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Abstract

We engineer a GPU implementation of a B-Tree that supports
concurrent queries (point, range, and successor) and updates
(insertions and deletions). Our B-tree outperforms the state
of the art, a GPU log-structured merge tree (LSM) and a
GPU sorted array. In particular, point and range queries are
significantly faster than in a GPU LSM (the GPU LSM does
not implement successor queries). Furthermore, B-Tree in-
sertions are also faster than LSM and sorted array insertions
unless insertions come in batches of more than roughly 100k.
Because we cache the upper levels of the tree, we achieve
lookup throughput that exceeds the DRAM bandwidth of the
GPU. We demonstrate that the key limiter of performance
on a GPU is contention and describe the design choices that
allow us to achieve this high performance.

CCS Concepts « Computing methodologies — Paral-
lel algorithms; « Computer systems organization —
Single instruction, multiple data.

Keywords b-tree, dynamic, mutable, data structures, GPU

1 Introduction

The toolbox of general-purpose GPU data structures is sparse.
Particularly challenging is the development of dynamic (mu-
table) data structures that can be built, queried, and updated
on the GPU. Until recently, the prevailing approaches for
dealing with mutability have been to update the data struc-
ture on the CPU or to rebuild the entire data structure from
scratch. Neither is ideal.
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B-Tree Sorted Array LSM
Insert/Delete O(logg n) O(n) O((log n)/B) amortized
Lookup O(logg n) O(logn) O(log® n)
Count/Range O(loggn+ L/B) O(logn + L/B) O(log® n + L/B)

Table 1. Summary of the theoretical complexities for the
B-Tree, Sorted Array (SA), and LSM. B is the cache-line size,
n is the total number of items, and L is the number of items
returned (or counted) in a range (or count) query.

Only recently have dynamic GPU versions of four ba-
sic data structures been developed: hash tables [2], sparse
graphs with phased updates [14], quotient filters [12], and
log-structured merge trees (LSMs) [3]. LSMs provide one of
the most basic data-structural primitives, sometimes called
a key-value store and sometimes called a dictionary. Specif-
ically, an LSM is a data structure that supports key-value
lookups, successor and range queries, and updates (deletions
and insertions). This combination of operations, as imple-
mented by red-black trees, B-trees, LSMs or B¢-trees, is at
the core of many applications, from SQL databases [16, 31]
to NoSQL databases [8, 22] to the paging system of the Linux
kernel [28].

In this paper, we revisit the question of developing a mu-
table key-value store for the GPU. Specifically, we design,
implement, and evaluate a GPU-based dynamic B-Tree. The
B-Tree offers, in theory, a different update/query tradeoff
than the LSM. LSMs are known for their insertion perfor-
mance, but they have relatively worse query performance
than a B-Tree [6, 26].

Table 1 summarizes the standard theoretical analysis of in-
sert/delete, lookup, and count/range for n key-value pairs in
our B-Tree, in a sorted array (SA), and in the LSM. Searches
in GPU versions of these data structures are limited by GPU
main-memory performance. Here, we use the external mem-
ory model [1], where any access within a 32-word block of
memory counts as one access, for our analysis.!

We find that, not surprisingly, our B-Tree implementation
outperforms the existing GPU LSM implementation by a

10n the GPU, the external memory model corresponds to a model where a
warp-wide coalesced access (to 32 contiguous words in memory) costs the
same as a one-word access; this is a reasonable choice because, in practice,
a GPU warp that accesses 32 random words in memory incurs 32 times
as many transactions (and achieves 1/32 the bandwidth) as a warp that
accesses 32 coalesced words, to first order.
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speedup factor of 6.44x on query-only workloads. More sur-
prisingly, despite the theoretical predictions, we find that for
small- to medium-sized batch insertions (up to roughly 100k
elements per insertion), our B-Tree outperforms the LSM.
Why? The thread-centric design and use of bulk primitives
in the LSM means in practice that it takes a large amount of
work for the LSM to run at full efficiency; in contrast, our
warp-centric B-Tree design hits its peak at much smaller in-
sertion batch sizes. We believe that insertions up to this size
are critical for the success of the underlying data structure:
if the data structure only performs well on large batch sizes,
it will be less useful as a general-purpose data structure.

Our implementation addresses three major challenges for
an efficient GPU dynamic data structure: 1) achieving full
utilization of global memory bandwidth, which requires re-
ducing the required number of memory transactions, struc-
turing accesses as coalesced, and using on-chip caches where
possible; 2) full utilization of the thousands of available GPU
cores, which requires eliminating or at least minimizing re-
quired communication between GPU threads and branch
divergence within a SIMD instruction; and 3) careful design
of the data structure that both addresses the previous two
challenges and simultaneously achieves both mutability and
performance for queries and updates. Queries are the easier
problem, since they can run independently with no need
for synchronization or inter-thread communication. Updates
are much more challenging because of the need for synchro-
nization and communication.

To this list we add a fourth challenge, the most significant
challenge in this work: contention. A “standard” B-Tree, im-
plemented on a GPU, simply does not scale to thousands of
concurrent threads. Our design directly targets this bottle-
neck with its primary focus of high concurrency. The result
is a design and implementation that is a good fit for the GPU.
Our contributions in this work include:

1. A GPU-friendly, cache-aware design of the B-Tree
node data structure;
2. A warp-cooperative work-sharing strategy that achieves
coalesced memory accesses, avoids branch divergence,
and allows neighboring threads to run different opera-
tions (e.g., queries, insertions, and deletions); and
3. Analysis that shows that contention is a critical lim-
iter to performance, which motivates three design deci-
sions that allow both high performance and mutability:
a. A proactive splitting strategy that correctly handles
node overflows while minimizing the number of
latched nodes during the split operation;

b. Level-wise links that allow more concurrency during
updates, specifically during split operations; and

c. Restarts on split failure to alleviate contention and
avoid spinlocks.
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2 Background and Previous Work
2.1 Graphics Processing Units

Graphics Processing Units (GPUs) feature several streaming
multiprocessors (SMs), each with its own dedicated local re-
sources (such as L1 cache, a manually managed cache called
shared memory, and registers). A group of threads is called
a thread-block, and each is assigned to one of the SMs. All
resident thread-blocks on an SM share the local resources
available for that SM. The assignment of thread-blocks to
SMs is done by the hardware and the programmer has no ex-
plicit control over it. All SMs, and hence all available threads
on the GPU, have access to some globally shared resources
such as the L2 cache and the DRAM global memory.

In reality, not all resident threads on an SM are actually ex-
ecuted in parallel. Each SM executes instructions for a group
of 32 threads, a warp, in a single-instruction-multiple-data
(SIMD) fashion. All memory transactions are performed in
units of 128 bytes where each thread within a warp fetches 4
consecutive bytes. As a result, in order to achieve an efficient
GPU program, programmers should consider the following
two criteria for a warp’s threads: 1) avoid discrepancy be-
tween neighboring threads’ instructions, 2) minimize the
number of memory transactions required to access each
thread’s data. The former is usually achieved by avoiding
branch divergence and load imbalance across threads, while
the latter is usually achieved when consecutive threads ac-
cess consecutive memory addresses (a coalesced access). Un-
fortunately, it is not always possible to achieve such design
criteria and depending on the application, programmers have
devised different strategies to avoid performance penalties
caused by diverging from the mentioned preferences. In the
context of concurrent data structures, each thread within a
warp may have a different task to pursue (insertion, deletion,
or search), while each thread may have to access an arbitrar-
ily positioned part of the memory (uncoalesced access). To
address these two problems, Ashkiani et al. proposed a Warp
Cooperative Work Sharing (WCWS) strategy [2]: indepen-
dent operations are still assigned to each thread (per-thread
work assignment), but all threads within a warp cooperate
with each each other to process in parallel (per-warp pro-
cessing). By doing so, threads cooperate with each other in
both memory accesses and executed instructions, resulting
in more coalesced accesses and reduced branch divergence.
While traditionally, communications between threads are
done either through the shared memory (if within the same
thread-block), or the global memory (among all threads), ad-
ditionally utilizing high-bandwidth, low-latency warp-wide
communication between threads may enable higher perfor-
mance overall; threads within a warp can communicate with
each other through voting (e.g., ballots) or reading the con-
tent of another thread’s registers (e.g., shuffles).
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The NVIDIA TITAN V GPU (an instance of NVIDIA’s
“Volta” microarchitecture) has 80 SMs and 64 thread pro-
cessors per SM for a maximum of 5120 resident warps. It
contains a 6 MB L2 cache, a 10 MB L1 cache distributed
across SMs, and a global memory (DRAM) throughput of
625.8 GB/s.

2.2 B-Tree

Key-value stores are fundamental to most branches of com-
puting. Assuming all keys in the data structure are unique, a
key-value store implements the following operations:

Insert(k, v): Adds (k, v) to the set of key-value pairs (or
replace the value if such key already existed).

Delete(k): Removes any pair (k, *) from the set.

Lookup(k): Returns the pair (k, *) in set, or L if no such
pair exists.

Range(ky, k;): Returns all pairs (k, *) in set, where k; <
k <k,

Successor(k): returns the pair (k’, *) where k" is the
smallest key greater than k, or L if no such k’ exists.

When the set of key-value pairs is small, in-memory solutions
such as balanced search trees are typically used. When data is
too large to fit into memory—and for a GPU, when the main
body of the data structure only fits into global DRAM—such
data structures as B-Trees, LSMs, and B€-trees are used. B-
Trees are optimized for query performance. The ubiquitous
B-Tree as described by Comer [9] was introduced by Bayer
and McCreight [5] to handle scenarios where records exceed
the size of the main memory and disk operations are required.
Therefore, a B-Tree is structured in a way such that each
node has a size of a disk block, intermediate nodes contain
pointers and separators (pivots) that guide the tree traversal,
and leaf nodes contain keys and records (values). For a tree
of fanout B, each intermediate node in the tree can have at
most B children and must have at least B/2 children, except
for the root, which can have as few as two children.

During insertion into a B-Tree, a tree node is split when-
ever it overflows and nodes are merged to handle underflows.
For a B-Tree that stores N keys, the tree will have a height of
O(logg N), which is shallower than a balanced binary tree,
which has height ©(log, N). This difference in height is the
basis for the difference between the I/O costs of searches in
B-trees and in sorted arrays given in Table 1.

2.3 Previous Work

Splitting. A major challenge for concurrent updates on the
B-Tree is splitting an overflowing tree node, where updates
to the overflowing node, its new sibling (new child to the
parent), and the parent are required to be done atomically.
This requires locking two tree nodes on different levels (the
new sibling doesn’t need to be locked as no pointers to it exist
yet), which bottlenecks the updating process, particularly
at the root and upper tree nodes. Moreover, splitting could
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propagate up the tree (when the parent node is full), thus
requiring locking more nodes on different levels.

Graefe [13] surveyed the different locking techniques that
are typically used on CPUs. Latch coupling and B-link-trees
are two different approaches to maintain consistency of the
B-Tree during split operations without causing concurrency
bottlenecks. In latch coupling, a thread releases a node’s latch
only after it acquires the next node’s latch. For splitting with
a latch coupling strategy, in addition to latching the next
node, the parent node is unlatched only if the lower node is
not full, guaranteeing that subsequent split operations will
successfully complete.

Another approach to splitting is to proactively split nodes
during a thread’s root-to-leaf traversal. Proactive splitting
avoids concurrency bottlenecks but may lead to unnecessary
splits, and it may be challenging to extend it to variable-
length records.

The B-link-tree [24] relaxes the constraints of a B-Tree and
divides the split operation into two steps: splitting the node
and updating the parent. In between these two steps the B-
Tree is in an intermediate tree state where the parent doesn’t
have information about the new node but the split node
and its new sibling are linked. Linking nodes requires the
addition of a high key and a pointer in recently split nodes
to their neighbor nodes, and during traversals, threads are
required to check the high key at each node to determine if
level-wise traversal is required. Good performance requires
that updating the parent with a pointer to its new child
should be done quickly to avoid traversing long linked lists
and to improve traversal performance.

Early lock releasing techniques were used by Lehman
and Yao [24] to provide more concurrency. The merging of
nodes to reduce the tree height after deletions was presented
by Lanin and Shasha [23] and Sagiv [33]. Latch coupling was
used in B-link-trees by Jaluta et al. [17] along with recovery
techniques.

GPU work. While many previous GPU projects have tar-
geted B-Trees and similar data structures that support the
same operations (Table 2), few support incremental updates,
those that do typically have poor update rates, and many can-
not even build the B-Tree on the GPU. No previous work has
competitive performance on both queries and updates. Fix
et al. [11] was among the first to build a GPU B-Tree but only
used the GPU to accelerate searches. The work most directly
on point is from Kaczmarski [19], who specifically targets the
bulk-update problem with a combined CPU-GPU approach
that contains optimizations beyond rebuilding the entire data
structures; Huang et al. [15], who extend Kaczmarski’s work
but with non-clustered indexes that would be poorly suited
for range queries; and Shahvarani and Jacobsen [34], who
focus their work on high query rates using large fanouts, but
with poor insertion performance. Their work proposed a hy-
brid CPU-GPU B-Tree to handle scenarios where the tree size
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Work Usage

Data structure notes

YHFL+ [40]  Grid files for multidimensional database queries.
KCSS+ [20]

Index search for databases using binary tree optimized for architecture.

Built on CPU.
Inefficient parallelism: only run one tree-building thread
per half warp. Updates require complete rebuild.

FWS [11] Processing B+ tree queries for databases. Built on CPU.

LWL [29] Construct R-trees by parallelizing sorting and packing stages. Tree traversal based =~ GPU-built trees have poor range query performance. Up-
on BFS. dates require complete rebuild.

BGTM+ [4]  Single- and multi-GPU range queries for List of Clusters and Sparse Spatial ~Built on CPU.
Selection indexing approaches.

SKN [35] Compute range queries by constructing Cartesian tree and finding least common  Updates require complete rebuild.
ancestors.

KKN [21] R-tree traversal for spatial data. Sequential search between nodes, parallel search ~ Built on CPU.
within each node.

YZG [41] R-tree construction and querying for geospatial data. Compares performance of =~ GPU-built trees have poor range query performance. Up-
trees constructed on GPU and CPU. dates require complete rebuild.

LYWZ [27] Range query processing for moving objects using query buffers, hashing, and  Process stream of data instead of building data structure.
matrices to calculate and track distances between objects.

LSOJ [25] Spatial range queries for moving objects using grid indexing, quad trees, and  Only works on databases with evenly distributed objects.
intermediate bitmap data structures. Updates require complete rebuild.

ALFA+ [3]  First dynamic general-purpose dictionary data structure for the GPU based on  High insertion rates, but primarily for large insertions;
the Log Structured Merge tree (LSM). competitive query performance.

SJ [34] Large trees that don’t fit on a GPU’s memory, with emphasis on query performance.  Built and updated on CPU.
GPU is used to speed up query performance.

YLPZ [39] Phased queries and updates on the GPU. State-of-the art query throughput. Less efficient update

throughput.

Table 2. Chronological summary of previous work on dictionary data structures that support point and range query on GPUs.

exceeds the GPU memory size. They focus on high search
throughput using GPUs; insertions are done in parallel on
the CPU. (Our work does not target B-Trees larger than the
GPU memory capacity.). In concurrent work, Yan et al. [39]
propose a novel B-Tree structure where the tree is divided
into key and child regions. The key region contains keys
of the regular B-Tree laid out in memory in a breadth-first
order. The child region is a prefix-sum array of each node’s
first child (which is small enough to fit inside the cache).
Moreover, they offer two optimizations: partial sorting of
queries to achieve coalesced memory access, and grouping
of queries while reducing the number of useless comparisons
within a warp to minimize the warp execution time. With
these design decisions they achieve state-of-the-art query
performance at the expense of a higher cost to maintain the
B-Tree structure when updating. Our work offers a different
tradeoff between query and update performance.

The GPU LSM [3] takes a different approach to provide
a dynamic GPU data structure that supports the same op-
erations as the B-Tree. The GPU LSM is a hierarchy of dic-
tionaries, each with a capacity of b2, where i represents
the level and b represents the batch size. It derives from the
Cache Oblivious Lookahead Array (COLA), where each dic-
tionary is represented using a sorted array of elements, with
updates modifying the small dictionary. Once a dictionary
reaches its capacity, it is merged with the next larger one.
Updates are done using two primitives, sort and merge, each
of which can be done efficiently on GPUs. For queries, the
search starts at the smallest dictionary and proceeds along
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Figure 1. B-Link-Tree (with B = 3) schematic (top). Our
B-Tree (with B = 15) node structure (bottom). A tree node
contains 15 pivot-pointer (or key-value) pairs. A pointer to
the node’s child is represented by the child’s offset. The last
pair in a node represents the right sibling minimum value
and its pointer. The minimum of the right sibling serves as a
high key for the node.

the hierarchy of dictionaries. GPU LSM performance gen-
erally depends on the batch size, where larger batch sizes
improve the performance.

We compare our performance to the GPU LSM and GPU
sorted array performance in Section 5.

3 Design Decisions

In our design we assume 32-bit keys, values, pivots (separa-
tors), and offsets (pointers). We use the most significant bit
of each of the node’s entries to distinguish leaves from inter-
mediate nodes and to mark locked (latched) nodes. Figure 1
shows a schematic of our B-Tree’s node structure. Offsets
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are used to identify the next tree node during traversal by
simply multiplying the offset by the size of the tree node.

We use the same structure for internal B-Tree nodes and
leaves. All key-value pairs are stored in leaf nodes; internal
nodes store pivot-offset pairs, where the offset points to
another node in the tree. Each node in our B-Tree stores 15
key-value or key-offset pairs (Section 3.1), and an additional
pair containing a pointer to its right sibling and the minimum
key of its right sibling (Section 3.2).

Reading a tree node is not blocked by any other operation
(Section 3.3). When we insert into the tree and must split,
we use proactive splitting (Sections 2.3 and 3.4) with restarts
on failures (Section 3.5). We use a simple write latch per
node to prevent concurrent modifications to the same node.
When an insertion into a node causes a split, we first move
half of the leaf (or intermediate) node’s key-values (or pivot-
offsets) to a new node, then insert a pivot-offset pair into
a parent node. We use a warp-cooperative work-sharing
strategy (Section 3.6) where work is generated per thread
but performed per warp.

The remainder of this section discusses the details, moti-
vations, and implications of these design decisions.

3.1 Choice of B

To maximize memory throughput, each of our B-Tree nodes
is the size of a cache line, which is 128 bytes on NVIDIA
GPUs. Thus a warp of 32 threads can read a tree node (cache
line) in a coalesced manner. Each tree level is a linked list
(we motivate this decision in Section 3.2) to allow for more
concurrency, specifically during insertion. The overhead for
making each tree level a linked list is 8 bytes divided equally
between a pointer to the node’s right sibling and the right
sibling’s minimum key. The remaining 120 bytes are used
to store either pivot-pointer pairs for intermediate nodes
or key-value pairs for leaf nodes; therefore our B-Tree has
B = 15. Figure 1 illustrates the tree node structure.

3.2 B-Link-Tree

Adding new items to a B-Tree may require splitting a node,
which in turn requires changing nodes on at least two levels
of the tree. Traditional implementations exclusively lock a
safe path during an insertion traversal. On a GPU, such locks
rapidly bottleneck any tree traversal, particularly at the root
and upper tree nodes. We eliminate the need for an exclusive
lock, allowing other warps to concurrently read, by adopting
the side-link strategy of the B-Link tree [24]. In a B-Link tree,
each node stores a link to its right neighbor as well as storing
the right neighbor’s minimum key, i.e., each tree level is a
linked list. With this additional information, we no longer
must lock the upper node in the split. Why?

We traditionally exclusively lock (at least) both the upper
and lower node to handle the case where a split operation
and a read operation are concurrent. The split divides the
lower node into two nodes then updates the parent node with
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the information about the new node. If a read occurs after
the lower-node division but before the upper-node update, it
may not find the right path down the tree. However, the side
link solves this problem: if the read occurs after the lower-
node division and the item is not in the left lower node, the
read operation traverses the side link to find the new right
lower node.

Maintaining the level-wise links is simple. During a split
operation, the right tree node gets the side-link data from
the original node, and the left node’s side link points to the
right node and also stores the minimum key or separator of
the right node.

In our GPU implementation, the addition of the side link
itself does not solve the concurrency problem, but together
with a proactive splitting strategy (Section 3.4), it improves
concurrency.

3.3 Decoupled Read and Write Modes

A complementary decision to the previous one is to decouple
reads and writes. In other words, our design has only one
latch type: an exclusive write latch, only required when
modifying a node’s content, during inserting or deleting
a key-value or separator-offset pair. Any warp starts the
tree traversal for any update operation in read mode; reads
require no latches. But once a warp decides to switch from
read mode to write mode, an additional read is required after
latching the node. The additional read is required to ensure
we have the most recent node content as other warps might
have subsequently modified the contents of the node.

3.4 Proactive Splitting

Splitting a tree node is required whenever the node becomes
full, and in the most extreme case the splitting process will
propagate up the tree all the way to its root. The traditional
approach to splitting is latch coupling, which involves exclu-
sively locking a subtree starting at a “safe” node that guaran-
tees that any future splits will not propagate further up the
tree. Latch coupling disallows both reads and writes in this
subtree. This strategy significantly bottlenecks GPU perfor-
mance by limiting concurrency; exclusively locking (or even
write-only locking) an entire subtree idles any thread that
accesses (or modifies) that subtree. This loss of concurrency
results in unacceptably low performance.

Instead we use a proactive splitting strategy. Proactive
splitting, together with the side links of a B-Link-Tree (Sec-
tion 3.2), maximizes concurrency: with them, we both limit
node modifications to only two tree levels and also allow
concurrent reads of these nodes.

During insertions, a node is split whenever it is full. We
begin by reading a node; if that node is full, we begin the
splitting process. To further reduce the time we need to
latch the upper tree node, we process the first splitting stage
without latching the upper node. But, before committing the
changes to the split node and its new sibling, we must latch
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the parent. Then we check if the parent, which will now
gain an additional child, has subsequently become full (the
high level of concurrency makes this a distinct possibility).
We handle this case with a restart, as we describe in the
next subsection. It is the combination of side links, proactive
splitting, and restarts that together allow our implementation
to achieve high levels of concurrency.

3.5 Restarts Instead of Spinlocks

Traditionally, threads in a B-Tree that encounter a locked
latch spin until that latch is available (a spinlock). GPU soft-
ware transactional memory techniques [37, 38] provide the
same functionality of fine-grained synchronization, but we
opt for lightweight latches embedded in our B-Tree’s nodes.
We further tune our synchronization technique using the
fact that only writes requires latches (Sections 3.2 and 3.3).
Moreover, in our design, we generally replace spinlocks with
restarting the operation from the node’s last-known par-
ent or the root. The restart has a similar effect to backoff
locking [36], where a spinlocking thread does meaningless
work to temporarily relieve contention over the atomic unit;
this is useful when DRAM operations are not slow and
atomic operations are fast so that the backoff window is
small. ElTantawy and Aamodt [10] showed that an adaptive
backoff improves the performance even further, since small
backoff delay may increase spinning overheads while a large
backoff delay may throttle warps more than necessary. From
our experiments we find that spinlocks on high-contention
nodes—specifically, full and leaf nodes during insertions—
reduce the amount of resident warps that can make progress.
Moreover, restarts improve memory throughput and inser-
tion rates. For a B-Tree of size 2!°, we find that restarts
improve the throughput by a factor of 6.39x over spinlocks,
while backoff improves the performance by a factor of only
1.47x.

We use spinlocks in three cases: (1) during the second stage
of splitting a node that modifies the node’s parent, (2) during
traversal of side links (after latching a leaf node), and (3)
during the deletion of key-value pair from a leaf node. More
commonly, we restart traversal. We restart from the node’s
last-known parent if we fail to latch a leaf node or a full
leaf (or intermediate) node. Another scenario for restarting
from the last-known parent node is when we detect that
the last-known parent is not the true parent, as the true
parent might be the new sibling of the last-known parent
after splitting. After restarting with the last-known parent
as the current node, we find the true parent using side-link
traversal. We restart from the root if the split operation
requires information that is unknown. Since we don’t keep
track of the grandparent node, the unknown information
is either 1) the grandparent node when the parent node is
full or 2) the parent node when the current node became full
after a restart to detect the true parent. We find that restart
overhead becomes less significant as the tree size grows and
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that restarts increase our insertion throughput. We note that
using a spinlock, specifically when latching a parent node
during splitting of its child, guarantees that at least one warp
will make progress.

3.6 Warp Cooperative Work Sharing Strategy

We expect that the predominant use of our B-Tree will be
in scenarios where the GPU is running many threads and
each thread potentially generates a single access (a query,
an insert, or a delete) into the B-Tree. Consequently, our
abstraction supports inputting work from threads. However,
we process work with entire warps in an approach first pro-
posed for dynamic GPU hash tables [2]. In the common case,
32 threads in a warp each have an individual piece of work,
but the entire warp serializes those 32 pieces of work in
a queue, working on one at a time. This strategy has two
clear benefits: avoiding thread divergence within a warp and
achieving coalesced memory accesses while reading or writ-
ing a tree node. A third benefit is alleviating the need for load
balancing. Although the path from the root of the tree to the
leaves in a B-Tree is a uniform one, the insertion process will
be an irregular task based on the thread’s path. In particular,
the irregularity comes from the additional process of node
splitting. Because WCWS leverages the entire warp to do
these irregular tasks, it avoids any need to load-balance work
across threads.

4 Implementation

With the exception of a bulk-build scenario, all of our im-
plementations follow the warp cooperative work sharing
strategy (WCWS). In WCWS each thread has its own as-
signment, either an update (insertion or deletion) or a query
(lookup, range, or successor). A warp cooperates on perform-
ing each of its 32 threads’ tasks using warp-wide instructions.
With our design decision for B, each thread in the warp reads
one item in the tree node. Even-lane threads read keys (or
pivots), and odd-lane threads read values (or offsets); the last
two threads read the node’s high key and its right-sibling
offset.

In all of our operations, we leverage CUDA’s intrawarp
communication instructions in two ways. (1) ballot per-
forms a reduction-and-broadcast operation over a predicate.
The predicate is usually a comparison between a key (or a
pivot) and each thread’s key. ballot is always followed by
a ffs instruction (i.e., find first set bit) to determine the first
lane that satisfies the ballot predicate. (2) shfl (“shuffle”)
broadcasts a variable to all threads in a warp.

Algorithm 1 shows the general pattern in a warp coop-
erative work sharing algorithm, which we use as the entry
point in our simultaneous query and update algorithm. We
now discuss the implementations of the various operations
that we support, omitting intrawarp communication details.
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Algorithm 1 Warp Cooperative Work Sharing Algorithm.

Algorithm 2 Incremental Insertion.

1: procedure WCWS(Tree btree, Pair pairs, Task tasks)
2: is_active «— true

3 thread_pair « pairs[threadldx]

4: thread_task « tasks[threadldx]

5: while work_queue « ballot(is_active) do

6: current_lane « ffs(work_queue)

7 current_pair < shfl(thread_pair, current_lane)
8 current_task «— shfl(thread_task, current_lane)

—
ISR

performTask(current_task, current_pair, btree)
if laneld = current_lane then

11: is_active « false

12: end if

13: end while
14: end procedure

4.1 Insertion
4.1.1 Bulk-Build

The bulk build operation constructs a B-Tree directly from a
bulk input of key-value pairs. We start by sorting the input
pairs with CUB’s [30] sort-by-key primitive. Then we start
building the tree bottom-up. To avoid splitting after a bulk-
build process, we fill each of the tree nodes with only 8
pairs of either key-values or pivot-offset. We reserve the
zeroth node as the root. The remainder of the tree nodes are
organized in a left-to-right level-wise order starting from the
leaf nodes. We assign each tree node to a warp. Each warp is
only responsible for loading the required 8 key-value pairs if
the node is a leaf. Since we already know the structure of the
tree, we can easily determine the current node height and
the indices of its children for intermediate nodes. We also
avoid the complexity of merging nodes that are underfull
and allow underfull nodes to exist in the constructed tree.

4.1.2 Incremental Insertion

In incremental insertion, a thread has a new key-value pair
that must be added to the appropriate leaf node. This op-
eration requires tree traversal and split operations when
needed. Algorithm 2 summarizes the incremental insertion
algorithm. A warp traverses the tree starting from the root
(line 2). The most significant bit in any node’s first entry
identifies whether it is a leaf or an intermediate node. If we
reach a leaf or a full node, then the current node must be
modified; we attempt to latch it (line 13). As we detailed
in Section 3.5, if we cannot acquire the lock, we restart the
insertion process from the node’s parent instead of spinning
(line 15).

Latches. Each tree node has a one-bit lock (the most signifi-
cant bit in the second node entry), which we try to change
using an atomicOr. Out of a warp’s 32 threads, only the sec-
ond thread acquires the latch for the warp. If the atomicOr
function returns a value where the most significant bit is one,
then the latch failed. A zero indicates that we successfully
latched the node. Due to the weak memory behavior on a
GPU, latching a node using only an atomic call guarantees
serialization over the latch, but not the tree nodes themselves.

1: procedure INSERT(Tree btree, Pair pair)

2: current < parent < btree.root
3 repeat
4 while pairkey > current.link_min do
5: current < current.link_ptr
6: end while
7 if current is full then
8 if current = parent and current is not root then
9: current < parent < btree.root
10: end if
11: end if
12: if current is full or current is leaf then
13: if tryLatch(current) = failed then
14: current <— parent
15: continue
16: end if
17: link_used « false
18: while pairkey > currentlink_min do
19: if current is full then
20: releaseLatch(current)
21: link_used « true
22: current < parent
23: break
24: end if
25: releaseLatch(current)
26: current «— current.link_ptr
27: acquireLatch(current)
28: end while
29: if link_used then
30: continue
31: end if
32: end if
33: if current is full then
34: result « trySplitAndUpdateParent(current, parent)
35: if result = success and current is not leaf then
36: releaseLatch(current)
37: else if result = parent full or unknown then
38: releaseLatch(current)
39: current < parent
40: continue
41: end if
42: end if
43: if current is leaf then
44: insertPair(pair, current)
45: releaseLatch(current)
46: else if current is intermediate then
47: current «— getNext(pairkey, current)
48: end if
49: until current is leaf

50: end procedure

Load and store instructions could be reordered around the
atomic call. Therefore, we must add a global memory fence
both after acquiring a latch and before releasing a latch. This
fence guarantees that all writes to global memory before
the fence are observed by all other threads before the fence.
We also must use the volatile keyword to bypass the L1
cache to avoid reading stale tree nodes from the L1 cache.
The memory fences and the L1 cache bypass degrade perfor-
mance, but are necessary to ensure correctness. For example,
building a B-Tree that contains 2! keys is on average 1.77x
faster, averaged over successful runs, if memory fences and
the L1 cache bypass are not used. All reported results for
insertions in Section 5 use both memory fences and a L1
cache bypass.

Using side links. After we read a node (line 4), and after
we latch it (if it is a leaf or a full node) (line 18), we check
if the key is less than the node’s high key; this is the usual
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case. However, the key may now be larger than the high key;
for instance, another insert may split the current node after
the read but before the latch. In these cases, we traverse to
the next node on this level using the side link. Using a shfl
instruction, we broadcast the right sibling node offset to all
threads in the warp and continue the insertion process from
this node. In case when the node is full and the side link
is used, we restart the process from the last-known parent
(line 30).

Splitting. If the latched node is full, and we never traversed
side links (i.e., we know the parent node), we begin the
splitting process (line 34). We perform the first stage of the
split without latching the parent or creating the new node.
We prepare new pairs for the now-half-full node and its new
sibling. Then we latch the parent and check if the parent is
the current true parent of the node. It may not be if another
warp has subsequently split the last-known parent and the
new true parent is the new sibling; if that is the case, we
restart the process from the last-known parent (line 40). If we
detect that the parent is full, we restart the process from the
root of the tree (line 9). If the splitting succeeds, we detect
which of the new nodes is our next node and move to that
node.

Inserting the new pair. If the node is a leaf node, we move
pairs in the node to create space for the new pair, then write
the node changes back to memory (line 44).

4.2 Search

Searching the tree for a value (Algorithm 3) is much simpler
than insertion. A warp simply traverses the tree by compar-
ing the lookup key and the intermediate-node pivots using a
warp-wide comparison. The warp then determines the lane
that contains the next pivot and hops to the next node. Once
the warp reaches the leaf node, a second warp-wide com-
parison of the key and the leaf node keys determines if the
key exists in the tree (in which case the associated value is
returned), or if the key doesn’t exist in the tree.

4.3 Deletion

In deletion, a warp first traverses the tree to find the deleted
key. Once it reaches the leaf, it latches the tree node and
reads the leaf again, since between the time of traversal and
latching, other warps might have deleted keys from the node.
Once a warp latches the leaf node, a warp-wide comparison
locates the key. The deleting warp shuffles down higher keys
and their associated values, if any, two spots to overwrite the
deleted key-value pair. Similar to insertion, memory fences
are required for latching, but since in our deletion we don’t
modify intermediate nodes, we can avoid using the keyword
volatile and take advantage of the L1 cache when reading
intermediate nodes. But for reads and writes to leaf nodes, we
use custom PTX read (1d.global.relaxed.sys.u32) and
write (st.global.relaxed.sys.u32) functions to bypass

Awad et al.

Algorithm 3 Lookup, range, successor, and delete.

1: procedure QUERYORDELETE(Tree btree, Key key, Key key_upper_bound, Result
result, Operation operation)

2 current «— parent «— btree.root

3 result < NOT_FOUND

4 repeat

5: if current is intermediate then

6: current < getNext(key, current)

7 else if current is leaf then

8 switch operation do

9 case lookup:

10: result « getValue(key, value)

11: break

12: case delete:

13: latchNode(current)

14: volatileReadNode(current)

15: current «— deleteKey(key, current)
16: volatileWriteNode(current)

17: break

18: case range:

19: while true do

20: result += inRange(key, key_upper_bound, current)
21: if key_upper_bound < current.link_min then
22: break

23: end if

24: current < current.link_ptr
25: end while

26: break

27: case successor:

28: while result = NOT_FOUND do
29: result «— getNextValidPair(key, current)
30: current «— current.link_ptr
31: end while
32: break
33: end switch
34: end if
35: until current is leaf

36: end procedure

the L1 cache. We avoid merging underfull tree nodes, as it
slows down the deletion process without a corresponding
gain in search performance. A high-level description of the
algorithm is shown in Algorithm 3.

4.4 Range Query

Given a pair of upper/lower bounds, a warp first traverses
the tree searching for the location of the lower bound. Once
the location is determined, the warp uses the side links to
perform level-wise traversals until it locates the upper-bound
key. During this side traversal, all key-value pairs belonging
to the range are written back to global memory. The counter
that keeps track of the pairs within the range could be used
to provide a count query, which is faster since no global
memory writes are required. The range query (or count)
algorithm is similar to the point query algorithm with the
lookup key as the lower bound, with the addition of both link
traversal and writing back the in-range pairs (or the count).
The amount of work required to perform a Range(ky, k) is
directly dependent on the range length (i.e., k; — k;). A high-
level description of the algorithm is shown in Algorithm 3.

4.5 Successor Query

Given a key, to find its successor we first perform a point
query to locate the key. Then we check if any larger key
exists in the current leaf. If the key was the last valid key in



GPU B-Tree

the node, we perform level-wise traversals using side links
to find the first valid key. Since in deletion we do not merge
tree nodes, the warp might need to perform more than one
traversal. A high-level description of the algorithm is shown
in Algorithm 3.

5 Results

In this section we compare our B-Tree implementation? to a
GPU sorted array (GPU SA) and a GPU LSM. GPU LSM and
GPU SA implementations are from Ashkiani et al. [3]. The
GPU LSM implementation uses CUB [30] in its sort primitive
and moderngpu?® in its merge primitive. We run all of our
experiments on an NVIDIA TITAN V (Volta) GPU with 12
GB DRAM and an Intel Xeon CPU E5-2637.

For all of our experiments we used 32-bit keys and values.
We reserved the most significant bit of keys for locking and
identifying leaves and intermediate nodes.

At a high level, all B-Tree operations have throughput
proportional to the height of the tree. Because of the large
fanout of a B-Tree, this means that for most B-Tree sizes of
interest (large enough to make a B-Tree worthwhile at all,
small enough to fit into GPU memory), the B-Tree’s height is
constant and we thus essentially have constant throughput.
This makes the B-Tree’s performance much more predictable
than the LSM (e.g., Figure 2).

For rates or throughputs, all “mean” or “average” results
in this section are harmonic means.

5.1 Insertion

Baseline B-Tree. Our baseline B-Tree implementation is
most similar to the B-Tree of Rodeh [32]. In the baseline
implementation we used latch coupling and a proactive split-
ting strategy. The baseline B-Tree branching factor was 16.
As discussed in Section 3.2, with the GPU’s high level of con-
currency, latch coupling will severely bottleneck any tree
traversal. We see the effect of using latch coupling and its
exclusive latches in the resulting insertion throughput of
0.166 MKey/s. Our design decisions allow us to make much
better use of the thousands of active warps on the GPU,
achieving an average insertion throughput of 182.9 MKey/s,
more than three orders of magnitude greater than the base-
line.

Bulk-build vs. incremental update. We investigate the
advantage of incremental update over complete rebuild of
the B-Tree. Figure 3 compares the time required to bulk-build
a B-Tree of size m from scratch vs. inserting a batch of size 2
into a B-Tree of size m — 2!. As the batch size decreases, we
see the advantage of incremental insertion over bulk-rebuild.
For example, once the tree size reaches 3.15 million keys,
inserting a batch of 2'® (262k) elements into the tree has a

2Qur implementation is available at https://github.com/owensgroup/
GpuBTree.
$Moderngpu is available at https://github.com/moderngpu/moderngpu.
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batch size B-Tree GPULSM GPUSA

210 168.0 61.5 44.9
217 139.7 121.3 87.6
218 171.7 218.6 160.6
219 190.3 402.5 292.6
220 205.1 685.9 543.0
221 211.9 1103.8 907.5
222 223.0 1603.1 1472.7
Mean 182.9 202.6 149.1

Table 3. Mean rates (in MKey/s) for different batch-sized
insertions into the B-Tree, GPU LSM and GPU SA.

clear advantage over rebuilding the tree. As the batch size
gets larger, the tree size at which updating the tree is more
efficient than rebuilding the tree from scratch grows, which
is expected since a bulk-build only requires a sort (which
is done efficiently on the GPU) and writing the tree nodes.
We note that the throughput of bulk-build is on average
3124.32 MKey/s.

Incremental updates. To evaluate batched incremental up-
dates for B-Tree, GPU LSM, or GPU SA we build all possible
data structure sizes incrementally using batches of size b.
The mean of all insertion rates for a given b is reported in Ta-
ble 3. For smaller batch sizes b < 2!7 we find that although a
GPU LSM is optimized for insertions and should be theoreti-
cally faster than a B-Tree, our B-Tree is faster with a speedup
factor of 2.73x and 1.15x for b = 21¢ and b = 2!7 respectively.
Why? The GPU LSM uses sort and merge primitives that
perform better for large bulk inputs. On the other hand, our
B-Tree uses a warp-centric approach that allows us to reach
higher performance for smaller batches. Similarly, GPU SA
reaches almost the same throughput as our B-Tree when us-
ing a batch size of b = 2!, Our B-Tree is {3.74x, 1.59x} faster
than the GPU SA for batch sizes of {21°, 217} respectively. As
theory predicts, as the batch size increases, GPU LSM and
GPU SA start to outperform our B-Tree, reaching speedup
factors of 2.12x and 1.54x for a batch size of b = 2! and
speedup factors of 7.19x and 6.6x for a batch size of 222. We
note that for batch sizes of b = 21 and b = 222, if the B-Tree
size exceeds 6.82 and 57.67 million keys respectively, an en-
tire rebuild for the B-Tree will be the right choice to handle
the update. A bulk rebuild of {6.82, 57.67} MKeys trees takes
{2.25, 17.11} ms, yielding an effective insertion throughput of
{116.16, 245.17} MKey/s for batch sizes of {2'°, 2%2}.

5.2 Search

Search is where our B-Tree shows large improvements over
GPU LSM and GPU SA. Our B-Tree throughput is almost
constant over a wide range of tree sizes. Figure 2a shows the
throughput of search queries for trees with different sizes.
For GPU LSM and GPU SA, we run the same experiments as
we did for the updates, where we construct the data structure
using different batch sizes for different sizes. In all of the
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Figure 2. Search, range, and successor query rates for different batch size operations applied to the GPU LSM, the GPU SA,
and our B-Tree. In each query we search for all keys existing in the tree. Point query throughput for the B-Tree is a function of
its height, which makes its throughput constant over a large range of tree sizes. A tree of height = 8 starts when the number
of keys is ~ 18Mm all the way up to a theoretical 158 x 15 ~ 38B. For the range query, the expected range length is 8. On average,
our B-Tree is 6.44x and 3x faster than GPU LSM, and GPU SA, respectively in search queries, and 3x faster than GPU LSM in

range query.
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Figure 3. Crossover points between bulk-rebuild of the B-
Tree (including sort time) and inserting a batch of size 2
that result in a tree with the same number of elements.

experiments we search for all elements in the data structure.
The average search throughputs for the {B-Tree, GPU LSM,
GPU SA} are {1020.27, 158.44, 335.17} MQuery/s respectively.

5.3 Deletion

Given a B-Tree of size m, we measure the time required to
delete x% of the key-value pairs in the data structure. In prac-
tice, deletion is essentially a tree traversal with an additional
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Figure 4. Deletion time for different percentages of the num-
ber of key-value pairs in the tree.

writeback. We present the results in Figure 4 for deletion per-
centages between 10% and 50%. Throughput for a deletion
percentage of 10% is 570.64 MDeletion/s. For the remain-
ing deletion percentages, throughput is between 581.78 and
583.35 MDeletion/s. Taking advantage of the L1 cache for
intermediate nodes (Section 4.3) speeds up deletion rates by
a factor of 2.4x.
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5.4 Range Query

Figure 2b shows the throughput of a B-Tree range query and
a GPU LSM one; we see similar trends as in other search
queries. We performed a range query with an expected range
length of 8. GPU LSM results are generated for different batch
sizes. Our B-Tree’s average range query has roughly three
times the throughput as the GPU LSM’s (502.28 MQuery/s
vs. 166.02 MQuery/s).

5.5 Successor Query

For successor queries, we benchmarked different sized B-
Trees. In each tree we searched for the successor of each key
in the tree. The average throughput for a successor query
is 783.13 MQuery/s. The GPU LSM does not currently im-
plement this operation, although the LSM data structure is
well-suited to support it.

5.6 Concurrent Benchmark

Benchmark setup. To evaluate concurrent updates and queries

we define an update ratio a, where 0 < @ < 1, such that
we perform « updates and 1 — a queries. For any given «
we divide the update and query ratios equally between the
different supported update and query operations. We start
our benchmark on a tree of size n, and when deletion and
insertion ratios are equal, the tree size remains the same
for each experiment. For simplicity, we perform the same
number of operations as the tree size. We randomly assign

each thread an operation to perform.

Semantics. We support concurrent operations, which guar-
antees that all pre-existing keys in the tree will be included
in the results of the batch of operations, as long as they are
not updated within the batch. However, results of operations
on keys that are updated within the batch will be dependent
on the hardware scheduling of blocks and switching between
warps. For instance, a batch may contain an insert, a delete,
and a query of a key that is already stored in the data struc-
ture. All three of these operations will complete but the order
in which they will complete is undefined. Many applications
may choose to address this with phased operations, where
changes to the data structure (insertions, deletions) are in
different batches than queries into it. Strictly serial seman-
tics, however, are incompatible with our implementation of
the B-Tree.

Results. Figure 5 shows the results for this benchmark. We
note that for correctness, bypassing the L1 cache is required
for all of the operations for this benchmark, which reduces
the achieved throughput compared to the phased-query oper-
ations of Figure 2. Moreover, additional costs for concurrent
operations are: 1) intrawarp communications to determine
the inputs for each of the different operations, and 2) main-
tenance of a work-queue (using an extra intrawarp com-
munication) to track the progress of each of the different
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Figure 5. Concurrent benchmark operations througput for
diffreent B-Tree sizes.

Volta V100  Kepler K80
L1data Size 32-128 KiB  16-48 KiB
Line Size 32B 128 B
Hit latency 28 cycles 35 cycles
Update policy = non-LRU non-LRU
L2 data Size 6,144 KiB 1,536 KiB
Line size 64 B 32B

Hit latency ~193 cycles  ~200 cycles

Table 4. Summary of memory hierarchy microbenchmark-
ing results [18] on the Volta and Kepler architectures.

operations. Since all of the B-Tree operations are a function
of only the tree height, performance is similar for different
«a ratios {0.2, 0.6, 1.0}, which achieve an average throughput
of {247.67, 257.25, 237.79} MOp/s respectively.

5.7 Cache Utilization

Because of the importance of caching in our results, we
contrast the memory systems in the Volta and Kepler GPU
architectures, whose characteristics are summarized in Ta-
ble 4. We profiled our point query kernel on a TITAN V GPU
and a TESLA K40c GPU. Figure 6 plots different memory
hierarchy levels’ throughput and hit rates. A 2.6x-larger L1
data cache on Volta improves the hit rate by an average factor
of 1.47, which in turn improves the total memory throughput
and allows it to even exceed the DRAM peak bandwidth. On
average, for search queries, Volta’s L2 cache throughput is
4.5x faster than the K40c, achieved DRAM throughput is
4x faster, and total throughput is 6.2x faster, for a memory
system whose DRAM has only 2.27x the peak throughput.
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Figure 6. Throughput (top) and hit rates (bottom) for the
different memory hierarchy levels during search queries.
Upper-level tree nodes of the B-Tree are cached throughput
the memory hierarchy, thus achieving high hit rates in L1
and L2 caches, and allowing the total throughput of our
B-Tree to exceed the peak DRAM bandwidth on Volta.

6 Conclusion

The focus of this work is not the design of a novel data
structure for GPUs. Instead, we show how careful design
decisions with respect to a classic B-Tree data structure allow
the B-Tree to support high-performance queries, insertions,
and deletions on the GPU. While memory and computational
efficiency are important aspects of our implementation, the
principle reason for our high performance is a design that is
focused on achieving maximum concurrency by reducing or
eliminating contention.

Awad et al.

Since all nodes have size of at least 128 bytes, by using
31-bit offsets we can theoretically support up to 238 bytes
of storage (much larger than current GPU memories). How-
ever, limiting keys to 31 bits can be a restricting factor for
some (where larger keys are required). In the future, we will
focus on allowing wider key spans, either by separating the
lock-bit from the rest of the key (sacrifices performance),
or through a hierarchical structure and grouping a set of
elements together so that they share the same key (e.g., like
in quotient filters [7] or lifted B-trees [42]).
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