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Abstract— We study nonlinear power systems consisting of
generators, generator buses, and non-generator buses. First,
looking at a generator and its bus’ variables jointly, we
introduce a synchronization concept for a pair of such joint
generators and buses. We show that this concept is related
to graph symmetry. Next, we extend, in two ways, the syn-
chronization from a pair to a partition of all generators in
the networks and show that they are related to either graph
symmetry or equitable partitions. Finally, we show how an exact
reduced model can be obtained by aggregating the generators
and associated buses in the network when the original system
is synchronized with respect to a partition, provided that
the initial condition respects the partition. Additionally, the
aggregation-based reduced model is again a power system.

I. INTRODUCTION

A power system is a network of electrical generators,
loads, and their associated control elements. Each of these
components may be thought of as nodes of a graph, while the
transmission lines connecting them can be regarded as the
edges of the graph. The nodes are modeled by physical laws
that typically lead to a set of differential equations. These dif-
ferential equations are coupled to each other across the edges.
One question that has been of interest to power engineers
over many years is how do the graph-theoretic properties
of these types of electrical networks impact system-theoretic
properties of the grid model [1].

In this work, we study synchronization properties of power
systems (see [2] for an overview) using graph-theoretic
tools. Specifically, we show relations to graph symmetry and
equitable partitions [3], extending the work in [4] for linear
systems to nonlinear power systems. Additionally, based on
our results about synchronization, we propose a structure-
preserving, aggregation-based model order reduction frame-
work for nonlinear power systems. Further, we show that
for certain partitions this reduction is exact. In general, the
dynamics of the reduced system can be used to approximate
the dynamics of the original power system.

The motivation for model aggregation, in addition to
reducing simulation time, is the possibility to simulate or
control only a certain part of the grid, or a certain phe-
nomenon that happens only over a certain time-scale. Some
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Fig. 1. Power system consisting of generators (circles) and buses (vertical
bars), where the ith generator is only connected to the ith bus. See Table I
for the notation.

recent work on aggregation of linear network systems can
be found in [5]–[10].

In Section II, we describe the system we analyze. Next,
we introduce synchronization for a pair of generators and
prove necessary and sufficient conditions in Section III. In
Section IV, we continue in a similar way with two notions
of synchronization with respect to a partition. We discuss
aggregation-based reduction in Section V. Finally, we give a
demonstration of our results in Section VI.

II. SYSTEM DESCRIPTION

We use the power system example in Figure 1 to introduce
the type of system we analyze and to illustrate our results.
As in the example in Figure 1, we consider power systems
consisting of generators and buses, where each generator is
connected to exactly one bus and buses can be classified into
generator buses (those connected to one generator and some
buses) and non-generator buses (those connected only to
other buses). We follow the classical model of a synchronous
generator [11], which means that the generators’ voltage
amplitude is constant over time t.

Let G := {1, 2, . . . , n} and G := {n+1, n+2, . . . , n+n}
denote the label sets of generator and non-generator buses.
In the example in Figure 1, we have n = 5 and n = 2.
The vector of currents from generators to generator buses is
given as

IG(t) =
1

ı
LD (EG(t)− VG(t)) , (1)
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TABLE I
NOTATION

Symbol Description
ı imaginary unit (ı2 = −1)
R, C fields of real and complex numbers
[ai]i∈S vector (ai1 , ai2 , . . . , ain ), if S = {i1, i2, . . . , in}
diag(a) diagonal matrix with a as its diagonal
A ◦B Hadamard (element-wise) product of two matrices
1n vector of ones of length n
1 vector of ones with the length clear from context
ei the ith column of the identity matrix
eS matrix [ei1 ei2 · · · ein ], if S = {i1, i2, . . . , in}
ImA column space of matrix A ∈ Fn×m

|S| cardinality of set S
sin, cos functions applied element-wise to a vector or a matrix
G label set of generator buses
G label set of non-generator buses
EG(t) voltages of the generators at time t
Ei voltage amplitude of the ith generator
δi(t) voltage phase of the ith generator at time t
VG(t) voltages of the generator buses at time t
VG(t) voltages of the non-generator buses at time t
Vi(t) voltage amplitude of the ith bus at time t
θi(t) voltage phase of the ith bus at time t
IG(t) currents from generators to generator buses at time t
χi reactance between the ith generator and its bus
χij reactance between the ith and jth bus
LD reactance matrix, diag([χ−1

i ]
i∈G)

L weighted graph Laplacian of the reactance network
δ(t) [δi(t)]i∈G
M diagonal matrix of inertias Mi of the generators
D diagonal matrix of dissipativies Di of the generators
f vector of powers fi to the generators
X (LD + L11 − L12L

−1
22 L

T
12)
−1
LD

Γ LD(LD + L11 − L12L
−1
22 L

T
12)
−1
LD

γij [Γ]−1
ij

E [Ei]i∈G
VG(t) [Vi(t)]i∈G
θG(t) [θi(t)]i∈G
Xij subspace of synchronism {x ∈ Rn : xi = xj}
Sij set of symmetrical matrices {A ∈ Rn×n : AΠij = ΠijA}
Xcl

⋂
`∈Ĝ

⋂
i,j∈I` Xij

Scl
⋂

`∈Ĝ
⋂

i,j∈I` Sij

where the vectors of voltages of generators and generator
buses are denoted as

EG(t) := [Ei(cos δi(t) + ı sin δi(t))]i∈G ∈ Cn,
VG(t) := [Vi(t)(cos θi(t) + ı sin θi(t))]i∈G ∈ Cn,

and LD is a positive diagonal reactance matrix given as

LD := diag
([
χ−1i

]
i∈G

)
,

where χi is the reactance between the ith generator and its
bus (see Figure 1). We assume the generator voltage ampli-
tudes Ei and reactances χi are given constants. Additionally,
we assume the line resistances to be negligible.

The relation between the currents and voltages is given as[
IG(t)

0

]
=

1

ı

[
L11 L12

LT
12 L22

] [
VG(t)
VG(t)

]
, (2)

where the voltage vector of non-generator buses is denoted
as

VG(t) := [Vi(t)(cos θi(t) + ı sin θi(t))]i∈G ∈ Cn

and L = [Lij ] ∈ R(n+n)×(n+n) denotes the weighted graph
Laplacian of the reactance network. In particular, the (i, j)-th
element of L is −χ−1ij if the ith and jth buses are connected
(see Figure 1) and the ith diagonal element is

∑
j 6=i χ

−1
ij .

In the following, we assume that the reactance network is
connected, i.e. L is irreducible. This assumption can be made
without loss of generality because the same arguments can
be applied to each connected component. For the example
in Figure 1 with χij = 1 for all i, j, we have

L =


1 0 0 0 0 −1 0
0 1 0 0 0 −1 0
0 0 2 −1 0 0 −1
0 0 −1 2 0 0 −1
0 0 0 0 1 0 −1
−1 −1 0 0 0 3 −1
0 0 −1 −1 −1 −1 4

.
The dynamics of generators is given by

Mδ̈(t) +Dδ̇(t) = f −
[
EiVi(t)

χi
sin(δi(t)− θi(t))

]
i∈G

,

(3a)

with voltage phases δ(t) := [δi(t)]i∈G , inertia constants
M := diag

(
[Mi]i∈G

)
, Mi > 0, damping constants D :=

diag
(
[Di]i∈G

)
, Di ≥ 0, and input powers f ∈ Rn [11].

Eliminating IG(t) from (1) and (2), we obtain[
LD (EG(t)− VG(t))

0

]
=

[
L11 L12

LT
12 L22

] [
VG(t)
VG(t)

]
, (3b)

The set of equations (3) forms a differential-algebraic system.
We can remove the algebraic constraints to find an equivalent
set of differential equations using Kron reduction [12]. First,
from (3b), we find

VG(t) = −L−122 L
T
12VG(t),

VG(t) = XEG(t), (4)

where

X :=
(
LD + L11 − L12L

−1
22 L

T
12

)−1
LD. (5)

It follows that

Γ := LD

(
LD + L11 − L12L

−1
22 L

T
12

)−1
LD = LDX

is a positive definite matrix with positive elements, since
LD + L11 − L12L

−1
22 L

T
12 is positive definite and an M -

matrix (i.e., its eigenvalues have positive real parts and its
off-diagonal elements are nonpositive, which implies that the
elements of its inverse are positive). We denote its elements
by γ−1ij := [Γ]ij . Then, multiplying (4) from the left by LD,
we find [

Vi(t)

χi
cos θi(t)

]
i∈G

= Γ [Ei cos δi(t)]i∈G ,[
Vi(t)

χi
sin θi(t)

]
i∈G

= Γ [Ei sin δi(t)]i∈G ,

which together with (3a) and the trigonometric identity
sin(δi(t) − θi(t)) = sin δi(t) cos θi(t) − cos δi(t) sin θi(t)
gives us

Mδ̈(t) +Dδ̇(t)

= f −
(
diag

(
[Ei sin δi(t)]i∈G

)
Γ [Ei cos δi(t)]i∈G

− diag
(
[Ei cos δi(t)]i∈G

)
Γ [Ei sin δi(t)]i∈G

)
.
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Thus, now by using sin δi(t) cos δj(t)− cos δi(t) sin δj(t) =
sin(δi(t) − δj(t)), the Kron-reduced system of (3) is given
as

Miδ̈i(t) +Diδ̇i(t) = fi −
n∑
k=1

EiEk
γik

sin(δi(t)− δk(t)),

(6a)

with generator buses’ voltages and phases satisfying

LDVG(t) = ΓEG(t). (6b)

Denoting E := [Ei]i∈G , VG(t) := [Vi(t)]i∈G , and θG(t) :=
[θi(t)]i∈G , we can write (3a) and (6a) more compactly as

Mδ̈(t) +Dδ̇(t) = f − LD (E ◦ VG(t) ◦ sin(δ(t)− θG(t))) ,
(7)

and

Mδ̈(t) +Dδ̇(t)

= f −
(

Γ ◦ EET ◦ sin
(
δ(t)1T

n − 1nδ(t)
T
))

1n.

III. SYNCHRONIZATION OF GENERATOR PAIR

Let us denote the subspace of the synchronism between
the ith and jth elements by

Xij := {x ∈ Rn : xi = xj}.

In this notation, we introduce the following notion of syn-
chronism for the power system (3).

Definition 1. Consider the power system (3). The ith and
jth generators are said to be synchronized if

δ(t) ∈ Xij and VG(t) ∈ Xij , for all t ≥ 0

and for any initial condition δ(0), δ̇(0) ∈ Xij .

To characterize this generator synchronism in an algebraic
manner, let us define a set of symmetrical matrices with
respect to the permutation of the ith and jth columns and
rows by

Sij := {A ∈ Rn×n : AΠij = ΠijA}, (8)

where Πij denotes the permutation matrix associated with
the ith and jth elements, i.e., all diagonal elements of Πij

other than the ith and jth elements are 1, the (i, j)-th and
(j, i)-th elements are 1, and the others are zero. Note that
Sij is not the set of usual symmetric (Hermitian) matrices;
the condition in (8) represents the invariance with respect to
the permutation of the ith and jth columns and rows, i.e.,
ΠT
ijAΠij = A. See Lemma 13 for equivalent conditions.
We state the main result about synchronization of a pair

of generators and prove it in the remainder of this Section.

Theorem 2. Consider the power system (3). The following
two statements hold.

1) Let n = 2 and M1 = M2. Then the two generators are
synchronized if and only if D1 = D2, f1 = f2, and
E1 = E2.

2) Let n ≥ 3 and M ∈ Sij . Then the ith and jth
generators are synchronized if and only if D ∈ Sij ,
f ∈ Xij , E ∈ Xij , and Γ ∈ Sij .

Remark 3. Essentially, this result shows that the ith and jth
generators are synchronized when the system equation are
invariant under swapping the ith and jth label.

We arrange the proof of Theorem 2 into a sequence of
Propositions in this Section, with some technical Lemmas in
the Appendix. We begin by analyzing the equations of the
system (3) without assumptions on n and M .

Proposition 4. The ith and jth generators are synchronized
if and only if

Di

Mi
=
Dj

Mj
, (9)

fi
Mi

=
fj
Mj

, (10)

Ei
Miγik

=
Ej

Mjγjk
, for k 6= i, j, (11)

χi
γik

=
χj
γjk

, for k 6= i, j, and (12)

χiEi
γii

+
χiEj
γij

=
χjEi
γji

+
χjEj
γjj

. (13)

Proof. The proof can be found in [13].

Let us now assume that Ei 6= Ej and see what follows
from conditions of Proposition 4. From (12) and Lemma 12,
it follows that χi

γii
+ χi

γij
=

χj
γji

+
χj
γjj

. Then, by (13) and
Ei 6= Ej , it is necessary that χi

γii
=

χj
γji

and χi
γij

=
χj
γjj

. This,
together with (12), means that the ith and jth rows in X
are equal, which is a contradiction with X being invertible.
Therefore, for ith and jth generators to be synchronized,
it is necessary that Ei = Ej . This allows us to simplify
the statement of Proposition 4. We can simplify it further by
assuming Mi = Mj , which gives us the following Corollary.

Corollary 5. Let Mi = Mj . Then the ith and jth generators
are synchronized if and only if

Di = Dj ,

fi = fj ,

Ei = Ej ,

γik = γjk, for k 6= i, j, (14)
χi
γik

=
χj
γjk

, for k 6= i, j, and (15)

χi
γii

+
χi
γij

=
χj
γji

+
χj
γjj

. (16)

In the following, we separate the n = 2 and n ≥ 3 cases.
First, we use Corollary 5 to prove part 1 of Theorem 2.

Proof of Theorem 2, part 1. This is true since (14) and (15)
are empty statements, while (16) follows immediately from
Lemma 12.

Finally, to prove part 2 of Theorem 2, we simplify the
statement of Corollary 5 for the case of n ≥ 3. This gives
us the following Corollary.
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Corollary 6. Let n ≥ 3 and Mi = Mj . Then the ith and
jth generators are synchronized if and only if

Di = Dj ,

fi = fj ,

Ei = Ej ,

γik = γjk, for k 6= i, j, (17)
χi = χj , and (18)
γii = γjj . (19)

Proof. From (14) and (15) follows (18), using that there are
at least three generators. Then, from (16), (18), and symmetry
γij = γji follows (19).

Corollary 6, together with two Lemmas in the Appendix,
allows us to complete the proof of Theorem 2.

Proof of Theorem 2, part 2. Conditions (17) and (19), by
Lemma 13, are equivalent to Γ ∈ Sij , which, by Lemma 15,
is in turn equivalent to LD ∈ Sij and L11 − L12L

−1
22 L

T
12 ∈

Sij . Therefore, (17) and (19) imply (18).

IV. SYNCHRONIZATION OF GENERATOR PARTITION

Let I = {I`}`∈Ĝ be a partition of the set G, where Ĝ =
{1, 2, . . . , n̂} and n̂ ≤ n. In particular, the clusters I` satisfy

1) I` 6= ∅, for all ` ∈ Ĝ,
2) I`1 ∩I`2 = ∅, for all `1, `2 ∈ Ĝ such that `1 6= `2, and
3)
⋃
`∈Ĝ I` = G.

Let us denote

Xcl :=
⋂
`∈Ĝ

⋂
i,j∈I`

Xij , Scl :=
⋂
`∈Ĝ

⋂
i,j∈I`

Sij .

We define the aggregation matrix as

P =
[
eI11|I1| eI21|I2| · · · eIn̂1|In̂|

]
∈ Rn×n̂.

Notice that Xcl = ImP .
We define two notions generalizing the synchronization of

two generators to a partition of generators.

Definition 7. The system (3) is said to be strongly syn-
chronized with respect to partition I if the ith and jth
generators are synchronized for all i, j ∈ I` and all ` ∈ Ĝ,
i.e. δ(t) ∈ Xij and VG(t) ∈ Xij for all t ≥ 0 and for any
δ(0), δ̇(0) ∈ Xij , i, j ∈ I`, and ` ∈ Ĝ.

The system (3) is said to be weakly synchronized with
respect to partition I if, for arbitrary δ(0), δ̇(0) ∈ Xcl, there
exist functions δ̂ : [0,∞)→ Rn̂ and V̂Ĝ : [0,∞)→ Cn̂ such
that δ(t) = P δ̂(t) and VG(t) = P V̂Ĝ(t), i.e. δ(t) ∈ Xcl and
VG(t) ∈ Xcl for all t ≥ 0 and for any δ(0), δ̇(0) ∈ Xcl.

Remark 8. Notice that strong synchronization is equivalent
to Xij × Xij × Xij being an invariant set for (δ, δ̇, V̂Ĝ) for
any i, j ∈ I` and ` ∈ Ĝ, while weak synchronization is
equivalent to an invariant set being Xcl × Xcl × Xcl. This
means that, if the power system is strongly synchronized,
when two generators and their buses in the same cluster have
equal state, they will remain equal. If the power system is
weakly synchronized, then when the states of every generator

and its bus are equal to all others in the same cluster, they
will stay equal. From this, we see that that if the system (3)
is strongly synchronized with respect to I, then it is also
weakly synchronized with respect to I, since Xcl × Xcl ×
Xcl ⊆ Xij ×Xij ×Xij , for all i, j ∈ I` and all ` ∈ Ĝ.

Further, the ith and jth generators are synchronized if and
only if (3) is either strongly or weakly synchronized with
respect to {{i, j}} ∪ {{k} : k 6= i, j}.

Finally, notice that (3) is always both strongly and weakly
synchronized with respect to {{i} : i ∈ G}.

In the following, we show necessary and sufficient condi-
tions for the two synchronization notions. To start, in the next
Proposition, we present cases when the structure of Γ has no
influence. It also illustrates the relation between strong and
weak synchronization.

Proposition 9. Let I = {G}, M,D ∈ Scl, and f,E ∈ Xcl.
Then the system (3) is weakly synchronized with respect
to {G}. If additionally n = 2, then (3) is also strongly
synchronized with respect to {G}.

Proof. From the assumptions, it follows that M = m̂I , D =
d̂I , f = f̂1, and E = Ê1, for some m̂ > 0, d̂ ≥ 0, and
f̂ , Ê ∈ R. Notice that for I = {G}, we have P = 1.

Let us assume that δ(0), δ̇(0) ∈ Im1. To prove weak
synchronization, we need to show that δ(t) ∈ Im1 and
VG(t) ∈ Im1. For the former, it is enough to show that
δ̈(t) ∈ Im1 if δ(t), δ̇(t) ∈ Im1, which is clear, since
then δ̈(t) = −M−1Dδ̇(t) + M−1f = − d̂

m̂ δ̇(t) + f̂
m̂1. For

the latter, we see that VG = L−1D ΓEG ∈ Im1 whenever
EG ∈ Im1, which is equivalent to δ ∈ Im1.

The second part follows from part 1 of Theorem 2.

We continue with the first main result of this Section—the
necessary and sufficient conditions for strong synchroniza-
tion. Here, symmetrical conditions for Γ are relevant.

Theorem 10. Let n ≥ 3, I arbitrary, and M ∈ Scl. Then
the system (3) is strongly synchronized with respect to I if
and only if D ∈ Scl, f ∈ Xcl, E ∈ Xcl, and Γ ∈ Scl.

Proof. It follows from applying part 2 of Theorem 2 for
every ith and jth generator where i, j ∈ I` and ` ∈ Ĝ.

We conclude this Section with the second main result—the
necessary and sufficient conditions for weak synchronization.
Instead of symmetrical conditions, Xcl being Γ-invariant is
one of the conditions. Since Xcl = ImP , this actually means
that I is an equitable partition for a graph whose adjacency
matrix is Γ [14].

Theorem 11. Let |I| ≥ 2, M,D ∈ Scl, and f,E ∈ Xcl.
Then the system (3) is weakly synchronized with respect to
I if and only if

LD ∈ Scl and Xcl is Γ-invariant. (20)

Proof. The proof can be found in [13].
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V. AGGREGATION OF POWER SYSTEMS

Let us assume that the system (3) is weakly synchronized
with respect to a partition I. Let also the initial condition
satisfy δ(0), δ̇(0) ∈ Xcl. Then there exist δ̂ and V̂Ĝ such that
δ(t) = P δ̂(t) and VG(t) = P V̂Ĝ(t), which also gives us
VG(t) = PV̂Ĝ(t) and θG(t) = P θ̂Ĝ(t). Inserting this into (3)
with dynamics rewritten as in (7), we find

MP
¨̂
δ(t) +DP

˙̂
δ(t)

= f − LD

(
E ◦ PV̂Ĝ(t) ◦ sin

(
P δ̂(t)− P θ̂Ĝ(t)

))
,[

LD

(
EG(t)− P V̂Ĝ(t)

)
0

]
=

[
L11 L12

LT
12 L22

] [
P V̂Ĝ(t)
VG(t)

]
.

Assuming additionally that E ∈ Xcl, i.e. E = PÊ for some
Ê ∈ Rn̂, and pre-multiplying the above dynamics and first
block-row of the constraint by PT, we obtain

M̂
¨̂
δ(t) + D̂

˙̂
δ(t)

= f̂ − L̂D

(
Ê ◦ V̂Ĝ(t) ◦ sin

(
δ̂(t)− θ̂Ĝ(t)

))
,

(21a)

[
L̂D

(
ÊĜ(t)− V̂Ĝ(t)

)
0

]
=

[
L̂11 L̂12

L̂T
12 L22

] [
V̂Ĝ(t)
VG(t)

]
, (21b)

where M̂ = PTMP , D̂ = PTDP , f̂ = PTf , L̂D =
PTLDP , L̂11 = PTL11P , L̂12 = PTL12. Moreover, from
δ(t) = P δ̂(t) follows that δ̂(0) = (PTP )

−1
PTδ(0) and

˙̂
δ(0) = (PTP )

−1
PTδ̇(0).

Notice that the reduced model (21) is again a power system
of the same form as (3). In particular, we have that M̂ , D̂,
and L̂D are positive definite diagonal matrices and that L̂ is
a Laplacian matrix. Additionally, note that this projection-
based reduction can be done for arbitrary power system
and arbitrary partition. In general, we can take (21) with
δ̂(0) = (PTP )

−1
PTδ(0), ˙̂

δ(0) = (PTP )
−1
PTδ̇(0), and

Ê = (PTP )
−1
PTE. We can also apply Kron reduction to

this reduced model.

VI. ILLUSTRATIVE EXAMPLE

For the example in Figure 1, let χi = 1 and χij = 1 for
all i, j. Then we have

Γ =
1

32

[
21 5 2 2 2
5 21 2 2 2
2 2 16 8 4
2 2 8 16 4
2 2 4 4 20

]
.

Additionally, let M = D = I5, f = 0, and E = 15. Then,
using Theorem 2, we see that the first and second generators
are synchronized, and that the same is true for the third and
fourth. By definition, this implies that the system is strongly
synchronized with respect to {{1, 2}, {3, 4}, {5}}. On the
other hand, from Theorem 11 and

Γ

[
1 0
1 0
0 1
0 1
0 1

]
=

1

16

[
13 3
13 3
2 14
2 14
2 14

]
=

[
1 0
1 0
0 1
0 1
0 1

](
1

16
[ 13 3

2 14 ]

)
,

we see that the system is weakly synchronized with respect
to {{1, 2}, {3, 4, 5}}, but not strongly. Using the partition

1

1

1

1

1

1

1

1
1

1

1

1

Fig. 2. Partition {{1, 2}, {3, 4, 5}} applied to the original power system
in Figure 1 with χi = χij = 1 for all i, j.

Ê1∠δ̂1 Ê2∠δ̂2V̂1∠θ̂1 V̂2∠θ̂2V̂3∠θ̂3 V̂4∠θ̂4
1
2

1
3

1
2

1
31

Fig. 3. Reduced power system obtained by aggregating the system in
Figure 2 with M = D = I5, f = 0, and E = 15.

I = {{1, 2}, {3, 4, 5}} for aggregation, we find the following
reduced quantities: M̂ = D̂ = [ 2 0

0 3 ], f̂ = 0, Ê = 12, L̂D =

L̂11 = [ 2 0
0 3 ], L̂12 =

[−2 0
0 −3

]
, Γ̂ = 1

8 [ 13 3
3 21 ]. The Figure 2

shows the partition and Figure 3 the associated reduced
power system. From the definition of weak synchronization,
we know that this reduced power system exactly reproduces
the initial value response of the original system for any
initial condition δ(0), δ̇(0) ∈ Xcl, taking the initial condition
of the reduced model to be δ̂(0) = (PTP )

−1
PTδ(0) and

˙̂
δ(0) = (PTP )

−1
PTδ̇(0).

To demonstrate the possibility to aggregate using any
partition, including those with respect to which the power
system is not weakly synchronized, and any initial condition,
we show simulation result for partition {{1, 2, 3}, {4, 5}}
in Figure 4. We see that, in this case, the reduced model
matches the steady state and approximates the transient be-
havior. Finding sufficient conditions for matching the steady
state and deriving error bounds is a possible topic of future
research.

VII. CONCLUSIONS

We analyzed power systems consisting of generators and
buses. We introduced a notion of synchronization for a pair of
generators and two for a partition of the set of generators. We
proved equivalent conditions depending on the Kron-reduced
system being symmetrical or equitable. This additionally
gives a relation between symmetrical matrices and equitable
partitions. We showed how a synchronized power systems
can be exactly approximated with a reduced system by aggre-
gating generators and their buses. Furthermore, this provides
an aggregation-based reduction method for arbitrary power
systems, although finding bounds for the approximation error
remains an open problem.

APPENDIX

Lemma 12. For X as in (5), we have X1 = 1.

Proof. After some algebraic manipulation, it is clear X1 =
1 is equivalent to

(
L11 − L12L

−1
22 L

T
12

)
1 = 0, which follows

from L1 = 0.
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Fig. 4. Initial value response of the original power system from
Figure 1 and a reduced system obtained by aggregating with partition
{{1, 2, 3}, {4, 5}}. Original system’s parameters are χi = χij = 1 for
all i, j, M = D = I5, f = 0, and E = 15. The initial value is
δ(0) = (0, 0.1, 0.2, 0.3, 0.4) and δ̇(0) = 0.

Lemma 13. Let A ∈ Rn×n be a symmetric matrix and i, j ∈
{1, 2, . . . , n} such that i 6= j. Then A ∈ Sij if and only if
aii = ajj and aik = ajk for all k 6= i, j.

Proof. From the definition, it can be seen that A ∈ Sij is
equivalent to aii = ajj , aij = aji, aik = ajk, and aki = akj
for all k 6= i, j. Using that A is symmetric, the conditions
of the Lemma follow.

Lemma 14. Let A,B ∈ Sij for some i, j ∈ {1, 2, . . . , n}
such that i 6= j and α, β ∈ R. Then,

1) αA+ βB ∈ Sij ,
2) AB ∈ Sij , and
3) if A is nonsingular, then A−1 ∈ Sij .

Proof. Follows directly from the definition of Sij in (8).

Lemma 15. Let i, j ∈ {1, 2, . . . , n} be such that i 6= j.
We have Γ ∈ Sij if and only if LD ∈ Sij and L11 −
L12L

−1
22 L

T
12 ∈ Sij .

Proof. ⇐ Follows from Lemma 14.
⇒ First we show that LD ∈ Sij . Using Γ = LDX ,

Πij1 = 1, and X1 = 1, from ΓΠij1 = ΠijΓ1 it follows
that LD1 = ΠijLD1. Since LD is a diagonal matrix, from
this we see that LD ∈ Sij . Now L11 − L12L

−1
22 L

T
12 ∈ Sij

follows from Lemma 14.
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