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ABSTRACT  |  In this paper, we present an overview of the 

applications of graph theory in power system modeling, 

dynamics, coherency, and control. First, we study synchronization 

of generator dynamics using both nonlinear and small-signal 

representations of classical structure-preserving models of 

power systems in light of their network structure and the weights 

associated with the nodes and edges of the network graph. We 

overview important necessary and sufficient conditions for both 

phase and frequency synchronization. We highlight the role of 

graph structure in coherency properties, and introduce the idea 

of generator and bus aggregation whereby dynamic equivalent 

models of large power grids can be developed while retaining the 

concept of a ªbusº in the network graph of the equivalent model. 

We also discuss several new results on graph sparsification for 

designing distributed controllers for power flow oscillation 

damping.

KEYWORDS  |  Graph theory; modeling; power systems; stability; 

structured control; topology

I .  IN TRODUCTION

Over the past decade power systems in different parts 
of the world have encountered a series of cascading fail-
ures and blackouts, starting from the major blackout in the 
Northeastern United States in 2003 to Hurricane Katrina in 
New Orleans in 2005, the European blackouts of 2006, the 
southwest blackout in San Diego and Tijuana in 2011, the 
recent natural disasters in Texas and Puerto Rico, and many 
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other similar calamities and power outages in other cor-
ners of the globe. These blackouts have forced power sys-
tem researchers to look beyond the traditional approach of 
analyzing power system functionalities in steady-state, and 
instead pay serious attention to their dynamic character-
istics, and that too in a global and structural sense [1]. At 
the fundamental level, a power system is an interconnected 
network of electrical generators, loads, and their associ-
ated control elements. Each of these components may be 
thought of as nodes of a graph, while the transmission lines 
connecting them physically can be regarded as the edges 
of the graph. The nodes are modeled by physical laws that 
typically lead to a set of differential equations. These dif-
ferential equations are coupled to each other by so-called 
power balance across the tie lines or the edges. One pri-
mary issue that has been of interest to power engineers over 
many years is how the graph-theoretic properties of these 
types of electrical networks impact the stability, dynamic 
performance, controllability, observability, identifiability, 
and other system-theoretic properties of the grid model 
[2]. These issues have been partly addressed in a handful of 
papers in the literature. For example, notions of structure-
preserving models were laid out in the early 1980s in [3], 
followed by graph-theoretic analysis of transient stability 
using Lyapunov stability theory [4], [5]. But a systematic 
understanding of how graph theory can serve as a tool for 
deeper understanding of power system dynamics, stability, 
and control is still a large open question.

These topics have emerged with renewed interest in 
recent years, mainly owing to the expansion of transmission 
network in the United States [6], Asia [7], and Europe [8], 
and also due to intrusion of renewable energy sources [9].  
In [10], for example, it was shown that if injected beyond a 
certain upper limit, and if not controlled accurately, wind 
power can easily cause transient instability in a conven-
tional power grid. Both the amount of wind power and 
the precise location of injection matter. From a graph-
theoretic perspective this means that synchronization of a 
homogeneous network of nonlinear oscillators can easily 
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be perturbed and destabilized if any heterogeneous dynam-
ics is injected into this network at the wrong node, and in 
the wrong amount. Similar structural implications have also 
been made for system identification of reduced-order mod-
els [11], optimal power flow [12], [13], voltage stability [14], 
and bifurcations [15]. Power engineers are currently seeking 
various ways to gain insight about the structural properties 
of their systems, which, in turn, can help in better synchro-
nization and stability [16], observability [17], sensor place-
ment [18], and control [19], [20].

Motivated by this gap, in this tutorial, we present several 
existing and new results on the applications of graph the-
ory in power systems. Our results cover modeling, stability 
analysis, and control, highlighting the implications of the 
structure and the parameters associated with the underly-
ing network graph. To keep the article compact, we mostly 
focus on angle stability and frequency stability, where graph 
theory plays a significant role. Discussion on voltage stabil-
ity is skipped for brevity. The interested reader is referred to 
[21] and [22] for a review of voltage stability, and its connec-
tion with network cutsets. We start with a brief primer on 
hypothetical mass-spring-damper models, which represent 
swing dynamics or Newton’s second law of motion in the 
models of synchronous generators. We show how the state-
space representations of these models are explicit functions 
of the network topology. Thereafter, we extend the discus-
sion to more realistic grid models consisting of both genera-
tor and nongenerator buses, and derive the notion of Kron 
reduction by which the differential-algebraic model of the 
grid can be represented as an ordinary differential equation 
model with certain compromises in the underlying network 
structure. We discuss the impacts of this reduction on the 
existence of power system equilibrium and its stability. 
We also derive small-signal linearization of this nonlinear 
model, and show that the synchronization properties of the 
generator states are strongly dependent on the symmetry 
properties of the underlying graph. We use this observa-
tion to define the concept of generator and bus aggregation, 
the latter being a new result that has not been studied so 
far in the power system literature. We illustrate the idea of 
aggregation for various symmetries and the asymmetries 
of the network graph using simulations. Finally, we show 
how structured distributed controllers can be designed for 
power oscillation damping in grid models using ideas from 
graph sparsification.

Notation: We denote the set of real values by ​ℝ​, the set 
of nonnegative real values by ​​ℝ​≥0​​​, the unit circle by 𝕊, the 
n-dimensional identity matrix by ​​I​n​​​, the ith column of ​​I​n​​​ by ​​
e​i​​​, the diagonal or block diagonal matrix whose ith diago-
nal entry is ​​d​i​​​ by ​diag ​(​d​i​​)​i∈{1,…,n}​​​, the n-dimensional all-ones 
vector by ​​𝟙​n​​​, the image of a matrix A by ​im ​A​, the Hadamard 
product (i.e., the element-wise product) of vectors v and u 
by ​v °  u​, the Kronecker product of matrices A and B by ​A ⊗ B​, 
the cardinality of a set ​​ by ​​||​​. For a matrix ​A ∈ ​ℝ​​ n×m​​

​diag(A)  := diag ​ ​(​e​ i​ 
𝖳​ A)​​i∈{1,…,n}​​ ∈ ​ℝ​​ n×nm​​

where ​​e​ i​ 
𝖳​ A​ corresponds to the ith row of A. For a vector ​θ ∈ ​𝕊​​ n​​, 

the trigonometric functions ​sinθ​ and ​cosθ​ are defined in the 
element-wise sense. Every complex-valued matrix or vector is 
denoted by a bold face symbol like ​V​. The imaginary unit ​​√ 

___
 − 1 ​​ 

is denoted by ​i​. A symmetric matrix ​A = ​A​​ 𝖳​​ is said to be positive 
definite (respectively, positive semidefinite) if all eigenvalues 
of A are positive (nonnegative). A symmetric matrix ​A = ​A​​ 𝖳​ ∈ ​
ℝ​​ n×n​​ is said to be a weighted graph Laplacian if its off-diagonal 
elements are all nonpositive and ​A ​𝟙​n​​ = 0​.

II .  M A SS -SPR INGER-DA MPER MODELS 
OF POW ER SYSTEMS

The first step of understanding power system dynamics is to 
understand the dynamics of the electromechanical behav-
ior of synchronous machines, which is really nothing but a 
study of how a group of nonlinear pendula would oscillate 
with respect to each other when they are connected over a 
given connection topology; in other words, how a set of mass-
spring-damper systems, each of which has its own individual 
local frequencies of oscillations, would start oscillating against 
each other, and define a global oscillatory behavior when con-
nected together in some combinations. The actual model of 
a synchronous machine is, of course, much more complex 
[23], but the mass-spring-damper model is the simplest exam-
ple for describing its electromechanical dynamics. The mass 
here is analogous to a synchronous generator with a nonzero 
inertia. The spring is analogous to a transmission line that 
connects one generator to another. The damper is analogous 
to the internal damping mechanisms of a synchronous gen-
erator that ensures asymptotic stability of its state responses 
after a disturbance. The only difference, of course, is that 
unlike a mass-spring-damper system where the masses exhibit 
mechanical motion, the motion of a synchronous generator 
pertains to electrical motion, not mechanical. A comparison 
between mass-springer systems and power systems is shown 
in Fig. 1 using a 2-mass and a 2-generator example.

Fig. 1. Mass-spring-damper models of synchronous machines. 
(a) Mass spring damper. (b) Two interconnected synchronous 
machines.
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The starting point in deriving these mass-spring-damper 
models is the so-called swing equation of a synchronous 
generator. Consider the total number of generators to be 
n that are connected to each other in some given topology. 
Examples of systems with ​n = 3​, connected in both radial 
and loop topology, and ​n = 10​ following this kind of an ide-
alistic model are shown in Fig. 2. The rotor of the generator 
is rotated by a prime mover, which in this case is a steam tur-
bine. For ​i = 1, …, n​, Newton’s second law of motion (mass 
times acceleration equals net force) in angular coordinates 
results in the swing equations [23] 

​​​δ  ̇ ​​i​​ (t) = ​​ω  ̃ ​​i​​ (t) − ​ω ​ s​​
	​ M​i​​ ​​ ~ ω ​

.
 ​i​​ (t) = ​P​mi​​ (t) − ​P​gi​​ (t)​�

(1)

where the state variable ​​δ ​ i​​​ is the phase angle of the rotor 
of the ith generator; the state variable ​​​ω  ̃ ​​i​​​ is the velocity of 
the rotor of the ith generator with respect to a fixed refer-
ence frame (following the theory of electric machines, the 
reference for measuring ​​δ ​ i​​​, for example, can be taken to be 
the a-phase axis in the three-phase representation of the 
classical model of the synchronous generator circuit); ​​ω​s​​​ is 
the synchronous frequency whose value is ​120π =​ 377 rad/s 
for a 60-Hz system; ​​P​gi​​​ is the active power produced by the 
ith generator; ​​M​i​​​ is the ith inertia constant; and ​​P​mi​​​ is the 
mechanical power input from the ith turbine.

All quantities are normalized following the per unit repre-
sentation of power system models [23]. If the generator has 
a nonzero damping factor ​​d​i​​ > 0​, then the model can be writ-
ten as 

	​​​ δ  ̇ ​​i​​ (t) = ​​ω  ̃ ​​i​​ (t) − ​ω ​ s​​

	​ M​i​​ ​​​ω  ̇ ​ ̃ ​​i​​ (t) = ​P​mi​​ (t) − ​d​i​​ (​​ω  ̃ ​​i​​ (t) − ​ω ​ s​​) − ​P​gi​​ (t)​�
(2)

which is referred to as the “swing equations” of the ith gen-
erator. The turbine power ​​P​mi​​​ can either be set to a constant 
value, or used as a control input to regulate the generator 
dynamics, for example, in automatic generation control 
(AGC) [23]. Denoting ​​ω ​ i​​ (t) = ​​ω  ̃ ​​i​​ (t) − ​ω ​ s​​​, a more compact 
form of the swing equation can be written as 

	​​​ δ  ̇ ​​i​​ (t) = ​ω ​ i​​ (t)
	​ M​i​​ ​​ω  ̇ ​​i​​ (t) = ​P​mi​​ (t) − ​d​i​​ ​ω ​ i​​ (t) − ​P​gi​​ (t) .​� (3)

To generate a state-space model for the system out of the 
individual generator model (3), we next apply Ohm’s law 
and Kirchoff’s law to relate the active power ​​P​gi​​​ to the rest 
of the grid. For simplicity, we drop the time argument t. By 
definition, ​​P​gi​​​ can be written as 

	​​ P​gi​​ = Re​(​E​i​​ ​I​ i​ *​)​​� (4)

where ​​I​i​​ ∈ ℂ​ is the total current in the complex phasor  
form produced by the ith generator, * indicates the complex 
conjugate, and ​​E​i​​ ∈ ℂ​ is the voltage phasor of generator i, 
denoted by 

​​E​i​​ = ​E​i​​ (cos ​δ ​ i​​ + i sin ​δ ​ i​​).​

The magnitude ​​E​i​​​ is considered to be a constant following the 
assumption about classical models. Let the set of generators 
to which the ith generator is connected be denoted as ​​​i​​​. We 
then rewrite (4) as 

	​​ P​gi​​ = ​ ∑ 
j∈​ ​i​​

​​Re​ ​(​E​i​​ ​I​ ij​ *​)​​� (5)

where ​​I​ij​​ ∈ ℂ​ is the current phasor flowing from generator i 
to generator j. After a few calculations, this simply reduces to 

	​​ P​gi​​ = ​ ∑ 
j∈​ ​i​​

​​​k​ij​​​ sin ​(​δ  ​i​​ − ​δ ​j​​)​​� (6)

where ​​k​ij​​ := ​E​i​​ ​E​j​​ / ​χ​ ij​​​ is a scalar weight given by ​​χ​ ij​​​ being the 
reactance (per unit) of the transmission line connecting 
generators i and j, neglecting the resistance of the line. The 
simplest state-space form of the swing equations of the ith 
generator can then be written as 

	​​​ δ   ̇ ​​i​​ = ​ω ​i​​

	​ M​i​​ ​​ω  ̇ ​​i​​ = ​P​mi​​ − ​d​i​​ ​ω ​i​​ − ​ ∑ 
j∈​​i​​

​​​k​ij​​​ sin ​(​δ ​i​​ − ​δ ​j​​)​​� (7)

for ​i = 1, …, n​. Note that the right-hand side of (7) cap-
tures the topology of the network, i.e., which generator is 
connected to which other generators. Depending on the 
topology, i.e., both the combinatorial structure of ​​​i​​​ and 
the weights ​​k​ij​​​, the corresponding dynamics of different grid 

Fig. 2. Examples of mass-spring-damper representations of power 
systems. (a) Three generators in radial connection. (b) Three 
generators in loop connection. (c) System with ten generators.
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models will be different. Also note that for deriving (7), we 
assumed the power to be flowing from generator i to genera-
tor j. This means that the ith synchronous machine in this 
case is acting like a generator while the jth machine is acting 
like a motor. This assumption is not necessary, and can be 
easily foregone by defining the following sign convention.

• � If power is flowing out of the ith machine and into the 
jth machine, then this power will have a negative sign 
in the right-hand side of the swing equation of the ith 
machine, and positive sign in that of the jth machine. 
In this case, the ith machine will be in “generation” 
mode and the jth machine will be in “motor” mode in 
terms of this power flow.

• � Similarly, if power is flowing into the ith machine and 
out of the jth machine, then this power will have a 
negative sign in the right-hand side of the swing equa-
tion of the jth machine and positive sign in that of 
the ith machine. In this case, the jth machine will be 
in “generation” mode and the ith machine will be in 
“motor” mode in terms of this power flow.

This sign convention easily leads to the following obser-
vations.

O1) � The effective sign of ​​δ ​i​​​ on the right-hand side of 
the ith swing equation is always negative. The word 
“effective” here accommodates for the fact that ​sin​ 
is an odd function.

O2)  Swing equations are direction independent.
O3) � Only the neighbors of the ith generator appear in 

the right-hand side of its swing equation.

We cite an example to make these observations clearer. 
Consider a system with five generators, as shown in Fig. 3. 
Consider two different sets of directions for the power flows, 
as shown in Fig. 3(a) and (b). Following the sign conven-
tion, the swing equation for generator 1 in Fig. 3(a), ignoring 
damping, can be written as 

	​​ M​1​​ ​​δ   ̈ ​​1​​ = ​P​m1​​ − ​k​12​​ sin (​δ ​1​​ − ​δ ​2​​) 
		  − ​k​13​​ sin (​δ ​1​​ − ​δ ​3​​) − ​k​14​​ sin (​δ ​1​​ − ​δ ​4​​).​� (8a)

Following the same sign convention, the swing equation for 
generation 1 in Fig. 3(b) can be written as 

	​​ M​1​​ ​​δ   ̈ ​​1​​ = ​P​m1​​ − ​k​21​​ sin (​δ ​2​​ − ​δ ​1​​) 
		  − ​k​31​​ sin (​δ ​3​​ − ​δ ​1​​) − ​k​14​​ sin (​δ ​1​​ − ​δ ​4​​).​� (8b)

However, since ​​k​ij​​ = ​k​ji​​​, and ​sin​ is an odd function, we see 
that (8b) is exactly the same as (8a). Similarly, the swing 
equation for generator 2 in Fig. 3(a) can be written as 

	​​ M​2​​ ​​δ   ̈ ​​2​​ = ​P​m2​​ + ​k​12​​ sin (​δ ​1​​ − ​δ ​2​​)​� (9a)

while that for generator 2 in Fig. 3(b) can be written as 

	​​ M​2​​ ​​δ   ̈ ​​2​​ = ​P​m2​​ − ​k​21​​ sin (​δ ​2​​ − ​δ ​1​​).​� (9b)

Again, (9a) and (9b) are identical. This justifies observation 
O2), indicating that swing equations are independent of the 
directions of power flow. Observation O1) is also quite clear 

from the right-hand side of (8a)–(8b). Equation (8a)–(8b), 
for example, is the swing equation for generator 1, and the 
effective signs of the angle of generator 1, i.e., ​​δ  ​ 1​​​, in every 
term on the right-hand side of this equation are negative. 
Similarly, (9a)–(9b) is the swing equation for generator 2, 
and the effective signs of the angle of generator 2, i.e., ​​δ   ​ 2​​​, in 
every term on the right-hand side of this equation are also 
negative. All of these observations will become useful when 
we derive the small-signal model of (7) shortly. As men-
tioned before, some of the synchronous machines in this 
system are serving as generators or power producers while 
some are serving as motors or power consumers. These 
motors model the loads in the system. The total power thus 
remains conserved within the system, shuffling from one 
machine to another. This motion manifests itself in the form 
of second-order nonlinear oscillations in the phase and fre-
quency of the generators.

For example, for the 10-generator model in Fig. 2(c), we 
assume ​​χ​ 1j​​ =​ 0.1 pu for all ​j = 2, 3, 4, 5​, ​​χ​ 6k​​ =​ 0.2 pu for all ​
k = 7, 8, 9, 10​, and ​​χ​ 16​​ =​ 5. This results in a two-area system 
where oscillators 1–5 belong to one area with small trans-
mission line reactances, and oscillators 6–10 belong to 
another area, also with small line reactances, while the reac-
tance between the central nodes, i.e., nodes 1 and 6, is sig-
nificantly larger indicating that the two areas are physically 
distant from each other. Simulating this model, we get the 
solutions of the frequencies in the two areas as in Fig. 4(a) 
and (b). It is clear that the local groups of generators in each 
area synchronize with each other over time. The average 
motion of the frequencies in area 1 is compared with that 
in area 2 in Fig. 4(c). This figure shows that the two areas 

Fig. 3. Five-machine power system with different power flow 
directions. (a) System with five generators, power flow set 1. 
(b) System with five generators, power flow set 2.
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by themselves are oscillating against each other. A similar 
behavior is shown for the average of the phase angles, as 
shown in Fig. 4(d). A somewhat bimodal behavior is visible 
in the average frequency oscillations. This behavior actually 
arises from the fact that the reactance between generators 1 
and 6 is larger than the reactances between the local genera-
tors inside each area. This is a well-known phenomenon in 
power systems, known as coherency which arises predomi-
nantly because of the underlying graph-theoretic proper-
ties of the network. We will discuss this property in more 
details in Section V. Fig. 5 shows the coherency behavior for 
a 48-machine 140-bus power system model, also popularly 
known as the Northeastern Power Coordinating Council 
(NPCC) model [24]. This model very closely represents the 
power grid of the Northeastern United States. It is divided 
into nine coherent areas as shown in Fig. 5(a). Fig. 5(b) shows 
the frequencies of all generators in area 1 and area 6, while 
Fig. 5(c) shows those for all generators in area 4 and area 8.  

The out-of-phase behavior is noticeable in both figures. 
Fig. 5(d) shows the average motions of the frequencies in 
areas 1 and 6, while Fig. 5(e) shows those for areas 4 and 8.  
Again, from these figures, one can see that the respective 
areas are oscillating against each other.

III .  NONLINE A R ELECTR IC A L MODELS 
OF POW ER SYSTEMS

A. Differential-Algebraic Equation Model

In practice, generators in a power grid are not always 
directly connected to each other as in the mass-spring-
damper model of Section III. They are instead connected 
through additional electrical points or buses, where no 
dynamic element may be present and only algebraic power 
balance holds. An example of this architecture is shown in 
Fig. 6 for a power system with four generators and six buses. 
As a result of this structure, the swing equations can no 

Fig. 4. Angle and frequency responses of ten-machine nonlinear swing model. (a) Frequencies of generators in area 1. (b) Frequencies of 
generators in area 2. (c) Average frequencies of areas 1 and 2. (d) Average angles of areas 1 and 2.
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Fig. 5. Small-signal frequency responses of 9-area NPCC power system. (a) The NPCC power system with nine coherent clusters. 
(b) Frequencies of generators in areas 1 and 6. (c) Frequencies of generators in areas 4 and 8. (d) Average frequencies of areas 1 and 6. 
(e) Average angles of areas 4 and 8.
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longer be written directly as ordinary differential equations, 
but rather have to be expressed in the form of differential-
algebraic equations (DAEs).

Fortunately, the DAE can be reduced to an equivalent 
differential equation albeit at the cost of changing the 
equivalent topology of the network. In this section, we will 
explain the construction of the DAE model from physical 
principles using observations from this simple example. 
It will be found that a weighted graph Laplacian structure 
naturally arises in the algebraic equation as reflecting Kirch-
hoff’s current law. We assume the transmission lines to be 
lossless. We also assume that the model does not have any 
extraneous load, which in this case means that some of the 
synchronous machines are operating as generators while the 
rest are operating as motors or loads. If the model contains 
additional loads such as constant power/impedance/current 
loads, then the rows of the network admittance matrix will 
no longer sum to zero [23].

Let ​​ and ​​
_

 ​​, respectively, denote the label sets for genera-
tor and nongenerator buses. Let the numbers of generator 
and nongenerator buses be denoted by ​n := ||​ and ​​ n ̅ ​:= |​

_
 ​|​,  

respectively. Furthermore, let ​ℰ​ denotes the edge set of 
the network. This set is undirected, i.e., if ​(i, j)  ∈  ℰ​, then ​
(j, i) ∈ ℰ​, and vice versa. For the example in Fig. 6, we see 
that ​ = { 1, 2, 3, 4},  ​

_
 ​ = { 5, 6},  n = 4,  ​ n ̅ ​ = 2​, and 

​ℰ = ​{​
(1, 5) ,

​  
(5, 1) ,

​ ​
(2, 5) ,

​  
(5, 2) ,

​ ​
(3, 6) ,

​  
(6, 3) ,

​ ​
(4, 6) ,

​  
(6, 4) ,

​ ​
(5, 6)

​  
(6, 5)

​}​.​

For each ​i ∈  ∪ ​
_

 ​​, let ​​V​i​​ ∈ ℂ​ denote the complex voltage 
phasor of the ith bus. For ​i ∈ ​, let ​​E​i​​ ∈ ℂ​ denote the complex 
voltage phasor of the ith generator (the magnitude of which 
is assumed to be constant following the classical model 
assumption made in Section III), and let ​​I​i​​ ∈ ℂ​ denote the 
complex current phasor flowing from the internal circuit of 
the ith generator to the ith generator bus. Then, the genera-
tor current and generator bus voltage phasors are related as 

	​​ I​i​​ = ​  1 __ i ​χ​ i​​ 
 ​ ​(​E​i​​ − ​V​i​​)​,  i ∈ ​� (10a)

where ​​χ​ i​​ > 0​ denotes the internal reactance of the ith gen-
erator. Similarly, the current phasor ​​I​ij​​ ∈ ℂ​ flowing from the 
ith bus to the jth bus can be written as 

	​ ​I​ij​​ = ​  1 ___ i ​χ​ ij​​
 ​ ​(​V​i​​ − ​V​j​​)​,  (i, j) ∈ ℰ​� (10b)

where ​​χ​ ij​​ =  ​χ​ ji​​ > 0​ denotes the reactance between the ith 
and jth buses. See the arrows in Fig. 6 for the depiction of 
current flows.

Let ​​​i​​​ denote the label set of the neighboring buses of 
the ith bus, i.e., ​​​i​​ := { j : (i, j) ∈ ℰ}​. From Kirchhoff’s current 
law it follows that 

	​​ I​i​​ + ​ ∑ 
j∈​​i​​

​​​ I​ji​​​ = 0,  i ∈ ​� (11a)

for the ith generator bus, and 

	​​  ∑ 
j∈​​i​​

​​​ I​ji​​​ = 0,  i ∈ ​
_

 ​​� (11b)

for the ith nongenerator bus. For example, at bus 1 in Fig. 6, 
we have ​​I​1​​ + ​I​51​​ = 0​, where ​​I​51​​ = − ​I​15​​​, and at bus 5, we have ​​
I​15​​ + ​I​25​​ + ​I​65​​ = 0​, where ​​I​65​​ = − ​I​56​​​.

Next, we represent the equalities (10a)–(10b) and  
(11a)–(11b) in a compact matrix form. To this end, we define 
the following stacked vectors:

​​E​​​ := ​(​E​i​​)​i∈​​ , ​ V​​​ := ​(​V​i​​)​i∈​​ , ​ V​​_ ​​​ := ​(​V​i​​)​i∈​
_

 ​​​ .​

Then, substituting ​​I​i​​​ and ​​I​ij​​​ in (10a)–(10b) into (11a)–(11b), 
we have the complex-valued algebraic equation

	​​ [ ​
​L​D​​ + ​L​11​​

​ 
​L​12​​

​ 
​L​ 12​ 𝖳 ​

​ 
​L​22​​

​]​​[ ​
​V​​​​ ​V​​_ ​​​

 ​ ]​ = ​[ ​
​L​D​​ ​E​​​​ 

0
 ​  ]​​� (12)

where ​​L​D​​ := diag ​(1 / ​χ​ i​​)​i∈​​​ and 

	​ L := ​[ ​ 
​L​11​​

​ 
​L​12​​

​ 
​L​ 12​ 𝖳 ​

​ 
​L​22​​

​ ]​​.​� (13)

Note that the reciprocals of the imaginary units in  
(10a)–(10b) are cancelled out by division. Furthermore, L is 

Fig. 6. Example of a power network with four generators and two nongenerator buses. The generator buses, i.e., buses 1�4, are denoted by 
the black bars, and nongenerator buses, i.e., buses 5 and 6, are denoted by the blue bars. The intention behind the area partitioning will be 
made clear in Section V.
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​L = ​

⎡

 ⎢ 

⎣

​ 

1 / ​χ​ 15​​

​ 

  0

​ 

  0

​ 

  0

​ 

  − 1 / ​χ​ 15​​

​ 

  0

​      

0

​ 

  1 / ​χ​ 25​​

​ 

  0

​ 

  0

​ 

  − 1 / ​χ​ 25​​

​ 

  0

​      
0

​ 
  0

​ 
  1 / ​χ​ 36​​

​ 
  0

​ 
  0

​ 
  − 1 / ​χ​ 36​​

​       
0

​ 
  0

​ 
  0

​ 
  1 / ​χ​ 46​​

​ 
  0

​ 
  − 1 / ​χ​ 46​​

​       

− 1 / ​χ​ 15​​

​ 

  − 1 / ​χ​ 25​​

​ 

  0

​ 

  0

​ 

  1 / ​χ​ 15​​ + 1 / ​χ​ 25​​ + 1 / ​χ​ 56​​

​ 

  − 1 / ​χ​ 56​​

​       

0

​ 

  0

​ 

  − 1 / ​χ​ 36​​

​ 

  − 1 / ​χ​ 46​​

​ 

  − 1 / ​χ​ 56​​

​ 

  1 / ​χ​ 36​​ + 1 / ​χ​ 46​​ + 1 / ​χ​ 56​​

​

⎤

 ⎥ 

⎦

​.​� (14)

a weighted graph Laplacian associated with the bus network, 
the ​(i, j)​-element of which is given as 

​​L​ij​​ = ​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
 ​∑ k∈​​i​​​ 

​ ​  ​ 1 ⁄​χ​ ik​​​​
​ 

i = j
​  − 1 / ​χ​ ij​​ ,​  j ∈ ​​i​​​  

0,

​ 

otherwise.

​​​

The weighted graph Laplacian for network in Fig. 6 is shown 
in (14), at the top of this page. As seen from this example, ​​
L​11​​​ is a positive diagonal matrix when every generator bus is 
indirectly connected to other generator buses.

We next write the complex voltage phasors ​​E​i​​​ and ​​V​i​​​ in 
the polar form as 

​​E​i​​ := ​E​i​​ (cos ​δ ​ i​​ + i sin ​δ ​ i​​), ​ V​i​​ := ​V​i​​ (cos ​θ ​ i​​ + i sin ​θ ​ i​​)​

where ​​E​i​​ ∈ ​ℝ​≥  0​​ , ​V​i​​ ∈ ​ℝ​≥  0​​​, ​​δ ​ i​​ ∈ 𝕊​, and ​​θ ​ i​​ ∈ 𝕊​. Then, following (7),  
the dynamics of the ith generator can be written as 

	​​ M​i​​ ​​δ  ̈ ​​i​​ + ​d​i​​ ​​δ  ̇ ​​i​​ = ​P​mi​​ − ​ 
​E​i​​ ​V​i​​ ____ ​χ​ i​​ ​  sin (​δ ​ i​​ − ​θ ​ i​​),      i ∈ .​� (15)

Defining stacked variables

​E := ​(​E​i​​)​i∈​​ ,  ​  V​​​ := ​(​V​i​​)​i∈​​ ,  ​  V​​
_

 ​​​ := ​(​V​i​​)​i∈​
_

 ​​​  

δ  := ​(​δ ​ i​​)​i∈​​ ,     ​θ​ ​​ := ​(​θ​ i​​)​i∈​​ ,     ​θ ​ ​
_

   ​​​ := ​(​θ ​ i​​)​i∈​
_

 ​​​ ​

and the stacked constants

​​P​m​​ := ​(​P​mi​​)​i∈​​ ,  M  := diag ​(​M​i​​)​i∈​​ ,  D  := diag ​(​d​i​​)​i∈​​​

we obtain the system of the differential equations 

	​ M​δ  ̈ ​ + D​δ  ̇ ​ = ​P​m​​ − ​L​D​​ E °  ​V​ ​​°  sin(δ − ​θ​ ​​)​� (16a)

and the real-valued algebraic equations 

  	​​ [ ​
​L​D​​ + ​L​11​​

​ 
​L​12​​

​ 
​L​ 12​ 𝖳 ​

​ 
​L​22​​

​ ]​​[ ​ 
​V​​​ ° cos ​θ​ ​​​ 
​V​​_ ​​​ °  cos ​θ  ​ ​_ ​​​

​ ]​ = ​[ ​​L​D​​ E °  cosδ​ 
0

 ​  ]​​

	​​ [ ​
​L​D​​ + ​L​11​​

​ 
​L​12​​

​ 
​L​ 12​ 𝖳 ​

​ 
​L​22​​

​ ]​​[ ​
​V​ ​​°  sin ​θ​ ​​​ 
​V​​_ ​​​ °  sin ​θ  ​ ​_ ​​​

 ​ ]​ = ​[ ​​L​D​​ E °  sinδ​ 
0

 ​  ]​​.​� (16b)

The two equations in (16b) correspond to the real and imag-
inary parts of (12). In fact, (16a)–(16b) represents the DAE 
form of the swing equations. In Section III-B, we derive how 
this DAE model can be converted into an equivalent differ-
ential equation model by a process referred to as the Kron 
reduction [25].

B. Kron Reduction

It can be seen from (16b) that the voltage magnitude and 
angle ​(​V​​

_
 ​​​ , ​θ​   ​

_
 ​​​)​ at the nongenerator buses can be represented 

as the function of ​(​V​​​ , ​θ​ ​​)​ at the generator buses as 

​​V​​
_

 ​​​ °  cos ​θ  ​ ​
_

 ​​​ = − ​L​ 22​ −1​ ​L​ 12​ ⊤ ​​(​V​​​ °  cos ​θ​ ​​)​,​

​​V​​
_

 ​​​ °  sin ​θ  ​ ​
_

 ​​​ = − ​L​ 22​ −1​ ​L​ 12​ ⊤ ​​(​V​​​ °  sin ​θ​ ​​)​.​

Note that ​​L​22​​​ is nonsingular because every principal sub-
matrix of a weighted graph Laplacian, which is a singular 
M-matrix, is a nonsingular M-matrix (see Fact 4.11.12 (vi) 
in [26]).

In a similar way, ​(​V​​​ , ​θ​ ​​)​ can be represented as the func-
tion of the generator angle ​δ​ as 

​​V​​​ °  cos ​θ​ ​​ = X​(E °  cosδ)​

​V​​​ °  sin ​θ​ ​​ = X​(E °  sinδ)​​

where X is a square matrix defined by 

​X := ​​(​L​D​​ + ​L​11​​ − ​L​12​​ ​L​ 22​ −1​ ​L​ 12​ ⊤ ​)​​​ 
−1

​ ​L​D​​ .​� (18)

Using the trigonometric identity 

​sin(δ − ​θ​ ​​) = sinδ  °  cos ​θ​ ​​ − cosδ  °  sin ​θ​ ​​​

together with (17b), the last term in (16a) can be written as 

​​L​D​​ E °  ​V​​​ °  sin(δ − ​θ​ ​​)

	 = E °  sin δ  °  (Γ ​(E °  cos δ)​) − E °  cos δ  °  (Γ ​(E °  sin δ)​)​​�(19)​

where ​Γ​  is the positive–definite matrix defined by 

	​ Γ := ​L​D​​ ​​(​L​D​​ + ​L​11​​ − ​L​12​​ ​L​ 22​ −1​ ​L​ 12​ ⊤ ​)​​​ 
−1

​ ​L​D​​ .​� (20)

Then, applying the identity 

​sin ​δ ​ i​​ cos ​δ ​ j​​ − cos ​δ ​ i​​ sin ​δ ​ j​​ = sin ​(​δ ​i​​ − ​δ ​j​​)​​

to each element of (19), the Kron-reduced model of  
(16a)–(16b) is obtained as 

	​​ M​i​​ ​​δ  ̈ ​​i​​ + ​d​i​​ ​​δ  ̇ ​​i​​ = ​P​mi​​ − ​ ∑ 
j=1

​ 
n
  ​​ 
​E​i​​ ​E​j​​ ___ ​γ ​ij​​

 ​ ​ sin ​(​δ ​i​​ − ​δ ​j​​)​,  i ∈ ​� (21)

where ​​γ ​ ij​​​, which is equal to ​​γ ​ ji​​​, denotes the inverse of the  
​(i, j)​-element of ​Γ​. This equation is similar to the swing equa-
tion (7), but there is an important distinction between the 

(17a)

(17b)
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two; both X in (18) and ​Γ​ in (20) are positive dense matri-
ces, i.e., every element of X and ​Γ​ are positive. This will 
always be true if the weighted graph Laplacian L defined in 
(13) is irreducible, i.e., if the power network is connected. 
This is proven as follows. From the formula of the inverse 
of partitioned matrices (see Fact 2.17.3 in [26]), we see that

​X = ​[​​I​n​​​  0​]​ ​​[​
​L​D​​ + ​L​11​​

​ 
​L​12​​

​ 
​L​ 12​ T ​

​ 
​L​22​​

​]​​​ 
−1

​​[​
​L​D​​

​ 
0

 ​]​,  Γ = ​L​D​​ X.​

Note that the partitioned matrix to be inverted is irre-
ducible and positive definite. As shown in [27, Th. 5.12], 
every element of the inverse of an irreducible nonsingular 
M-matrix is positive. Thus, both X and ​Γ​ are shown to be 
positive dense matrices, because ​​L​D​​​ is a diagonal matrix hav-
ing positive diagonal elements. This fact implies that in the 
Kron-reduced model (21) every generator will be connected 
to every other generator, and thereby the original network 
structure will typically be lost.

For example, the original network structure in Fig. 6 
is sparse, but its Kron-reduced model as shown in Fig. 7 
becomes dense. The two models (16a)–(16b) and (21) are, 
however, equivalent to each other in the sense that the 
dynamical behavior of the generator states ​δ (t)​ and ​ω (t)​ 
in both will be identical. From (16a)–(16b) and (21), it is 
also straightforward to derive that if the original network 
did have some generator pairs that are directly connected 
to each other without any intermediate bus junctions, then 
the topology between these pairs will remain intact in the 
Kron-reduced model. In other words, these generators will 
not be connected to every other generator, but only to the 
ones that they were directly connected to. This scenario is 
shown in Figs. 8 and 9.

C. Frequency-Synchronized Solution and Its Stability

We next review several results on frequency synchroni-
zation and phase cohesiveness of the Kron-reduced model 
(21), which have been reported in [16], [28], and [29] to ana-
lyze a synchronization property of coupled oscillators evolv-
ing over a network. The review presented in the rest of this 
section can be understood as the equilibrium (steady-state) 
analysis of the DAE model (16a)–(16b), giving a foundation 
for linearization analysis in Section IV and transient-state 
analysis in Section V.

Let ​​δ​​ ⋆​​ be an equilibrium of (21), and ​​(​V​ ​ ⋆ ​ , ​θ​ ​ ⋆ ​)​​ and  
​​(​V​ ​

_
 ​​ 

⋆ ​ , ​θ​ —​ ⋆ ​)​​ be the corresponding equilibria of the bus voltage 
variables. The latter are uniquely determined such that 

​​V​ ​
_

 ​​ 
⋆ ​ °  cos ​θ ​ ​

_
 ​​ 

⋆
 ​ = − ​L​ 22​ −1​ ​L​ 12​ ⊤ ​​(​V​ ​ ⋆​ °  cos ​θ​ ​ ⋆​)​

​V​ ​
_

 ​​ 
⋆ ​ °  sin ​θ ​ ​

_
 ​​ 

⋆ ​ = − ​L​ 22​ −1​ ​L​ 12​ ⊤ ​ ​(​V​ ​ ⋆​ °  sin ​θ​ ​ ⋆​)​​

which follows from (17a), and 

​​V​ ​ ⋆ ​ °  cos ​θ​ ​ ⋆ ​ = X​(E °  cos ​δ​​ ⋆​)​

​V​ ​ ⋆ ​ °  sin ​θ​ ​ ⋆ ​ = X​(E °  sin ​δ​​ ⋆​)​​

(22a)

(22b)

Fig. 7. The Kron-reduced model of the power network example 
in Fig. 6. All nongenerator buses are eliminated to derive an 
equivalent topology where all generators are connected directly to 
each other.

Fig. 8. Example of a power network with six generators and two nongenerator buses. Generator 5 is directly connected to generator 1, and 
generator 6 is directly connected to generator 4.
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which follows from (17b). A comprehensive survey on 
synchronization of coupled oscillators is given in [16]. 
Synchronization, in fact, is an extremely important topic for 
power system stability analysis, especially when the grid is 
subjected to large-signal disturbances from various causes. 
This is commonly referred to as transient stability in the 
power system literature [23]. To understand the impact of 
network topology on synchronization, we will show that the 
Jacobian of the nonlinear vector field of the Kron-reduced 
model (21) is related to the weighted graph Laplacian of its 
underlying complete graph.

Following the terminology in [16], we say that a solu-
tion ​δ : ​ℝ​≥0​​  → ​ 𝕊​​ n​​ to the differential equation in (21) 
achieves frequency synchronization if the frequency ​​δ  ̇ ​(t)​  
converges to ​​ω ​sync​​ ​𝟙​n​​​ for a constant frequency ​​ω ​ sync​​​ as  
​t → ∞​. If a frequency-synchronized solution exists, the syn-
chronization frequency is given as 

​​ω ​sync​​ = ​ 
​∑ i=1​ 

n  ​ ​ P​mi​​​ _______ 
​∑ i=1​ 

n  ​ ​ d​i​​​
 ​ .​

This can be verified by substituting ​​​δ  ̈ ​​i​​ = 0​ and ​​​δ  ̇ ​​i​​ = ​ω ​ sync​​​  
in (21), and by summing the resulting equalities. In this 
case, a frequency-synchronized solution to (21) is written as 

	​​ δ ​ i​​ (t) = ​δ ​ i​ 
⋆​ + ​ω ​ sync​​ t,  i ∈ ​� (23)

for some constant ​​δ ​ i​ 
⋆​ ∈ 𝕊​, corresponding to the ith element 

of ​​δ​​ ⋆​​ in (22b). This means that every generator angle rotates 
with the identical constant frequency. Transforming the sys-
tem coordinate to a rotating frame with the frequency ​​ω ​ sync​​​ 
and replacing ​​P​mi​​​ with ​​P​mi​​ − ​ω ​ sync​​​, we can always assume 
that ​​ω ​ sync​​ = 0​, or equivalently ​​P​m​​ ∈ im ​𝟙​ n​ ⊥​​ with ​⊥​ indicating 
the orthogonal subspace, i.e., 

​​P​m1​​ + ⋯ +​P​mn​​ = 0​

without loss of generality. This conclusion is consistent 
with the observation made in Section III where we implied 
how some of the synchronous machines in the mass-spring-
damper model must serve as generators while the others 

serve as motors so that the total power in the system is 
conserved.

Following [16], we say that the frequency-synchronized 
solution (23) is a phase-cohesive solution to (21) if ​|​δ ​ i​ 

⋆​ − ​δ ​ j​ 
⋆​ | <  

(π / 2)​ for every pair ​(i, j) ∈  × ​. For a compact represen-
tation, we represent the phase cohesiveness as ​​δ​​ ⋆​ ∈ Δ(π / 2)​,  
where 

​Δ​(​ π __ 2 ​)​:= ​{δ ∈ ​𝕊​​ n​ : |​δ​ i​​ − ​δ ​ j​​ | < ​ π __ 2 ​ ,   ∀ (i, j) ∈  × }​​

represents the domain of phase cohesive solutions.
The Kron-reduced model (21) can be viewed as an analog 

of a coupled first-order oscillator model of the form 

	​​​ δ  ̇ ​​i​​ = ​P​mi​​ − ​ ∑ 
j=1

​ 
n
  ​​​ ​ 

​E​i​​ ​E​j​​
 ___ ​γ ​ ij​​ ​  sin ​(​δ ​i​​ − ​δ ​j​​)​,  i ∈ ​� (24)

which corresponds to a generalized version of the Kuramoto 
model [30] where the oscillators are nonuniformly coupled. 
As stated in [28] and [29], the synchronization properties of 
(21) and (24) are shown to be equivalent in a reasonable sense. 
Therefore, we can analyze the frequency-synchronization 
properties of the Kron-reduced model (21) using the first-order 
oscillator model (24) instead. Loosely speaking, for a con-
stant ​​P​m​​ ∈ im ​𝟙​ n​ ⊥​​ , there exists a locally exponentially stable 
equilibrium ​​δ​​ ⋆​ ∈ Δ(π / 2)​ of (21) if and only if there exists a 
locally exponentially stable equilibrium ​​δ​​ ⋆​ ∈ Δ(π / 2)​ of (24). 
In particular, if there exists an equilibrium ​​δ​​ ⋆​​, then it must 
necessarily be located on an equilibrium manifold stem-
ming from the rotational symmetry of the coupling terms. 
The equilibrium manifold is defined as the following equiva-
lence class [16]:

	​​ [​δ​​ ⋆​]​  := ​{​(​rot​s​​ ​(​δ ​ 1​ 
⋆​)​, …, ​rot​s​​ ​(​δ ​ n​ ⋆ ​)​)​ ∈ ​𝕊​​ n​ : s ∈ [0, 2π ]}​​� (25)

where ​​rot​s​​ (δ) ∈ 𝕊​ denotes the rotation of ​δ​ counterclockwise 
by the angle s. This is clearly seen from the fact that, for 
some ​​δ​​ ⋆​​ such that 

	​ Ψ​(​δ​​ ⋆​)​ = 0​� (26)

where ​Ψ : ​𝕊​​ n​ → ​ℝ​​ n​​ denotes the function composed of the 
right-hand sides of (24) for ​i ∈ ​, i.e., the ith component of ​
Ψ(δ)​ is given by 

	​​ Ψ​i​​ (δ) = ​P​mi​​ − ​ ∑ 
j=1

​ 
n
  ​​​ ​ 

​E​i​​ ​E​j​​
 ___ ​γ ​ ij​​ ​  sin ​(​δ ​i​​ − ​δ ​j​​)​,  i ∈ ​� (27)

it follows for any ​s ∈ [0, 2π ]​ that 

​Ψ​(​rot​s​​ ​(​δ ​ 1​ 
⋆​)​, …, ​rot​s​​ ​(​δ ​ n​ ⋆ ​)​)​ = 0.​

Next, we discuss the stability of the equilibrium mani-
fold ​​[​δ​​ ⋆​]​​. For ​Ψ​ in (27), the Jacobian ​ ∂ Ψ /  ∂ δ  : ​𝕊​​ n​ → ​ℝ​​ n×n​​ 
is given by 

	​​ 
∂ ​Ψ​j​​

 ___ ∂ ​δ ​ i​​
 ​ (δ) = ​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
− ​∑ k=1,k≠i​ 

n  ​  ​ 
​E​i​​ ​E​k​​

 ____ ​γ ​ik​​ ​ ​ cos (​δ ​i​​ − ​δ ​k​​),
​ 

i = j
​   

​ 
​E​i​​ ​E​j​​

 ___ ​γ ​ij​​ ​  cos ​(​δ ​i​​ − ​δ ​j​​)​,
​ 

i ≠ j.
​​​� (28)

Fig. 9. The Kron-reduced model of the power network example in 
Fig. 8. All nongenerator buses are eliminated by Kron reduction. 
The connection topology for generator pairs (1,5) and (4,6) remain 
unchanged.
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where ​​​ ∂ ​Ψ​j​​ /  ∂ ​δ ​i​​​ denotes the ​(i, j)​-element of ​∂ Ψ /  ∂ δ ​.  
Because ​−  ∂ Ψ /  ∂ δ (δ)​ is a weighted graph Laplacian for 
all ​δ ∈ Δ(π / 2)​, the Jacobian evaluated at any equilibrium ​​ 
δ​​ ⋆​ ∈ Δ(π / 2)​ is negative semidefinite, and its kernel is ​im ​𝟙​n​​​. 
Therefore, under a given constant ​​P​m​​ ∈ im ​𝟙​ n​ ⊥​​, if an equilib-
rium ​​δ​​ ⋆​ ∈ Δ(π / 2)​ exists for (24), or equivalently, if it exists 
for (21), then the equilibrium manifold ​[​δ​​ ⋆​]​ in (25) is locally 
exponentially stable. Furthermore, this equilibrium manifold 
can be uniquely determined in ​Δ(π / 2)​ (see [29, Lemma 2]  
for a proof).

D. Existence of Phase Cohesive Solutions

As seen above, the equilibrium manifold ​​[​δ​​ ⋆​]​​ of phase 
cohesive solutions is unique in ​Δ(π / 2)​, and it is locally expo-
nentially stable if a compatible equilibrium ​​δ​​ ⋆​ ∈ Δ(π / 2)​ 
exists. A natural next step, therefore, is to overview results 
on the existence of equilibria, i.e., the solvability of the non-
linear equation in (26). Generally, both frequency and phase 
synchronism are related to the graph-theoretic properties 
of the underlying network such as coupling strength and 
network homogeneity. In particular, as explained in [16], a 
weakly coupled and strongly heterogeneous network does 
not display any coherent behavior, whereas a strongly cou-
pled and sufficiently homogeneous network displays coher-
ent behavior.

The simplest case is when ​​P​m​​ = 0​. In fact, as shown in 
[16, Th. 5.1], there exists a phase-synchronized solution to 
(21) or (24), i.e., 

	​​ δ ​ i​ 
⋆​ = ​δ ​ j​ 

⋆    ​∀ (i, j) ∈  × ​� (29)

if and only if ​​P​m​​ = 0​. This result does not depend on the 
magnitude and homogeneity of the coupling strength ​​
E​i​​ ​E​j​​ / ​γ ​ ij​​​. However, in a practical power system, generators 
(motors) will always be driven by (driving) a mechanical 
shaft, thereby absorbing (producing) mechanical power. 
Hence, this scenario, although of theoretical interest, does 
not hold in practice. A phase-synchronized solution can thus 
be viewed as an extreme case of phase cohesive solutions.

For a general value of ​​P​m​​ ∈ im ​1​ n​ ⊥​​, it is not simple to char-
acterize the existence of an equilibrium manifold. One suf-
ficient condition is 

	​​ λ​ 2​​ (​Γ​ 0​​) > ​ 1 __ 2 ​ ​√ 
______________

  ​ ∑ 
i,j=1

​ 
n
  ​​​(​P​mi​​ − ​P​mj​​)​​​ 2​​ ​ ​� (30)

where ​​λ​ 2​​ (​Γ​ 0​​)​ denotes the second smallest eigenvalue of 
the weighted graph Laplacian ​​Γ ​ 0​​ = − ∂ Ψ /  ∂ δ  (0)​ for the 
Jacobian given by ​∂ Ψ /  ∂ δ ​ in (28) (see [16, Th. 7.1] for a 
proof). The magnitude of ​​λ​ 2​​ (​Γ​ 0​​)​, called algebraic connectiv-
ity in graph theory [31], represents how well-connected the 
oscillators are. It is also relevant to the convergence rate to  
the equilibrium manifold [32], [33]. The sufficient condition 
in (30) basically means that a phase cohesive solution exists, 
i.e., all frequencies synchronize asymptotically, if the cou-
pling strength among oscillators is large enough compared 

to the degree of the heterogeneity of the input power ​​P​m​​​. 
Note that ​​Γ​ 0​​​ is a dense matrix.

Another condition of practical interest is 

	​ ψ  := ​Γ ​ 0​ †​ ​P​m​​ ,  |​ψ​ i​​ − ​ψ​ j​​ | < 1  ∀ (i, j) ∈  × ​� (31)

where ​​ψ​ i​​​ denotes the ith element of ​ψ​ and ​​Γ ​ 0​ †​ a​ denotes the 
Moore–Penrose pseudoinverse of ​​Γ ​ 0​​​. Even though this may 
not work for an arbitrary network, it can provide a sharp 
condition for phase cohesiveness under particular settings; 
see [29] for a collection of examples. One particular exam-
ple shown in [29, Th. 2] is that, for all ​​P​m​​ ∈ ​Γ ​ 0​​ Ω ⊂ im ​𝟙​ n​ ⊥​​ 
where 

​Ω  := ​{​(​ω ​ i​​)​i∈​​ : ​ω ​ i​​ = ​Ω​1​​ or  ​ω ​ i​​ = ​Ω​2​​ ,    ∀ i ∈ }​​

with some constants ​​Ω​1​​​ and ​​Ω​2​​​, there exists the equilibrium 
manifold ​[​δ​​ ⋆​] ⊂ Δ(π / 2)​ for (21) or (24) if and only if (31) 
holds. Furthermore, it follows for ​ω ∈ Ω​ that 

​​|​δ ​ i​ 
⋆​ − ​δ ​ j​ 

⋆​|​ = ​{​
0,

​ 
     ​ω ​ i​​ = ​ω ​ j​​

​  
arcsin |​Ω​2​​ − ​Ω​1​​ |,

​ 
​ω ​ i​​ ≠ ​ω ​ j​​ .

 ​​​

This result shows that the partial synchronization of the 
power network model (16a)–(16b) can be achieved if ​​P​m​​​ is 
given in accordance with a bipolar distribution.

E. Section Summary

In Section III-A, we first derived an electrical model of 
a power system in the form of a set of nonlinear DAEs. We 
showed that the weighted graph Laplacian of the underlying 
network naturally arises in the algebraic equations via Kirch-
hoff’s current law. Thereafter, in Section III-B, we derived an 
equivalent differential equation model for this DAE using 
Kron reduction. We found that all generators in the Kron-
reduced model are directly connected to each other through 
equivalent impedances if the original network is connected. 
Furthermore, based on the fact that the Kron-reduced model 
can be viewed as an analog to a first-order coupled oscilla-
tor model, we have recollected several existing results on 
the existence and stability of the equilibria for this model in 
Sections III-C and III-D. The existence of stable equilibria 
strongly depends on the algebraic connectivity of a weighted 
graph Laplacian that follows from the Jacobian of the sinu-
soidal coupling terms in the Kron-reduced model.

I V.  LINE A R I Z ATION OF POW ER SYSTEM 
MODELS

A. Kron-Reduced Differential Equation Form

A power grid is always subjected to different types of 
faults and disturbances causing small changes in its dynam-
ics. Power engineers are, therefore, often interested in 
analyzing the small-signal behavior of the nonlinear Kron-
reduced model (21) in terms of both small-signal stability 



Ishizaki et al . : Graph-Theoretic Analysis of Power Systems

942  Proceedings of the IEEE | Vol. 106, No. 5, May 2018

and performance. In this section, we derive this model by 
linearizing (21), and show that it represents second-order 
consensus dynamics owing to the fact that the Jacobian of 
the sinusoidal coupling terms is a weighted graph Laplacian.

In the following, we assume that, for a given ​​P​m​​ ∈ im ​𝟙​ n​ ⊥​​,  
the equilibrium manifold ​​[​δ​​ ⋆​]​  ⊂  Δ(π / 2)​ exists, or equiva-
lently, there exists an equilibrium ​​δ​​ ⋆​ ∈ Δ(π / 2)​ such that (26) 
holds. Linearizing (21) around this equilibrium, we have 

	​ M​ x ̈ ​ + D​x ̇ ​ − ​ ∂ Ψ ___ ∂ δ ​  ​(​δ​​ ⋆​)​ x = 0​� (32)

where ​( ∂ Ψ /  ∂ δ)​ is the Jacobian defined as in (28), and  
​x ∈ ​ℝ​​ n​​ represents the vector of small-signal deviations of the 
generator phase angles from the equilibrium ​​δ​​ ⋆​​. Note that 

​​ ∂ Ψ ___ ∂ δ ​ ​(​δ​​ ⋆​)​ = ​ ∂ Ψ ___ ∂ δ ​ ​(​rot​s​​ ​(​δ ​ 1​ 
⋆​)​, …, ​rot​s​​ ​(​δ ​ n​ ⋆ ​)​)​​

holds for any ​s ∈ [0, 2π ]​. This means that we obtain the same 
linearized Kron-reduced model (32) around any point on 
the equilibrium manifold ​[​δ​​ ⋆​]​.

Because ​− ∂ Ψ /  ∂ δ ​(​δ​​ ⋆​)​​ is a weighted graph Laplacian, we 
see that (32) represents a second-order consensus dynamics 
such that ​​x ̇ ​(t)​ converges to zero and ​x(t)​ converges to ​​x​sync​​ ​1​n​​​ 
as ​t → ∞​. The consensus value is calculated as 

	​​ x​sync​​ = ​ 
​∑ i=1​ 

n  ​ ​d​i​​​ ​x​i​​ (0)  + ​∑ i=1​ 
n  ​ ​M​i​​​ ​​x ̇ ​​i​​ (0)

  _____________________  
​∑ i=1​ 

n  ​ ​d​i​​​
 ​  .​� (33)

This is derived as follows. The linearized Kron-reduced 
model (32) can be written as the first-order form 

​​[​​x ̇ ​​ ​x ̈ ​​]​ = ​
[

​ 
0

​ 
 ​ I​n​​

​  
​M​​ −1​ ​ ∂ Ψ ___ ∂ δ ​ ​(​δ​​ ⋆​)​

​ 
  − ​M​​ −1​ D

​
]

​​[​x​ ​x ̇ ​​]​​.​

Because ​​𝟙​ n​ ⊤​  ∂ Ψ /  ∂ δ ​(​δ​​ ⋆​)​ = 0​, we see that 

​​[​​𝟙​ n​ ⊤​ D​  ​𝟙​ n​ ⊤​ M​]​​[ ​​x ̇ ​​ ​x ̈ ​​ ]​ = 0​

i.e., ​​𝟙​ n​ ⊤​ Dx + ​𝟙​ n​ ⊤​ M​x ̇ ​​ is constant. Therefore, we have 

​​1​ n​ ⊤​ D ​𝟙​n​​ ​x​sync​​ = ​𝟙​ n​ ⊤​ Dx (0) + ​𝟙​ n​ ⊤​ M​x  ̇ ​(0)​

which leads to (33); see [34] for convergence rate analysis 
for a second-order consensus dynamics. This linearized dif-
ferential equation model can be used to investigate the syn-
chronization of generators for small-signal disturbances. 
However, the behavior of bus voltage variables, i.e., ​​(​V​​​ , ​θ​ ​​)​​  
and ​​(​V​​

_
 ​​​ , ​θ  ​​

_
 ​​​)​​, is not easy to analyze by this model as the 

notion of a bus by itself is lost through the Kron reduc-
tion. Therefore, in Section IV-B, we consider deriving a 
linearized differential-algebraic equation model from 
(16a)–(16b) that explicitly contains the network structure 
including all buses.

B. Differential-Algebraic Equation Form

Recall the DAE model (16a)–(16b) that consists of swing 
equations as well as the algebraic power flow equations. For 
a stable equilibrium ​​δ​​ ⋆​ ∈ Δ(π / 2)​ such that (26) holds, let  

​​(​V​ ​ ⋆ ​ , ​θ​ ​ ⋆ ​)​​ and ​​(​V​ ​
_

 ​​ 
⋆ ​ , ​θ ​ ​

_
 ​​ 

⋆ ​)​​ be the compatible equilibria for the 
bus voltage variables such that (22a)–(22b) holds.

Let ​​z​1​​ ∈ ​ ℝ​​ 2n​​ be the vector of small-signal deviations of 
the bus voltage variables from ​​(​V​ ​ ⋆ ​ , ​θ​ ​ ⋆ ​)​​, and ​​z​2​​ ∈ ​ℝ​​ 2​ n ̅ ​​​ be the 
same from ​​(​V​ ​

_
 ​​ 

⋆ ​ , ​θ ​ ​
_

 ​​ 
⋆ ​)​​. We next linearize the nonlinear DAE 

model (16a)–(16b) around these equilibria. Introducing the 
coefficient vectors 

	 ​​q​ i​ 
†​ := ​[​cos ​θ ​ i​ 

⋆​​  − ​V​ i​ 
⋆​ sin ​θ ​ i​ 

⋆​​]​​� (34)

​​​ q ̅ ​​ i​ 
†​ := ​[​sin ​θ ​ i​ 

⋆​​  ​V​ i​ 
⋆​ cos ​θ ​ i​ 

⋆​​]​​

we obtain the system of the linear differential equations 

	​ M ​x ̈ ​ + D​x ̇ ​ + Kx + F ​z​1​​ = 0​� (35a)

and the linear algebraic equations 

	​​ [​ 
​Q​11​​​ 

​Q​12​​
​ 

​Q​21​​
​ 

​Q​22​​
​]​​[​ 

​z​1​​​ ​z​2​​​]​ = ​[​B​ 0 ​]​x​� (35b)

where the system matrices are given by 

​K  := ​L​D​​ ​diag​(E °  ​V​ ​ ⋆ ​ °  cos​(​δ​​ ⋆​ − ​θ​ ​ ⋆ ​)​)​​

​B  := ​[​
− ​L​D​​ ​diag​(E °  sin ​δ​​ ⋆​)​

​  
​L​D​​ ​diag​(E °  cos ​δ​​ ⋆​)​

 ​ ]​​� (36)

​F  := ​L​D​​ ​diag​(​[​E​  °  sin​(​δ​​ ⋆​ − ​θ​ ​ ⋆ ​)​​  ​− E​ ° ​V​ ​ ⋆ ​ °  cos​(​δ​​ ⋆​ − ​θ​ ​ ⋆ ​)​​]​)​​​​

and the bus network structure is reflected in 

​​Q​11​​ := ​
[

​ 
(​L​D​​ + ​L​11​​) ​diag ​​(​q​ i​ 

†​)​​i∈​​​  
(​L​D​​ + ​L​11​​) ​diag ​​(​​ q ̅ ​​ i​ 

†​)​​i∈​​
​
]

​​

​​Q​12​​ := ​
[

​ 
​L​12​​ ​diag ​​(​q​ i​ 

†​)​​i∈​
_

 ​​​​  
​L​12​​ ​diag ​​(​​ q ̅ ​​ i​ 

†​)​​i∈​
_

 ​​​
​
]

​​

​​Q​21​​ := ​
[

​ 
​L​ 12​ T ​ ​diag ​​(​q​ i​ 

†​)​​i∈​​​  
​L​ 12​ T ​ ​diag ​​(​​ q ̅ ​​ i​ 

†​)​​i∈​​
​
]

​​

    ​​Q​22​​ := ​
[

​ 
​L​22​​ ​diag ​​(​q​ i​ 

†​)​​i∈​
_

 ​​​​  
​L​22​​ ​diag ​​(​​ q ̅ ​​ i​ 

†​)​​i∈​
_

 ​​​
​
]

​.​​

In this linearized model, the generator angle equilibrium ​​δ​​ ⋆​​ 
as well as the bus voltage equilibria ​​(​V​ ​ ⋆ ​ , ​θ​ ​ ⋆ ​)​​ and ​​(​V​ ​

_
 ​​ 

⋆ ​ , ​θ ​ ​
_

 ​​ 
⋆ ​)​​  

are reflected as parameters. However, recall that the bus 
voltage equilibria are implicit functions of the generator 
angle equilibrium as shown in (22a)–(22b). This means 
that ​​(​V​ ​ ⋆ ​ , ​θ​ ​ ⋆ ​)​​, and ​​(​V​ ​

_
 ​​ 

⋆ ​ , ​θ ​ ​
_

  ​​ 
⋆ ​)​​ are not independent param-

eters. Thus, unless one explicitly uses this relation between ​​
δ​​ ⋆​​, ​​(​V​ ​ ⋆ ​ , ​θ​ ​ ⋆ ​)​​, and ​​(​V​ ​

_
 ​​ 

⋆ ​ , ​θ ​ ​
_

 ​​ 
⋆ ​)​​, the linearized DAE model  

(35a)–(35b) cannot be identified with the linearized 
Kron-reduced model (32) properly. In the following, 
we show this identity introducing a particular basis 
transformation, which makes it easier to utilize the relation  
in (22a)–(22b).

C. Commutativity of Kron Reduction and Linearization

In this section, we show that a Kron-reduced version 
of the linearized DAE model coincides with the linearized 
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version of the nonlinear Kron-reduced model, i.e., the Kron 
reduction and the linearization are commutative. This com-
mutative property has not been reported in the literature, to 
the best of the authors’ knowledge. To this end, we first con-
sider transforming the linearized DAE model (35a)–(35b)  
into a tractable form, because (35a)–(35b) involves the 
equilibria of generator states and bus voltage variables in 
a complicated fashion. Let us denote the Moore–Penrose 
pseudoinverses of the coefficient vectors in (34) by 

​​q​i​​ := ​
[

​ 
cos ​θ ​ i​ 

⋆​
​ − ​ 1 ___ 

​V​ i​ 
⋆​

 ​ sin ​θ ​ i​ 
⋆​​]

​​, ​​  q ̅ ​​i​​ := ​
[

​ 
sin ​θ ​ i​ 

⋆​
​ ​ 1 ___ 

​V​ i​ 
⋆​

 ​ cos ​θ ​ i​ 
⋆​​]

​​.​

Note that these vectors satisfy ​​q​i​​ ​q​ i​ 
†​ + ​​ q ̅ ​​i​​ ​​ q ̅ ​​ i​ 

†​ = ​I​2​​​. Then, with 
the transformation matrices 

​​H​​​ = ​[​diag ​(​q​i​​)​i∈​​​  diag ​(​​ q ̅ ​​i​​)​i∈​​​]​​

​​H​​
_

 ​​​ = ​[​diag ​(​q​i​​)​i∈​
_

 ​​​​  diag ​(​​ q ̅ ​​i​​)​i∈​
_

 ​​​​]​​

we consider the basis transformation 

	​​ z​1​​ = ​H​​​ ​ζ​ 1​​ , ​ z​2​​ = ​H​​
_

 ​​​ ​ζ​ 2​​ ​� (37)

where ​​ζ​ 1​​ ∈ ​ℝ​​ 2n​​ and ​​ζ​ 2​​ ∈ ​ℝ​​ 2​ n ̅ ​​​ denote the bus voltage variables 
in the transformed coordinates. Owing to this basis trans-
formation, the algebraic equation in (35a)–(35b) can also be 
simplified. For example 

​​Q​11​​ ​z​1​​ = ​(​I​2​​ ⊗ (​L​D​​ + ​L​11​​))​ ​ζ​ 1​​​

where the right-hand side is composed only of ​​L​D​​​ and ​​L​11​​​.  
Furthermore, we see that ​F ​H​​​ = − ​B​​ T​​, which simplifies the 
system representation in the sense that ​F ​H​​​​ is dependent on 
all equilibria ​​δ​​ ⋆​​, ​(​V​ ​ 

⋆​ , ​θ​ ​ 
⋆​)​, and ​(​V​ ​_ ​​ 

  ⋆​ , ​θ  ​ ​_ ​​ 
⋆​)​, while B is depend-

ent on only ​​δ​​ ⋆​​.
Based on this basis transformation, the linear differen-

tial equation (35a) can be written as 

	​ M​x ̈ ​ + D​x ̇ ​ + Kx − ​B​​ ⊤​ ​ζ​ 1​​ = 0​� (38a)

and the linear algebraic equation (35b) is written as 

	​​ [​
​I​2​​ ⊗ (​L​D​​ + ​L​11​​)​ 

 ​ I​2​​ ⊗ ​L​12​​
​  

​I​2​​ ⊗ ​L​ 12​ ⊤ ​
​ 

 ​ I​2​​ ⊗ ​L​22​​
​]​​[​ 

​ζ​ 1​​​ ​ζ​ 2​​​]​ = ​[​B​ 0 ​]​x.​� (38b)

In this representation, we see that K is dependent on the 
equilibria ​​δ​​ ⋆​​ and ​(​V​ ​ 

⋆​ , ​θ ​ ​ 
⋆​), B​ is dependent on just ​​δ​​ ⋆​​, while 

the other matrices are independent of them. Furthermore, 
the equilibrium of nongenerator bus voltage variables i.e.,  
​​(​V​ ​_ ​​ 

⋆​ , ​θ​  ​_ ​​ 
⋆​)​​, no longer appear in the model.

We next apply the Kron reduction to this system by solving 
the algebraic equations in (38a)–(38b). Note that the realiza-
tion of the static (algebraic) system in (38a)–(38b) is made sym-
metric owing to the basis transformation in (37). This enables 
systematic analysis of its Kron-reduced model as follows. Using 

​T  := ​[​
− diag(E° sin ​δ​​ ⋆​)

​  
diag(E° cos ​δ​​ ⋆​)

 ​ ]​​

we have the Kron-reduced model 

	​ M​x ̈ ​ + D​x ̇ ​ + (K − G) x = 0​� (39)

where G is a positive–definite matrix given by 

	​ G := ​T​​ ⊤​​(​I​2​​ ⊗ ​[​​L​D​​​  0​]​ ​​[​
​L​D​​ + ​L​11​​

​ 
​L​12​​

​ 
​L​ 12​ T ​

​ 
​L​22​​

​]​​​ 
−1

​​[​
​L​D​​

​ 
0

 ​]​)​T.​� (40)

Note that the positive definiteness of G is made clear owing 
to the symmetric realization of the static system in (38a)–
(38b). Loosely speaking, we can say from this formula that 
the feedback effect of the static system, composed of the bus 
network structure, works to decrease the positive definite-
ness of the coupling matrix among generators. Furthermore, 
to identify (39) with (32), it suffices to show the identity 

	​ − ​ ∂ Ψ ___ ∂ δ ​ (​δ​​ ⋆​) = K(​δ​​ ⋆​) − G(​δ​​ ⋆​)​� (41)

where K and G are regarded as functions of ​​δ​​ ⋆​​. In fact, we 
can verify this identity using the relation of (22b), which 
works to rewrite the term 

​​V​ ​ 
⋆​ °  cos(​δ​​ ⋆​ − ​θ​ ​ 

⋆​) = cos ​δ​​ ⋆​ °  ​V​ ​ 
⋆​ °  cos ​θ​ ​ 

⋆​ + sin ​δ​​ ⋆​ °  ​V​ ​ 
⋆​ °  sin ​θ​ ​ 

⋆​​

involved in K of (36). The weighted graph Laplacian given as 
the Jacobian ​∂ Ψ /  ∂ δ​ in (28) can be now represented as the 
difference of the positive diagonal matrix K and the positive–
definite matrix G. This can be understood as the commuta-
tive property of the Kron reduction and the linearization.

D. Section Summary

In Section IV-A, we derived a linearized differential equa-
tion model by linearizing the Kron-reduced model in Section 
III-B. The linearized Kron-reduced model has a second-order 
consensus dynamics whose coupling matrix is given as the Jac-
obian in Section III-C with a weighted graph Laplacian struc-
ture. In Section IV-B, we applied linearization directly to the 
DAE model from Section III-A that contains the bus network 
structure. The resulting model involves the equilibria of gen-
erator states and bus voltage variables in a complicated fash-
ion, which is then transformed into a tractable form in Section 
IV-C. This transformation makes it easier to verify that the 
Kron-reduced version of the linearized DAE model coincides 
with the linearized version of the nonlinear Kron-reduced 
model. In other words, the Kron reduction and the lineariza-
tion are commutative. Generalization of this result to more 
complicated power network models such as models involving 
excitation dynamics of the generators (see Section VI) will be 
an interesting direction for future work.

V. DYNAMICAL PHASE SYNCHRONIZATION 
ANALYSIS

A. Dynamical Synchronism of Generators 
and Generator Buses

In this section, we analyze the dynamical behavior of the 
nonlinear DAE model (16a)–(16b) based on its linearized 
DAE model (38a)–(38b). In particular, characterizing its 
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dynamic synchronism based on the notion of graph sym-
metry, we develop an aggregation method for (16a)–(16b) 
while preserving generator as well as the bus network struc-
tures. To the best of the authors’ knowledge, this aggregation 
method has not yet been reported in the literature.

In the following, we suppose that ​​E​i​​ = 1​ for all ​i ∈ ​ and 
the steady state of (16a)–(16b) achieves the phase synchro-
nization of ​​δ​​ ⋆​ = 0​, which implies ​​P​m​​ = 0​. These assumptions 
are only made hypothetically to simply the derivations; nei-
ther of them is essential in the subsequent discussion. For 
small-signal models, ​​P​m​​ = 0​ is a standard assumption [23]. 
Based on this premise, we can further simplify the linearized 
DAE model (38a)–(38b) as 

	​ M ​x ̈ ​ + D​x ̇ ​ + K x − ​L​D​​ ​ξ​ 1​​ = 0​� (42a)

with the simplified algebraic equation 

	​​ [​
​L​D​​ + ​L​11​​

​ 
​L​12​​

​ 
​L​ 12​ ⊤ ​

​ 
​L​22​​

​]​​[​ 
​ξ​ 1​​​ ​ξ​ 2​​​]​ = ​[​

​L​D​​
​ 

0
 ​]​x.​� (42b)

This simplification is made possible because the upper 
and lower half components of B in (36) become 0 and ​​L​D​​​,  
respectively, which implies that the bus voltage variables ​​
ξ​ 1​​ ∈ ​ℝ​​ n​​ and ​​ξ​ 2​​ ∈ ​ℝ​​ ​ n ̅ ​​​ coincide with the lower half components 
of ​​ζ​ 1​​ ∈ ​ℝ​​ 2n​​ and ​​ζ​ 2​​ ∈ ​ℝ​​ 2​ n ̅ ​​​, and their upper half components are 
identically zero. Furthermore, because G in (40) is reduced 
to ​Γ​ in (20) and ​K − G​ is a weighted graph Laplacian, we 
see that ​K =  diag(Γ ​𝟙​n​​)​. Thus, the Kron-reduced model of 
(42a)–(42b) is written as 

	​ M​x ̈ ​ + D​x ̇ ​ + (diag(Γ ​𝟙​n​​) − Γ ) x = 0.​� (43)

As discussed in Section IV-A, the generator state ​x(t)​ con-
verges to ​​x​sync​​ ​𝟙​n​​​ as ​t → ∞​ for ​​x​sync​​​ in (33). In addition, the 

generator bus voltage variable ​​ξ​ 1​​(t)​ also converges to the 
same value because of 

	​​ ξ​ 1​​ (t) = Xx(t),  ∀ t ≥ 0​� (44)

where X in (18) satisfies ​X ​𝟙​n​​  = ​ 𝟙​n​​​. This property of X is 
proven by 

​​(​L​D​​ + ​L​11​​ − ​L​12​​ ​L​ 22​ −1​ ​L​ 12​ 𝖳 ​)​​​​𝟙​n​​ = ​L​D​​ ​𝟙​n​​​

which comes from the fact that the Schur complement of 
the weighted graph Laplacian L in (13) is again a weighted 
graph Laplacian. In particular, because ​L ​𝟙​n+​ n  ̅​​​ = 0​ is equiva-
lent to 

​​L​11​​ ​𝟙​n​​ + ​L​12​​ ​𝟙​​ n ̅ ​​​ = 0, ​ L​ 12​ 𝖳 ​ ​𝟙​n​​ + ​L​22​​ ​𝟙​​ n ̅ ​​​ = 0​

we can see that ​​(​L​11​​ − ​L​12​​ ​L​ 22​ −1​ ​L​ 12​ 𝖳 ​)​ ​𝟙​n​​ = 0​.
To numerically observe the behavior of the simplified 

linear DAE model (42a)–(42b), we revisit the power net-
work example in Fig. 6. In particular, we consider a situation 
where generators 1 and 2 in area 1 have the same physical 
parameters, i.e., ​​M​1​​ = ​M​2​​​ and ​​d​1​​ = ​d​2​​​. A similar symmetry 
is supposed to be inherent in the bus network of area 1, i.e., ​​
χ​ 1​​ = ​ χ​ 2​​​ and ​​χ​ 15​​ = ​ χ​ 25​​​. In this situation, generators 1 and 2 
as well as buses 1 and 2 show some dynamically cohesive 
and synchronized behavior as can be anticipated from the 
symmetry (homogeneity) of interaction and the similarity 
of their physical parameters. In fact, as shown in Fig 10, 
which shows an initial value response of (42a)–(42b), the 
disagreement between ​​x​1​​​ and ​​x​2​​​ and that between ​​ξ​ 11​​​ and ​​
ξ​ 12​​​, denoting the first and second elements of ​​ξ​ 1​​​, decrease as 
time goes to infinity, while the disagreement between ​​x​3​​​ and ​​
x​4​​​ and that between ​​ξ​ 13​​​ and ​​ξ​ 14​​​ do not. Furthermore, their 

Fig. 10. Initial value response of the simplified linear model (42a)�(42b). The system parameters are set as ​​χ​ 
1
​​ = ​χ​ 

2
​​ = 0 . 1​, ​​χ​ 

3
​​ = 0 . 1​, ​​χ​ 

4
​​ = 0 . 05​,  

​​χ​ 
15

​​ = ​χ​ 
25

​​ = 0 . 2​, ​​χ​ 
36

​​ = 1​, ​​χ​ 
46

​​ = 0 . 1​, ​​χ​ 
56

​​ = 0 . 5​, ​​M​1​​ = ​M​2​​ = 1​, ​​d​1​​ = ​d​2​​ = 0 . 2​, ​​M​3​​ = 2​, ​​M​4​​ = 3​, ​​d​3​​ = 0 . 1​, and ​​d​4​​ = 0 . 2​. The initial condition is set as ​
x(0) = (− 0 . 06, 0 . 19, 0 . 06, 0 . 25)​ and ​​x ̇ ​(0) = 0​.
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trajectories synchronize even when the system still shows 
transient behavior. In the following, we analyze this dynam-
ical synchronization of generator states and generator bus 
voltage variables from a viewpoint of graph symmetry.

B. Analysis Based on Graph Symmetry

Let us denote the subspace of the synchronism between 
the ith and jth elements of the small-signal state vector ​x(t)​ by 

	​​ ​ij​​ := ​{x ∈ ​ℝ​​ n​ : ​x​i​​ = ​x​j​​}​.​� (45)

Then, for the simplified linear DAE model (42a)–(42b), we 
say that the ith and jth generators are dynamically synchro-
nized if 

	​ x(t) ∈ ​​ij​​,  ∀ t ≥ 0​� (46)

for any initial conditions ​x(0) ∈ ​​ij​​​ and ​​x ̇ ​(0) ∈ ​​ij​​​. Note that 
(45) is equivalent to 

​​x​i​​ (t) = ​x​j​​ (t),  ∀ t ≥ 0.​

In a similar manner, we say that the ith and jth generator 
buses are dynamically synchronized if 

	​​ ξ​ 1​​ (t) ∈ ​​ij​​  ∀ t ≥ 0​� (47)

for any ​x(0) ∈ ​​ij​​​ and ​​x ̇ ​(0) ∈ ​​ij​​​. Note that the initial con-
dition ​​ξ​ 1​​ (0)​ of the bus voltage variables is uniquely deter-
mined by the generator state initial condition ​x(0)​ due to 
the relation in (44).

To characterize this dynamical synchronism in an alge-
braic manner, we define a set of symmetrical matrices with 
respect to the permutation of the ith and jth columns and 
rows by 

	​​ ​ij​​ := ​{A ∈ ​ℝ​​ n×n​ : A ​Π​ ij​​ = ​Π​ ij​​ A}​​� (48)

where ​​Π​ij​​​ denotes the permutation matrix exchanging the 
ith and jth elements. Note that ​​​ij​​​ is not the set of usual 
symmetric (Hermitian) matrices; the condition in (48) 
represents the invariance with respect to the permutation 
of the ith and jth columns and rows, i.e., ​​Π​ ij​ 

𝖳​ A ​Π​ij​​ = A​. For 
example, we see that the weighted graph Laplacian L in (14)  
of the bus network in Fig. 6 belongs to ​​​12​​​ if and only if  
​​χ​ 15​​  = ​ χ​ 25​​​, which corresponds to the symmetry of buses 1 
and 2. This type of graph symmetry is called graph automor-
phism in graph theory [35], [36].

Let us first consider characterizing the dynamical syn-
chronism of generator states based on the Kron-reduced 
model (43). When ​M ∈ ​​ij​​​, meaning ​​M​i​​ = ​M​j​​​, it follows that 
the ith and jth generators are dynamically synchronized, i.e., 
(46) holds, if and only if the damping matrix D belongs to ​​
​ij​​​, i.e., ​​d​i​​ = ​d​j​​​, and the coupling matrix ​diag​(Γ ​𝟙​n​​)​ − Γ​ also 
belongs to ​​​ij​​​, i.e., 

​​γ ​ ij​​ = ​γ ​ ji​​ , ​ γ ​ ik​​ = ​γ ​ jk  ​​∀ k ∈  \ { i, j}.​

Note that the relation between the diagonal entries ​​γ ​ii​​​ and ​​γ ​jj​​​ 
cannot be deduced from this analysis of generator state syn-
chronism, but it can only be deduced from the analysis of the 
synchronism for the bus voltage variables. In fact, using the  
relation ​Γ  = ​ L​D​​ X​ and that in (44), it can be shown that  
the ith and jth generators as well as the ith and jth bus volt-
age variables are dynamically synchronized, i.e., both (46) 
and (47) hold, if and only if ​Γ ∈ ​​ij​​​. Furthermore, ​Γ ∈ ​​ij​​​ is 
shown to be equivalent to 

	​​ L​D​​ ∈ ​​ij​​ , ​ L​11​​ − ​L​12​​ ​L​ 22​ −1​ ​L​ 12​ ⊤ ​ ∈ ​​ij​​ .​� (49)

Note that the right condition in (49), which represents 
the symmetry of a bus network in which the nongenerator 
buses are Kron reduced, is implied by ​L ∈ ​​ij​​​ for ​(i, j) ∈  × ​.  
This represents the symmetry of the whole bus network 
with respect to the ith and jth generator buses. In conclu-
sion, we see that the symmetry (graph automorphism) of 
bus networks algebraically characterizes the dynamical syn-
chronism of generator states and the generator bus voltage 
variables.

C. Application to Generator and Generator Bus 
Aggregation

Based on the foregoing analysis, we next address the 
topic of aggregation in power systems. Aggregation, in fact, 
is a very popular concept for power system models. Given 
the large size and extraordinary complexity of any real-
istic power system, deriving and simulating the dynamic 
model for an entire network such as (42a)–(42b) becomes 
extremely challenging. Constructing approximate, aggre-
gated, reduced-order models using simplifying assumptions, 
therefore, becomes almost imperative in practice. The foun-
dations of model aggregation were laid in the late 1970s by 
Chow and Kokotovic [37], resulting in algorithms of parti-
tioning a power network into dynamic aggregates, where 
each aggregate consists of a group of strongly connected 
generators that synchronize over a fast time scale and, there-
after, act as a single entity, while the aggregates themselves 
are weakly connected to each other, and synchronize over a  
slower time scale. Their approach was complimented by 
alternative techniques such as in [38]–[40].

However, these conventional aggregation methods apply 
aggregation directly on the Kron-reduced model. Very little 
insights are available currently in understanding how not 
only generators but also buses can be aggregated so that the 
reduced-order model retains the concept of a bus. This, in 
turn, may be necessary for designing shunt controllers that 
are entirely dependent on the “bus” concept [41].

In this section, we address this problem by deriving a 
dynamic equivalent model for (42a)–(42b) where aggrega-
tion is performed on both generator states and the genera-
tor bus voltage variables. In particular, we take an approach 
based on network clustering. Several clustering algorithms 
have been reported in recent papers such as [42]–[44].  



Ishizaki et al . : Graph-Theoretic Analysis of Power Systems

946  Proceedings of the IEEE | Vol. 106, No. 5, May 2018

The results presented here follow the clustering-based 
model reduction methods developed in, e.g., [45]–[48], 
which are based on similarity of state trajectories, almost 
equitable partition of graphs, and passivity of subsystems.

We introduce the notion of network clustering as fol-
lows. Let ​​ ̂ ​ := { 1, …,​n ̂ ​}​ denote an index set such that ​​n ̂ ​ ≤ n​.  
A family of index sets, denoted by ​​{ ​ℐ​l​​ }​l∈​ ̂ ​​​​, is called a cluster 
set if each element ​​ℐ​l​​​, called a cluster, is a disjoint subset of ​​
  ̂ ​​ and it satisfies ​​∪ 

 
​ ​​l∈​ ̂ ​ ℐ​l​​​ = ​. Furthermore, an aggregation 

matrix compatible with ​​{ ​ℐ​l​​ }​l∈𝕃​​​ is defined by 

	​ P := ​[​​e​​ℐ​1​​​​ ​𝟙​|​ℐ​1​​|​​​  ⋯​  ​e​​ℐ​​n ̂ ​​​​​ ​𝟙​|​ℐ​​n ̂ ​​​|​​​]​ ∈ ​ℝ​​ n×​n ̂ ​​ .​� (50)

For example, when we consider aggregating the genera-
tors and their buses in area 1 of Fig. 6, the cluster set is con-
structed as 

	​​ ℐ​1​​ = { 1, 2}, ​ ℐ​2​​ = { 3}, ​ ℐ​3​​ = { 4}​� (51a)

for which ​​ ̂ ​ = { 1, 2, 3}​. In a similar way, when aggregating 
the generators in both areas 1 and 2, it is constructed as 

	​​ ℐ​1​​ = { 1, 2}, ​ ℐ​2​​ = { 3, 4}​� (51b)

for which ​​ ̂ ​ = { 1, 2}​. The corresponding aggregation matri-
ces are given as 

​P = ​

⎡
 ⎢ 

⎣
 ​ 

1

​ 

  0

​ 

  0

​  1​    0​    0​  
0

​ 
  1

​ 
  0

​  

0

​ 

  0

​ 

  1

 ​ 

⎤
 ⎥ 

⎦
​,  P = ​

⎡
 ⎢ 

⎣
 ​ 

1

​ 

  0

​ 1​    0​ 
0

​ 
  1

​ 

0

​ 

  1

 ​ 

⎤
 ⎥ 

⎦
​​

for (51a) and (51b), respectively.
As seen from the structure of P in (50), the aggrega-

tion and the average of a vector ​v ∈ ​ℝ​​ n​​ can be represented, 
respectively, as the ​​n ̂ ​​-dimensional vectors of 

​​v  ̂ ​:= ​P​​ 𝖳​ v,  ave(v)  := ​P​​ †​ v​

where ​​P​​ †​​ denotes the Moore–Penrose pseudoinverse 
of P. Note that the lth element of ​​v ̂ ​​ is given as ​​∑ i∈​ℐ​l​​​ 

​ ​  ​ v​i​​​​. 
Furthermore, the lth element of ​ave(v)​ is given as ​​∑ i∈​ℐ​l​​​ 

​ ​  ​​ v​i ​​⁄ ​|​ℐ​l​​|​​​​.  
This is because 

​​P​​ †​ = ​​(​P​​ 𝖳​ P)​​​ 
−1

​ ​P​​ 𝖳​, ​ P​​ 𝖳​ P = diag ​​(​|​ℐ​l​​|​)​​l∈​   ​​​ .​

Based on these relations, we introduce the aggregated coef-
ficient matrices 

​​M ̂ ​ := ​P​​ 𝖳​ MP, ​ D ̂ ​ := ​P​​ 𝖳​ DP, ​ K ̂ ​ := ​P​​ 𝖳​ KP​

and the aggregated reactance matrices 

​​​L ̂ ​​D​​ := ​P​​ 𝖳​ ​L​D​​ P, ​ [ ​ 
​​L ̂ ​​11​​​ 

​​L ̂ ​​12​​
​ 

​​L ̂ ​​ 12​ 𝖳 ​
​ 

​​L ̂ ​​22​​
​ ]​:= ​[ ​

​P​​ 𝖳​ ​L​11​​ P​ 
​P​​ 𝖳​ ​L​12​​

​  
​L​ 12​ 𝖳 ​ P

​ 
​L​22​​

 ​  ]​.​

Using these matrices, we define an aggregated DAE model 
of (42a)–(42b) by the ​​n ̂ ​​-dimensional differential equation 

	​​ M ̂ ​​​x ̈ ​ ̂ ​ + ​D ̂ ​​​x ̇ ​ ̂ ​ + ​K ̂ ​​x ̂ ​ − ​​L ̂ ​​D​​ ​​ξ ̂ ​​1​​ = 0​� (52a)

and the ​(​n ̂ ​ + ​ n ̅ ​)​-dimensional algebraic equation 

	​​ [​
​​L ̂ ​​D​​ + ​​L ̂ ​​11​​​ 

​​L ̂ ​​12​​
​ 

​​L ̂ ​​ 12​ ⊤ ​
​ 

​​L ̂ ​​22​​
​]​​[​ 

​​ξ ̂ ​​1​​​ 
​​ξ ̂ ​​2​​

​]​ = ​[​​​L ̂ ​​D​​​ 
0

 ​]​​x ̂ ​​� (52b)

whose initial condition is given as 

​​x ̂ ​(0) = ave(x(0)) ,  ​​x ̇ ​ ̂ ​(0) = ave(​x ̇ ​(0))​

i.e., the average of the original initial condition. This initial 
condition satisfies ​x(0) = P​x ̂ ​(0)​ and ​​x ̇ ​(0) = P​​x ̇ ​ ̂ ​(0)​ if and only 
if ​x(0)​ and ​​x ̇ ​(0)​ lie in the image of P.

Note that the aggregated network (with buses) is repre-
sented by the matrix 

​​L ̂ ​ = ​[​ 
​​L ̂ ​​11​​​ 

​​L ̂ ​​12​​
​ 

​​L ̂ ​​ 12​ ⊤ ​
​ 

​​L ̂ ​​22​​
​]​​

which is shown to be a weighted graph Laplacian owing to  
​​𝟙​n​​ = P ​𝟙​​n  ̂​​​​. A similar projection-based approach for preserv-
ing the Laplacian structure of matrices was recently shown 
in [49]. Furthermore, ​​​L  ̂​​D​​​ and ​​​L  ̂​​11​​​ are, again, positive diagonal 
matrices. The preservation of these particular structures can 
be interpreted as the preservation of physical properties stem-
ming from Kirchhoff’s current law as shown in Section III-A. 
In fact, the aggregated DAE model (52a)–(52b) can be iden-
tified with a linearized and simplified model of the aggre-
gated nonlinear DAE model defined as 

	​​ M ̂ ​​​δ  ̈ ​ ̂ ​ + ​D ̂ ​​​δ  ̇ ​ ̂ ​ = ​​P ̂ ​​m​​ − ​​L ̂ ​​D​​​E ̂ ​ °  ​​V ̂ ​​​   ​​​ °  sin(​δ  ̂ ​ − ​​θ  ̂ ​​​   ​​​)​� (53a)

with the aggregated algebraic equation 

	​​ [​
​​L ̂ ​​D​​ + ​​L ̂ ​​11​​​ 

​​L ̂ ​​12​​
​ 

​​L ̂ ​​ 12​ ⊤ ​
​ 

​​L ̂ ​​22​​
​]​​[​ 

​​V ̂ ​​​   ​​​ °  cos ​​θ   ̂ ​​​   ​​​​ 
​​V ̂ ​​​_ ​​​ °  cos ​​θ   ̂ ​​​

_
 ​​​
​]​ = ​[​​​L ̂ ​​D​​​E ̂ ​ °  cos​δ  ̂ ​​ 

0
 ​ ]​​�

	​​ [​
​​L ̂ ​​D​​ + ​​L ̂ ​​11​​​ 

​​L ̂ ​​12​​
​ 

​​L ̂ ​​ 12​ ⊤ ​
​ 

​​L ̂ ​​22​​
​]​​[​ 

​​V ̂ ​​​   ​​​ °  sin ​​θ  ̂ ​​​   ​​​​ 
​​V ̂ ​​​_ ​​​ °  sin ​​θ   ̂ ​​​

_
 ​​​
​]​ = ​[​​​L ̂ ​​D​​​E ̂ ​ °  sin​δ  ̂ ​​ 

0
 ​ ]​​�

(53b)

where ​​δ  ̂ ​​ denotes the aggregated generator state, ​​(​​V ̂ ​​​   ​​​ , ​​θ  ̂ ​​ ​   ​​​)​​  
and ​​(​​V ̂ ​​​_ ​​​ , ​​θ  ̂ ​​ ​

_
 ​​​)​​ denote the aggregated generator and the aggre-

gated nongenerator bus voltage variables, and ​​​P ̂ ​​m​​​ and ​​E ̂ ​​ are 
given as ​​P​​ 𝖳​ ​P​m​​​ and ​ave(E)​, respectively. The aggregated DAE 
model of the power network example in Fig. 6 is depicted in 
Fig. 11, where (a) and (b) correspond to the cluster sets in 
(51a) and (51b), respectively.

To discuss the dynamical behavior of the aggregated 
DAE model, let us next define the subspace of synchronism 
for clusters as 

	​ ​​cl​​ := ​ ∩ 
l∈​ ̂  ​

​​ ​  ∩ 
(i,j)∈​​l​​×​​l ​​

​​​​ij​​​​​� (54)

where ​​​ij​​​ is defined as in (45). Note that ​​​cl​​​ is identical to ​
im ​P​. Furthermore, we define a set of symmetrical matrices 
corresponding to ​​​cl​​​ as 

	​ ​​cl​​ := ​ ∩ 
l∈​ ̂  ​

​​​  ∩ 
  (i,j) ∈​​l​​×​​l​​

​​​​ij​​​​ .​� (55)

If all the generators are identical, i.e., 
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	​ M ∈ ​​cl​​ ,  D ∈ ​​cl​​​� (56)

meaning that ​​M​i​​ = ​M​j​​​ and ​​d​i​​ = ​d​j​​​ for all ​(i, j) ∈ ​​l​​ × ​​l​​​ and  
​l ∈ ​   ​​ , and if 

	​ ​L​D​​ ∈ ​​cl​​ ,  ​L​11​​ − ​L​12​​ ​L​ 22​ −1​ ​L​ 12​ ⊤ ​ ∈ ​​cl​​​� (57)

which represents network symmetry compatible with (49), 
then the simplified linear DAE model (42a)–(42b) and its 
aggregated DAE model (52a)–(52b) satisfy 

	​ x(t) = P​x ̂ ​(t) ,  ​ξ​ 1​​ (t) = P ​​ξ ̂ ​​1​​ (t),  ∀ t ≥ 0​� (58a)

for any initial conditions ​x(0) ∈ ​​cl​​​ and ​​x ̇ ​(0) ∈ ​​cl​​​ and, at 
the same time, they satisfy 

	​ ​x ̂ ​(t) = ave(x(t)) ,  ​​ξ ̂ ​​1​​ (t) = ave(​ξ​ 1​​ (t)),  ∀ t ≥ 0​� (58b)

for any ​x(0) ∈ ℝ​ ​​ n​​ and ​​x ̇ ​(0) ∈ ​ℝ​​ 
n
​​. In particular, (57) is equiv-

alent to (58a)–(58b) provided that ​|​​l​​ | ≤ 2​ for all ​l ∈ ​   ​​.  
A similar result for systems defined by ordinary differential 
equations is shown in [50, Th. 4].

We numerically verify the behavior of the aggregated 
DAE model (52a)–(52b), and compare it with the behavior of 

the simplified linear DAE model (42a)–(42b). Fig. 12 shows 
the initial value responses of (42a)–(42b) and (52a)–(52b)  
when we construct the cluster set as in (51a) following the 
network structure shown in Fig. 11(a). Because the system 
parameters (listed in the caption of Fig. 10) actually satisfy 
the conditions (56) and (57), the behavior of the generator 
states and generator bus voltage variables of the aggregated 
DAE model can properly capture the average behavior of 
those for the original model.

Next, we show the behavior of (52a)–(52b) when we 
construct the cluster set as in (51b) following the network 
structure shown in Fig. 11(b). The initial value response is 
plotted in Fig. 13(a). Only the generator state trajectories 
are plotted because a similar trend can be observed for the 
generator bus voltage variables. From this figure, we see that 
not only the generator state trajectories of area 2, but also 
those of area 1 are not properly captured by their aggregated 
state trajectories. This is because, even though the genera-
tor states of area 1 can be aggregated by virtue of their sym-
metry, they are dynamically affected by the feedback effect 
of aggregation error from area 2. It can also be seen that a 
steady-state error is caused for the generator states in both 
areas. The reason of this steady-state error can be seen as 

Fig. 11. (a) Aggregated model of the power network example in Fig. 6, compatible with the cluster set in (51a). The impedances satisfy ​1 / ​​χ ̂ ​​1​​ = 
1 / ​χ​ 1​​ + 1 / ​χ​ 2​​​, ​1 / ​​χ ̂ ​​12​​ = 1 / ​χ​ 15​​ + 1 / ​χ​ 25​​​, ​1 / ​​χ ̂ ​​46​​ = 1 / ​χ​ 56​​​, ​1 / ​​χ ̂ ​​25​​ = 1 / ​χ​ 36​​​, ​1 / ​​χ ̂ ​​35​​ = 1 / ​χ​ 46​​​, ​1 / ​​χ ̂ ​​2​​ = 1 / ​χ​ 3​​​, and ​1 / ​​χ ̂ ​​3​​ = 1 / ​χ​ 4​​​. (b) Aggregated model of the power 
network example, compatible the cluster set in (51b). The impedances satisfy ​1 / ​​χ ̂ ​​1​​ = 1 / ​χ​ 1​​ + 1 / ​χ​ 2​​​, ​1 / ​​χ ̂ ​​12​​ = 1 / ​χ​ 15​​ + 1 / ​χ​ 25​​​, ​1 / ​​χ ̂ ​​46​​ = 1 / ​χ​ 56​​​, ​1 / ​​χ ̂ ​​24​​ = 
1 / ​χ​ 36​​ + 1 / ​χ​ 46​​​, and ​1 / ​​χ ̂ ​​2​​ = 1 / ​χ​ 3​​ + 1 / ​χ​ 4​​​.
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follows. The steady-state (consensus) value of the aggre-
gated DAE model, denoted by ​​​x ̂ ​​0​​​, can be calculated similar 
to (33). Therefore, ​​x​0​​ = ​​x ̂ ​​0​​​ holds for any ​x(0)​ and ​​x ̇ ​(0)​ if and 
only if (56) holds. In this case, however, the system param-
eters listed in the caption of Fig. 10 do not satisfy (56) for the 
cluster set in (51b) because ​​M​3​​ ≠ ​M​4​​​ and ​​d​3​​ ≠ ​d​4​​​. As shown 
in Fig. 13(b), the steady-state error vanishes if ​​M​3​​ = ​M​4​​​ and ​​
d​3​​ = ​d​4​​​. However, the transient-state error still remains due 
to the asymmetry of the bus network of area 2.

As observed from this example, it is crucial to carefully 
select a cluster set to reduce transient error between the 
states of the original and aggregated DAE models. Further-
more, it is worthwhile to investigate a quantitative relation 
between the degree of asymmetry in the network graph and 
the amount of resultant transient-state error. A possible 
approach to such quantitative error analysis is provided in 
[45] and [46] from the perspective of control theory.

D. Section Summary

In Section V-A, we verified via simulations that the lin-
earized swing model shows dynamically cohesive and syn-
chronized behavior in both generator states and generator bus 
voltage variables if a certain symmetry is inherent in the net-
work structure and physical parameters of the original DAE 
model. This can be seen as generalization of results in [50] for 
ordinary differential equations to those for DAEs describing a 
linearized power system model, which has not been reported 
in the literature. In Section V-B, we characterized this 
dynamic synchronism using the notion of graph symmetry 
defined as graph automorphism. In Section V-C, we applied 
this characterization to the aggregation of generator states 
as well as the bus voltage variables based on network cluster-
ing. It is seen that the resultant aggregated DAE model is also 
characterized by a weighted graph Laplacian structure associ-

ated with an aggregated bus network. The preservation of this 
structure enables us to interpret the aggregated DAE model as 
an equivalent power system where the network variables obey 
Kirchhoff’s laws. This aggregation method with preservation 
of a bus network structure is a novel contribution, though sev-
eral model reduction methods based on network clustering 
have been developed [42]–[48].

V I.  STRUCT U R E-BA SED POW ER SYSTEM 
CON TROL

Not only for modeling and stability analysis, graph theory 
has also recently emerged as an enabling tool for designing 
closed-loop controllers for power systems. While simple 
second-order models such as (7) suffice for analysis, more 
detailed models of generators must be considered for con-
trol design. A commonly used model for this purpose is the 
flux-decay model whose dynamics can be written as [23] 

	​ ​δ  ̇ ​ = ω​� (59)

	​ M​ω  ̇ ​ = ​P​m​​ − dω − ​ 
|V | E

 ____ ​​x ′ ​​d​​ ​  sin (δ − ∠V )​

	​ + ​ 
|V ​|​​ 2​

 ____ 2 ​​ (​  1 __ ​​x ′ ​​d​​ ​ − ​ 1 __ ​x​q​​ ​)​sin (2δ − 2 ∠V )​� (60)

	​​ τ​ do ​​​E ̇ ​ = − ​ 
​x​d​​

 __ ​​x ′ ​​d​​ ​ E + ​(​ 
​x​d​​

 __ ​​x ′ ​​d​​ ​ − 1)​|V |  cos (δ − ∠V )​

	​ + ​V​fd​​​� (61)

	​ P + iQ = ​ 
E | V   |

 ____ ​​x ′ ​​d​​ ​  sin (δ − ∠V )​

	​ − ​ 
|V ​|​​ 2​

 ____ 2 ​​ (​  1 __ ​​x ′ ​​d​​ ​ − ​ 1 __ ​x​q​​ ​)​sin (2δ − 2 ∠V )​

Fig. 12. Initial value responses of the simplified linear model (42a)�(42b) and its aggregated model (52a)�(52b) compatible with the cluster 
set in (51a). The system parameters and initial condition are the same as those in Fig. 10.
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	​ + i​(​ 
E | V   |

 ____ ​​x ′ ​​d​​ ​  cos (δ − ∠V )​​

	​​ − |V ​|​​ 2​​(​ 
​sin​​ 2​ (δ − ∠V)

 __________ ​x​q​​ ​  + ​ 
​cos​​ 2​ (δ − ∠V )

 __________ ​​x ′ ​​d​​ ​ )​)​​

where the first two state equations represent the swing 
dynamics, the third state equation represents electromag-
netic dynamics of the generator voltage, P and Q are the 
active and reactive power outputs, ​V​ is the voltage phasor at 
the generator bus, ​​V​fd​​​ is the excitor voltage, and the remain-
ing constants denote various model parameters whose defi-
nitions can be found in any standard textbook such as [23]. 
The generator model is coupled with the model of an exciter 
consisting of an automatic voltage regulator (AVR) and a 
power system stabilizer (PSS) whose combined dynamics 
can be written as 

​​τ​  e​​ ​​V ̇ ​​fd​​ = − ​V​fd​​ + ​V​ fd​ ⋆ ​ + ​K​a​​ ( | V |  − |V ​|​​ ⋆​ − v + u)

	​ ζ  ̇ ​ = ​A​pss​​ ζ + ​B​pss​​ ω,  v = ​C​pss​​ ζ + ​D​pss​​ ω​

where the superscript ​​​​​ ⋆​​ means setpoint. Again, the inter-
ested reader is referred to [23] for definitions of the state 
variables and model parameters. The variable u in the com-
bined AVR/PSS model serves as a control input. Typically 
this input is designed using local feedback from the genera-
tor speed ​ω​, and passing it through a lead-lag controller for 
enhancing damping of the oscillations in ​δ​ and ​ω​. Traditional 
PSSs, however, are most effective in adding damping to the 
fast oscillation modes in the system, and perform poorly in 
adding damping to the slow or interarea oscillation modes [51]. 
If left undamped, interarea modes can result in transient 
instability, as was the case for the 1996 blackout in the U.S. 
west coast grid [52]. Therefore, power engineers currently 
are very interested in designing supplementary controllers 
on top of a nominal u by using state feedback from either all 

or selected sets of other generators spread across the grid. 
These types of controller are referred to as wide-area con-
trollers [53], [54]. The use of structure for designing these 
controllers is explained as follows.

Let ​Y ∈ ​ℂ​​ N×N​​ denote the admittance matrix of the net-
work, where N is the total number of generator and load 
buses. The power balance across the transmission lines fol-
lows from Kirchoff’s laws as 

	​ 0 = ​(YV )​​ * ​°  V − (P + iQ)​� (62)

where ​V​, P, and Q are the stacked representations of ​​V​k​​​,  
​​P​k​​​ and ​​Q​k​​​ for ​k  ∈  { 1, …, N}​. From (62), ​V​ is determined 
for a given P and Q. The overall dynamics of the power 
system can be described by the combination of every gen-
erator model (with AVR and PSS) as described above, load 
model, and power balance (62). Let the linearized model 
be denoted as 

	​ ​x ̇ ​ = Ax + Bu​� (63)

where ​x​ is the vector of all small-signal generator states, ​u​ 
is the control input vector whose kth element ​​u​k​​​ represents 
the kth AVR input whose output then excites the corre-
sponding PSS. For simplicity, x is assumed to be measur-
able (although several wide-area control designs can also 
be extended to output feedback). For the linearized model 
(63), several papers such as [55] and [56] have posed the 
wide-area control problem as a sparse optimal control prob-
lem of the form: design 

	​ u = K x,    K ∈ ​� (64)

where ​​ is a set of admissible controllers encapsulating the 
structured distributed nature of the controller, to minimize 

	​ J  := ​∫ 
0
​ 
∞

 ​ (​ ​x​​ ⊤​ (t) Qx(t) + ​u​​ ⊤​ (t) Ru(t)) dt​� (65)

Fig. 13. (a) Generator and aggregated generator states in the case of the same parameters as those in Figs. 10 and 12, i.e., ​​M​3​​ ≠ ​M​4​​​ and  
​​d​3​​ ≠ ​d​4​​​. (b) Generator and aggregated generator states in the case of ​​M​3​​ = ​M​4​​ = 2​ and ​​d​3​​ = ​d​4​​ = 0 . 1​.
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for a given positive–semidefinite martix ​Q​ and positive–
definite matrix R, subject to (63).1

The goal of (64)– (65) is to promote sparsity in K for 
minimizing the density of the underlying communication 
network without sacrificing closed-loop performance much. 
The design in [55] and [59], for example, has sparsified K 
by penalizing its ​​l​1​​​-norm. Papers such as [60] and [61] have 
proposed various projection and decomposition-based con-
trol designs by which a significant portion of the communi-
cation network admits a broadcast-type architecture instead 
of peer-to-peer connectivity, thereby saving on the number 
of links. The design in [56], on the other hand, has proposed 
structured sparsity in light of the following general rule. Let ​​
ℕ​G​​​ be the set of generator indices. For a natural number  
​L ≤ |​ℕ​G​​ |​, consider a set of groups ​​{ ​​l​​ }​l∈{1,…,L}​​​ such that ​​​l​​​ 
is a subset of ​​ℕ​G​​​ and ​​∪ l∈{1,…,L}​ ​​ ​​l​​ =  { 1, …, |​ℕ​G​​ |}​. Note that 
the groups are not necessarily disjoint, namely, there may 
exist a pair ​(l, l′)​ such that ​​​l​​ ∩ ​​​l ′ ​​​ ≠∅​. Let ​​K​ij​​​ denote the  
​(i, j)​-block matrix of K, and let ​​ be the set of all K such that ​​
K​ij​​  =  0​ if ​(i, j)   ∉  ​​l​​ × ​​l​​​ for all ​l  ∈  { 1, …, L}​. The problem 
then is to find a wide-area controller described as (64) with 
this ​​. The (sub)optimal set of groups ​​{ ​​l​​ }​l∈{1,…,L}​​​ and the 
structured feedback gain K can be constructed in different 
ways depending on the exact objective of the controller. For 
the purpose of interarea oscillation damping, Jain et al. [56] 
have proposed the following construction. Modeling the 
fault as an impulse input, let the impulse response of the 
small-signal frequency of the kth generator be written as 

	​​ ω ​ k​​ (t) = ​​ ∑ 
i=1

​ 
κ
  ​ ​​(​α ​ki​​ exp ​(​λ ​ i​​ t)​ + ​α​  ki​ 

* ​ exp ​(​λ ​ i​ *​ t)​)​  
 
  



  

interarea modes

 ​​

	​ +​​  ∑ 
i=κ+1

​ 
|​ℕ​G​​|

 ​ ​​(​β ​ki​​ exp ( ​ρ ​ i​​ t) + ​β​  ki​ 
* ​ exp ​(​ρ​ i​ *​ t)​)​  

 
  



  

local modes

 ​  .​� (66)

Assuming that the local modes are sufficiently damped by 
PSSs as a result of which their effect dies down quickly, the 
goal is to add damping to only the interarea oscillation modes. 
The dominance of the interarea modes is defined based on 
the magnitude of the modal coefficients ​​α​ ki​​​. For example, 
consider a power system with four generators (namely  
​|​ℕ​G​​ | = 4​), with three interarea modes (namely ​κ = 3​). Let 
the residues ​​α​ 11​​​, ​​α​ 21​​​, ​​α​ 31​​​, ​​α​ 32​​​, and ​​α​ 42​​​ be classified as dom-
inant residues because they satisfy ​|​α​ ki​​ | ≥ μ​, where ​μ​ is a 
prespecified threshold. In other words, it is assumed that 
the interarea modes ​​λ​ 1​​​and ​​λ​ 2​​​ are substantially excited by the 
incoming disturbance while the third interarea mode has 
much poorer participation in the states. From the indices of 
the dominant modes, one can construct the two sets 

	​ ​​1​​ = { 1, 2, 3},  ​​2​​ = { 3, 4}​� (67)

indicating that the generators in the first group participate 
dominantly in ​​λ​ 1​​​, and those in the second group participate 
dominantly in ​​λ​ 2​​​. This grouping information is then used 
to decide the topology of communication, resulting in the 
control input as 

	​ ​

⎡
 ⎢ 

⎣
 ​ 

​u​1​​

​ 
​u​2​​

​ ​u​3​​​ 
​u​4​​

​ 

⎤
 ⎥ 

⎦
​ = ​

⎡

 ⎢ 

⎣

 ​ 

​K​11​​

​ 

  ​K​12​​

​ 

  ​K​13​​

​ 

  0

​  
​K​21​​​ 

  ​K​22​​
​ 

  ​K​23​​
​ 

  0
​  

​K​31​​
​ 

  ​K​32​​
​ 

  ​K​33​​
​ 

  ​K​34​​
​  

0

​ 

  0

​ 

  ​K​43​​

​ 

  ​K​44​​

​ 

⎤

 ⎥ 

⎦

​  ​

⎡
 ⎢ 

⎣
 ​ 

​x​1​​

​ 
​x​2​​

​ ​x​3​​​ 
​x​4​​

​ 

⎤
 ⎥ 

⎦
​​� (68)

where the nonzero gain matrices ​​K​ij​​​ are chosen to guarantee 
closed-loop stability, and a desired suboptimal performance. 
In general, the rule is that the generators inside the lth 
group should communicate with each other for suppressing 
the amplitude of oscillations excited by the lth mode ​​λ ​ l​​​. The 
third mode ​​λ​  3​​​ for the above example is poorly excited, and 
therefore, is ignored in the control design. Following this 
procedure, the construction of ​​ can be easily generalized 
to any n-generator system.

This design method was verified in [56] using the New 
England 39-bus, 10-generator power system model with 
a total of 130 states. The nonlinear power system model 
was excited by a three-phase fault on the line connect-
ing buses 3 and 4, cleared after 0.1 seconds at bus 3, and 
after 0.15 seconds at bus 4. Based on the modal residues, 
the sparse structure of the controller was decided. Three 
different values of ​μ​ were chosen to design three control-
lers ​​K​1​​​, ​​K​2​​​, and ​​K​3​​​ with different levels of sparsity. Table 1 
summarizes the results of the design, where T refers to the 
computation time required to solve for K, and ​ξ​ refers to 
the ratio of the closed-loop cost J in (65) with the sparse 
controller to that with the ideal LQR controller. The results 
show that as high as 93% sparsity can be achieved if one 
is willing to sacrifice 10% of the closed-loop performance. 
Note that since the initial condition ​x(0)​ will change from 
one disturbance event to another, so will the group set ​​
{ ​​l​​ }​l∈{1,…,L}​​​. Detailed instructions on how this change can 
be executed in real time following a fault, and how the 
sets ​​{ ​​l​​ }​l∈{1,…,L}​​​ (and, therefore, the wide-area controller) 
can vary drastically depending on the type and location of 
faults, are described in [56].

V II.   CONCLU DING R EM A R K S

This tutorial overviewed a list of graph-theoretic results 
for modeling, stability analysis, and control of power 
systems. Although our discussion in this paper is mostly 
focused on transmission-level models, similar concepts 
can also be applied for analyzing dynamic and algebraic 
models of distribution-level power grids. Recent results 

1 The choice of the objective function J depends on the goal for wide-area 
control. For power oscillation damping, this function is often simply just chosen 
as (65); for wide-area voltage control, it can be chosen as the setpoint regula-
tion error for the voltages at desired buses [57]; while for wide-area protec-
tion, it can be chosen as the total amount of time taken to trigger relays [58].

Table 1  Sparsity of Wide-Area Control Versus Performance Tradeoff
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