and updates the state for each new observation. The update just follows a simple formula
and its complexity does not depend on how many observations have been collected. Then
the algorithm compares the state with several thresholds calculated offline. Based on the
comparison result, it decides whether it will keep collecting observations or declare the
type of the information. In the latter case, what type to declare is also determined by the
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comparison result. Therefore,QuickStop-Detection has very low computational and memory
complexities, and is ideal for real-time large-scale misinformation detection.
• Evaluations: We evaluated the performance of QuickStop using both a real-world social
network dataset (from Sina Weibo) and synthetic data. The evaluations on the real-world
dataset demonstrates the effectiveness of our algorithm in terms of both accuracy and speed
compared with state-of-the-art real-time misinformation algorithms. Under QuickStop with
a low propagation cost, it took 12 observations on average in the Weibo dataset to detect
misinformation, but more to declare real news. This is consistent with the asymmetric
cost model. Furthermore, the false negative rate (misinformation classified as real news) is
much lower than the false positive rate (real news classified as misinformation), which is
also desirable in practice. In contrast, the accuracy of the state-of-the-art early detection
algorithms are still lower than ours even with 33× more observations. From the evaluations
on synthetic data, we further observed thatQuickStop is robust to classification errors.

We finally comment that while several early misinformation detection algorithms have been
developed [6, 23–26, 48], these algorithms either use a fixed number of observations as input [6, 26]
or observations over a fixed time period as input [23–25, 48]. Therefore, these early detection
algorithms do not minimize the detection time (or the number of observations) in real time. Our
approach, on the other hand, tackles the problem using the optimal stopping method and optimizes
the number of observations needed in real-time for quickest detection. Our numerical evaluations
show QuickStop achieves higher accuracy with fewer observations due to the dynamic nature of
the algorithm. A detailed review of other related work is presented in Section 7.

2 MODEL AND PROBLEM STATEMENT

We model an online social network as a graphG = (V, E), whereV is the set of vertices represent-
ing users and E is the set of directed edges representing the connections between users. Information
(real news or misinformation) can spread from one user to another via the edge connecting them,
e.g., a Twitter user can retweet a post from one of her/his followees. In this paper, we adopt the
terminology of Twitter. Given a directed edge (v,u), user u is called a follower of user v ; and user
v is called a followee of user u . Information can spread from user v to user u via this directed edge.

We assume two types of information that may spread in the network: real news articles (simply
called news in the remainder of the paper) and misinformation. A user (say user u) decides whether
to post (retweet) the information based on the following three factors: (i) the type of the information,
(ii) the features of user u, and (iii) the set of user u’s neighbors who have posted (retweeted) the
information before user u .
As information spreads in the network, the platform obtains sequential observations (weak

signals) for misinformation detection. In this paper, a retweet is considered to be an observation,
which is represented by the edge over which this retweet occurs. Specifically, we define the
kth observation to be (Vk ,Uk ), where Uk is the feature vector of the kth user who retweets the
information and Vk is the feature vector of the followee from whom the kth user retweets the
information. We remark that when complete network and information diffusion information is
known, the information spreading trace is likely to be a tree or a forest (with multiple information
sources). However, in practice, it is often not the case because of missing information and partial
observations [15, 18]. Therefore, the observations we have are a sequence of retweets (Vk ,Uk ),
which not necessarily form a tree. In particular, Uk is not necessarily the same as Vk+1 in the trace.
Now to model these retweets as weak signals, we can consider the following two approaches.

• User-based Model: In the user-based model, given the type of an article, the probability a
user retweets the article depends on the features of the user. Intuitively, an honest user has
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a lower probability to retweet some misinformation than a malicious user (e.g., a bot). The
user-based model is to classify the users based on the user features with a labelled training
dataset.
• Edge-based Model: In the edge-based model, we view each edge as a communication channel
and classify edges into different groups. For example, misinformation is more likely to spread
over an edge between two malicious socialbots than an edge between two honest users. The
edge-based model is to classify the edges based on the edge features (the feature vectors of
the two end users (V,U)) with a labelled training dataset.

Figure 1 presents the distributions of SVM classification scores of the user-based model and the
edge-based model of the Weibo dataset released in [24], where x-axis is the classification score
of the SVM classifier, and y-axis is the score distributions (frequencies). A user or an edge with a
higher score is considered more likely to spread misinformation. From the figure, we first observe
that the scores of users (or edges) involved in spreading news concentrate around zero while the
scores of users (or edges) involved in spreading misinformation concentrate around one. This
demonstrates a strong correlation between article types and user/edge features. Furthermore, we
can see that the score distributions based on edges exhibit a stronger correlation with article types
than the score distributions based on users. For example, for misinformation, the score distribution
based on edges has a higher frequency around zero than that based on users (60% versus 45%).
Because of this observation, in this paper, we use the edge-based model.
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Fig. 1. Classification distribution

We assume that given the article type, the sequential observations form a Markov chain as shown
in Figure 2, where we further assume the edge feature vector (V,U) can be classified into four
classes Zk = f (Vk ,Uk ) ∈ {0, 1, 2, 3} to simplify the model, where 0 is the type of edges that are
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most likely to be used for spreading news and 3 is the type of edges that are most likely to be used
for spreading misinformation. Under this Markov chain model, besides the edge types, additional
parameters to be learned are the transition probabilities, denoted by αi (Zk |Zk−1), where i ∈ {0, 1},
i = 0 indicates these are the transition probabilities when spreading news, and i = 1 indicates
these are the transition probabilities when spreading misinformation. When α0(·|·) and α1(·|·) are
different, we can detect misinformation using sequential hypothesis testing. We remark that the
generalization of the four-class model to aC-class model for a finiteC is straightforward. Our main
results and the proposed algorithm work for any finite C . The choice of the number of classes, C ,
however, needs to balance the detection performance, which favors a larger C, and the training
complexity and accuracy, which often favor a smaller C .We adopt the four-class model based on
experimental evaluations on the Weibo dataset. The evaluations showed that the four-class model
performs significantly better than a two-class model, but increasing C from four to eight did not
yield any noticeable improvement.

...(V1,U1) (V2,U2) (V3,U3)

f(VK,UK)  {0, 1, 2, 3}

Fig. 2. A Markov chain model for sequential observations

Tables 1 and 2 show the empirical transition probability matrices under news and misinformation
obtained from the Weibo dataset (an edge with a classification score below 0.25 is placed in class 0,
one with score between 0.25 and 0.5 is placed in class 1, one with score between 0.5 and 0.75 is
placed in class 2, and one with score above 0.75 is placed in class 3). We can clearly observe that
the observations are not i.i.d., which supports our edge-based Markovian model.

0 1 2 3
0 0.828 0.120 0.039 0.012
1 0.651 0.224 0.084 0.041
2 0.500 0.193 0.191 0.116
3 0.279 0.181 0.211 0.329

Table 1. Edge Transition Probability Matrix under News from the Weibo Dataset

0 1 2 3
0 0.163 0.167 0.249 0.421
1 0.105 0.194 0.239 0.461
2 0.080 0.119 0.277 0.524
3 0.052 0.088 0.203 0.657

Table 2. Edge Transition Probability Matrix under Misinformation from the Weibo Dataset

For the edge classifier, we leverage the existing research, in particular, the research in [18],
where it shows that SVM performs the best among several popular machine-learning algorithms,
including decision tree and random forest for classifying misinformation. We adopt SVM and the
user features proposed in [4] to obtain an edge classifier. The details can be found in Section 4. After
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classifying the edges in the training data, we further obtain transition probabilities αi (Zk |Zk−1)
from the training data to build a probabilistic information spreading model (details can be found in
Section 3).
Our focus is on the quickest detection formulation after training the edge classifier and learn-

ing the transition probabilities αi (Zk |Zk−1). In the next section, we will formulate the quickest
misinformation detect problem and prove that the problem is a Markov optimal stopping time
problem and its solution is a time-invariant threshold policy. Furthermore, the thresholds can be
efficiently calculated offline based on the probabilistic model. The online algorithm is of constant
computational and memory complexities, and is very easy to implement.

3 OPTIMAL STOPPING APPROACH FORQUICKESTMISINFORMATION DETECTION

Consider an online social network platform that is monitoring the spread of some information in
the network. We say that an event occurs when a user retweets or posts the information. When
the kth event occurs, we obtain an observation Zk ∈ {0, 1, 2, 3} by using the trained classifier to
learn the edge type. Furthermore, we assume that we have learned the transition probabilities
αi (Zk |Zk−1) from training data.

With the model introduced above, the detection of misinformation can be formulated as a
hypothesis testing problem with the following two hypotheses:
• H0: The information is news. In this case, {Zk } is a four-state Markov process with transition
probabilities α0(Zk |Zk−1).
• H1: The information is misinformation. Then {Zk } is a four-state Markov process with
transition probabilities α1(Zk |Zk−1).

Given observations {Zk }, the misinformation detection problem is to determine whether H0 or
H1 is true. We assume that in terms of the prior distribution, hypothesis H0 occurs with probability
π0 and H1 occurs with probability π1 = 1 − π0. We assume the first observation Z1 is uniformly
distributed over {0, 1, 2, 3} regardless of the hypothesis.

Now define
Πk = Pr (H1 |(Z1,Z2, · · · ,Zk )) , (1)

so
1 − Πk = Pr (H0 |(Z1,Z2, · · · ,Zk )) .

According to the Bayes rule, we have

Πk = Pr (H1 |(Z1,Z2, · · · ,Zk ))

=
Pr ((Z1,Z2, · · · ,Zk )|H1) Pr(H1)

Pr(Z1,Z2, . . . ,Zk )

=
π1

∏k−1
i=1 α1(Zi+1 |Zi )

(1 − π1)
∏k−1

i=1 α0(Zi+1 |Zi ) + π1
∏k−1

i=1 α1(Zi+1 |Zi )
.

From the equation above, we have

1 − Πk

Πk
=
(1 − π1)

∏k−1
i=1 α0(Zi+1 |Zi )

π1
∏k−1

i=1 α1(Zi+1 |Zi )
,

which implies that

1 − Πk+1

Πk+1
=

1 − Πk

Πk

α0(Zk+1 |Zk )

α1(Zk+1 |Zk )
.
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Therefore, we have the following recursive equation

Πk+1 =
Πkα1(Zk+1 |Zk )

(1 − Πk )α0(Zk+1 |Zk ) + Πkα1(Zk+1 |Zk )
. (2)

for updating our belief on H1.

Note that given the observation sequence {Zk }, we can calculate 1−Πk
Πk

in real time. The question
is when to declare the type of the information. The more observations we have, the more accurate
the decision would be but the more widely the information would have spread. Therefore, we need
to balance the accuracy and the potential damage of spreading misinformation. Let T ≥ 1 denote
the random time at which the type of information is declared, which is a function of Z1,Z2, · · · ,ZT ;
i.e.,T is a stopping time with respect to {Zk }. Let δT denote the type of information that is declared
by a detection algorithm. We consider the following two types of costs in the misinformation
detection problem.

Error Cost

The first type of cost comes from mis-detection. Let cI denote the cost of type-I error (also called
false positive, where news is declared as misinformation) and cII denote the cost of type-II error (also
called false negative, where misinformation is declared as news). The expected cost of mis-detection
is

ce (δT ) = cI Pr(δT = 1|H0)(1 − π1) + cII Pr(δT = 0|H1)π1,

where π1 is the prior probability of H1.

Propagation Cost

The other type of cost is the propagation cost. Information becomes more influential when more
people share it. So we need to detect misinformation as quickly as we can to limit its potential
damage, while spreading news does not occur any cost. Consequently, the propagation cost in our
model is asymmetric and comes only from misinformation. In particular, we assume that there is a
cost of c associated with each time slot of propagation if the information is misinformation. Thus,
at the stopping time T , the propagation cost is

E
[
cT IH1

]
,

where IH1 is the indicator function which is equal to 1 when H1 is true and is equal to 0 when H0 is
true.

A Markov Optimal Stopping Approach

The goal of the misinformation detection algorithm is to minimize the overall cost. Formally, we
aim to find a stopping time T and a decision rule δT , both depending on Z1, · · · ,ZT , that solve the
following problem

inf
T ,δT

ce (δT ) + E
[
cT IH1

]
. (3)

An important step for solving this problem is to properly handle the propagation cost term
E
[
cT IH1

]
, which depends on the hypothesis. Note that if this term were E [cT ], this problem

would be the same as the renowned sequential testing problem (see, e.g., [30]). Specifically, the
sequential testing problem solves

inf
T ,δT

ce (δT ) + E [cT ] . (4)

Recall that given IH1 , the observation sequence {Zk } is a Markov chain. Therefore, when we view
IH1 as part of the state, {(IH1 ,Zk )} forms a Markov chain, and thus the formulation (3) is a Markov
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optimal stopping problem. However, this Markov chain is only partially observable since we cannot
observe IH1 . We can transform this optimal stopping problem of a partially observable Markov chain
to a fully observable optimal stopping problem. Specifically, consider the conditional distribution
of IH1 given observations Z1,Z2, . . . ,Zk . This conditional distribution can be represented by the
variable Πk defined in (1). We can verify that {(Πk ,Zk )} is a Markov chain. For the convenience
of analysis, we also view the time index k as part of the state and consider the Markov chain
{(Πk ,Zk ,k)}. With this, we transform the optimal stopping problem in (3) to a Markov optimal
stopping problem in Theorem 3.1.

Theorem 3.1. The optimal stopping problem (3) is equivalent to a Markov optimal stopping problem
with respect to the Markov chain {(Πk ,Zk ,k)}. Formally,

inf
T ,δT

ce (δT ) + E
[
cT IH1

]
= inf
T ∈T

E [min{cIIΠT , cI(1 − ΠT )} + cTΠT ] , (5)

where T is the set of stopping times with respect to {(Πk ,Zk ,k)}. □

Note that the variable in the Markov stopping problem (5) is just the stopping time T instead of
bothT and δT . Therefore, we can find the optimal stopping policy in two steps: first find the optimal
stopping timeT by solving (5), and then find the optimal decision rule δT based on Z1, . . .ZT . Such
a transform from a partially observable Markov chain to a fully observable Markov chain has been
widely used in optimal stopping problems and more generally in Markov decision processes (see,
e.g., Chapter 4.1 in Vol. I of [3], and [46]). Here we include the proof of Theorem 3.1 in Appendix A.1
for completeness.
The analytical solution of the Markov optimal stopping problem (5) can be obtained using the

Snell envelope (see, e.g., Chapter 2.2 on Page 38 of [19], and Chapter 3.4.4 on Page 59 of [30]),
which, in general, needs to compute a function of the state and store the function for use in the
optimal stopping policy. In our problem, the state includes the time index k . Then to compute the
Snell envelope, we potentially need a different function of the collected information Πk and Zk for
each nonnegative integer k . Interestingly, in Theorem 3.2, we will see that for our problem, the
optimal stopping policy is a threshold policy on Πk described by 8 time-independent thresholds.
This time-independence property greatly simplifies the computation. The requirement on memory
storage is also minimal, so this policy will be very simple to implement. We comment that compared
with the sequential testing problem, the cost function in our problem has a non-linear term cTΠT .
So the proof for the sequential testing problem does not directly apply to our problem. Nevertheless,
we utilize an essential observation that the process {Πk } is a martingale with respect to {Zk }
and still obtain a time-independent threshold policy. The proof of Theorem 3.2 is presented in
Appendix A.2.

Theorem 3.2. The optimal stopping time T ∗ is

T ∗ = inf
k>0

{
k : Πk <

(
π (Zk )l ,π (Zk )u

)}
. (6)

In other words, there exist positive values π (z)l , π
(z)
u , (z ∈ {0, 1, 2, 3}), independent of T , such that

the algorithm declares the information to be news when Zk = z and Πk ≤ π (z)l , and declares the

information to be misinformation when Zk = z and Πk ≥ π (z)u . The thresholds π
(z)
l and π (z)u for
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z = 0, 1, 2, 3 are determined by solving the following equations:

π (z)l = sup
π

{
0 ≤ π ≤

cI
cI + cII

���� s(z)(π ) = cIIπ } (7)

π (z)u = inf
π

{
cI

cI + cII
≤ π ≤ 1

���� s(z)(π ) = cI(1 − π )} (8)

where s is the solution of the Bellman equation below

s(z)(π ) = min
{
д(π ),E

[
s(Zk+1)(Πk+1)

���Πk = π ,Zk = z
]
+ cπ

}
(9)

and
д(π ) = min{cIIπ , cI(1 − π )}.

□

Note E
[
s(Zk+1)(Πk+1)

��Πk = π ,Zk = z
]
in (9) is understood as the expected cost to go starting

from the next time step based on s given the state in the current time step is π and z. In other
words,

E
[
s(Zk+1)(Πk+1)

���Πk = π ,Zk = z
]

=

3∑
z′=0

s(z
′)

(
πα1(z

′ |z)

πα1(z ′ |z) + (1 − π )α0(z ′ |z)

)
(πα1(z

′ |z) + (1 − π )α0(z ′ |z)) .

So it does not depend on k .

4 QUICKSTOP: THE QUICKEST MISINFORMATION DETECTION ALGORITHM

From the results presented in the previous sections, we proposeQuickStop, which includes the
following components.
• Training data: Our algorithm needs labeled training data. The dataset should include a set
of information spreading traces which are labeled as news or misinformation. Each user
involved in the information trace has a feature vector. The information should also include
the followee from whom a user retweeted the information.
• Learning the information spreading model via the SVM classifier: Given the labeled
data, we first train an SVM classifier with the dataset that classifies information to news or
misinformation. The input to the SVM classifier is the average feature vector of edges. Recall
that the feature vector of edge (v,u) is (V,U). After training the SVM classifier, we use the
classifier to classify the edges into four groups based on the edge feature vector. Note that
SVM outputs an value between 0 to 1. In our experiments, we use the following mapping:
[0, 0.25] ⇒ 0, (0.25, 0.5] ⇒ 1, (0.5, 0.75] ⇒ 2, and (0.75, 1] ⇒ 3. From the transition
probabilities learned from the previous step, we calculate π (z)l and π (z)u according to Theorem
3.2.
• Quickest detection: When monitoring information spreading, the algorithm updates Πk
according to (2) when an event occurs, where we set Π1 = π1 which is the prior distribution of
hypothesisH1 according to the data. The information is declared to be news when Πk ≤ π (Zk )l

and misinformation when Πk ≥ π (Zk )u .
We remark that this algorithm combines a data-driven approach, which learns the underlying

probabilistic model of information spreading in networks, and a model-driven approach, which
identifies misinformation in a timely manner with the quickest detection formulation.
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QuickStop consists of two parts:QuickStop-Training andQuickStop-Detection, whose pseudo-
code can be found in Algorithms 1 and 2, respectively.

4.1 Computational and Memory Complexities

In the training part, we use an SVM classifier on n information traces. In SVM, the feature space is
obtained by using some mapping functions and the hyperplane is determined by a set of support
vectors. Then the dimension of the feature space depends on the mapping function. The minimum
computational complexity of training an SVM is O(n2), and may reach O(n3).
The thresholds are calculated using the value iteration method. Let ϵ be the quantization step

size of the state Πk . During the value iteration, the terminal time depends on the quantization
precision. The computational complexity for each iteration is O( 1ϵ ); the memory complexity is also
O( 1ϵ ). This step is done offline.

For the online misinformation detection part, the computational complexity per iteration and
memory complexity are bothO(1). The algorithm needs to store 8 threshold values and 32 transition
probabilities. Each update of the state Πk only requires a few elementary operations.

5 PERFORMANCE EVALUATION WITH REAL-WORLD DATASETS

We first evaluate the performance of QuickStop using the following real-world dataset.
TheWeibo Dataset: Sina Weibo is a Chinese microblogging website similar to Twitter. The Weibo
dataset we use is the one released in [23], which includes 4,664 labeled information traces from
Sina’s community management center.4 The dataset also includes user information such as the
number of followees, the number of followers, the registration days, etc, which are used as user
features in our algorithm. We remove information traces whose sizes are small. In particular, we
keep the traces in which the information was retweeted by the followers of at least 50 distinct users.
We further balance the dataset by selecting 488 news traces and 488 misinformation traces. The
average retweets per trace is 2,031, the largest trace includes 55,155 retweets, and the smallest one
has 105 retweets. We used 80% of the traces as training data and the remaining as the testing data.
We compared QuickStop with the following misinformation detection algorithms aiming at

early detection: (i) decision-tree-based methods [4]; (ii) SVM-based methods with RBF kernel [45];
(iii) linear SVM-based models for time-series data [24]; (iv) Neural network-based methods with
Recurrent Neural Networks (RNNs), or Convolutional Neural Networks (CNNs), or both for sequen-
tial data [22]; and (v) a comprehensive approach involving RNNs, Feedforward Neural Networks
(FNNs), and singular value decomposition (SVD) for low-dimensional feature representation [32].
Note that all these methods are feature-based classification algorithms. The first three algorithms
[4, 24, 45] can take both user features and news content features as input. The algorithm proposed
in [22] has three versions, RNN only, CNN only, and both. The algorithms use the sequential
user features as the input to the neural networks. The algorithm in [32] uses an RNN to extract
article features, an FNN to extract user features, and another FNN to integrate both user and article
features for classification.QuickStop, on the other hand, only uses user features. In the evaluations,
for the first three algorithms, we implemented two versions: one with only user features (i.e., the
same set of user features used inQuickStop), and the other with both user and content features
(so more features thanQuickStop). The ten different algorithms are summarized below.
• DTCu : A Twitter information credibility method [4] based on decision trees, with only user
features.
• DTCa : A Twitter information credibility method [4] based on decision trees, with both user
and content features.

4https://service.account.weibo.com
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Algorithm 1QuickStop-Training (Offline)
Input:

A set of information traces: E = {e1, e2, · · · , en} ▷ ei is a sequence of users: {u(ei )t }, where t is
the posting order of a user, i is the index of the news trace
A set of labels: l = {l1, l2, · · · , ln} ▷ li ∈ {0, 1} is the label of ei (0: news, 1: misinformation).

1: For the tth user who post the information i (say user u(ei )t ), obtain feature vector of the edge:
(V(ei )t ,U

(ei )
t ).

2: Compute Ũ(ei ) = 1
|ei |−1

(∑ |ei |
t=2 V

(ei )
t ,

∑ |ei |
t=2 U

(ei )
t

)
▷ |ei | is the cardinality of news trace ei

3: Train edge classifier: f (·) using SVM with training dataset (Ũ, l)
4: Classify edges in the traces, Z (ei )t ← f (V(ei )t ,U

(ei )
t )

5: Calculate the transition probabilities

α j (z1 |z2) =

∑n
i=1

∑ |ei |−1
t=1 I

{Z (ei )t+1 =z1,Z
(ei )
t =z2 }

I{li=j }∑n
i=1

∑ |ei |−1
t=1 I

{Z (ei )t =z2 }
I{li=j }

, z1, z2 ∈ {0, 1, 2, 3}

6: Initialize ϵ, ϵ0,m ← 1
ϵ ,π = {π

1, · · · ,πm}, cI, cII, c ▷ ϵ and ϵ0 specify the quantization step size
and the convergence tolerance

7: for z = 0, 1, 2, 3 do
8: s(z)0 (π

i ) ← min{cIIπ i , cI(1 − π i )}, i = 1, . . . ,m
9: end for

10: for j = 1, 2, . . . do ▷ Solve the Bellman equation using value iteration
11: д(π i ) = min{cIIπ i , cI(1 − π i )}, i = 1, . . . ,m
12: for z = 0, 1, 2, 3 do
13: s(z)1 (π

i ) ← min
{
д(π i ),E

[
s(z̃)0 (π̃ )|π

i , z
]
+ cπ i

}
, i = 1, . . . ,m where

E
[
s(z̃)0 (π̃ )|π

i , z
]
=

3∑
k=0

s(k)0

(
π iα1(k |z)

π iα1(k |z) + (1 − π i )α0(k |z)

)
× (π iα1(k |z) + (1 − π i )α0(k |z))

14: end for

15: if ∥s1(π ) − s0(π )∥ ≤ ϵ0 then
16: break

17: else

18: s0(π ) ← s1(π )
19: end if

20: end for

21: π (z)l ← supπ i
{
0 ≤ π i ≤

cI
cI+cII

��� s(z)0 (π
i ) = cIIπ

i
}
, z ∈ {0, 1, 2, 3}

22: π (z)u ← infπ i
{

cI
cI+cII

≤ π i ≤ 1
��� s(z)0 (π

i ) = cI(1 − π i )

}
, z ∈ {0, 1, 2, 3} ▷ Compute thresholds

Output:

Edge classifier: f (·)
Transition probabilities: αi (·), i = 0, 1
Thresholds π (z)l and π (z)u , z ∈ {0, 1, 2, 3}

• SVM-RBFu : An SVM-based method with RBF kernel [45], with only user features.
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Algorithm 2QuickStop-Detection (Online)
Input:

Information trace: y = {y1,y2, . . . } ▷ yt is the t th user in the information trace y
Edge classifier f (·)
Transition probabilities αi (·), i = 0, 1
Thresholds π (z)l and π (z)u , z ∈ {0, 1, 2, 3}

1: Initialize Π = π1,k ← 2,Z (y)k = f (V(y)k ,U
(y)
k ) ▷ π1 is the prior of H1 (misinformation)

2: while Π ∈

[
π
(Z (y)k )

l ,π
(Z (y)k )

u

]
do

3: k ← k + 1
4: For each user yk , obtain feature vector of edge: (V(y)k ,U

(y)
k )

5: Z
(y)
k ← f (V(y)k ,U

(y)
k )

6: Π ←
Πα1(Z

(y)
k |Z

(y)
k−1)

(1−Π)α0(Z
(y)
k |Z

(y)
k−1)+Πα1(Z

(y)
k |Z

(y)
k−1)

▷ Compute Π
7:
8: end while

9: T ← k

10: if Π > π
(Z (y)k )

u then

11: δT = 1

12: else if Π < π
(Z (y)k )

l then

13: δT = 0
14: end if

Output:

stopping time: T , type of information: δT

• SVM-RBFa : An SVM-based method with RBF kernel [45], with both user and content
features.
• SVM-TSu : A linear SVM-based [24] method for time-series, with only user features.
• SVM-TSa : A linear SVM-based [24] method for time-series, with both user and content
features.
• PPC_R: A variant of RNN [22] called Gated Recurrent Unit (GRU) for time-series data. The
neural network has 5,000 parameters.
• PPC_C: A CNN based method [22] for time-series data, which has 800 parameters.
• PPC_R+C: A method in [22] that combines RNN and CNN, which has 6,000 parameters.
• CSI: A method proposed in [32] that uses RNN for content feature extraction and FNN for
user feature extraction. The three neural networks have 52,000 parameters in total.

We note that exceptQuickStop, all other algorithmsmentioned require a pre-determined number
of observations as input. QuickStop is an optimal stopping algorithm so it decides the number of
observations needed in real time.

We remark that all the four neural network based methods (PPC_R, PPC_C, PPC_R+C, and CSI)
require a large number of samples for training. Therefore, we used 80% of the entire 4,664 labeled
traces for training the neural networks and then tested the performance on the same testing data
as the other algorithms. The neural network based algorithms performed poorly when using the
smaller training set as that inQuickStop.
Performance Metrics:We considered the following performance metrics.
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• Accuracy: the fraction of traces that are correctly identified.
• False positive rate: the fraction of news classified as misinformation.
• False negative rate: the fraction of misinformation classified as news.
• Detection time of news: the average number of events required to declare news.
• Detection time of misinformation: the average number of events required to declare misin-
formation.

5.1 Numerical Results

Evolution of Πk under QuickStop: Figure 3 illustrates the evolution of Πk on two traces cho-
sen from the Weibo dataset: one misinformation trace and one news trace. We can see that the
upper threshold becomes smaller and the lower threshold becomes larger when we increase the
propagation cost from 0.1 to 0.8, and the algorithm stops earlier when c = 0.8 than when c = 0.1.
Also it takes fewer number of observations to declare misinformation than news. With c = 0.8,
it takes 15 observations to declare the misinformation and 23 observations to declare the news.
Similar trends can be observed on most of the traces.

 (news)
 (misinfo)

p(0)
L =0.0001

p(3)
U =0.9728

P
K

number of posts(c=0.1)

(b)

p(3)
U =0.8245

P
K

number of posts(c=0.8)

 (news)
 (misinfo)

p(0)
L =0.0093

(a)

Fig. 3. Examples of Πk and stopping time T under QuickStop
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Figures 4 and 5 summarize the performances of QuickStop and the other ten algorithms. In
Figure 4,QuickStop uses parameters cI = cII = 10 and c = 0.05; and the x-axis is the number of
tweets used by the other ten algorithms, varying from 10 to 500. Note that when the number of
observations in a trace is less than the decision deadline, then the full trace was used as the input.
In Figure 5, we varied the parameter c of QuickStop from 0.05 to 1.2 with step size 0.05. In Figure
5, all ten other algorithms used full Weibo traces as input. The key observations are summarized
below.

• High Accuracy: Figure 5 (a) shows that the accuracy of QuickStop only with user features
is substantially higher than other algorithms even when other algorithms use both user
features and content features. Specifically,QuickStopwith c = 0.05 achieves higher accuracy
than other algorithms with 500 observations with less than 15 observations on average.
Under QuickStop, as c increases, the accuracy decreases but the number of observations
used decreases as well, which is the trade-off between accuracy and speed.
• Quick Detection: Quickest misinformation detection is the key objective of our algorithm.
Figure 4 shows that the accuracy of QuickStop in comparison with the other algorithms.
QuickStop with c = 0.05 achieves an accuracy of 0.93 with 15 observations on average while
the accuracies of all other algorithms are lower than 0.93 even with 500 observations. Note
that four of the ten algorithms include content features which are not used inQuickStop.
• Low False Negative: In almost all cases, the false negative rate of QuickStop is lower than
the false positive rate. This is because with the discriminative propagation cost,QuickStop is
more aggressive on declaring misinformation than news in order to minimize the propagation
cost. We also remark that CSI, which involves 52,000 parameters, has an accuracy close
to QuickStop when using entire traces, but its false negative rate is much higher than
QuickStop (0.097 versus 0.031).

The experimental results show thatQuickStop detects misinformation faster andmore accurately
than other algorithms. We believe it is because QuickStop specifically models and utilizes the
Markovian structure of the problem, and is based on the optimal stopping rule. The other algorithms
were not optimized for the stopping time, nor do they have theoretical guarantees.

6 EVALUATIONWITH SYNTHETIC DATA

We further evaluate the algorithm with synthetic network and information spreading data. We
construct a network with 500 nodes using the preferential attachment model [38]. Our network
includes two types of nodes: gossipers and messengers, where gossipers are more likely to spread
misinformation than messengers. When a new node joins the network, it is assigned a type uniform
at random, and then connects to three existing nodes in the network, i.e. forming three edges.
For each edge, the new node first decides whether to connect to a node of the same type (with
probability 0.7) or a node of different type (with probability 0.3). After deciding the type, say it
chooses to connected to a gossiper, the new node selects a gossiper among all existing gossipers
with probability proportional to their degrees. We define the edge types as follows: 0 - (messenger,
messenger), 1 - (gossiper, messenger), 2 - (messenger, gossiper) and 3 - (gossiper, gossiper). We
simulated the information spreading using the continuous-time SI model. For each set of parameters,
we create 500 traces. Each trace was flagged as news with π0 = π1 = 0.5. The probabilities that an
article is retweet over a given edge under the SI model are summarized in Table 3. From example,
news spreads from a messenger to another messenger with probability 0.9, spreads from a gossiper
to messenger with probability 0.7, misinformation spreads from a messenger to another messenger
with probability 0.1, and from a gossiper to another gossiper with probability 0.9.
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Fig. 4. Performance of Early Misinformation Detection under Different Decision Deadlines (based on the

Weibo Data)

0 1 2 3
News 0.9 0.7 0.3 0.1

Misinformation 0.1 0.2 0.7 0.9
Table 3. Probability of Information Spreading over Different Edge Types

The objective of this evaluation with the synthetic data is to evaluate the robustness of the online
QuickStop-Detection with classification errors. With the synthetic data, the edge types are known
so we can control the edge classification errors by random flipping the edge types and evaluate the
performance of QuickStop-Detection with respect to classification errors.

Figure 6 shows the performance of QuickStop with different classifcation errors. We introduced
edge classification errors such that the type of an edge is correctly classified with probability γ and
misclassified with probability 1 − γ .We varied γ from 0.05 to 0.5. In Figure 6, we used cI = cII = 10
and c = 0.3 for QuickStop.
• Robust to Learning Errors: We can observe that even when 50% edges are not correctly
classified, QuickStop still has an accuracy close to 91%, which demonstrates the robustness
of the detection to modeling errors.

7 RELATEDWORK

As we pointed out at the beginning of the introduction, government, industry and academia
have made great efforts to combat misinformation. This section focuses on new developments
on misinformation detection with machine-learning and data-mining methods in the research
community.
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Fig. 5. Performance of QuickStop under Different Choices of Parameter c (based on the Weibo Data)

We have discussed several early detection algorithms and compared their performance with
QuickStop. We now focus on other related work. The algorithm developed in [31] detects whether
a post is similar to one of the posts (topics) that are known to be misinformation; and declares it as
misinformation if so. A line of work [13, 14, 40] analyzes similar models and knowledge/content-
based detection algorithms. These approaches are effective for detecting whether a post is associated
with misinformation already identified, but not suitable for detecting new misinformation. [2, 9, 27,
35] exploit open fact-checking sources (such as DPpedia, Wikipedia, etc) to validate the truthfulness
of news articles. Viewpoints of users towards news articles such as “like” and “dislike” have also been
used in the literature to infer the veracity of a news article. For example, [39] classifies Facebook
posts as hoax or non-hoaxes based on the set of users who “liked” them. The work [16] uses a topic
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Fig. 6. Performance of QuickStop with the synthetic Data with classification errors

model to discover viewpoint values from tweets and evaluated the credibility of relevant posts
based on these viewpoints.
In [4], a comprehensive data-mining approach has been proposed for determining the veracity

of social media contents. They considered four categories of features: message-based, user-based,
topic-based, and propagation-based features to study information credibility, and proposed a
PageRank-like credibility analysis method to verify the credibility of twitter events. The features
used in [4] have later been used in other papers [12, 21, 45]. In [17], the authors argued that features
vary over time. They reported that linguistic features are effective for detecting rumor even at the
early stage of information spreading. A model for time-varying features has been proposed in [24].
[44] explores the use of the features of the message propagation trees for detecting misinformation.
[8] analyzes six categories of features: comprehensibility, sentiment, time-orientation, quantitative
details, writing style, and topic. [10] analyzes users’ stance in their tweets to evaluate the credibility
of information. [5] studies the characteristics of users who often post misinformation, and proposes
that after identifying these users, a news article is likely to be misinformation if it spreads among
these users. [42] proposes a misinformation detection algorithm with dynamic time wrapping and
hidden Markov models based on three categories of features (linguistic, user identities and temporal
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propagation related features). Recently, deep neural network (CNN, RNN, and FNN) based methods
have also been used for misinformation detection [22, 32].

Users play the central role in information diffusion in social networks. Their social engagements
such as sharing, forwarding, commenting are considered to be auxiliary information for improving
fake news detection. [41] uses users’ flags of fake news as signals and leverages community for
misinformation detection by learning the users’ flagging accuracy. Online social network users
who intentionally spread misinformation can be divided into three categories: (1) bots, software
apps that run automated scripts5 (2) trolls, persons who like to provoke others, and (3) cyborgs6,
accounts registered to run automated programs that mimic human behaviors [36]. [6, 34] analyze
the behavior patterns of bots and trolls in misinformation propagation. In [7], an automated
method is proposed for classifying the users into the three categories mentioned above. In [29],
bot detection is studied. [37] analyzes the users’ role in spreading information and concludes
that (1) some specific users are more likely to believe in misinformation than real news; (2) these
users have different features form other users. These two key observations motivated the edge-
based model considered in this paper. [1] proposes a method for measuring user credibility in
information spreading for misinformation detection. The spread of rumors and misinformation
has also been studied in [11, 15, 43], where it has been shown that misinformation and news have
different spreading patterns and structures. In this paper, we consider both edge profiles (the edge
classification) and spreading patterns (the Markovian spreading model) inQuickStop to design a
highly efficient misinformation detection algorithm. Different from existing work,QuickStop is
an optimal stopping algorithm that optimizes the number of observations in realtime and makes
the quickest decision on misinformation detection. Finally, recent algorithms for distinguishing
epidemics from random infection (e.g., [28]) and for locating information sources (e.g., [33]) can
also help detect misinformation. A comprehensive review of diffusion source localization can be
found in [47].

8 CONCLUSIONS

In this paper, we proposed a quickest misinformation detection algorithm, named QuickStop. We
formulated the problem as an optimal stopping problem with a asymmetric cost function towards
misinformation. We proved that the problem is a Markov optimal stopping problem and showed
that the solution is a threshold-based stopping rule based on the martingale theory. Our numerical
results with a real-world data demonstrated that QuickStop outperforms existing algorithms even
though the latter use 10 times (sometimes 50 times) more observations and use more features.
Our numerical evaluation with the synthetic data showed that the algorithm is robust to edge
classification errors.
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A APPENDICES

A.1 Proof of Theorem 3.1

We first show that E[cT IH1 ] = E [cTΠT ] when T is a stopping time.

E[cT IH1 ] = E[E[cT IH1 |T ]]

=

∞∑
k=1

ckE
[
IH1 |T = k

]
Pr(T = k).

Since T is a stopping time based on Z1, · · · ,ZT , we further have

E
[
IH1 |T = k

]
= E

[
E
[
IH1 |Z1, . . . ,Zk

]
|T = k

]
= E [Πk |T = k] .

Therefore, we have

E[cT IH1 ] =

∞∑
k=1

ckE [Πk |T = k] Pr(T = k) = E [cTΠT ] .

For any T ∈ T , it is well known (see for example [30]) that

inf
δT

ce (δT ) = E [min{cIIΠT , cI(1 − ΠT )}] .

We next present the proof tailored for our problem for the completeness of the paper.
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Note that the equation is obvious when π1 = 0 or π1 = 1, so we only consider the case π1 ∈ (0, 1).
Recall that

ce (δT )

=(1 − π1)cI Pr(δT = 1|H0) + π1cII Pr(δT = 0|H1)

=cI Pr(δT = 1,H0) + cII Pr(δT = 0,H1)

=

∞∑
k=1
(cI Pr(δT = 1,H0 |T = k) + cII Pr(δT = 0,H1 |T = k)) Pr (T = k)

=

∞∑
k=1
(cI Pr(δk = 1,H0 |T = k) + cII Pr(δk = 0,H1 |T = k)) Pr (T = k)

=

∞∑
k=1

(
cIE

[
E
[
Iδk=1IH0 |Z1, · · · ,Zk

]
|T = k

]
+

cIIE
[
E
[
Iδk=0IH1 |Z1, · · · ,Zk

]
|T = k

] )
Pr (T = k)

=

∞∑
k=1

E
[ (
cIIδk (Z1, · · · ,Zk )=1(1 − Πk ) + cIIIδk (Z1, · · · ,Zk )=0Πk

) ��T = k]
× Pr (T = k)

≥(a)

∞∑
k=1

E [min {cI(1 − Πk ), cIIΠk }|T = k] Pr (T = k)

= E [min {cI(1 − ΠT ), cIIΠT }] ,

where the inequality (a) becomes equality when the algorithm declaresH1 when cI(1−ΠT ) ≤ cIIΠT
and declares H0 otherwise.

A.2 Proof of Theorem 3.2

We define the following value function for n ≥ 1

sn(π , z) = inf
T ∈T,T ≥n

E [д(ΠT ) + cTΠT |Πn = π ,Zn = z] .

Then sn(π , z) is the minimum expected total cost if one is only allowed to stop at or after time step
n given the state at n. Note T = {T ∈ T : T ≥ 1}. Then the minimum expected total cost over the
prior π0 is

s∗1 ≜ inf
T ∈T

E [д(ΠT ) + cTΠT ] =
1
4

3∑
z=0

s1(π0, z),

where we use the fact thatΠ1 = Π0 = π0 as the first observationZ1 does not provide any information
about the type of the information.

Now according to the optimality principle of dynamic programming,

sk (π , z) = min {д(π ) + ckπ ,E [sk+1(Πk+1,Zk+1)| Πk = π ,Zk = z]} ,

where {Πk } is a random process defined by {Zk } as in equation (2).
We next show that {Πk } is a martingale with respect to {Zk }. Define Fk = σ (Z1, · · · ,Zk ), which

is the σ -algebra generated by Z1, . . . , Zk . We have

E [Πk+1 |Fk ] =

3∑
z=0

E [Πk+1 |Fk ,Zk+1 = z] Pr(Zk+1 = z |Fk ).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 41. Publication date: June 2019.



41:24 H. Wei et al.

Since

Pr(Zk+1 = z |Fk )

= Pr(Zk+1 = z |Fk ,H1) Pr(H1 |Fk ) + Pr(Zk+1 = z |Fk ,H0) Pr(H0 |Fk )

=α1(Zk+1 = z |Zk )Πk + α0(Zk+1 = z |Zk )(1 − Πk ),

we have

E [Πk+1 |Fk ]

=
∑
z

Πkα1(Zk+1 = z |Zk )

Πkα1(Zk+1 = z |Zk ) + (1 − Πk )α0(Zk+1 = z |Zk )

× (α1(Zk+1 = z |Zk )Πk + α0(Zk+1 = z |Zk )(1 − Πk ))

=
∑
z

Πkα1(Zk+1 = z |Zk )

=Πk .

For n ≥ 1 let Π′k = Πk+n−1 and Z ′k = Zk+n−1 for all k ≥ 1. Then

sn(π , z)

= inf
T ∈T

T−n+1≥1

E [д(ΠT ) + c(T − n + 1)ΠT + c(n − 1)ΠT |Πn = π ,Zn = z]

= inf
T ′∈T
T ′≥1

E[д(Π′T ′) + cT
′Π′T ′ |Π

′
1 = π ,Z ′1 = z] + c(n − 1)π

= s1(π , z) + c(n − 1)π .

In other words, because the posterior probability {Πk } is a martingale with respect to the observa-
tions {Zk }, every time step passed before time n (when one is allowed to stop and make a decision)
incurs a constant additive cost of cπ to the minimum expected total cost.

Now define
s(z)(π ) = s1(π , z) − cπ . (10)

Then for any k ≥ 1,

s(z)(π )

= sk (π , z) − ckπ

= min
{
д(π ),E

[
s(Zk+1)(Πk+1) + c(k + 1)Πk+1

���Πk = π ,Zk = z
]
− ckπ

}
= min

{
д(π ),E

[
s(Zk+1)(Πk+1)

���Πk = π ,Zk = z
]
+ cπ

}
.

Hence s as defined in (10) satisfies the Bellman equation (9).
Note that д(π ) + ckπ is the cost when the information type is declared at iteration k given

Πk = π , and E
[
s(z)(Πk+1)

��Πk = π ,Zk = z
]
+ c(k + 1)π is the minimum cost the information type

is declared after iteration k given Πk = π . Therefore, at optimal stopping time T , we have

s(z)(π ) + ckπ = д(π ) + ckπ

i.e.,
s(z)(π ) = д(π ).
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Furthermore, if s(z)(π ) = д(π ) and cIIπ < cI(1−π ), then s(z)(π ) = cIIπ , so the information is declared
to be news; otherwise, it is declared to be misinformation. Therefore, after solving s(z))(π ), we have

π (z)l = sup
π

{
π : s(z)(π ) = cIIπ

}
,

and
π (z)u = inf

π

{
π : s(z)(π ) = cI(1 − π )

}
.
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