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ABSTRACT | In this paper, we present an overview of the
applications of graph theory in power system modeling,
dynamics, coherency, and control. First, we study synchronization
of generator dynamics using both nonlinear and small-signal
representations of classical structure-preserving models of
power systems in light of their network structure and the weights
associated with the nodes and edges of the network graph. we
overview important necessary and sufficient conditions for both
phase and frequency synchronization. We highlight the role of
graph structure in coherency properties, and introduce the idea
of generator and bus aggregation whereby dynamic equivalent
models of large power grids can be developed while retaining the
concept of a “bus” in the network graph of the equivalent model.
We also discuss several new results on graph sparsification for
designing distributed controllers for power flow oscillation
damping.
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I. INTRODUCTION

Over the past decade power systems in different parts
of the world have encountered a series of cascading fail-
ures and blackouts, starting from the major blackout in the
Northeastern United States in 2003 to Hurricane Katrina in
New Orleans in 2005, the European blackouts of 2006, the
southwest blackout in San Diego and Tijuana in 2011, the
recent natural disasters in Texas and Puerto Rico, and many
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other similar calamities and power outages in other cor-
ners of the globe. These blackouts have forced power sys-
tem researchers to look beyond the traditional approach of
analyzing power system functionalities in steady-state, and
instead pay serious attention to their dynamic character-
istics, and that too in a global and structural sense [1]. At
the fundamental level, a power system is an interconnected
network of electrical generators, loads, and their associ-
ated control elements. Each of these components may be
thought of as nodes of a graph, while the transmission lines
connecting them physically can be regarded as the edges
of the graph. The nodes are modeled by physical laws that
typically lead to a set of differential equations. These dif-
ferential equations are coupled to each other by so-called
power balance across the tie lines or the edges. One pri-
mary issue that has been of interest to power engineers over
many years is how the graph-theoretic properties of these
types of electrical networks impact the stability, dynamic
performance, controllability, observability, identifiability,
and other system-theoretic properties of the grid model
[2]. These issues have been partly addressed in a handful of
papers in the literature. For example, notions of structure-
preserving models were laid out in the early 1980s in [3],
followed by graph-theoretic analysis of transient stability
using Lyapunov stability theory [4], [5]. But a systematic
understanding of how graph theory can serve as a tool for
deeper understanding of power system dynamics, stability,
and control is still a large open question.

These topics have emerged with renewed interest in
recentyears, mainly owingto the expansion oftransmission
network in the United States [6], Asia [7], and Europe 8],
and also due to intrusion of renewable energy sources [9].
In [10], for example, it was shown that if injected beyond a
certain upper limit, and if not controlled accurately, wind
power can easily cause transient instability in a conven-
tional power grid. Both the amount of wind power and
the precise location of injection matter. From a graph-
theoretic perspective this means that synchronization of a
homogeneous network of nonlinear oscillators can easily
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be perturbed and destabilized if any heterogeneous dynam-
ics is injected into this network at the wrong node, and in
the wrong amount. Similar structural implications have also
been made for system identification of reduced-order mod-
els [11], optimal power flow [12], [13], voltage stability [14],
and bifurcations [15]. Power engineers are currently seeking
various ways to gain insight about the structural properties
of their systems, which, in turn, can help in better synchro-
nization and stability [16], observability [17], sensor place-
ment [18], and control [19], [20].

Motivated by this gap, in this tutorial, we present several
existing and new results on the applications of graph the-
ory in power systems. Our results cover modeling, stability
analysis, and control, highlighting the implications of the
structure and the parameters associated with the underly-
ing network graph. To keep the article compact, we mostly
focus on angle stability and frequency stability, where graph
theory plays a significant role. Discussion on voltage stabil-
ity is skipped for brevity. The interested reader is referred to
[21] and [22] for a review of voltage stability, and its connec-
tion with network cutsets. We start with a brief primer on
hypothetical mass-spring-damper models, which represent
swing dynamics or Newton’s second law of motion in the
models of synchronous generators. We show how the state-
space representations of these models are explicit functions
of the network topology. Thereafter, we extend the discus-
sion to more realistic grid models consisting of both genera-
tor and nongenerator buses, and derive the notion of Kron
reduction by which the differential-algebraic model of the
grid can be represented as an ordinary differential equation
model with certain compromises in the underlying network
structure. We discuss the impacts of this reduction on the
existence of power system equilibrium and its stability.
We also derive small-signal linearization of this nonlinear
model, and show that the synchronization properties of the
generator states are strongly dependent on the symmetry
properties of the underlying graph. We use this observa-
tion to define the concept of generator and bus aggregation,
the latter being a new result that has not been studied so
far in the power system literature. We illustrate the idea of
aggregation for various symmetries and the asymmetries
of the network graph using simulations. Finally, we show
how structured distributed controllers can be designed for
power oscillation damping in grid models using ideas from
graph sparsification.

Notation: We denote the set of real values by R, the set
of nonnegative real values by Ry, the unit circle by S, the
n-dimensional identity matrix by I,,, the ith column of I, by
e;, the diagonal or block diagonal matrix whose ith diago-
nal entry is d; by diag (d;)ic(1.... .n}> the n-dimensional all-ones
vector by 1,, the image of a matrix A by imA, the Hadamard
product (i.e., the element-wise product) of vectors v and u
by v ou, the Kronecker product of matrices A and Bby A ® B,
the cardinality of a set S by |S]. For a matrix A e R™"™

diag(A) := diag (eiTA)ie{Lm,n} e R
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where e-irA corresponds to the ith row of A. For a vector 6 S",
the trigonometric functions sin@ and cosé are defined in the
element-wise sense. Every complex-valued matrix or vector is
denoted by a bold face symbol like V. The imaginary unit V-1
is denoted by i. A symmetric matrix A = AT is said to be positive
definite (respectively, positive semidefinite) if all eigenvalues
of A are positive (nonnegative). A symmetric matrix A = Al e
R™" is said to be a weighted graph Laplacian if its off-diagonal
elements are all nonpositive and A1, = 0.

IT. MASS-SPRINGER-DAMPER MODELS
OF POWER SYSTEMS

The first step of understanding power system dynamics is to
understand the dynamics of the electromechanical behav-
ior of synchronous machines, which is really nothing but a
study of how a group of nonlinear pendula would oscillate
with respect to each other when they are connected over a
given connection topology; in other words, how a set of mass-
spring-damper systems, each of which has its own individual
local frequencies of oscillations, would start oscillating against
each other, and define a global oscillatory behavior when con-
nected together in some combinations. The actual model of
a synchronous machine is, of course, much more complex
[23], but the mass-spring-damper model is the simplest exam-
ple for describing its electromechanical dynamics. The mass
here is analogous to a synchronous generator with a nonzero
inertia. The spring is analogous to a transmission line that
connects one generator to another. The damper is analogous
to the internal damping mechanisms of a synchronous gen-
erator that ensures asymptotic stability of its state responses
after a disturbance. The only difference, of course, is that
unlike a mass-spring-damper system where the masses exhibit
mechanical motion, the motion of a synchronous generator
pertains to electrical motion, not mechanical. A comparison
between mass-springer systems and power systems is shown
in Fig. 1 using a 2-mass and a 2-generator example.
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Fig. 1. Mass-spring-damper models of synchronous machines.
(a) Mass spring damper. (b) Two interconnected synchronous
machines.



Ishizaki et al.: Graph-Theoretic Analysis of Power Systems

E E E
. X12 2 X23 S

()

Fig. 2. Examples of mass-spring-damper representations of power
systems. (a) Three generators in radial connection. (b) Three
generators in loop connection. (c) System with ten generators.

The starting point in deriving these mass-spring-damper
models is the so-called swing equation of a synchronous
generator. Consider the total number of generators to be
n that are connected to each other in some given topology.
Examples of systems with n = 3, connected in both radial
and loop topology, and n = 10 following this kind of an ide-
alistic model are shown in Fig. 2. The rotor of the generator
is rotated by a prime mover, which in this case is a steam tur-
bine. For i = 1,...,n, Newton’s second law of motion (mass
times acceleration equals net force) in angular coordinates
results in the swing equations [23]

5i(t) = & (t) — o

M; ;(t) = Ppi (t) — P (t) @

where the state variable §; is the phase angle of the rotor
of the ith generator; the state variable @; is the velocity of
the rotor of the ith generator with respect to a fixed refer-
ence frame (following the theory of electric machines, the
reference for measuring &;, for example, can be taken to be
the a-phase axis in the three-phase representation of the
classical model of the synchronous generator circuit); o, is
the synchronous frequency whose value is 1207 = 377 rad/s
for a 60-Hz system; Py is the active power produced by the
ith generator; M; is the ith inertia constant; and P,; is the
mechanical power input from the ith turbine.

All quantities are normalized following the per unit repre-
sentation of power system models [23]. If the generator has
anonzero damping factor d; > 0, then the model can be writ-
ten as

5i(t) = @ (t) — o

M; &;(t) = Pi (1) — di (@i (1) — @) @

—-P gi (t)
which is referred to as the “swing equations” of the ith gen-
erator. The turbine power P,; can either be set to a constant
value, or used as a control input to regulate the generator
dynamics, for example, in automatic generation control
(AGC) [23]. Denoting w;(t) = @;(t) — w;, a more compact
form of the swing equation can be written as

§i(t) = w;(t)
M; @i(t) = Py (t) — d; 0;(t) = Pgi (1) - (3)

To generate a state-space model for the system out of the
individual generator model (3), we next apply Ohm’s law
and Kirchoff’s law to relate the active power Py; to the rest
of the grid. For simplicity, we drop the time argument t. By
definition, P,; can be written as

Py = Re(EI;) )

where I; € C is the total current in the complex phasor
form produced by the ith generator, * indicates the complex
conjugate, and E; € C is the voltage phasor of generator i,
denoted by

E; = E;(cos &; + isin §;).

The magnitude E; is considered to be a constant following the
assumption about classical models. Let the set of generators
to which the ith generator is connected be denoted as \;. We
then rewrite (4) as
Pi= Y Re(EI;) (5)
JEN;
where IjecCis the current phasor flowing from generator i
to generator j. After a few calculations, this simply reduces to
Pgi = Z kijsin((?i - 5]) (6)
jeN;

where k;; := E;E;/ z; is a scalar weight given by y;; being the
reactance (per unit) of the transmission line connecting
generators i and j, neglecting the resistance of the line. The
simplest state-space form of the swing equations of the ith

generator can then be written as

5.1' = w;
Mi d)i = Pmi - di @; — Zkl} Sil’l(é‘i - 6}> (7)
jeN;

for i = 1,...,n. Note that the right-hand side of (7) cap-
tures the topology of the network, i.e., which generator is
connected to which other generators. Depending on the
topology, i.e., both the combinatorial structure of A; and
the weights kij, the corresponding dynamics of different grid
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models will be different. Also note that for deriving (7), we
assumed the power to be flowing from generator i to genera-
tor j. This means that the ith synchronous machine in this
case is acting like a generator while the jth machine is acting
like a motor. This assumption is not necessary, and can be
easily foregone by defining the following sign convention.

« If power is flowing out of the ith machine and into the
jth machine, then this power will have a negative sign
in the right-hand side of the swing equation of the ith
machine, and positive sign in that of the jth machine.
In this case, the ith machine will be in “generation”
mode and the jth machine will be in “motor” mode in
terms of this power flow.

+ Similarly, if power is flowing into the ith machine and
out of the jth machine, then this power will have a
negative sign in the right-hand side of the swing equa-
tion of the jth machine and positive sign in that of
the ith machine. In this case, the jth machine will be
in “generation” mode and the ith machine will be in
“motor” mode in terms of this power flow.

This sign convention easily leads to the following obser-
vations.

O1) The effective sign of &, on the right-hand side of
the ith swing equation is always negative. The word
“effective” here accommodates for the fact that sin
is an odd function.

02) Swing equations are direction independent.

0O3) Only the neighbors of the ith generator appear in
the right-hand side of its swing equation.

We cite an example to make these observations clearer.
Consider a system with five generators, as shown in Fig. 3.
Consider two different sets of directions for the power flows,
as shown in Fig. 3(a) and (b). Following the sign conven-
tion, the swing equation for generator 1 in Fig. 3(a), ignoring
damping, can be written as

M, 81 = Py — kypsin(6; — 63)
— ki3sin(8y — 83) — kygsin(dy — 84). (8a)
Following the same sign convention, the swing equation for
generation 1 in Fig. 3(b) can be written as

My 61 = Py = kyisin(8; = 61)
- k31 sin(53 - 51) - k14 sin(61 - 54) (Sb)

However, since kii = kﬁ, and sin is an odd function, we see
that (8b) is exactly the same as (8a). Similarly, the swing

equation for generator 2 in Fig. 3(a) can be written as
My 85 = Py + kipsin(; — 8,) (9a)
while that for generator 2 in Fig. 3(b) can be written as
M, 8, =Py — kyysin(8, — 87). (9b)

Again, (9a) and (9b) are identical. This justifies observation
02), indicating that swing equations are independent of the
directions of power flow. Observation O1) is also quite clear
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(b)

Fig. 3. Five-machine power system with different power flow
directions. (a) System with five generators, power flow set 1.
(b) System with five generators, power flow set 2.

from the right-hand side of (8a)—(8b). Equation (8a)-(8b),
for example, is the swing equation for generator 1, and the
effective signs of the angle of generator 1, i.e., §;, in every
term on the right-hand side of this equation are negative.
Similarly, (9a)—(9b) is the swing equation for generator 2,
and the effective signs of the angle of generator 2, i.e., 55, in
every term on the right-hand side of this equation are also
negative. All of these observations will become useful when
we derive the small-signal model of (7) shortly. As men-
tioned before, some of the synchronous machines in this
system are serving as generators or power producers while
some are serving as motors or power consumers. These
motors model the loads in the system. The total power thus
remains conserved within the system, shuffling from one
machine to another. This motion manifests itself in the form
of second-order nonlinear oscillations in the phase and fre-
quency of the generators.

For example, for the 10-generator model in Fig. 2(c), we
assume yj; = O0.lpuforallj=2,3,4,5, %5 = 0.2 pu for all
k =7,8,9,10, and y;6 = 5. This results in a two-area system
where oscillators 1-5 belong to one area with small trans-
mission line reactances, and oscillators 6-10 belong to
another area, also with small line reactances, while the reac-
tance between the central nodes, i.e., nodes 1 and 6, is sig-
nificantly larger indicating that the two areas are physically
distant from each other. Simulating this model, we get the
solutions of the frequencies in the two areas as in Fig. 4(a)
and (b). It is clear that the local groups of generators in each
area synchronize with each other over time. The average
motion of the frequencies in area 1 is compared with that
in area 2 in Fig. 4(c). This figure shows that the two areas
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Fig. 4. Angle and frequency responses of ten-machine nonlinear swing model. (a) Frequencies of generators in area 1. (b) Frequencies of
generators in area 2. (c) Average frequencies of areas 1 and 2. (d) Average angles of areas 1 and 2.

by themselves are oscillating against each other. A similar
behavior is shown for the average of the phase angles, as
shown in Fig. 4(d). A somewhat bimodal behavior is visible
in the average frequency oscillations. This behavior actually
arises from the fact that the reactance between generators 1
and 6 is larger than the reactances between the local genera-
tors inside each area. This is a well-known phenomenon in
power systems, known as coherency which arises predomi-
nantly because of the underlying graph-theoretic proper-
ties of the network. We will discuss this property in more
details in Section V. Fig. 5 shows the coherency behavior for
a 48-machine 140-bus power system model, also popularly
known as the Northeastern Power Coordinating Council
(NPCC) model [24]. This model very closely represents the
power grid of the Northeastern United States. It is divided
into nine coherent areas as shown in Fig. 5(a). Fig. 5(b) shows
the frequencies of all generators in area 1 and area 6, while
Fig. 5(c) shows those for all generators in area 4 and area 8.

The out-of-phase behavior is noticeable in both figures.
Fig. 5(d) shows the average motions of the frequencies in
areas 1 and 6, while Fig. 5(e) shows those for areas 4 and 8.
Again, from these figures, one can see that the respective
areas are oscillating against each other.

ITI. NONLINEAR ELECTRICAL MODELS
OF POWER SYSTEMS

A. Differential-Algebraic Equation Model

In practice, generators in a power grid are not always
directly connected to each other as in the mass-spring-
damper model of Section III. They are instead connected
through additional electrical points or buses, where no
dynamic element may be present and only algebraic power
balance holds. An example of this architecture is shown in
Fig. 6 for a power system with four generators and six buses.
As a result of this structure, the swing equations can no
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Fig. 5. Small-signal frequency responses of 9-area NPCC power system. (a) The NPCC power system with nine coherent clusters.
(b) Frequencies of generators in areas 1 and 6. (c) Frequencies of generators in areas 4 and 8. (d) Average frequencies of areas 1 and 6.

(e) Average angles of areas 4 and 8.
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E,

Bus 5

E,

E;

Bus 6

E,

Fig. 6. Example of a power network with four generators and two nongenerator buses. The generator buses, i.e., buses 1-4, are denoted by
the black bars, and nongenerator buses, i.e., buses 5 and 6, are denoted by the blue bars. The intention behind the area partitioning will be

made clear in Section V.

longer be written directly as ordinary differential equations,
but rather have to be expressed in the form of differential-
algebraic equations (DAEs).

Fortunately, the DAE can be reduced to an equivalent
differential equation albeit at the cost of changing the
equivalent topology of the network. In this section, we will
explain the construction of the DAE model from physical
principles using observations from this simple example.
It will be found that a weighted graph Laplacian structure
naturally arises in the algebraic equation as reflecting Kirch-
hoff’s current law. We assume the transmission lines to be
lossless. We also assume that the model does not have any
extraneous load, which in this case means that some of the
synchronous machines are operating as generators while the
rest are operating as motors or loads. If the model contains
additional loads such as constant power/impedance/current
loads, then the rows of the network admittance matrix will
no longer sum to zero [23].

Let Gand G, respectively, denote the label sets for genera-
tor and nongenerator buses. Let the numbers of generator
and nongenerator buses be denoted by n:= |G| and n:= |7,
respectively. Furthermore, let £ denotes the edge set of
the network. This set is undirected, i.e., if (i,j) € &, then
(j,i) € &, and vice versa. For the example in Fig. 6, we see
that 6 ={1,2,3,4}, 6={5,6}, n=4,1=2,and
@5, (25, (3B.6), (46), (56)
TG, (5,2), (6,3), (6,4), (6,5
For each i € Gu, let V; € C denote the complex voltage

phasor of the ith bus. For i € G, let E; € C denote the complex
voltage phasor of the ith generator (the magnitude of which

&

is assumed to be constant following the classical model
assumption made in Section III), and let I; € C denote the
complex current phasor flowing from the internal circuit of
the ith generator to the ith generator bus. Then, the genera-
tor current and generator bus voltage phasors are related as

L=, (E-V) ieg (10a)

where x; > 0 denotes the internal reactance of the ith gen-
erator. Similarly, the current phasor Iyec flowing from the
ith bus to the jth bus can be written as

= (Vi-V). (e

=i (10b)

where y; = z; > 0 denotes the reactance between the ith
and jth buses. See the arrows in Fig. 6 for the depiction of
current flows.

Let A, denote the label set of the neighboring buses of

the ith bus, i.e., N; := {j:(i,j) € &}. From Kirchhoff’s current
law it follows that

L+ Y L;i=0, ieg (11a)
jeN;
for the ith generator bus, and
> I;=0, ieg (11b)
jeN;

for the ith nongenerator bus. For example, at bus 1 in Fig. 6,
we have I + I5; = 0, where Is; = — L5, and at bus 5, we have
115 + 125 + I65 = 0, where I65 = _156'

Next, we represent the equalities (10a)-(10b) and
(11a)-(11b) in a compact matrix form. To this end, we define
the following stacked vectors:

Eg:=(E)icg, V5= Wiegs Vz:= (Wiicg-

Then, substituting I; and I;; in (10a)-(10b) into (11a)-(11b),
we have the complex-valued algebraic equation

Lp+Ly L [Vg] B [LDEQ] 12)
Li Lyp| [ Ve 0
where Lp := diag (1/ y;);eg and
L L
L= [ oy 12]. 13)
Lip Lo

Note that the reciprocals of the imaginary units in
(10a)—(10b) are cancelled out by division. Furthermore, L is
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1/}[15 0 0 0 —1/){15 0
0 1/}(25 0 0 —1/}(25 0
0 0 1/}[36 0 0 —1/}(36
L= 1
0 0 0 1/}[46 0 —1/}(46 ( 4)
-1 s =1/ x5 0 0 s+ 1 xos + 1 256 —1/ 56
0 0 —1/ 36 —1/ e —1/ xs6 1/ 236 + 1/ a6 + 1 156

a weighted graph Laplacian associated with the bus network,
the (i,j)-element of which is given as

Zken; Ve 1=
Ly=4-1/%, jeN
0, otherwise.
The weighted graph Laplacian for network in Fig. 6 is shown
in (14), at the top of this page. As seen from this example,
Ly, is a positive diagonal matrix when every generator bus is
indirectly connected to other generator buses.

We next write the complex voltage phasors E; and V; in
the polar form as
E;:=E;(cosd; +ising;), V;:=V;(cos6;+1ising;)

whereE;eR5(, V;€ER5(, §;€S,and 6;€S. Then, following (7),
the dynamics of the ith generator can be written as

" . E;V;
Mi 51' + di 51' = Pmi - #sin(éi - 91'), ie g (15)

Defining stacked variables
E:=(Edicg: Vg:=(Vdieg» Vo= Viicg
8:=(8icg>  g:=(Bicg,  0g:= (B)icg

and the stacked constants
Py := (Pi)icg, M :=diag(Myicg, D := diag(dj)icg
we obtain the system of the differential equations
M + Dé =P, — LpE o Vg o sin(5 — 6) (16a)

and the real-valued algebraic equations

Ip+Ly; Lyp Vg ocos g
Ly -
12

LpEo cos&]

Ly Vg o cos 03 0

Ip+Ln Lip|[Vgosing | [LDE ° sind
L,  Lyp|[Vgesineg 0

]. (16b)

The two equations in (16b) correspond to the real and imag-
inary parts of (12). In fact, (16a)-(16b) represents the DAE
form of the swing equations. In Section III-B, we derive how
this DAE model can be converted into an equivalent differ-
ential equation model by a process referred to as the Kron
reduction [25].
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B. Kron Reduction

It can be seen from (16b) that the voltage magnitude and
angle (Vg, 67) at the nongenerator buses can be represented
as the function of (Vg, 6g) at the generator buses as

Vgecos g = —Lz_zlLIz(Vgo cos 6;),
(17a)
Vgosing= —Ly; Li5(Vgosin6p).

Note that Ly, is nonsingular because every principal sub-
matrix of a weighted graph Laplacian, which is a singular
M-matrix, is a nonsingular M-matrix (see Fact 4.11.12 (vi)
in [26]).

In a similar way, (V, 6g) can be represented as the func-
tion of the generator angle 5as

Vgocos 8 = X(E o cosd)

17b)
Vgosin g = X(E o sino)
where X is a square matrix defined by
_ -1
X:=(Lp + Ly — L L33 L])  Lp. (18)

Using the trigonometric identity
sin(8 — 6g) = siné o cos 6 — coss osin 6
together with (17b), the last term in (16a) can be written as

LpEoVgosin(6— 6)
=Eosin§o(I'(Eocosd)) —Eocosdo(I'(Eosind)) (19)
where I” is the positive-definite matrix defined by
Ii=Lp(Lp + Ly - L12L2_21L1—2>_1LD' (20)
Then, applying the identity
sin §;cos §; — cos J;sin ; = sin(&i - (Si)

to each element of (19), the Kron-reduced model of
(16a)-(16Db) is obtained as

Bk sin(8; — &; ieg 21

n
M;8; +di6; =Py — 2 Y

j=1
where Yijs which is equal to Yiis denotes the inverse of the
(i,j)-element of I". This equation is similar to the swing equa-
tion (7), but there is an important distinction between the
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Area 1 Area 2
E 713 Es
Y12 V34
E, V24 E,

Fig. 7. The Kron-reduced model of the power network example

in Fig. 6. All nongenerator buses are eliminated to derive an
equivalent topology where all generators are connected directly to
each other.

two; both X in (18) and I"in (20) are positive dense matri-
ces, i.e., every element of X and I are positive. This will
always be true if the weighted graph Laplacian L defined in
(13) is irreducible, i.e., if the power network is connected.
This is proven as follows. From the formula of the inverse
of partitioned matrices (see Fact 2.17.3 in [26]), we see that

Lp+Ly Ly

-1
LD]
, I'=LpX.
Ly, Lzz] [0 °

X=I, 0][

Note that the partitioned matrix to be inverted is irre-
ducible and positive definite. As shown in [27, Th. 5.12],
every element of the inverse of an irreducible nonsingular
M-matrix is positive. Thus, both X and I" are shown to be
positive dense matrices, because Lp is a diagonal matrix hav-
ing positive diagonal elements. This fact implies that in the
Kron-reduced model (21) every generator will be connected
to every other generator, and thereby the original network
structure will typically be lost.

For example, the original network structure in Fig. 6
is sparse, but its Kron-reduced model as shown in Fig. 7
becomes dense. The two models (16a)—(16b) and (21) are,
however, equivalent to each other in the sense that the
dynamical behavior of the generator states §(t) and w(t)
in both will be identical. From (16a)-(16b) and (21), it is
also straightforward to derive that if the original network
did have some generator pairs that are directly connected
to each other without any intermediate bus junctions, then
the topology between these pairs will remain intact in the
Kron-reduced model. In other words, these generators will
not be connected to every other generator, but only to the
ones that they were directly connected to. This scenario is
shown in Figs. 8 and 9.

C. Frequency-Synchronized Solution and Its Stability

We next review several results on frequency synchroni-
zation and phase cohesiveness of the Kron-reduced model
(21), which have been reported in [16], [28], and [29] to ana-
lyze a synchronization property of coupled oscillators evolv-
ing over a network. The review presented in the rest of this
section can be understood as the equilibrium (steady-state)
analysis of the DAE model (16a)-(16b), giving a foundation
for linearization analysis in Section IV and transient-state
analysis in Section V.

Let 6* be an equilibrium of (21), and (Vé , 95) and
(Vé , 66 ) be the corresponding equilibria of the bus voltage
variables. The latter are uniquely determined such that

Vé °COoS 95 —Lz_zlLIz(Vg* 0 COos 99*)
*

22
VG osin6g = —Ly; LY, (Vg °sinog”) (222)
which follows from (17a), and
VE o Cos 65 = X(E o cos 6*)
(22b)

Vé osin 95 = X(E osin 5*)

Es Ex

—
Bus 2

Bus 3 E3
G

P BE——
Bus 4

Fig. 8. Example of a power network with six generators and two nongenerator buses. Generator 5 is directly connected to generator 1, and

generator 6 is directly connected to generator 4.
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Area 1 Area 2
Es E1 E3

A ) ()

E2 Ea Ee

Fig. 9. The Kron-reduced model of the power network example in
Fig. 8. All nongenerator buses are eliminated by Kron reduction.
The connection topology for generator pairs (1,5) and (4,6) remain
unchanged.

which follows from (17b). A comprehensive survey on
synchronization of coupled oscillators is given in [16].
Synchronization, in fact, is an extremely important topic for
power system stability analysis, especially when the grid is
subjected to large-signal disturbances from various causes.
This is commonly referred to as transient stability in the
power system literature [23]. To understand the impact of
network topology on synchronization, we will show that the
Jacobian of the nonlinear vector field of the Kron-reduced
model (21) is related to the weighted graph Laplacian of its
underlying complete graph.

Following the terminology in [16], we say that a solu-
tion §:Ryy — S" to the differential equation in (21)
achieves frequency synchronization if the frequency §(t)
converges to @gync 1, for a constant frequency Ogync aS
t — oo. If a frequency-synchronized solution exists, the syn-
chronization frequency is given as

n
i=1 Pmi

~n
i=1 di

wsync =
This can be verified by substituting §; = 0 and §; = @y
in (21), and by summing the resulting equalities. In this
case, a frequency-synchronized solution to (21) is written as

é‘l(t) = 5['* + wsync t, ie g (23)

for some constant 61* € S, corresponding to the ith element
of 6™ in (22b). This means that every generator angle rotates
with the identical constant frequency. Transforming the sys-
tem coordinate to a rotating frame with the frequency gy,
and replacing P,,; with Pp; — &g, we can always assume
that gy, = 0, or equivalently P, € im 1 » with L indicating
the orthogonal subspace, i.e.,

P+ +Pp=0

without loss of generality. This conclusion is consistent
with the observation made in Section IIT where we implied
how some of the synchronous machines in the mass-spring-
damper model must serve as generators while the others
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serve as motors so that the total power in the system is
conserved.

Following [16], we say that the frequency-synchronized
solution (23)isaphase-cohesivesolutionto(21)if|6;* — j* |<
(7/2) for every pair (i,j) € G x G. For a compact represen-
tation, we represent the phase cohesiveness as §* e A(7/2),
where

A(3)= {568": |66 < 5. v(ij)eGx Q}

represents the domain of phase cohesive solutions.
The Kron-reduced model (21) can be viewed as an analog
of a coupled first-order oscillator model of the form
. L EE; .
8= Ppi — ZTU sin(6;— &), ieG

j=1

(24)

which corresponds to a generalized version of the Kuramoto
model [30] where the oscillators are nonuniformly coupled.
As stated in [28] and [29], the synchronization properties of
(21) and (24) are shown to be equivalent in a reasonable sense.
Therefore, we can analyze the frequency-synchronization
properties of the Kron-reduced model (21) using the first-order
oscillator model (24) instead. Loosely speaking, for a con-
stant P,, € im 15 , there exists a locally exponentially stable
equilibrium §* € A(7/2) of (21) if and only if there exists a
locally exponentially stable equilibrium 6* € A(7/2) of (24).
In particular, if there exists an equilibrium 5%, then it must
necessarily be located on an equilibrium manifold stem-
ming from the rotational symmetry of the coupling terms.
The equilibrium manifold is defined as the following equiva-
lence class [16]:

[6*] := { (vot, (6%),....0t, (7)) e s™: s € [0,27]} (25)

where rot, (6) € S denotes the rotation of § counterclockwise
by the angle s. This is clearly seen from the fact that, for
some 6* such that

¥(s*) =0

where W :S" — R" denotes the function composed of the
right-hand sides of (24) for i € G, i.e., the ith component of
¥(6) is given by

(26)

n EE
Wi(9) = Py = Xy sin(8; - 5), i€G

@7)
it follows for any s € [0, 27] that
‘I—’(rots (5?),...,rots (5:)) =0.

Next, we discuss the stability of the equilibrium mani-
fold [6*]. For ¥ in (27), the Jacobian 0¥/0s:S" — R™"
is given by

EiE), L
= Lh=1iti —p, C08(8i = ), =]

i#].

P,

28)

o

iEj
Tij COS((si - 5]),
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where 0'¥j/06; denotes the (i,j)-element of 9¥/0s.
Because —0¥/05(5) is a weighted graph Laplacian for
all 6 € A(7/2), the Jacobian evaluated at any equilibrium
8* € A(7/2) is negative semidefinite, and its kernel is im 1,,.
Therefore, under a given constant P,, € im 17, if an equilib-
rium 6% € A(71/2) exists for (24), or equivalently, if it exists
for (21), then the equilibrium manifold [§*] in (25) is locally
exponentially stable. Furthermore, this equilibrium manifold
can be uniquely determined in A(77/2) (see [29, Lemma 2]
for a proof).

D. Existence of Phase Cohesive Solutions

As seen above, the equilibrium manifold [6*] of phase
cohesive solutions is unique in A(71/2), and it is locally expo-
nentially stable if a compatible equilibrium 6* € A(7/2)
exists. A natural next step, therefore, is to overview results
on the existence of equilibria, i.e., the solvability of the non-
linear equation in (26). Generally, both frequency and phase
synchronism are related to the graph-theoretic properties
of the underlying network such as coupling strength and
network homogeneity. In particular, as explained in [16], a
weakly coupled and strongly heterogeneous network does
not display any coherent behavior, whereas a strongly cou-
pled and sufficiently homogeneous network displays coher-
ent behavior.

The simplest case is when P, = 0. In fact, as shown in
[16, Th. 5.1], there exists a phase-synchronized solution to
(21) or (24), i.e.,

X =6*

X v(ij)eGx g (29)

if and only if P, = 0. This result does not depend on the
magnitude and homogeneity of the coupling strength
E; E]»/ Yij- However, in a practical power system, generators
(motors) will always be driven by (driving) a mechanical
shaft, thereby absorbing (producing) mechanical power.
Hence, this scenario, although of theoretical interest, does
not hold in practice. A phase-synchronized solution can thus
be viewed as an extreme case of phase cohesive solutions.

For a general value of P,, € im 13, it is not simple to char-
acterize the existence of an equilibrium manifold. One suf-
ficient condition is

A (1) > %\/_zl(Pmi ~ Pyy)?
Lj=

where 1,(I) denotes the second smallest eigenvalue of
the weighted graph Laplacian Iy = —0%¥/0d6(0) for the
Jacobian given by 0'¥/06 in (28) (see [16, Th. 7.1] for a
proof). The magnitude of 1, (1), called algebraic connectiv-

(30)

ity in graph theory [31], represents how well-connected the
oscillators are. It is also relevant to the convergence rate to
the equilibrium manifold [32], [33]. The sufficient condition
in (30) basically means that a phase cohesive solution exists,
i.e., all frequencies synchronize asymptotically, if the cou-
pling strength among oscillators is large enough compared

to the degree of the heterogeneity of the input power P,,.
Note that Iy is a dense matrix.
Another condition of practical interest is

yi=T{Py, |vi-wl<l ¥ij)eGxG (3
where y; denotes the ith element of yand I"'{ a denotes the
Moore-Penrose pseudoinverse of 1. Even though this may
not work for an arbitrary network, it can provide a sharp
condition for phase cohesiveness under particular settings;
see [29] for a collection of examples. One particular exam-
ple shown in [29, Th. 2] is that, for all P,, € [,Q c im1;;
where

Q = {(a)i)iegi w; = Ql or w; = Qz, Vie g}

with some constants £2; and €2, there exists the equilibrium
manifold [6*] c A(7/2) for (21) or (24) if and only if (31)
holds. Furthermore, it follows for w € Q that

a)izwj

0,
* _ ox|
|5l g ‘ {arcsin|§22 - Q| o # ;.

This result shows that the partial synchronization of the
power network model (16a)-(16b) can be achieved if P, is
given in accordance with a bipolar distribution.

E. Section Summary

In Section III-A, we first derived an electrical model of
a power system in the form of a set of nonlinear DAEs. We
showed that the weighted graph Laplacian of the underlying
network naturally arises in the algebraic equations via Kirch-
hoff’s current law. Thereafter, in Section III-B, we derived an
equivalent differential equation model for this DAE using
Kron reduction. We found that all generators in the Kron-
reduced model are directly connected to each other through
equivalent impedances if the original network is connected.
Furthermore, based on the fact that the Kron-reduced model
can be viewed as an analog to a first-order coupled oscilla-
tor model, we have recollected several existing results on
the existence and stability of the equilibria for this model in
Sections III-C and III-D. The existence of stable equilibria
strongly depends on the algebraic connectivity of a weighted
graph Laplacian that follows from the Jacobian of the sinu-
soidal coupling terms in the Kron-reduced model.

IV. LINEARIZATION OF POWER SYSTEM
MODELS

A. Kron-Reduced Differential Equation Form

A power grid is always subjected to different types of
faults and disturbances causing small changes in its dynam-
ics. Power engineers are, therefore, often interested in
analyzing the small-signal behavior of the nonlinear Kron-
reduced model (21) in terms of both small-signal stability
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and performance. In this section, we derive this model by
linearizing (21), and show that it represents second-order
consensus dynamics owing to the fact that the Jacobian of
the sinusoidal coupling terms is a weighted graph Laplacian.

In the following, we assume that, for a given P,, € im 15,
the equilibrium manifold [6*] ¢ A(7/2) exists, or equiva-
lently, there exists an equilibrium 6* € A(7/2) such that (26)
holds. Linearizing (21) around this equilibrium, we have
(6*)x =

Mx + Dx — (32)

05
where (0W/06) is the Jacobian defined as in (28), and
x € R" represents the vector of small-signal deviations of the
generator phase angles from the equilibrium 6*. Note that

Y (1ot, (57),.... 1ot (57))

oW (5%
(6%) =55
holds for any s € [0, 277]. This means that we obtain the same
linearized Kron-reduced model (32) around any point on
the equilibrium manifold [*].

Because —d¥/05(5%) isa weighted graph Laplacian, we
see that (32) represents a second-order consensus dynamics
such that x(t) converges to zero and x(t) converges to X 1,
as t = 00. The consensus value is calculated as

_ 2izdixi(0) +Z 1Mx(0)

xsync - d
1

(33)

This is derived as follows. The linearized Kron-reduced
model (32) can be written as the first-order form
0 I,

[fc]: M‘l%(é*) _M~'p HE

Because ﬂId‘I’/d(S(é*) = 0, we see that

(17D M%) =0
ie., ﬂIDx + HIMX is constant. Therefore, we have
1y Dy Xgpne = 1, Dx(0) + 1, Mx(0)

which leads to (33); see [34] for convergence rate analysis
for a second-order consensus dynamics. This linearized dif-
ferential equation model can be used to investigate the syn-
chronization of generators for small-signal disturbances.
However, the behavior of bus voltage variables, i.e., (Vg, 6g)
and (Vg, 6g), is not easy to analyze by this model as the
notion of a bus by itself is lost through the Kron reduc-
tion. Therefore, in Section IV-B, we consider deriving a
linearized differential-algebraic equation model from
(16a)—(16b) that explicitly contains the network structure
including all buses.

B. Differential-Algebraic Equation Form

Recall the DAE model (16a)-(16b) that consists of swing
equations as well as the algebraic power flow equations. For
a stable equilibrium 6* € A(7/2) such that (26) holds, let
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(VE , 95 ) and (Vé , 95 ) be the compatible equilibria for the
bus voltage variables such that (22a)-(22b) holds.

Let z; € R?" be the vector of small-signal deviations of
the bus voltage variables from (Vé s 65 ) ,and zy € R" be the
same from (Vé s 95 ) We next linearize the nonlinear DAE
model (16a)—(16b) around these equilibria. Introducing the
coefficient vectors

—Vl-* sin 67 ]
V¥ cos 9,—*]

qiT = [cos Gi* (34)
ql = [sin o
we obtain the system of the linear differential equations

M+ Dk +Kx+Fz =0 (35a)

and the linear algebraic equations

o o2zl - 2

where the system matrices are given by

(35b)

K:=Lp diag(EoVE ocos(é* - 05))
_ [—LD diag(E o sin 5*)]

(36)
Lp diag(E o cos 8%)

F := Ly diag([E osin(6* - 65) —E oV} ocos(s* - 68)])

and the bus network structure is reflected in

_ [(Lp + L) diag (q z)zeg]
Qu:=
(LD + Lll) dlag( 1)le§
_ L12 dlag ( q: >1€g
Q2 :=
| L1, diag (a/ )
_ _L{Z diag (qj)leg
Que=| o
_L12 dlag (ql )leg
_ 15, diag (q]) e
Q= ) L
_L22 dlag ( qi )1Eg_

In this linearized model, the generator angle equilibrium 5*
as well as the bus voltage equilibria (Vé , 95 ) and (Vé , 95 )
are reflected as parameters. However, recall that the bus
voltage equilibria are implicit functions of the generator
angle equilibrium as shown in (22a)-(22b). This means
that (V’g( s 95 ), and (Vé s eig) are not independent param-
eters. Thus, unless one explicitly uses this relation between
5*, (VE ,95), and (Vé ,65), the linearized DAE model
(35a)—(35b) cannot be identified with the linearized
Kron-reduced model (32) properly. In the following,
we show this identity introducing a particular basis
transformation, which makes it easier to utilize the relation
in (22a)-(22b).

C. Commutativity of Kron Reduction and Linearization

In this section, we show that a Kron-reduced version
of the linearized DAE model coincides with the linearized
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version of the nonlinear Kron-reduced model, i.e., the Kron
reduction and the linearization are commutative. This com-
mutative property has not been reported in the literature, to
the best of the authors’ knowledge. To this end, we first con-
sider transforming the linearized DAE model (35a)-(35b)
into a tractable form, because (35a)-(35b) involves the
equilibria of generator states and bus voltage variables in
a complicated fashion. Let us denote the Moore—Penrose
pseudoinverses of the coefficient vectors in (34) by

cos Oi* sin 6;*

1 1

Note that these vectors satisfy q;q{ + Giq] = I,. Then, with
the transformation matrices

Hg = [diag(qi)icg  diag(qi)icg]
Hg = [diag(qicg  diag(qy)icg]
we consider the basis transformation
(37)

z1=Hg§, z=Hg{H

where & € R*" and & € R?™ denote the bus voltage variables
in the transformed coordinates. Owing to this basis trans-
formation, the algebraic equation in (35a)—(35b) can also be
simplified. For example

Quzr= (L ®(Lp + L)) G

where the right-hand side is composed only of Ly and Ly;.
Furthermore, we see that FH; = —BT, which simplifies the
system representation in the sense that F H; is dependent on
all equilibria 6%, (V§, 63), and (Vg 65), while B is depend-
ent on only &*.

Based on this basis transformation, the linear differen-
tial equation (35a) can be written as

Ms+Dx+Kx-BTg5=0 (38a)

and the linear algebraic equation (35b) is written as

Le(Lp+Ly) L® le] [g’l] _ [B]x (38b)
12 ® Lirz 12 [ L22 §2 oI~

In this representation, we see that K is dependent on the
equilibria 6* and (V3, 65), B is dependent on just §*, while
the other matrices are independent of them. Furthermore,
the equilibrium of nongenerator bus voltage variables i.e.,
(V%, 65), no longer appear in the model.

We next apply the Kron reduction to this system by solving
the algebraic equations in (38a)—(38b). Note that the realiza-
tion of the static (algebraic) system in (38a)-(38b) is made sym-
metric owing to the basis transformation in (37). This enables
systematic analysis of its Kron-reduced model as follows. Using

—diag(Eosin 6*)
diag(Eocos §*)
we have the Kron-reduced model

Mx+Di+(K-G)x=0 (39)

where G is a positive—definite matrix given by

Ip+Ly Lpl™t
Gz TT<IZ®[LD O][ D+t 12] [LD]>T. (40)
L1y Ly 0

Note that the positive definiteness of G is made clear owing
to the symmetric realization of the static system in (38a)-
(38b). Loosely speaking, we can say from this formula that
the feedback effect of the static system, composed of the bus
network structure, works to decrease the positive definite-
ness of the coupling matrix among generators. Furthermore,
to identify (39) with (32), it suffices to show the identity

-9 (5% = k(") - 66" (1)
where K and G are regarded as functions of §". In fact, we
can verify this identity using the relation of (22b), which
works to rewrite the term

Vg ocos(6* — 65) = cos 8 o Viocos 8 + sin ™ oV osin 6]

involved in K of (36). The weighted graph Laplacian given as
the Jacobian 0¥/d6 in (28) can be now represented as the
difference of the positive diagonal matrix K and the positive—
definite matrix G. This can be understood as the commuta-
tive property of the Kron reduction and the linearization.

D. Section Summary

In Section IV-A, we derived a linearized differential equa-
tion model by linearizing the Kron-reduced model in Section
I1I-B. The linearized Kron-reduced model has a second-order
consensus dynamics whose coupling matrix is given as the Jac-
obian in Section III-C with a weighted graph Laplacian struc-
ture. In Section IV-B, we applied linearization directly to the
DAE model from Section III-A that contains the bus network
structure. The resulting model involves the equilibria of gen-
erator states and bus voltage variables in a complicated fash-
ion, which is then transformed into a tractable form in Section
IV-C. This transformation makes it easier to verify that the
Kron-reduced version of the linearized DAE model coincides
with the linearized version of the nonlinear Kron-reduced
model. In other words, the Kron reduction and the lineariza-
tion are commutative. Generalization of this result to more
complicated power network models such as models involving
excitation dynamics of the generators (see Section VI) will be
an interesting direction for future work.

V. DYNAMICAL PHASE SYNCHRONIZATION
ANALYSIS

A. Dynamical Synchronism of Generators
and Generator Buses

In this section, we analyze the dynamical behavior of the
nonlinear DAE model (16a)-(16b) based on its linearized
DAE model (38a)—-(38b). In particular, characterizing its
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Fig. 10. Initial value response of the simplified linear model (42a)-(42b). The system parameters are set as X =X,=0.1,),=0.1,% =0.05
Xis=Hp5=0-2 1 =1, }, . =0.L, % =0.5M =M;=1,d;=d;=0.2,M3=2, M, = 3,d3=0.1,and d; = 0.2. The initial condition is set as

x(0) = (- 0.06,0.19,0.06,0.25) and x(0) = O.

dynamic synchronism based on the notion of graph sym-
metry, we develop an aggregation method for (16a)-(16b)
while preserving generator as well as the bus network struc-
tures. To the best of the authors’ knowledge, this aggregation
method has not yet been reported in the literature.

In the following, we suppose that E; = 1 for all i € G and
the steady state of (16a)—(16b) achieves the phase synchro-
nization of 6* = 0, which implies P,, = 0. These assumptions
are only made hypothetically to simply the derivations; nei-
ther of them is essential in the subsequent discussion. For
small-signal models, P,, = 0 is a standard assumption [23].
Based on this premise, we can further simplify the linearized
DAE model (38a)-(38b) as

M3+ Dk +Kx—-Lpg=0 (42a)
with the simplified algebraic equation
Ip+L L
i Lo\fa] [l
Lyp Ly [ 0

This simplification is made possible because the upper
and lower half components of B in (36) become 0 and Lp,
respectively, which implies that the bus voltage variables
& eR"and & e R" coincide with the lower half components
of § eR?"and & € R?", and their upper half components are
identically zero. Furthermore, because G in (40) is reduced
to I'in (20) and K — G is a weighted graph Laplacian, we
see that K = diag(/1,). Thus, the Kron-reduced model of
(42a)—(42b) is written as

M + Dx + (diag(L'1,,) — I')x = 0. 43)
As discussed in Section IV-A, the generator state x(t) con-
verges to Xenc 1, as t — 00 for Xy in (33). In addition, the
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generator bus voltage variable &(t) also converges to the
same value because of

() =Xx(t), vt=0 (44)
where X in (18) satisfies X1, = 1,. This property of X is
proven by

1,7
(Lp+ Ly = L L33 LH)1, = Lp 1,

which comes from the fact that the Schur complement of
the weighted graph Laplacian L in (13) is again a weighted
graph Laplacian. In particular, because L 1,47 = 0 is equiva-
lent to

Lnﬂn'i'leT]ﬁ:O, L-lrzﬂn'i'Lzzﬂﬁ:O

we can see that (Lu - L L2_21L-1rz) 1,=0.

To numerically observe the behavior of the simplified
linear DAE model (42a)-(42b), we revisit the power net-
work example in Fig. 6. In particular, we consider a situation
where generators 1 and 2 in area 1 have the same physical
parameters, i.e., M; = M, and d; = d;. A similar symmetry
is supposed to be inherent in the bus network of area 1, i.e.,
71 = 12 and y15 = zps. In this situation, generators 1 and 2
as well as buses 1 and 2 show some dynamically cohesive
and synchronized behavior as can be anticipated from the
symmetry (homogeneity) of interaction and the similarity
of their physical parameters. In fact, as shown in Fig 10,
which shows an initial value response of (42a)-(42b), the
disagreement between x; and x; and that between &; and
&>, denoting the first and second elements of &, decrease as
time goes to infinity, while the disagreement between x5 and
x4 and that between &3 and &4 do not. Furthermore, their
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trajectories synchronize even when the system still shows
transient behavior. In the following, we analyze this dynam-
ical synchronization of generator states and generator bus
voltage variables from a viewpoint of graph symmetry.

B. Analysis Based on Graph Symmetry
Let us denote the subspace of the synchronism between
the ith and jth elements of the small-signal state vector x(t) by

Xj:= {xeR":x = x}.

] 45)

Then, for the simplified linear DAE model (42a)-(42b), we
say that the ith and jth generators are dynamically synchro-
nized if

x(t) € &y, (46)
for any initial conditions x(0) € &j;and x(0) € Xj;. Note that
(45) is equivalent to

vt>0

x;(t) =x;(t), vt=0.

In a similar manner, we say that the ith and jth generator
buses are dynamically synchronized if

ek, vi20 @)
for any x(0) € X} and %(0) € Aj;. Note that the initial con-
dition & (0) of the bus voltage variables is uniquely deter-
mined by the generator state initial condition x(0) due to
the relation in (44).

To characterize this dynamical synchronism in an alge-
braic manner, we define a set of symmetrical matrices with
respect to the permutation of the ith and jth columns and

rows by

Sij:= {AeR™": AL = LA} (48)
where II; denotes the permutation matrix exchanging the
ith and jth elements. Note that §j is not the set of usual
symmetric (Hermitian) matrices; the condition in (48)
represents the invariance with respect to the permutation
of the ith and jth columns and rows, i.e., H;AIYU- = A. For
example, we see that the weighted graph Laplacian L in (14)
of the bus network in Fig. 6 belongs to Sy if and only if
15 = 225, which corresponds to the symmetry of buses 1
and 2. This type of graph symmetry is called graph automor-
phism in graph theory [35], [36].

Let us first consider characterizing the dynamical syn-
chronism of generator states based on the Kron-reduced
model (43). When M € Sj;, meaning M; = M, it follows that
the ith and jth generators are dynamically synchronized, i.e.,
(46) holds, if and only if the damping matrix D belongs to
Sjj i-e., d; = d;, and the coupling matrix diag(I"1,) — Ialso

]
belongs to S;;, i.e.,

Yi=Yi Ye="Ye YReG\{ij}

Note that the relation between the diagonal entries ¥, and .
cannot be deduced from this analysis of generator state syn-
chronism, but it can only be deduced from the analysis of the
synchronism for the bus voltage variables. In fact, using the
relation I' = LpX and that in (44), it can be shown that
the ith and jth generators as well as the ith and jth bus volt-
age variables are dynamically synchronized, i.e., both (46)
and (47) hold, if and only if I"€ ;. Furthermore, I'€ Sj; is
shown to be equivalent to

LpeS;, Lu-Lplplhed;. (49)
Note that the right condition in (49), which represents
the symmetry of a bus network in which the nongenerator
buses are Kron reduced, is implied by L € S;; for (i,j) € G X G.
This represents the symmetry of the whole bus network
with respect to the ith and jth generator buses. In conclu-
sion, we see that the symmetry (graph automorphism) of
bus networks algebraically characterizes the dynamical syn-
chronism of generator states and the generator bus voltage
variables.

C. Application to Generator and Generator Bus
Aggregation

Based on the foregoing analysis, we next address the
topic of aggregation in power systems. Aggregation, in fact,
is a very popular concept for power system models. Given
the large size and extraordinary complexity of any real-
istic power system, deriving and simulating the dynamic
model for an entire network such as (42a)-(42b) becomes
extremely challenging. Constructing approximate, aggre-
gated, reduced-order models using simplifying assumptions,
therefore, becomes almost imperative in practice. The foun-
dations of model aggregation were laid in the late 1970s by
Chow and Kokotovic [37], resulting in algorithms of parti-
tioning a power network into dynamic aggregates, where
each aggregate consists of a group of strongly connected
generators that synchronize over a fast time scale and, there-
after, act as a single entity, while the aggregates themselves
are weakly connected to each other, and synchronize over a
slower time scale. Their approach was complimented by
alternative techniques such as in [38]-[40].

However, these conventional aggregation methods apply
aggregation directly on the Kron-reduced model. Very little
insights are available currently in understanding how not
only generators but also buses can be aggregated so that the
reduced-order model retains the concept of a bus. This, in
turn, may be necessary for designing shunt controllers that
are entirely dependent on the “bus” concept [41].

In this section, we address this problem by deriving a
dynamic equivalent model for (42a)-(42b) where aggrega-
tion is performed on both generator states and the genera-
tor bus voltage variables. In particular, we take an approach
based on network clustering. Several clustering algorithms
have been reported in recent papers such as [42]-[44].
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The results presented here follow the clustering-based
model reduction methods developed in, e.g., [45]-[48],
which are based on similarity of state trajectories, almost
equitable partition of graphs, and passivity of subsystems.
We introduce the notion of network clustering as fol-
lows. Let G:= {1,...,ii} denote an index set such that #i < n.
A family of index sets, denoted by {7} },cz, is called a cluster
set if each element 7j, called a cluster, is a disjoint subset of
G and it satisfies Ui Z) = G. Furthermore, an aggregation
matrix compatible with {7; };¢; is defined by
P:=[e iy °5 5] € R, (50)
For example, when we consider aggregating the genera-
tors and their buses in area 1 of Fig. 6, the cluster set is con-
structed as
51=1{12}, ,={3}, I3={4} (Sla)
for which G = {1,2,3}. In a similar way, when aggregating
the generators in both areas 1 and 2, it is constructed as

7, =1{1,2}, 17,=1{3,4} (51b)

for which G = {1,2}. The corresponding aggregation matri-
ces are given as

0 o0
- 0 o0 -
b= 1 of F7
0o 1

[eNeN I
[eNeN I
== OO

for (51a) and (51b), respectively.

As seen from the structure of P in (50), the aggrega-
tion and the average of a vector v € R" can be represented,
respectively, as the fi-dimensional vectors of

9:=PTy, ave(v):=Ply

where P denotes the Moore—Penrose pseudoinverse
of P. Note that the Ith element of { is given as ez v;.
Furthermore, the Ithelement ofave(v)isgivenas ). ier, vi/ |-
This is because

-1
P =(PTP)" PT, PTP=diag(|Ti|)icz-

Based on these relations, we introduce the aggregated coef-
ficient matrices

A

M:=P"MP, D:=P"DP, K:=P'KP

and the aggregated reactance matrices

Ly ilz]: [PTLHP PTle]

AT ~ L;l|—2p

Ip:=PTLpP, [
12 Lo

Ly

Using these matrices, we define an aggregated DAE model
of (42a)-(42b) by the fi-dimensional differential equation

ME+Dx+Rx-Ip& =0 (52a)
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and the (7l + 7)-dimensional algebraic equation

[i'D +1y 1:12] [?31] _ [ED])AC
L] [& 0

AT
L1
whose initial condition is given as

(52b)

£(0) = ave(x(0)), %(0) = ave(x(0))

i.e., the average of the original initial condition. This initial
condition satisfies x(0) = P£(0) and x(0) = P%(0) if and only
if x(0) and x(0) lie in the image of P.

Note that the aggregated network (with buses) is repre-

. Ly L
Lip Ly

which is shown to be a weighted graph Laplacian owing to
1, = P1;. A similar projection-based approach for preserv-
ing the Laplacian structure of matrices was recently shown
in [49]. Furthermore, Ly and I4; are, again, positive diagonal
matrices. The preservation of these particular structures can
be interpreted as the preservation of physical properties stem-
ming from Kirchhoff’s current law as shown in Section III-A.
In fact, the aggregated DAE model (52a)-(52b) can be iden-
tified with a linearized and simplified model of the aggre-
gated nonlinear DAE model defined as

sented by the matrix

$6 + D5 =B, — Lpf o Vg osin(8 — bp) (53a)
with the aggregated algebraic equation
[ED ‘*'Ttu Lo | [Vgocosbg ] _ [I:D]:J 0C0sé
L1y IA,ZZ VgocosOg 0 (53b)

[I:D +1y Ly
~ T ~
L Ly

Vgosindg | _ [iDE osind
Vg osin ég 0

where § denotes the aggregated generator state, (\7@, 9@)
and (\7@ , 9@) denote the aggregated generator and the aggre-
gated nongenerator bus voltage variables, and P,, and E are
given as PTP,, and ave(E), respectively. The aggregated DAE
model of the power network example in Fig. 6 is depicted in
Fig. 11, where (a) and (b) correspond to the cluster sets in
(51a) and (51b), respectively.

To discuss the dynamical behavior of the aggregated
DAE model, let us next define the subspace of synchronism
for clusters as

Xcl : (54)

=N N Xij

leG (L)t
where X is defined as in (45). Note that X is identical to
im P. Furthermore, we define a set of symmetrical matrices
corresponding to X as

Sd:: ﬂ

n S;. 55
1eG (L)eGixG ! (55)

If all the generators are identical, i.e.,
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(a)

Area 1 (aggregated)

X1 =Xx1+ X2
Agg Bus 1

(b)

Area 1 (aggregated)

Area 2

Va E,

X25 = X36

X35 = X46

XS/L = X56

Bus 3

Bus 4

Fig. 11. (a) Aggregated model of the power network example in Fig. 6, compatible with the cluster set in (51a). The impedances satisfy 1//1 =
1/ +1/22,1/ B3 = 1/ Xy5 + 1/ Xas, 1/ 46 = 1/ ¥56, 1/ X 55 = 1/ 136, 1/ X35 = 1/ Xa6, 1/ X2 = 1/ 73, and 1/ 73 = 1/ Za. (b) Aggregated model of the power
network example, compatible the cluster set in (51b). The impedances satisfy 1//1 = 1//1 + 1/X2, 1/ %12 = 1/ 215 + 1/ X25,1/ a6 = 1/ V56, 1/ F2a =

1/736 +1/%a6,and 1/ 72 = 1/73 + 1/ /a.

Me Scl 5 De Scl (56)
meaning that M; = M and d; = d; for all (i,j) € Z; x Z; and
le§, and if
LpeSa, Lu-LplzLl eSq (57)
which represents network symmetry compatible with (49),
then the simplified linear DAE model (42a)-(42b) and its
aggregated DAE model (52a)—(52b) satisfy
x(t) = P(t),

(1) =P& (1), vt>0 (58a)

for any initial conditions x(0) € &;; and x(0) € &, and, at
the same time, they satisfy
X(t) = ave(x(t)),

&i(t) =ave(q (1), vt=0 (58b)

for any x(0) € R" and x(0) € R". In particular, (57) is equiv-
alent to (58a)—(58b) provided that |Z;| < 2 for all | € G
A similar result for systems defined by ordinary differential
equations is shown in [50, Th. 4].

We numerically verify the behavior of the aggregated
DAE model (52a)—(52b), and compare it with the behavior of

the simplified linear DAE model (42a)-(42b). Fig. 12 shows
the initial value responses of (42a)-(42b) and (52a)-(52b)
when we construct the cluster set as in (51a) following the
network structure shown in Fig. 11(a). Because the system
parameters (listed in the caption of Fig. 10) actually satisfy
the conditions (56) and (57), the behavior of the generator
states and generator bus voltage variables of the aggregated
DAE model can properly capture the average behavior of
those for the original model.

Next, we show the behavior of (52a)-(52b) when we
construct the cluster set as in (51b) following the network
structure shown in Fig. 11(b). The initial value response is
plotted in Fig. 13(a). Only the generator state trajectories
are plotted because a similar trend can be observed for the
generator bus voltage variables. From this figure, we see that
not only the generator state trajectories of area 2, but also
those of area 1 are not properly captured by their aggregated
state trajectories. This is because, even though the genera-
tor states of area 1 can be aggregated by virtue of their sym-
metry, they are dynamically affected by the feedback effect
of aggregation error from area 2. It can also be seen that a
steady-state error is caused for the generator states in both
areas. The reason of this steady-state error can be seen as
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Generator states (only Area 1 aggregated)
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(gl 4
<
(0] =
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Time

Generator bus variables (only Area 1 aggregated)
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35 &
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Area 2

Fig. 12. Initial value responses of the simplified linear model (42a)-(42b) and its aggregated model (52a)-(52b) compatible with the cluster
set in (51a). The system parameters and initial condition are the same as those in Fig. 10.

follows. The steady-state (consensus) value of the aggre-
gated DAE model, denoted by %, can be calculated similar
to (33). Therefore, xg = %( holds for any x(0) and %(0) if and
only if (56) holds. In this case, however, the system param-
eters listed in the caption of Fig. 10 do not satisfy (56) for the
cluster set in (51b) because M3 # M, and d3 # dy4. As shown
in Fig. 13(b), the steady-state error vanishes if M3 = M4 and
d3 = d4. However, the transient-state error still remains due
to the asymmetry of the bus network of area 2.

As observed from this example, it is crucial to carefully
select a cluster set to reduce transient error between the
states of the original and aggregated DAE models. Further-
more, it is worthwhile to investigate a quantitative relation
between the degree of asymmetry in the network graph and
the amount of resultant transient-state error. A possible
approach to such quantitative error analysis is provided in
[45] and [46] from the perspective of control theory.

D. Section Summary

In Section V-A, we verified via simulations that the lin-
earized swing model shows dynamically cohesive and syn-
chronized behavior in both generator states and generator bus
voltage variables if a certain symmetry is inherent in the net-
work structure and physical parameters of the original DAE
model. This can be seen as generalization of results in [50] for
ordinary differential equations to those for DAEs describing a
linearized power system model, which has not been reported
in the literature. In Section V-B, we characterized this
dynamic synchronism using the notion of graph symmetry
defined as graph automorphism. In Section V-C, we applied
this characterization to the aggregation of generator states
as well as the bus voltage variables based on network cluster-
ing. It is seen that the resultant aggregated DAE model is also
characterized by a weighted graph Laplacian structure associ-
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ated with an aggregated bus network. The preservation of this
structure enables us to interpret the aggregated DAE model as
an equivalent power system where the network variables obey
Kirchhoff’s laws. This aggregation method with preservation
of a bus network structure is a novel contribution, though sev-
eral model reduction methods based on network clustering
have been developed [42]-[48].

VI. STRUCTURE-BASED POWER SYSTEM
CONTROL

Not only for modeling and stability analysis, graph theory
has also recently emerged as an enabling tool for designing
closed-loop controllers for power systems. While simple
second-order models such as (7) suffice for analysis, more
detailed models of generators must be considered for con-
trol design. A commonly used model for this purpose is the
flux-decay model whose dynamics can be written as [23]

=0 (59)
IVIE .
Mo = Py = do— " =sin(6 — 2V)
VIP1 1y
+ T(){—ld - x—q)sm(ZJ— 22V) (60)
e 25+ (5 et
+ Vi ©D)
bt BV
+1Q_ x/d Sln(a_é )
\4§

: (x—ld - xlq>sin(25— 22V)
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Fig. 13. (a) Generator and aggregated generator states in the case of the same parameters as those in Figs. 10 and 12, i.e., M3 # M4 and
d; # d,. (b) Generator and aggregated generator states in the case of M3 =M, =2andd;=d; =0.1.

(EIV]
+i Xy cos(6—2V)

_|V|2<sin2(i— V) N cos? (65— 4V))>

q x'q

where the first two state equations represent the swing
dynamics, the third state equation represents electromag-
netic dynamics of the generator voltage, P and Q are the
active and reactive power outputs, Vis the voltage phasor at
the generator bus, Vi is the excitor voltage, and the remain-
ing constants denote various model parameters whose defi-
nitions can be found in any standard textbook such as [23].
The generator model is coupled with the model of an exciter
consisting of an automatic voltage regulator (AVR) and a
power system stabilizer (PSS) whose combined dynamics
can be written as

teVig= —Vig + Vi + K. (|V] = |V|* = v+ u)
§=APSS§+BPSSCD> v=cpSS§+DPSSw

where the superscript * means setpoint. Again, the inter-
ested reader is referred to [23] for definitions of the state
variables and model parameters. The variable u in the com-
bined AVR/PSS model serves as a control input. Typically
this input is designed using local feedback from the genera-
tor speed o, and passing it through a lead-lag controller for
enhancing damping of the oscillations in §and w. Traditional
PSSs, however, are most effective in adding damping to the
fast oscillation modes in the system, and perform poorly in
adding damping to the slow or interarea oscillation modes [51].
If left undamped, interarea modes can result in transient
instability, as was the case for the 1996 blackout in the U.S.
west coast grid [52]. Therefore, power engineers currently
are very interested in designing supplementary controllers
on top of a nominal u by using state feedback from either all

or selected sets of other generators spread across the grid.
These types of controller are referred to as wide-area con-
trollers [53], [54]. The use of structure for designing these
controllers is explained as follows.

Let Y € ¢V denote the admittance matrix of the net-
work, where N is the total number of generator and load
buses. The power balance across the transmission lines fol-
lows from Kirchoff’s laws as

0=(YV)"o V- (P+iQ) (62)

where V, P, and Q are the stacked representations of Vj,
P, and Qy for k € {1,...,N}. From (62), V is determined
for a given P and Q. The overall dynamics of the power
system can be described by the combination of every gen-
erator model (with AVR and PSS) as described above, load
model, and power balance (62). Let the linearized model
be denoted as

X=Ax+Bu (63)

where x is the vector of all small-signal generator states, u
is the control input vector whose kth element uy, represents
the kth AVR input whose output then excites the corre-
sponding PSS. For simplicity, x is assumed to be measur-
able (although several wide-area control designs can also
be extended to output feedback). For the linearized model
(63), several papers such as [55] and [56] have posed the
wide-area control problem as a sparse optimal control prob-
lem of the form: design

u = Kx, Kes (64)

where S is a set of admissible controllers encapsulating the
structured distributed nature of the controller, to minimize

J:= /0 ®(xT (O Qx(®) + uT (£) Ru(t)) dt
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for a given positive-semidefinite martix Q and positive—
definite matrix R, subject to (63).!

The goal of (64)- (65) is to promote sparsity in K for
minimizing the density of the underlying communication
network without sacrificing closed-loop performance much.
The design in [55] and [59], for example, has sparsified K
by penalizing its l;-norm. Papers such as [60] and [61] have
proposed various projection and decomposition-based con-
trol designs by which a significant portion of the communi-
cation network admits a broadcast-type architecture instead
of peer-to-peer connectivity, thereby saving on the number
of links. The design in [56], on the other hand, has proposed
structured sparsity in light of the following general rule. Let
NG be the set of generator indices. For a natural number
L < |Ng|, consider a set of groups { G }icq1,... 1} such that G
is a subset of Ng and Uje1,. 13 G = {L,...,|Ng|}. Note that
the groups are not necessarily disjoint, namely, there may
exist a pair (,I') such that G N Gy#@. Let Kj; denote the
(i,j)-block matrix of K, and let S be the set of all K such that
Kj=0 if (i,j) ¢ G x G foralll € {1,...,L}. The problem
then is to find a wide-area controller described as (64) with
this S. The (sub)optimal set of groups { G }icq1,... 1} and the
structured feedback gain K can be constructed in different
ways depending on the exact objective of the controller. For
the purpose of interarea oscillation damping, Jain et al. [56]
have proposed the following construction. Modeling the
fault as an impulse input, let the impulse response of the
small-signal frequency of the kth generator be written as

o) = % (ansexp(2it)+ aexp (2't))

interarea modes

INg| . .
+‘=Z;fl (ﬁkieXP(Pit) + Briexp (Pi f)) . (66)

local modes

Assuming that the local modes are sufficiently damped by
PSSs as a result of which their effect dies down quickly, the
goal is to add damping to only the interarea oscillation modes.
The dominance of the interarea modes is defined based on
the magnitude of the modal coefficients ¢,;. For example,
consider a power system with four generators (namely
|[Ng| = 4), with three interarea modes (namely x = 3). Let
the residues oq1, on1, 031, 033, and oy, be classified as dom-
inant residues because they satisfy |og,;| > p, where u is a
prespecified threshold. In other words, it is assumed that
the interarea modes 4and 4, are substantially excited by the
incoming disturbance while the third interarea mode has
much poorer participation in the states. From the indices of
the dominant modes, one can construct the two sets

gl = {1’2’3}’ gZ = {354} (67)

! The choice of the objective function J depends on the goal for wide-area
control. For power oscillation damping, this function is often simply just chosen
as (65); for wide-area voltage control, it can be chosen as the setpoint regula-
tion error for the voltages at desired buses [57]; while for wide-area protec-
tion, it can be chosen as the total amount of time taken to trigger relays [58].
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Table 1 Sparsity of Wide-Area Control Versus Performance Tradeoff

Block sparsity T 5
K 32.7% 042 | 1.05%
Ko 72.7% 1.33 | 7.37%
K3 92.7% 2.68 | 9.74%

indicating that the generators in the first group participate
dominantly in 4, and those in the second group participate
dominantly in 4. This grouping information is then used
to decide the topology of communication, resulting in the
control input as

i Ky K K 0 X
uz | _ [ Kz K K3 0 X2 (68)
u3 K31 K3; K33 K3q || %3
" 0 0 Ky3 Ky L

where the nonzero gain matrices Kj; are chosen to guarantee
closed-loop stability, and a desired suboptimal performance.
In general, the rule is that the generators inside the Ith
group should communicate with each other for suppressing
the amplitude of oscillations excited by the Ith mode A;. The
third mode 23 for the above example is poorly excited, and
therefore, is ignored in the control design. Following this
procedure, the construction of S can be easily generalized
to any n-generator system.

This design method was verified in [56] using the New
England 39-bus, 10-generator power system model with
a total of 130 states. The nonlinear power system model
was excited by a three-phase fault on the line connect-
ing buses 3 and 4, cleared after 0.1 seconds at bus 3, and
after 0.15 seconds at bus 4. Based on the modal residues,
the sparse structure of the controller was decided. Three
different values of y were chosen to design three control-
lers K3, K5, and K5 with different levels of sparsity. Table 1
summarizes the results of the design, where T refers to the
computation time required to solve for K, and ¢ refers to
the ratio of the closed-loop cost J in (65) with the sparse
controller to that with the ideal LQR controller. The results
show that as high as 93% sparsity can be achieved if one
is willing to sacrifice 10% of the closed-loop performance.
Note that since the initial condition x(0) will change from
one disturbance event to another, so will the group set
{G1}ieq1,... 1} Detailed instructions on how this change can
be executed in real time following a fault, and how the
sets { G }iequ,....1} (and, therefore, the wide-area controller)
can vary drastically depending on the type and location of
faults, are described in [56].

VII. CONCLUDING REMARKS

This tutorial overviewed a list of graph-theoretic results
for modeling, stability analysis, and control of power
systems. Although our discussion in this paper is mostly
focused on transmission-level models, similar concepts
can also be applied for analyzing dynamic and algebraic
models of distribution-level power grids. Recent results



n [62], for example, have shown that Kuramoto oscil-
lator theory can also be applied for modeling of power
electronic converters that are found in abundance in
distribution grids. Therefore, a relevant future work

Ishizaki et al.: Graph-Theoretic Analysis of Power Systems

future research.

will be to extend the synchronization results and their

graph-theoretic implications overviewed in Sections
IIT and IV to such converter-interfaced power system
models. Studying the impact of renewable penetration
on the spectral properties of the graphs underlying
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